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Abstract: 

Optimization has become an important tool in engineering activities because it represents a 

systematic method to improve design with respect to certain criteria. Within the thesis a 

numeric-symbolic approach to limit load shape optimization is studied which enables the use 

of an optimization algorithm as an ultimate state design tool. Shape is parameterized 

symbolically using a general computer algebra system. Therefore the design velocity filed can 

be computed analytically and an exact sensitivity analysis can be carried out. Accurate 

sensitivity information is of crucial importance for proper gradient shape optimization.  

When analyzing imperfection sensitive structures it turns out that the choice of the shape 

and size of initial imperfections has a major influence on the response of the structure and its 

ultimate state. Further on, shape optimization applied on the perfect mathematical model 

can lead to non-optimal results, e.g. a very light structure but very sensitive to buckling. 

While imperfections are not known in advance, a method for direct determination of the most 

unfavorable imperfection of structures by means of ultimate limit states was developed. The 

method is implemented as an internal and separate optimization algorithm within the global 

shape optimization process.  

Full geometrical and material nonlinearity is considered throughout the global optimization 

process consistently, resulting in efficient and robust, ultimate limit load structure design 

algorithm. The numerical examples indicate that the use of a symbolic-numeric system for 

gradient shape optimization combined with the use of the most unfavorable imperfections can 

represent a superior alternative to conventional ultimate limit state design. 
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Izvleček. Optimizacija postaja vedno bolj pomembno orodje v inženirski praksi saj 

predstavlja sistematično metodo izboljšanja izdelkov glede na dane kriterije. V okviru 

disertacije je predstavljen simbolno-numerični pristop k optimizaciji oblike konstrukcij v 

mejnem stanju nosilnosti. Pristop omogoča uporabo optimizacijskega algoritma kot orodje za 

projektiranje konstrukcij. Oblika konstrukcije je parametrizirana simbolno s pomočjo sistema 

za splošno računalniško algebro, ki s pomočjo neposrednega odvajanja omogoča analitičen 

izračun polja začetnih občutljivosti. Posledično je možno izvesti natančen izračun 

občutljivosti odziva, kar je ključnega pomena, saj so točne občutljivosti pogoj za uspešno 

uporabo gradientnih metod optimizacije oblike. 

Kadar obravnavamo konstrukcije, občutljive na spremembo začetne geometrije, se izkaže, da 

ima izbira oblike in velikosti začetnih nepopolnosti velik vpliv na odziv konstrukcije in njeno 

mejno stanje. Poleg tega uporaba idealne oblike konstrukcije lahko privede do nestabilnosti 

optimizacijskih algoritmov ali do neoptimalnih rezultatov, na primer izjemno lahkih 

konstrukcij, ki so močno občutljive na nepopolnosti. Začetne nepopolnosti niso znane v 

naprej, zato je v okviru disertacije bila razvita metoda za določitev najbolj neugodne začetne 

nepopolnosti v smislu mejnega stanja konstrukcij. Metoda je implementirana kot ugnezden 

optimizacijski algoritem v okviru globalne optimizacije oblike. 

Skozi celoten proces optimizacije oblike je uporabljen polno nelinearen pristop, ki omogoča 

učinkovito in robustno sintezo konstrukcij. Prikazani primeri prikazujejo uporabnost metode 

in nakazujejo, da uporaba simbolno numeričnega okolja za gradientno optimizacijo oblike v 

povezavi z metodo določitve najbolj neugodnih začetnih nepopolnosti predstavlja napredno 

alternativo klasičnemu projektiranju konstrukcij. 
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1 

1 INTRODUCTION 

It is in the nature of mankind and nature itself to strive after the achievement of a 
goal with the least possible amount of effort. Technical development has always 
required incessant improvement of solutions. This has been achieved by systematic 
improvement of initial design, by redesigning, implementing new knowledge and 
learning from past mistakes. In this manner the initial form of design optimization 
has been a sort of trial and error process which in the end has given better and better 
solutions. Although a very time consuming process, the basic idea is adopted by most 
modern design optimization strategies. Nowadays the technical development is 
accompanied with a growing competition which demands lower design and production 
cost, higher quality, less energy consumption, environment friendly and recycling 
ability design and design of products with the required aesthetic value.  

To meet the increasing necessity for competitive products, a scientific approach is 
needed. The latest knowledge from the field of computational mechanics, sensitivity 
analysis and optimization has to be used. Within the work presented by the thesis a 
limit load shape optimization method including worst imperfection evaluation was 
developed using the latest symbolic-numerical environment technology. 

It is difficult to fulfill all the requirements and to claim that one of the evaluated 
potential optimum designs was the best possible. The decision is left to the design 
engineer to define the performance criteria and restrictions. In the present work the 
optimum design is therefore defined as the one that maximizes the chosen 
performance criteria and satisfies al the constraints given by the engineer. 

1.1 Structural limit load design optimization 

It is important to recognize the difference between structural analysis and structural 
design. The analysis problem is concerned with determining the behavior of an 
existing structural system with a known design, while structural design is a task 
where the design is varied to meet performance requirements. 

Until recently conventional structural design has mostly been used for designing 
structures. Conventional structural design is a trial and error procedure and depends 
on the designer’s intuition, experience and skill. It can be a difficult challenge for an 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

2 

engineer to achieve efficiency, cost-effectiveness and an overall integrity of a designed 
structure. Sometimes this approach can lead to erroneous results and uneconomical 
structures when dealing with complex structural systems. 

The growing industrial competition is forcing engineers to consider different 
approaches, economical and better design. Design optimization is one of such 
approaches. The difference between conventional design and design optimization 
called synthesis is clearly illustrated in Fig. 1. 

 

Fig. 1: Flow charts of conventional structural design (a) and optimum structural design (b). 

 1: Običajni potek projektiranja (a) in projektiranje s pomočjo optimizacije (b)  Slika 
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Design optimization process forces the designer to define a set of design variables, an 
objective function to be optimized, and the constraint functions to be taken into 
account. Despite the extra work the path to better design is certainly shorter than 
within conventional design. Although the optimization approach seems more formal, 
it can substantially benefit from the designer’s experience and intuition in 
formulating the problem, choosing proper parameterization and identifying the 
critical constraints. Thus, the best approach would be an optimum design process 
aided by the designer’s interaction. 

Proper mathematical formulation of the design optimization problem is a key to good 
solutions. The optimization loop within the optimum structural design algorithm 
(Fig. 1b) can be divided into three characteristic steps: 

- Evaluating the performance measure of the structure by using the 
current design variables (direct analysis). 

- Evaluating sensitivity of the design to changes of all design variables, 
where sensitivities are the gradients of the objective and constraint 
functions used by the optimization algorithm (design sensitivity 
analysis). 

- Updating the design variables using sensitivity information in a way 
that improves the objective function (optimization). 

Limit load structural optimization design demands a complex interaction of different 
approaches, used algorithms and methods. When designing structures for the 
ultimate state, the limit load of the designed structure has to be known and is usually 
given by technical standards and codes. In the optimization algorithm the limit load 
presents a constraint that has to be fulfilled.  

When dealing with imperfection sensible structures, e.g. thin walled structures, 
imperfections have to be taken into account. A method for automatic evaluation of 
the most unfavorable initial imperfection is presented. 

In the optimization process the design is changed by varying design variables 
represented by shape parameters. When using gradient based shape optimization 
approaches, the hardest problem is to evaluate accurate sensitivities with respect to 
shape parameters for the gradient information. With the use of a symbolic-numeric 
system, exact sensitivities can be evaluated by using an analytically calculated 
velocity field. Arbitrary symbolic shape parameterization can be used with no 
limitation.  



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

4 

Direct and sensitivity analyses within shape optimization and the evaluation of the 
most unfavorable initial imperfections are performed to the ultimate limit state of the 
structure. Within conventional shape optimization methods usually the minimum 
weight is sought for a certain stress distribution state, the state at first yielding point 
or buckling load, but no real limit state is considered as it is difficult to define and to 
evaluate. Within the presented approach the optimal shape is sought for the ultimate 
limit state of the structure resulting in a robust optimal design which has to satisfy 
all design criteria. 

The combination of a symbolic–numeric system and an algorithm for the automatic 
determination of most unfavorable initial imperfections gives rise to an effective 
structural design shape limit load optimization method appropriate to be used as an 
efficient designing tool. 

1.2 Background of work and state of the art 

1.2.1 Limit Load Shape Optimization 

Historically, structural optimization used to be a global process of progress in 
structural design, mainly based on experience and experiments. The engineering skills 
have improved gradually and the results of designs have became more and more 
optimal. Many results of current basic structural optimization problems solved by 
contemporary optimization methods are in close relation to the results gained 
through the historical design development. 

The most important point in structural optimization is to define the relation between 
geometry and the internal flow of forces. Throughout the historical design 
development this was the focus of experiments and intuitive design. The first 
analytical works of structural optimization appeared in 17th and 18th century. 
Important contributors were Galilei (1638; Discorsi e Dimostrazioni Matematiche, 
intorno a due nuove scienze), Bernoulli (1687; The brachistochrone problem) and 
Lagrange (1770; Miscellanea Taurinensia). Mainly the first analytical works were 
interested in particular cases of optimal sections of beams and columns and no 
general application was developed. In the 19th and 20th century numerical methods 
constantly developed further.  

The key to the modern design was the development of computers, structural analysis 
methods and mathematical programming. The first to integrate numerical methods 
into optimization techniques was Schmit (1960) who proposed the concept of 
structural synthesis. The basic idea of structural synthesis is to integrate finite 
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element structural analysis into nonlinear mathematical programming methods, 
which results in an automated optimum design process. 

The field of structural synthesis developed further in the next decades. Several other 
disciplines had to be involved, i.e. structural sensitivity evaluation, CAD 
preprocessors, and control systems for managing different phases, which interact with 
each other in the solving process. The first optimization problems considered within 
structural synthesis were mainly concerned with size optimization of discrete 
structures.  

In size optimization, the geometry of the mathematical model is known (e.g. shape, 
topology) and the characteristics of the mathematical model elements have to be 
determined (e.g. cross section, material). An example may be a truss structure 
modeled with truss finite elements where the cross-sections of the trusses have to be 
determined so that the overall weight of the structure is the smallest. 

In shape optimization, the geometry of the mathematical model itself is the subject 
under consideration. The crucial difference between sizing and shape optimization is 
related to how design variables affect the analysis rather than to the physical 
optimization problem itself. In size optimization the design variables are related to 
the properties of the finite elements where in shape optimization the design variables 
are related to the positions of the finite element nodes and therefore directly affect 
the implementation within structural analysis. 

The first attempts of shape optimization were therefore performed on discrete 
modeled structural systems. Zienkiewicz and Campbell (1973) considered finite 
element nodes coordinates as design variables which later turned out not to be ideal 
for solving optimization algorithms. Nevertheless they were the first to set up a shape 
optimization problem in a general form.  

The use of optimization in design began to strengthen in the 1980’s together with the 
intensive development of numerical analysis methods and nonlinear mathematical 
programming and with expanding computer capabilities. The start of the 
development of new shape optimization methods gave a clear indication that 
numerous new problems would arise, which were not known in classical discrete 
optimization (Haftka, Grandhi 1986). 

Nowadays discrete optimization is well developed and already integrated in everyday 
structural analysis programs. Shape optimization, on the other hand, remains the 
subject of continuous scientific research (see e.g. Bletzinger, Ramm 2001, Camprubi, 
et al. 2004, Choi, Kim 2005a, Choi, Kim 2005b, Maute, et al. 1999, Ramm, Mehlhorn 
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1991, Schwarz, et al. 2001, Uysal, et al. 2007). In continuous shape optimization the 
design parameterization is not automatically given by the structural model and has 
to be explicitly defined by the designer in relation to the structural analysis model or 
to an underlying geometrical model. Within most modern approaches the need of 
general shape parameterization has evolved in an implicit relation of design variables 
with respect to the positions of the finite element nodes. As a consequence a complex 
interaction of the finite element method and sensitivity analysis has to be taken into 
account. An essential part of the procedure is to evaluate the design velocity field 
which is defined as the derivative of finite element node coordinates with respect to 
design variables. 

Within the presented work a numeric-symbolic approach to optimization is studied 
which enables the use of arbitrary symbolic shape parameterization and evaluation of 
an analytical design velocity field. As a consequence, an exact sensitivity analysis can 
be carried out. Accurate sensitivity information is of crucial importance for proper 
gradient shape optimization. The sensitivity analysis and the evaluation of the design 
velocity field will be further addressed in the next section.  

1.2.2 Sensitivity analysis 

To overcome the difficulties of evaluating sensitivity within shape optimization, 
numerous methods have been developed in the past (see review by van Keulen, et al. 
2005). The four broad categories of methods in common use for obtaining the 
derivatives of performance measures with respect to structural parameters are: 

a) Overall finite differences 

b) Discrete derivatives 

c) Continuum derivatives 

d) Computational or automatic differentiation 

The choice of the method is particularly important in gradient shape optimization 
where the shape design variables change the discretization of the discretizied 
problem, e.g. finite element mesh. 

All methods except for the finite differences can be implemented using direct or 
adjoint approach (called also the reverse mode of automatic differentiation explained 
in Section 2.2). In the direct approach, the derivatives of the entire structural 
response are evaluated. The sensitivities of performance measures can then be 
obtained from the chain rule of differentiation. In the adjoint approach an adjoint 
problem which depends on the performance measure is defined. The sensitivities of 
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performance measures can then be obtained using the structural and adjoint 
responses. This approach is of most advantage when the problem consists of many 
design variables and few performance measures while not all system response 
sensitivities are required. 

Overall finite differences (see e.g. Hörnlein H.R.E.M. 2000, Oral 1996) present the 
simplest method. The method, also called global finite difference, is based on repeated 
evaluation of structural analysis code and the use of a finite difference formula to 
obtain the derivative. Forward, backward and central differences can be used. Higher 
order difference formulae are very rare. Finite difference derivatives can suffer from 
truncation errors with large step sizes and also from errors when the step size is too 
small. The computational time is high due to the repeated code evaluation. Global 
finite differences become very useful when using commercial structural analysis 
programs where the analysis code is in a form of a black box with no ability to solve 
the sensitivity problem. 

Continuum derivatives are obtained by differentiating the governing continuum 
equations. Most commonly these consist of partial differential equations or an integral 
form, for example, derived from the principle of virtual work. The differentiation 
leads to a set of continuum sensitivity equations that are then solved numerically. 
The same discretization as for the original structural response can be used. For shape 
sensitivities, the two main approaches for continuum derivatives are the material 
derivative approach (see e.g. Saliba, et al. 2005) and the control volume approach 
(see e.g. Arora, et al. 1992). The advantage of these methods is the possibility of 
different meshes for response and sensitivity analysis. 

The most widely used methods are the discrete derivatives. While the continuum 
sensitivity equations are derived by differentiating the governing continuum 
equations with respect to the design variables and are then subsequently discretized, 
for discrete derivatives this order is reversed. The advances of these methods are low 
computational cost and high consistency. They can be separated into analytical and 
semi-analytical.  

The analytical methods use analytical derivatives on the global level as well on the 
finite element level (see e.g. Maute, et al. 2000). The analytical differentiation process 
may become tedious. This holds true especially for shape design variables, therefore 
symbolic computing software can be applied (Korelc 2002, Korelc 2007a, b) which 
often features the automatic generation of the source code. This code has to be 
integrated in the used software. Additional procedures must be implemented for each 
finite element used within the structural analysis. The procedure must account for all 
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possible design variables, i.e. size, material and shape design variables, as the actual 
code depends on the type of the design variable. Shape design variables are the most 
complex ones to implement. 

The semi-analytical methods (see e.g. Hörnlein H.R.E.M. 2000, Oral 1996) use finite 
difference schemes on the finite element level, while the dicretized governing 
equations on the structure level are differentiated analytically. The main reason for 
the simplification is the significant implementation effort needed for the evaluation of 
the finite element sensitivity pseudo-load vector. Therefore approximations in the 
form of finite differences are frequently accepted for the pseudo-load vector, which 
reduces the effort. Disadvantages of these methods are common for all finite 
difference methods, the dependency with respect to the perturbation size, which has a 
pronounced effect on both consistency and efficiency. 

The highest consistency is proved by the methods which use automatic 
differentiation. Analytical derivation is used on all levels. Even if the finite element 
program is composed of many complicated subroutines and functions, they are 
basically a collection of elementary functions. The automatic differentiation method 
defines the partial derivatives of these elementary functions, and then the derivatives 
of complicated subroutines and functions are computed using propagation of the 
partial derivatives and the chain rule of differentiation. Thus, no approximation is 
introduced. 

For the highest efficiency of automatically generated codes it is necessary to fulfill 
specific requirements in order to produce element source codes that are as efficient as 
manually written codes (see e.g.Korelc 2002). More reference is given in Chapter 2. 

A major step in performing shape design sensitivity analysis is the evaluation of the 
design velocity field. The purpose of design velocity field is to characterize the 
changes of the finite element nodal point coordinates with respect to the changes of 
arbitrary design parameters. While the design derivatives of the finite element 
quantities (residual, tangent matrix, etc.) can be constructed by automatic 
procedures (see e.g.Korelc 2002), this is not true for the design velocity field.  

Within standard approaches to finite element mesh generation, either with specialized 
preprocessors or with CAD tools, there exist no explicit relations between the 
positions of the finite element nodes and the shape design parameter as the choice of 
the shape parameters is an arbitrary decision of the designer. A number of methods 
have been proposed in the literature to compute the design velocity field (Choi, 
Chang 1994).  
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Most frequently used methods for evaluating the design velocity field are the finite 
difference methods using mesh generators (a), isoparametric mapping methods (b), 
boundary displacement and fictitious load methods (c), and methods which combine 
isoparametric mapping and boundary displacement methods (d). All these methods 
are based on different numerical approximations.  

The most sophisticated methods in use are the design model concept methods 
basically fitting into the isoparametric approach section (see e.g. Kegl 2000, Samareh 
1999). A great review was done by Haftka and Grandhi (Haftka, Grandhi 1986). The 
basic idea of the design element approach relies on the assumption that the 
geometrical data of the structure are not a simple set of constants defining directly 
the finite element mesh. Instead of that, the structural data are extracted from a set 
of geometrical objects called the design elements. The shape of the design elements is 
connected to the finite element mesh and varied with a few shape parameters using 
e.g. Bezier curves or polynomials. Although an analytical design velocity field can be 
evaluated, these methods are limited in the choice of design shape parameters. In 
complex structural systems the shape has to be composed of many design elements 
which limit the general applicability. For example, no shape parameters can be 
defined for global structure dimensions. 

To overcome the difficulties of the design element approach, an arbitrary symbolic 
parameterization is used in the current work using a symbolic-numeric system 
(Korelc 2007a, b) further addressed in Chapter 2. 

Most methods for evaluating design sensitivity are limited to the use of linear or 
simple nonlinear material models. The use of complicated nonlinear material models 
makes the evaluation of design sensitivity very difficult. The attempts to develop 
methods that address this field are therefore rare. 

Nonlinear limit load design sensitivity analysis used in the present work for the use in 
gradient based limit load shape optimization demands complex interaction between 
shape parameterization and finite element code. Within the development of 
integration of commercial finite element analysis programs and new design 
approaches using optimization, every effort was made (see e.g. Chang, et al. 1995, 
OptiStruct 2008) although to the author’s knowledge an efficient tool for nonlinear 
limit load design optimization is not available. 

1.2.3 Imperfections 

Limit load design optimization requires an accurate evaluation of the limit load of a 
structure. In order to evaluate the limit load correctly, all the relevant phenomena 
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have to be considered e.g. geometrical and material imperfections, load imperfections, 
residual stresses and strains, damage, etc. It is now well known that geometrical, 
structural, material and load imperfections play a crucial role in the load carrying 
behavior, especially of thin walled structures. 

Most structural imperfections (residual stresses, geometrical and welding 
imperfections, etc.) are not known in advance. To include the imperfections in a 
structural analysis, they have to be assumed. Technical standards therefore suggest 
different approaches to include imperfections on an empirical basis. A convenient way 
to include all relevant imperfections (i.e. geometrical, structural and material 
imperfections) is to consider equivalent geometrical imperfections. In this way the 
geometrical imperfections are augmented by the influence of other relevant 
imperfections to produce the same effect on the load carrying behavior of a structure.  

The idea to find imperfections that will cause the structure to fail at the lowest 
possible load is as old as the ascertainment of the crucial role of imperfections itself. 
The known discrepancy between theoretical results and experimentally obtained 
values for ultimate loads of structures can be reduced by properly including 
imperfections in an analysis. In order to achieve this for a general structure, a series 
of full geometrical and material nonlinear analyses up to the ultimate limit state need 
to be performed for a large range of possible imperfections, varying both their shapes 
and amplitudes. The computational cost involved discourages this kind of direct 
approach and has been the motivation for the development of computationally less 
expensive methods.  

Numerous approaches for analyzing the effect of imperfections on the response of 
structures have been proposed. Among them one can basically distinguish between 
those which are derived from the hypothesis that it is possible to obtain a sufficiently 
accurate structural response for an imperfect structure from the properties of a 
perfect structure (“perturbation  approach”) and those that obtain the structural 
response by analyzing the imperfect structure itself (“direct approach”). The review 
of different approaches accompanied with the  impact on modern design procedures of 
engineering structures can be found in (Schmidt 2000). 

The origin of the perturbation approach goes to the pioneering work on stability of 
shells done by (Koiter 1945).The perturbation approach applies to structures showing 
bifurcation phenomena along their natural equilibrium path and is based on 
asymptotic descriptions of the initial post critical behavior. Although simple for 
implementation and numerically efficient, the original Koiters theory does not 
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account for several effects that can significantly lower the ultimate load of the 
structure, such as: 

a) nonlinear natural equilibrium path,  

b) nonlinear material behavior, 

c) buckling mode interactions,  

d) consideration of realistic technological constraints on the shape and 
amplitude of the imperfections,  

e) large postcritical deflections,  

f) large imperfections.  

The interaction of several buckling modes can be assessed by the “minimum path 
theory” of (Ho 1974, Lanzo 2000, Lanzo, Garcea 1996). An overview of some other 
methods was given by (Godoy 2000). There are numerous difficulties obtaining non-
linear post critical behavior. Even with modern methods such as arc-length schemes, 
branch switching procedures, direct computation of stability points and stabilization 
techniques, it is sometimes impossible to overcome problems like secondary 
bifurcations, coincidental or clustered singularities and post critical paths, that cross 
each other, to get all the possible hypothetic equilibrium paths or at least the 
minimum one.  

Another approach is the “minimum perturbation energy concept”, which has recently 
been applied also to dynamic stability problems (Dinkler, Pontow 2006, Ewert, et al. 
2006). The basic idea of the method is to lower the buckling load of a perfect 
structure by introducing a certain amount of energy into the system, which causes a 
snap through to the post-buckling path, or to a secondary path in dynamic problems. 

Common to all perturbation methods is that they become exceedingly complicated for 
implementation and numerically inefficient when phenomena such as mode 
interaction or plasticity are included. This has been an inspiration for the research on 
the second branch of methods where the structure is analyzed using a full nonlinear 
analysis that by definition includes phenomena (a), (b), (e) and (f). The buckling or 
limit load of a theoretically perfect structure is lowered by introducing imperfections 
directly into the geometry of the structure. There exists a huge amount of 
uncertainties in the determination of the shape and amplitude of real imperfections 
because of the nature of the production processes. Therefore it would be natural to 
use probabilistic approaches where imperfections are introduced as random variables 
with a certain distribution (Elishakoff 2000, Papadopoulos, Papadrakakis 2005, 
Schenk, Schueller 2003). However, these methods rely upon very scarce data banks of 
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measured imperfections and are therefore useful for a certain assortment of 
applications. 

An alternative approach to include imperfections in an analysis is the concept of the 
“definitely worst” imperfection (Deml, Wunderlich 1997, El Damatty, Nassef 2001, 
Song, et al. 2004, Wunderlich, Albertin 2000, 2002). Within the “definitely worst” 
imperfection concept the shape of imperfections is searched that would lead to the 
lowest ultimate load of the structure. The shape of imperfections is additionally 
bounded by the given imperfection amplitude. Several variants of the procedure are 
possible and discussed (Schmidt 2000). 

Deml and Wunderlich (Deml, Wunderlich 1997) introduced an elaborate method to 
obtain the “definitely worst” imperfection. In their case imperfections are treated as 
additional degrees of freedom. The approach results in an extended system of 
equations composed of equilibrium equations, equations for direct computation of 
stability points (Wriggers, Simo 1990), condition equations for the worst 
imperfections shape and constraint equations that limit the amplitude of the 
imperfection. The system has to be solved simultaneously for the equilibrium state, 
the worst imperfection shape and the corresponding ultimate load. The result is the 
“definitely worst” imperfection within the considered amplitude. Such procedure is 
rather time consuming and is therefore useful for problems of small order 
(Wunderlich, Albertin 2000, 2002). Within the approach of Deml and Wunderlich 
(Deml, Wunderlich 1997) the condition equations for the worst imperfection are 
based on Koiters asymptotic theory, thus limiting the approach to small 
imperfections and linear fundamental paths. 

The determination of the “definitely worst” imperfection can also be formulated as a 
nonlinear optimization problem solved by one of the well-known nonlinear 
optimization methods. This is the most general approach that includes all the 
relevant phenomena, but is for the same reason also the most computationally 
expensive one. For example, a genetic optimization algorithm for obtaining the worst 
imperfection of shell structures was used by (El Damatty, Nassef 2001). Apart from 
the obvious disadvantage of the optimization approach, i.e. the need for a potentially 
large number of full nonlinear analyses, there are also advantages. Since the 
bifurcation-type instability always represents some type of a symmetry breakdown, 
bifurcations can be avoided if the symmetry is deliberately destroyed by introducing 
imperfections (Bažant, Cedolin 2003). By limiting the analysis to limit points, one 
avoids tedious procedures involved in proper determination, classification and 
sensitivity analysis of bifurcation points. Another certain advantage of the direct 
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approach is that only stable equilibrium states have to be considered and no 
hypothetic or unstable states need to be relied upon. 

It is doubtful that an approach requiring a large number of fully nonlinear analyses 
could be used in everyday engineering design in foreseeable future.  

In the present work a computationally less expensive optimization method is 
developed that would still retain the generality of the optimization based “definitely 
worst” imperfection approach. The method is further addressed in Chapter 4. 

1.3 Motivation and Objectives 

The integration of optimization methods into engineering design is a complex task. 
As pointed out in the previous sections, there are numerous difficulties to achieve this 
for a general nonlinear case. To facilitate the use of synthesis to design engineering 
structures, an effective optimization method has to be used considering full 
nonlinearity with the use of automatic definition of proper initial imperfections. 

The general objective of this work is to develop a finite element based limit load 
shape optimization technique which can be used for the ultimate limit design of 
structures.  

The key aspects to be investigated in this work are: 

- The use of a symbolic-numeric system for limit load analysis and 
optimization purposes. Symbolic derivation and automatic code 
generation of finite elements for direct and sensitivity analysis. 

- The evaluation of most unfavorable initial imperfections of a structure 
by means of ultimate limit states. 

- Analytical evaluation of the design velocity field, using arbitrary shape 
parameterization, for the use in exact sensitivity analysis. 

- Development of an efficient gradient based limit load shape 
optimization method based on all the above components. 

1.4 Methodology 

Limit load shape optimization is performed with state of the art optimization 
algorithms using the computer algebra software Mathematica (Wolfram 2008) and a 
symbolic-numeric approach using automatic code generator AceGen (Korelc 2007b) 
and finite element environment AceFEM (Korelc 2007a). Finite element method is 
used to model the structure subjected to optimization. Direct and sensitivity analysis 
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of structures by using the most unfavorable initial imperfect geometry is performed in 
AceFEM. All the necessary finite element codes are developed using abstract 
symbolic description with simultaneous optimization of expressions, automatic 
differentiation technique, theorem proving and automatic generation of finite element 
code (Korelc 2002) using AceGen. 

The use of the numeric-symbolic system offers the possibility one to use an analytical 
approach. Sensitivity calculation with the use of an analytically evaluated design 
velocity field is of crucial importance for the convergence of the gradient optimization 
algorithm, especially when dealing with highly geometrical and material nonlinear 
problems. The overall algorithm is presented in Fig. 2. 

 

Fig. 2: Schematic representation of the overall algorithm for limit load shape optimization. 

 2: Prikaz celotnega postopka optimizacije oblike konstrukcij v mejnem stanju. Slika 
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1.5 Thesis Outline 

The thesis is organized in 4 main chapters. 

- Chapter 2 introduces the symbolic description of mechanical 
problems, the use of advanced automatic differentiation techniques and 
the hybrid symbolic-numeric environment. 

- Chapter 3 is devoted to the structural sensitivity analysis using an 
analytical design velocity field. The general expressions for the direct 
and sensitivity analysis which can be used for abstract symbolic 
description of transient nonlinear coupled systems are given. 

- Chapter 4 explains the use of imperfections in a limit load structural 
analysis. A method for the evaluation of the worst imperfect geometry 
is presented. 

- Chapter 5 incorporates all the relevant techniques presented in 
previous chapters to perform a limit load shape design optimization. 
Examples are given for typical civil engineering structures. 

- Chapter 6 summarizes the conclusions drawn from present work. 
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2 FINITE ELEMENT MODELING AND SYMBOLIC 

APPROACH 

The most effective and widely spread method for solving problems in solid mechanics 
nowadays is the finite element method (FEM). The method originates from the needs 
to solve complex, structural analysis problems in civil and aeronautical engineering. 
Today FE methods are far more advanced and can be used for highly nonlinear direct 
and sensitivity analyses, inverse modeling and optimization of Multi-field, Multi-
scale, Multi-body, Multi-phase and Multi-objective problems. Te purpose of the 
present work is not to introduce fundamental knowledge of Continuum Mechanics 
and of Finite Element Methods, as many references can be found on these matters. 
An introduction to Continuum Mechanics is given by (see e.g. Marsden, Hughes 
1994) and (Lemaitre, Chaboche 1990). An overture to the Finite Element Method 
can be found in (Zienkiewicz, Taylor 2000b) and (Crisfield 1996; Crisfield 1997). 

With the employment of FEM to increasingly complicated and bounded problems, 
the implementation of the method has become highly sophisticated. The struggle to 
automate some of the tasks in the overall processes which starts with the 
development of theories and ends with a working program is therefore highly 
appreciated. Some major achievements have been attained in this field of 
computational mechanics in the last decade. Automation of the finite element method 
has attracted attention of researches from the fields of mathematics, computer science 
and computational mechanics, resulting in a variety of approaches and available 
software tools.  

The use of advanced software technologies, especially symbolic and algebraic systems, 
problem solving environments and automatic differentiation tools influences directly 
how the mechanical problem and corresponding numerical model are postulated and 
solved, leading to the automation of the finite element method. In order to formulate 
nonlinear finite elements symbolically in a general but simple way, a clear 
mathematical formulation is needed at the highest abstract level possible.  

 

The finite element technology used in the present work is based on a symbolic-
numeric approach with a high degree of automation implemented in software 
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packages AceGen and AceFEM (Korelc 2007a, b). The basic techniques and methods 
used within are described in next sections. 

2.1 Automation of FEM 

Automation of FEM is a complex task because of the various transformations, 
differentiation, matrix operations, and a large number of degrees of freedom involved 
in the derivation of characteristic FE quantities, which often leads to exponential 
growth of expressions in space and time (Korelc 2002). The complete FE simulation 
can be, from the aspect of the automation level, decomposed into the following steps: 

- formulation of strong form of initial boundary-value problem; 
transformation of the strong form into weak form or variational 
functionals;  

- definition of the domain discretization and approximation of the 
unknowns and the virtual fields;  

- derivation and solution of additional algebraic equations defined at the 
element level (e.g. plastic evolution equations); 

- derivation of algebraic equations that describe the contribution of one 
element to the global internal force vector and to the global tangential 
stiffness matrix; 

- coding of the derived equations in required compiled language; 

- generation of finite element mesh and boundary conditions; 

- solution of global problem; 

- presentation and analysis of results. 

Alternatively, one can also start from the free Helmholtz energy of the problem and 
derive element equations directly as a gradient of the free energy. This approach is 
especially appealing for the automation due to the numerical efficiency of the solution 
when the gradient is obtained by the backward mode of automatic differentiation. 

There are almost countless ways of how a particular problem can be solved by the 
FE method. If the automation of all nine steps is chosen, then only very specific 
subset of possible formulations can be covered. On the other hand, the standard 
discretization is of little use for problems involving coarse mesh, locking phenomena 
and distorted element shapes where highly problem specific formulations have to be 
used.  
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The following techniques, which are the result of rapid development in computer 
science in the last decades, are particularly relevant for the description of a nonlinear 
finite element model on a high abstract level, while preserving the numerical 
efficiency: 

- Symbolic and algebraic computational systems 

- Automatic differentiation tools 

- Problem solving environments 

- Hybrid approaches 

Computer algebra (CA) systems are tools for the manipulation of mathematical 
expressions in symbolic form. Widely used CA systems such as Mathematica or Maple 
have become an integrated computing environment that covers all aspects of 
computational process, including numerical analysis and graphical presentation of the 
results.  

In the case of complex mechanical models, the direct use of CA systems is not 
possible due to several reasons. For the numerical implementation, CA systems 
cannot keep up with the run-time efficiency of programming languages such as 
FORTRAN and C and by no means with highly problem-oriented and efficient 
numerical environments used for finite element analysis. However, CA systems can be 
used for the automatic derivation of appropriate formulae and generation of 
numerical codes. The FE method is within the general CA systems usually 
implemented as an additional package or toolbox such as AceFEM (Korelc 2007a) for 
Mathematica used in the work covered by this thesis. 

The major limitation of symbolic systems, when applied to complex engineering 
problems, is an uncontrollable growth of expressions and consequently redundant 
operations and inefficient codes. (see Korelc 1997, Korelc 2002) This is especially 
problematic when CA systems are used to derive formulae needed in numerical 
procedures such as finite element method where the numerical efficiency of the 
derived formulae and the generated code are of utmost priority. 

The automation level of FE method can be greatly increased by combining several 
approaches and tools. A hybrid symbolic numeric system is used within the thesis 
described in Section 2.3 
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2.2 Automatic differentiation 

Differentiation is an arithmetic operation that plays crucial role in the development 
of new numerical procedures. The exact analytical derivatives are difficult to derive, 
which is why the numerical differentiation is often used instead. The automatic 
differentiation (AD) represents an alternative solution to the numerical differentiation 
as well as to the symbolic differentiation performed either manually or by a computer 
algebra system. With the AD technique, one can avoid the problem of expression 
growth that is associated with the symbolic differentiation performed by the CA 
system.  

2.2.1 Principles of automatic differentiation 

If one has a computer code which allows to evaluate a function f  and needs to 
compute the gradient f∇  of f  with respect to arbitrary variables, then the automatic 

differentiation tools, see e.g. Griewank (2000), Bartholomew-Biggs et al. (2000), 
Bischof et al. (2002), can be applied to generate the appropriate program code. There 
are two approaches for the automatic differentiation of a computer program, often 
recalled as the forward and the backward mode of automatic differentiation. The 
procedure is illustrated on a simple example of function f  defined by 

 2
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n

i
i

f bc b a c Sin b
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= = =∑  (1) 

where 1 2, ,..., na a a  are n  independent variables. The forward mode accumulates the 

derivatives of intermediate variables with respect to the independent variables as 
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In contrast to the forward mode, the backward mode propagates adjoins 
f

x
x

∂
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∂
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which are the derivatives of the final values, with respect to intermediate variables: 



Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.   
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.  

 

21

 

{ } { } { }

1 1

1

( ) 1

2 1,2,...,i i
i

df
f

df
df f

c f b f
dc c
df f c

b f c cf Cos b c
db b b

b
f a b a b i n

a

= =

∂
= = =

∂
∂ ∂

= = + = +
∂ ∂

∂
∇ = = = =

∂

 (3) 

The numerical efficiency of the differentiation can be measured by numerical work 
ratio 
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The numerical work ratio is defined as the ratio between the numerical cost of the 
evaluation of function f  together with its gradient f∇  and the numerical cost of the 
evaluation of function f  alone. The ratio is proportional to the number of 
independent variables ( )O n  in the case of forward mode and constant in the case of 

backward mode. The upper bound for the ratio in the case of backward mode is 
( ) 5wratio f ≤  and is usually around 1.5 if care is taken in handling the quantities 

that are common to the function and gradient. Although numerically superior, the 
backward mode requires potential storage of a large amount of intermediate data 
during the evaluation of the function f  that can be as high as the number of 

numerical operations performed. Additionally, a complete reversal of the program 
flow is required. This is because the intermediate variables are used in reverse order 
when related to their computation. 

There exist many strategies how the AD procedure can be implemented. The most 
efficient are source-to-source transformation strategies that transform the source code 
for computing a function into the source code for computing the derivatives of the 
function. The AD tools based on source-to-source transformation have been 
developed for most of the programming languages, e.g. ADIFOR for Fortran, ADOL-
C for C, MAD for Matlab and AceGen for Mathematica. 

2.2.2 Automatic differentiation and FEM 

The tools for automatic differentiation were primary developed for the evaluation of 
the gradient of objective function used within the gradient-based optimization 
procedures or the Hessian of objective function used within the Newton-type 
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optimization procedures. The objective function is often defined by a large, complex 
program composed of many subroutines. Thus, one can apply the AD tools directly 
on the complete FE environment to obtain the required derivatives when the 
evaluation of the objective function involves FE simulation.  

The AD technology can also be used for the evaluation of specific quantities that 
appear as part of a finite element simulation. It would be difficult and 
computationally inefficient to apply the AD tools on large FE systems to get e.g. the 
global stiffness matrix of large-scale problem directly. This is especially problematic 
when a fully implicit Newton type procedure is used to solve nonlinear, transient and 
coupled problems involving various types of elements, complicated continuation or 
arc-length methods and adaptive procedures. 

However, one can still use automatic differentiation at the single element level to 
evaluate element specific quantities in an efficient way, such as: 

- strain and stress tensors; 

- nonlinear coordinate transformations; 

- consistent stiffness matrix; 

- residual vector; 

- sensitivity pseudo-load vector. 

A direct use of automatic differentiation tools for the development of nonlinear finite 
elements turns out to be complex and not straightforward. Furthermore, the 
numerical efficiency of the resulting codes is poor. Another solution, followed mostly 
in hybrid object-oriented systems, is to use problem specific solutions to evaluate 
local tangent matrix in an optimal way. Another solution, followed in hybrid 
symbolic-numeric systems, see e.g. (Korelc 2002), is to combine a general computer 
algebra system and the AD technology. 

The implementation of the AD procedure has to fulfill specific requirements in order 
to get element source codes that are as efficient as manually written codes. Some 
basic requirements are: 

- The AD procedure can be initiated at any time and at any point of the 
derivation of the formulas and as many times as required (e.g. in the 
example at the end the AD is used 13 times during the generation of 
element subroutine). The recursive use of standard AD tools on the 
same code, if allowed at all, leads to numerically inefficient source code. 
This requirement limits the use of standard AD tools. An alternative 
approach is implemented in (Korelc 2007b) where the source-to-source 
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transformation strategy is replaced by the method that consistently 
enhances the existing code rather than produces a new one. 

- The storage of the intermediate variables is not a limitation when the 
backward differentiation method is used at the single element level. The 
finite element formulations involve, at the single element level, a 
relatively small set of independent and intermediate variables. 

- For the reasons of efficiency, the results of all previous uses of AD have 
to be accounted for when AD is used several times inside the same 
subroutine.  

- The user has to be able to use all the capabilities of the symbolic 
system on the final and the intermediate results of the AD procedure.  

- The AD procedure must offer a mechanism for the descriptions of 
various mathematical formalisms used within the FE formulation. 

The mathematical formalisms that are part of the traditional FE formulation are e.g. 

partial derivatives 
( )
( )
•
•

∂
∂

, total derivatives 
( )
( )
•
•

D
D

 or directional derivatives. They can 

all be represented by the AD procedure, if possible exceptions are treated in a proper 
way. However, the result of AD procedure may not automatically correspond to any 
of the above mathematical formalisms. Let us define a "conditional derivative" with 
the following formalism 
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where function f  depends on a set of mutually independent variables a  and a set of 

mutually independent intermediate variables b. The above formalism has to be taken 
in an algorithmic way. It represents the automatic differentiation of function f  with 

respect to variables a . During the AD procedure, the total derivatives of 
intermediate variables b with respect to independent variables are set to be equal to 
matrix M . Some situations that typically appear in the formulation of finite elements 
are presented in Table 1. 

In case A there exists an explicit algorithmic dependency of b with respect to a , 
hence the derivatives can be obtained in principle automatically, without user 
intervention, simply by the chain rule. However, there also exists a profound 
mathematical relationship that enables evaluation of derivatives in a more efficient 
way. This is often the case when the evaluation of b involves iterative loops, inverse 
matrices, etc..  
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Case B represents the situation when variables b are independent variables and 
variables a  implicitly depend on b. This implicit dependency has to be considered 
for the differentiation. In this case, automatic differentiation would not provide the 
correct result without the user intervention. A typical example for this situation is a 
differentiation that involves a transformation of coordinates. Usually the numerical 
integration procedures as well as interpolation functions require additional reference 
coordinate. An exception for automatic differentiation of type B is then introduced to 
properly handle differentiation involving coordinate transformations from initial X  to 
reference coordinates ξ  as follows:  

 

1

( ) ( )
−⎡ ⎤∂ ∂

=⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∂ • ∂ •
⇒

∂ ∂ X
X

X X ξ
ξ  (6) 

In case C there exists an explicit dependency between variables b and a  that has to 
be neglected for differentiation. The status of dependent variable b is thus 
temporarily changed. For the duration of the AD procedure, it is changed into an 
independent variable. The situation frequently appears in the formulation of 
mechanical problems where instead of the total variation some arbitrary variation of 
a given quantity has to be evaluated. 

The exceptions of cases A, B and C are imposed within automatic differentiation only 
during the execution of the particular call of the AD procedure. Case D is equal to 
case A with an AD exception defined globally, thus valid for every call of the AD 
procedure during the derivation of the problem. When in collision, then exceptions of 
type A, B and C overrule the D type exception. 
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Table 1: Automatic differentiation exceptions. 
 1: Izjeme pri avtomatskem odvajanju. 

 

Type Formalism Schematic AceGen input 
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2.3 Hybrid symbolic-numerical approach 

The real power of the symbolic approach for testing and applying new, 
unconventional ideas is provided by general-purpose CA systems. However, their use 
is limited to problems that lead to large systems like finite element simulations.  
Furthermore, the use of large commercial finite element environments to analyze a 
variety of problems is an everyday engineering practice. The hybrid symbolic-
numerical (HSN) approach is a way to combine both.  

Although large FE environments often offer a possibility to incorporate user defined 
elements and material modes, it is time consuming to develop and test these user 
defined new pieces of software. Practice shows that at the research stage of the 
derivation of a new numerical model, different languages and different platforms are 
the best means for the assessment of specific performances and, of course, failures of 
the numerical model. The basic tests, which are performed on a single finite element 
or on a small patch of elements, can be done most efficiently by using general CA 
system.  

Many design flaws, such as element instabilities or poor convergence properties, can 
be easily identified, if the element quantities are investigated on a symbolic level. 
Unfortunately a standalone CA system becomes very inefficient once there is a larger 
number of nonlinear finite elements to process or if iterative numerical procedures 
have to be executed. In order to assess element performances under real conditions, 

Tabela 
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the easiest way is to run the necessary test simulations on sequential machines with 
good debugging capabilities and with the open source FE environment designed for 
research purposes, e.g. FEAP, AceFEM or Diffpack. At the end, for real industrial 
simulations involving complex geometries, a large commercial FE environment has to 
be used.  

In order to meet all these demands in an optimal way, an approach is needed that 
would offer multi-language and multi-environment generation of numerical codes. The 
automatically generated code is then incorporated into the FE environment that is 
most suitable for the specific step of the research process. The structure of the hybrid 
symbolic-numerical system AceGen for multi-language and multi-environment code 
generation introduced by (Korelc 2002) is presented in Fig. 3. Using the classical 
approach, re-coding of the element in different languages would be time consuming 
and is rarely done. With the general CA systems, re-coding comes practically free, 
since the code can be automatically generated for several languages and for several 
platforms from the same basic symbolic description. An advantage of using a general 
CA system is also that it provides well known and defined description language for 
the derivation of FE equations, generation of FE code and possibly also for the 
complete FE analysis, as opposed to the hybrid object-oriented systems which 
introduce their own domain-specific language. 
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Matlab
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Fig. 3: Multi-language and multi-environment FE code generation. 

 3: Več jezično Več okoljsko generiranje kode končnega elementa. 

When the symbolic approach is used in a standard way to describe complex 
engineering problems then the common experience of computer algebra users is an 
uncontrollable swell of expression, as pointed out before, leading to inefficient or even 
unusable codes. Not many attempts have been undertaken to design a general FE 
code generator, where this key issue of the FE code generation would be treated 
within the automatic procedure.  

The classical way of optimizing expressions in CA systems is to search for common 
sub-expressions after all the formulae have been derived and before the generation of 
the numerical code. This seems to be insufficient for the general non-linear 
mechanical problems. An alternative approach for automatic code generation is 
employed in AceGen and called Simultaneous Stochastic Simplification of numerical 
code, see (Korelc 1997). This approach avoids the problem of expression swell by 
combining the following techniques: symbolic and algebraic capabilities of general 
computer algebra system Mathematica, automatic differentiation technique and 
simultaneous optimization of expressions with automatic selection and introduction of 
appropriate intermediate variables. Formulae are optimized, simplified and replaced 

Slika 
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by the auxiliary variables simultaneously with the derivation of the problem. A 
stochastic evaluation of the formulae is applied for determining the equivalence of 
algebraic expressions instead of the conventional pattern matching technique. The 
simultaneous approach is also appropriate for problems where intermediate 
expressions can be subjected to the uncontrolled swell. 

2.3.1 Typical example of automatic code generation procedure 

To illustrate the standard AceGen procedure, a simple example is considered. A 
typical numerical sub-program that returns a determinant of the Jacobean matrix of 
nonlinear transformation from the reference to initial configuration for quadrilateral 
element topology is derived. The syntax of the AceGen script language is the same as 
the syntax of the Mathematica script language with some additional functions. The 
input for AceGen can be divided into six characteristic steps:  

- At the beginning of the session the SMSInitialize function initializes the 
system.  

- The SMSModule function defines the input and output parameters of 
the subroutine ”DetJ”.  

- The SMSReal function assigns the input parameters X$$ and k$$ and 
e$$ of the subroutine to the standard Mathematica symbols. Double $ 
character indicates that the symbol is an input or output parameter of 
the generated subroutine. 

- During the description of the problem special operators (¢,¤,£) are used 
to perform the simultaneous optimization of expressions to create of 
new intermediate variables. The SMSD function performs an automatic 
differentiation of one or several expressions with respect to the arbitrary 
variable or the vector of variables by simultaneously enhancing the 
already derived code. 

- The results of the derivation are assigned to the output parameter J$$ 
of the subroutine by the SMSExport function. 

- At the end of the session the SMSWrite function writes the contents of 
the vector of the generated formulae to the file in a prescribed language 
format. The generated subroutine in C and FORTRAN language are 
presented in Fig. 5. 
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Fig. 4: Typical AceGen input. 

 4: Tipični vhodni podatki za AceGen. 

 

Fig. 5: Typical automatically generated subroutine in FORTRAN and C language. 

 5: Tipična avtomatsko generirana subrutina za jezika FORTRUN in C. 

2.4 Abstract symbolic formulations in computational mechanics 

The true benefit of using symbolic tools is not about the development of a theory 
which is normally done manually on a sheet of paper using a pencil, or if a computer 
shall be used a simple word processor is adequate for such task. The advantage of the 
symbolic approach in computational mechanics becomes apparent only when the 
description of the problem, which means that the basic equations are written down, is 
appropriate for the symbolic description. Unfortunately, some of the traditional 
descriptions used in computational mechanics are not appropriate for the symbolic 
description. The symbolic formulation of the computational mechanics problems often 
differs from the classical one and thus brings up the need for rethinking and 
reformulating known and traditional ways. Despite that, there exist strong arguments 
why at the end symbolic formulations are indeed beneficial, i.e.: 

Slika 

Slika 
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- A symbolic formulation is more compressed and thus gives fewer 
possibilities for an error. 

- Algebraic operations, such as differentiation, are done automatically. 

- Automatically generated codes are highly efficient and portable. 

- The multi-language and multi-environment capabilities of symbolic 
systems enable generation of numerical codes for various numerical 
environments from the same symbolic description. 

- An available collection of prepared symbolic inputs for a broad range of 
finite elements can be easily adjusted for the user specific problem 
leading to the on-demand numerical code generation. 

- The multi-field and multi-physic problems can be easily implemented. 
For example, the symbolic inputs for mechanical analysis and thermal 
analysis can be combined into a new symbolic input that would create a 
finite element for fully coupled and quadratically convergent thermo-
mechanical analysis. 

For example, the standard formulation (see e.g. Crisfield 1996, 1997, Hughes 2000, 
Zienkiewicz, Taylor 2000a, Zienkiewicz, Taylor 2000b) of the tangential stiffness 
matrix TB DB  can be easily repeated using the symbolic tools. Having in mind that 
element tangential stiffness matrix is either the jacobian of the resulting system of 
discrete algebraic equations or the hessian of the variational functional, then the 
automatic differentiation should be sufficient for obtaining the tangent matrix. The 
work of implementing TB DB  formulation and the efficiency of the resulting code is 
inferior to the approach when tangent matrix is derived by the backward AD. The 
latter approach requires, regardless of the complexity of the topology and the 
material model, a single line of symbolic input. The standard TB DB  formulation 
would require much more input for the same result.  

It should be pointed out that the symbolic differentiation is one of the algebraic 
operations prone to severe expression growth and it can results even for relatively 
simple nonlinear elements in hundreds of pages of code. Thus, the use of hybrid 
system (e.g. AceGen) that combines the symbolic tool with the automatic 
differentiation technique is essential for the high abstract symbolic formulation of FE 
models. To increase the numerical efficiency of the generated code and to limit the 
physical size of the generated code, it is essential to minimize the number of calls to 
automatic differentiation procedure. In backward mode of automatic differentiation 
the expression [ ] [ ], ,SMSD a SMSD b+c c  can result in a code that is twice as large 

and twice slower than the code produced by the equivalent expression 
[ ],SMSD a b+ c . 
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In this section, an abstract symbolic formulation is described, which is needed to 
obtain the contribution of a single element to the internal force vector Ψ  and to the 
tangential stiffness matrix K . The variational functional approach and the weak form 
approach are the two basic possibilities open for the derivation of variational 
formulation of equilibrium equations and their linearizations. 

A weak form approach is used for the derivation of a 2D quadrilateral finite element 
formulation in Section 3.4. 

 

2.5 Symbolic-numerical environment AceFEM 

Within the work covered by the thesis the AceFEM package (Korelc 2007a) is used 
for direct and sensitivity analysis. AceFEM is a general finite element environment 
designed to solve multi-physics and multi-field problems. It explores advantages of 
symbolic capabilities of Mathematica while maintaining numerical efficiency of 
commercial finite element environment. The main part of the package includes 
procedures that are not numerically intensive such as processing of the user input 
data, mesh generation, control of the solution procedures, graphic post-processing of 
the results, etc. These procedures are written in Mathematica language and executed 
inside Mathematica. The second part includes numerically intensive operations,a such 
as evaluation and assembly of the finite element quantities (tangent matrix, residual, 
sensitivity vectors, etc.), solution of the linear system of equations, contact search 
procedures, etc. The numerical module exists in two versions. The basic version called 
CDriver is an independent executable written in C language and is connected with 
Mathematica via the MathLink protocol.  

The alternative version called MDriver is completely written in Mathematica's 
symbolic language. It has the advantage of using advanced capabilities of 
Mathematica, such as high precision arithmetic, interval arithmetic, or even symbolic 
evaluation of FE quantities to analyze various properties of the numerical procedures 
on relatively small examples.  

Both environments operate from Mathematica and they also have the same data 
structures, functions, command language and input data (for details of the 
environment see (Korelc 2007a, b)). 

Direct and sensitivity analysis using AceFEM is further explained in Chapter 3. 
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3 DIRECT AND SENSITIVITY LIMIT LOAD ANALYSIS 

In Chapter 2 the symbolic approach to computational mechanics was introduced and 
all advances were outlined. In the present Chapter direct and sensitivity limit load 
analyses is explained which are used later on within the procedure for the evaluation 
of the most unfavorable imperfections (Chapter 4) as well within the limit load 
optimization procedure (Chapter 5). 

In Chapter 1 an overview was given over the history and the development of different 
methods of sensitivity analysis. Although sensitivity analysis is used in many areas of 
science and is by itself a major field of research in structural engineering, the scope of 
the present work is mostly dedicated to shape optimization. For this reason 
application to gradient based shape optimization will be studied. Accurate sensitivity 
analysis with the use of symbolic approach, which is needed for correct gradient 
shape optimization, will be presented. 

3.1 Definition of ultimate states 

For the limit load structural analysis, used for the limit load shape optimization, the 
criteria for the limit load have to be defined. An ultimate state of a structure is 
generally defined with the limit point of the equilibrium path. In real, imperfect 
structures, this criterion proves unreliable because of possible exceeding of permissible 
tolerances of displacements or deformations before reaching the limit point. It is 
therefore necessary to additionally define the ultimate state of a structure. The 
ultimate state can be defined as the lowest load factor obtained by the following 
criteria (see Fig. 6): 

a) The maximum load factor on the load-deformation curve (limit load). 

b) The bifurcation load factor, before reaching the limit point of the load-
deformation curve (does not occur in the presented case). 

c) The largest tolerable deformation, where this occurs during loading path 
before reaching a bifurcation load or limit load. 
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Fig. 6: Definition of ultimate states (EN 1993 1-5 2004). 

 6: Definicija računskih mejnih stanj (EN 1993 1-5 2004). 

When the first criterion of all criteria defined in Fig. 6 is reached on the load-
displacement curve, the equilibrium point is defined as the ultimate load. Throughout 
the thesis ultimate load analysis is used. 

3.2 Direct Analysis 

Nonlinear mechanical problems can be in general classified into 4 categories shown in 
Table 2: 

Table 2: Residual form of equations for mechanical problems. 
 2: Ravnotežne enačbe za različne probleme v mehaniki. 
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In the notation used, a  represents a vector of global generalized displacement 
parameters (displacements, rotations, enhanced mode parameters, etc.), b a vector of 
unknown state variables defined for each integration point (plastic deformations, 
hardening variables, etc.), pa  a vector of generalized displacement parameters at the 
end of previous time step, pb  a vector of state variables at the end of previous time 
step,Ψ  a set of equilibrium equations, and Φ  a set of local plastic evolution 
equations.  

For an ultimate limit load structural analysis the consideration of geometrical and 
material nonlinearity is necessary. According to terminology introduced by 
Michaleris, Tortorelli and Vidal (Michaleris, et al. 1994), the formulation of the 
system which has to be solved presents a nonlinear transient coupled non-linear 
system. 

A standard “arc-length” type continuation method is used for structural analysis (see 
e.g. Crisfield 1996, 1997). Therefore, in structural analysis the equilibrium equations 
are extended with load factor λ  as an additional variable and constraint cg  as an 

additional equation imposed on the increments of generalized displacements. 

The complete set of equations which need to be solved for each integration point and 
for the whole structure can be written as:  

 

( )
( )

( )

{ }

{ }

, , ,
0

,

, , , 0

,

,

p p

p
c

p p

p p p

g

λ
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⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪ =⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

=

a a b b
=

a a

a a b b

a = a

a = a

Ψ
Ψ

Φ  (7) 

The general formulation of the fully implicit quadratically convergent direct analysis 
is for our case presented in Fig. 7. 
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Fig. 7: General formulation of direct analysis of transient coupled nonlinear problems. 

 7: Splošna formulacija za direktno analizo tranzientnih povezanih nelinearnih problemov. 

The actual form of the equations in Fig. 7 is for structural finite elements (trusses, 
beams, shells etc.) well known and presented elsewhere. In all examples the simplest 
form of continuation methods, called “displacement controlled at a specific 
variable”(Crisfield 1996, 1997), was used. In this case the following displacement 
increment constraint equation cg is used: 

 c m mg u uγ= −  (8) 

where mu is the actual and mu  the prescribed m-th scalar component of a generalized 
displacement vector a . Parameter γ  is used to parameterize the direct analysis. As 

soon as one of the criteria for the ultimate load presented in section 3.1 is reached, 
the analysis is stopped and the ultimate load is determined.  
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3.3 Sensitivity Analysis 

Design sensitivity analysis is used to compute a rate of performance measure change 
with respect to the system design parameters variation. In structural engineering 
problems the system performance measure can include any quantity that may be 
used to characterize system behavior, such as displacements, stress, strain, energy, 
buckling or limit load, frequency response, weight, etc. The dependence to design 
parameters such as material property, sizing, shape and configuration parameters is 
in general implicitly defined by the laws of mechanics. Rarely, in the case of simple 
problems, there exists an explicit relation (see e.g. Choi, Kim 2005a). 

Sensitivities are obtained by derivation. The level of derivation effort required differs 
drastically in dependence of the nature of the problem and the approach used to 
evaluate sensitivity. The four general categories of mechanical problems were 
presented in Table 2. 

The derivation of sensitivity terms is significantly more complex for nonlinear 
systems than linear which will not be addressed here. For transient systems an 
additional dependency on time has to be considered in the derivations. Further 
complexity is gained with the choice of design parameters. In the case of sizing or 
material optimization (e.g. beam cross-section, shell thickness, elastic modulus etc.) 
the design variables appear explicitly in the variational equations, where in the case 
of shape optimization the design variables gain an implicit relation to the variational 
equations. If using FEM for structural analysis, a change in shape design variables 
implies a change in the finite element model. The dependency of design variables with 
respect to the coordinates of finite element nodes presents the main difficulty in 
evaluating sensitivity analysis. 

The limit load structural shape optimization leads to a transient coupled nonlinear 
system of equations where geometrical and material nonlinearities are taken into 
account. The difficulty of sensitivity expression derivation was an encouragement to 
use a symbolic-numeric approach which is thoroughly explained in Chapter 2.  

The sensitivity analysis based on direct differentiation method (Michaleris, et al. 
1994) is used to evaluate the sensitivity of the objective function f with respect to the 
shape parameters φ . Due to the transient nature of the problem, the sensitivity 

analysis has to be evaluated at the end of each time step and integrated through the 
whole analysis. The corresponding equations are presented in Fig. 8. 
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Fig. 8: General formulation of shape sensitivity analysis of transient coupled nonlinear problems. 

 8: Splošna formulacija za občutljivostno analizo tranzientnih povezanih nelinearnih problemov. 

The evaluation of the underlined term in Fig. 8 requires the derivatives of the finite 
element node coordinates with respect to shape design parameters (φ). The term is 

usually called “design velocity field” and is required as input for the sensitivity 
analysis (Korelc, Kristanič 2005). 
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3.3.1 The Analytical Design Velocity Field 

As pointed out before, the most important part of the process of evaluating shape 
design sensitivity needed in structural gradient based shape optimization is 
constructing the design velocity field. 

The purpose of design velocity field ( / φ∂ ∂X ) is to characterize the changes of the 

finite element nodal point coordinates (X) with respect to the changes of arbitrary 
design parameters (φ). While the design derivatives of the finite element quantities 

(residual, tangent matrix, etc.) can be constructed by automatic procedures (Korelc, 
Kristanič 2005), this is not true for the design velocity field. Within standard 
approaches to finite element mesh generation, either with specialized preprocessors or 
with CAD tools, there exist no explicit relations between the position of the finite 
element nodes and the shape design parameter.   

The problem of constructing the design velocity field has therefore attracted a lot of 
attention and various approaches have been proposed (Chang, et al. 1995, Hansen, et 
al. 2001, Hardee, et al. 1999, Jang, Kim 2005, Kegl 2000). The simplest approach is 
to evaluate derivatives numerically by the finite difference method. However, the 
method is prone to large errors for a certain type of shape sensitivity problems. 
Alternatively, the domain of the problem can be divided in smaller parts, termed the 
design elements, for which analytical design velocity field can be derived and then 
evaluated at the positions of the finite element nodes. The approach fails when the 
design parameter relates to some global measure of the structure for which explicit 
relations to parameters of the design elements are hard to derive. 

The symbolic-numeric approach is used for the evaluation of the design velocity field 
by general computer algebra system Mathematica (Wolfram 2008) and the dual 
symbolic-numeric FEM environment AceFEM (Korelc 2007a). Symbolic systems can 
deal with arbitrary formulae. Thus, if the particular shape parameter is kept in 
symbolic form during the model description and mesh generation, then the nodal 
coordinates of the mesh will be an explicit function of the parameter involved. The 
design velocity field is then obtained by the direct differentiation of the symbolically 
parameterized mesh by a single command for symbolic derivation, as can be seen in 
the next example. 

3.3.1.1 Example 

A simple cantilever structure modeled by 2D elasto-plastic finite elements is 
considered where the shape is parametrized with 3 shape parameters as shown in Fig. 
9. In Fig. 10 the input data for AceFEM are presented. 
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Fig. 9: Geometry of cantilever with marked node numbers and shape parameters. 

 9: Geometrija konzolne konstrukcije z označenimi vozlišči in parametri oblike. 

 

Fig. 10: AceFEM input data for the structure illustrated in Fig. 9. 

 10: AceFEM podatki za konstrukcijo iz slike 9 . 

The node coordinates can be kept in symbolic form. In the example the three chosen 
parameters 1φ , 2φ  and 3φ  define the upper and the lower boundary line which is 

defined by an arbitrary spline function. In Fig. 11 and Fig. 12 the node coordinates in 
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In[63]:= << AceFEM`;
L = 40; H∗ Length ∗L
H = 20; H∗ Width ∗L
T = 1; H∗ Thickness ∗L
fy = 23.5; H∗ yield stress ∗L
Em = 21 000;H∗ elastic modulus ∗L

intord = 3; H∗ interpolation order of FE mesh parameterization∗L
Nφ = 3; H∗number of geometry parameters through the whole length∗L
φ = Table@ToExpression@"φ"<> ToString@iDD, 8i, Nφ<DH∗ Definition of shape parameters ∗L
SMTInputData@"CDriver"D;
domains = 88"Domain1", "ElastPlast2DSens", 8T, Em, 0.3, fy<<, 8"Load", "SurfaceLoadGConst", 80, −1, T<<,

8"PrescDispl", "PrescribedDispl2DY", 81<<<;
SMTAddDomain@domainsD;
SMTAddEssentialBoundary@8"X" m 0 &, 0, 0<D;

SMTMesh@"Domain1", "Q1", 84, 2<, 8Table@8Hi − 1L LêHNφ − 1L, −HHê2 + Hê2 φ@@iDDL<, 8i, Nφ<D,
Table@8Hi− 1L LêHNφ − 1L, HHê2 + Hê2 φ@@iDDL<, 8i, Nφ<D<, "InterpolationOrder" → intordD;

φinit = 80, 0, 0<; H∗ current values of parameters ∗L
srch = MapThread@Rule, 8φ êê Flatten, φinit êê Flatten<D;
SMTAnalysis@"SearchFunction" → HÓ ê. srch &LD;

Slika 
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symbolic form are shown with respect to the use of a linear and quadratic spline 
function. 

 

Fig. 11: AceFEM node coordinates for linear boundary shape approximation. 

 11: Koordinate vozlišč z linearno interpolacijo parametrizirane mreže v AceFEM. 

 

Fig. 12: AceFEM node coordinates for quadratic boundary shape interpolation. 

 12: Koordinate vozlišč s kvadratno interpolacijo parametrizirane mreže v AceFEM. 

Out[88]=

Node Number X coordinate Y coordinate
1 0 10.+ 1. H10. φ1 − 10. φ2L +10. φ2 +

1. H−20. − 1. H10. φ1 −10. φ2L − 20. φ2 + 1. H−10. φ1 + 10. φ2LL
2 0 10. + 1. H10. φ1− 10. φ2L + 10. φ2 +

0.5 H−20. −1. H10. φ1 − 10. φ2L − 20. φ2+ 1. H−10. φ1 + 10. φ2LL
3 0 10.+ 1. H10. φ1 − 10. φ2L +10. φ2
4 10. 10.+ 0.5 H10. φ1 − 10. φ2L +10. φ2 +

1. H−20. − 0.5 H10. φ1 −10. φ2L − 20. φ2 + 0.5 H−10. φ1 + 10. φ2LL
5 10. 10. + 0.5 H10. φ1− 10. φ2L + 10. φ2 +

0.5 H−20. −0.5 H10. φ1 − 10. φ2L − 20. φ2+ 0.5 H−10. φ1 + 10. φ2LL
6 10. 10. + 0.5 H10. φ1− 10. φ2L + 10. φ2
7 20. 10. + 1. H−20. − 20. φ2L + 10. φ2
8 20. 10.+ 0.5 H−20. −20. φ2L + 10. φ2
9 20. 10.+ 10. φ2
10 30. 10.+ 0.5 H10. φ2 − 10. φ3L +10. φ3 +

1. H−20. − 0.5 H10. φ2 −10. φ3L − 20. φ3 + 0.5 H−10. φ2 + 10. φ3LL
11 30. 10. + 0.5 H10. φ2− 10. φ3L + 10. φ3 +

0.5 H−20. −0.5 H10. φ2 − 10. φ3L − 20. φ3+ 0.5 H−10. φ2 + 10. φ3LL
12 30. 10. + 0.5 H10. φ2− 10. φ3L + 10. φ3
13 40. 10. + 1. H−20. − 20. φ3L + 10. φ3
14 40. 10.+ 0.5 H−20. −20. φ3L + 10. φ3
15 40. 10.+ 10. φ3

Out[74]=

Node Number X coordinate Y coordinate
1 0 10.+ 1. H10. φ1 − 10. φ2L +10. φ2 +

1. H−20. − 1. H10. φ1 −10. φ2L − 20. φ2 + 1. H−10. φ1 + 10. φ2LL
2 0 10. + 1. H10. φ1− 10. φ2L + 10. φ2 +

0.5 H−20. −1. H10. φ1 − 10. φ2L − 20. φ2+ 1. H−10. φ1 + 10. φ2LL
3 0 10.+ 1. H10. φ1 − 10. φ2L +10. φ2
4 10. 10. + 10. φ2−

0.25 H−2. H10. φ1 −10. φ2L + 0.5 H2. H10. φ1 − 10. φ2L+ 1. H−10. φ1 + 10. φ3LLL+ 1. H−20. −
20. φ2 − 0.25 H−2. H−10. φ1 + 10. φ2L+ 0.5 H2. H−10. φ1 + 10. φ2L+ 1. H10. φ1 − 10. φ3LLL +
0.25 H−2. H10. φ1 −10. φ2L + 0.5 H2. H10. φ1 − 10. φ2L+ 1. H−10. φ1 + 10. φ3LLLL

5 10. 10. + 10. φ2−
0.25 H−2. H10. φ1 −10. φ2L + 0.5 H2. H10. φ1 − 10. φ2L+ 1. H−10. φ1 + 10. φ3LLL+ 0.5 H−20. −

20. φ2 − 0.25 H−2. H−10. φ1 + 10. φ2L+ 0.5 H2. H−10. φ1 + 10. φ2L+ 1. H10. φ1 − 10. φ3LLL +
0.25 H−2. H10. φ1 −10. φ2L + 0.5 H2. H10. φ1 − 10. φ2L+ 1. H−10. φ1 + 10. φ3LLLL

6 10. 10. + 10. φ2− 0.25 H−2. H10. φ1 − 10. φ2L+ 0.5 H2. H10. φ1 − 10. φ2L +1. H−10. φ1 + 10. φ3LLL
7 20. 10. + 1. H−20. − 20. φ2L + 10. φ2
8 20. 10.+ 0.5 H−20. −20. φ2L + 10. φ2
9 20. 10.+ 10. φ2
10 30. 10. −

0.25 H−0.25 H−2. H10. φ1 − 10. φ2L + 2. H10. φ2− 10. φ3LL − 2. H10. φ2 − 10. φ3LL+ 10. φ3 + 1.
H−20. +0.25 H−0.25 H−2. H10. φ1 −10. φ2L + 2. H10. φ2 − 10. φ3LL− 2. H10. φ2 − 10. φ3LL −20.

φ3 − 0.25 H−2. H−10. φ2 + 10. φ3L− 0.25 H−2. H−10. φ1+ 10. φ2L + 2. H−10. φ2+ 10. φ3LLLL
11 30. 10. −

0.25 H−0.25 H−2. H10. φ1 − 10. φ2L + 2. H10. φ2− 10. φ3LL − 2. H10. φ2 − 10. φ3LL+ 10. φ3 + 0.5
H−20. +0.25 H−0.25 H−2. H10. φ1 −10. φ2L + 2. H10. φ2 − 10. φ3LL− 2. H10. φ2 − 10. φ3LL −20.

φ3 − 0.25 H−2. H−10. φ2 + 10. φ3L− 0.25 H−2. H−10. φ1+ 10. φ2L + 2. H−10. φ2+ 10. φ3LLLL
12 30. 10.− 0.25 H−0.25 H−2. H10. φ1− 10. φ2L + 2. H10. φ2 −10. φ3LL − 2. H10. φ2 − 10. φ3LL+ 10. φ3
13 40. 10. + 1. H−20. − 20. φ3L + 10. φ3
14 40. 10.+ 0.5 H−20. −20. φ3L + 10. φ3
15 40. 10.+ 10. φ3

Slika 
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The design velocity field can easily be computed with the use of symbolic derivation 
function (D[ ]) in Mathematica, as shown in Fig. 13 and Fig. 14. 

 

Fig. 13: Design velocity field by symbolical derivation of FE node coordinates for the case of linear 
interpolation between shape parameters. 

 13: Polje začetnih občutljivosti izračunano s simboličnim odvajanjem koordinat vozlišč mreže 
končnih elementov za primer linearne interpolacije mreže med parametri oblike. 

 

Fig. 14: Design velocity field by symbolical derivation of FE node coordinates for the case of 
quadratic interpolation between shape parameters. 

 14: Polje začetnih občutljivosti izračunano s simboličnim odvajanjem koordinat vozlišč mreže 
končnih elementov za primer kvadratne interpolacije mreže med parametri oblike. 

The design velocity field can be graphically represented as a scalar function. The x-
coordinates do not depend with respect to design variables in the present example as 
can be seen in Fig. 11 and Fig. 12. The y-coordinate dependence with respect to 
design variables is plotted in Fig. 15 and Fig. 16 for the case of linear and quadratic 
spline interpolation between shape parameters respectively.   

 

 

  

In[110]:= Map@D@NodeCoordinates, Ó D &, 8φ1, φ2, φ3<D

Out[110]= 8880, 0, −10.<, 80, 0, 0.<, 80, 0, 10.<, 80, 0, −3.75<, 80, 0, 0.<, 80, 0, 3.75<, 80, 0, 0<,
80, 0, 0<, 80, 0, 0<, 80, 0, 1.25<, 80, 0, 0.<, 80, 0, −1.25<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0.<, 80, 0, 0.<, 80, 0, 0.<, 80, 0, −7.5<, 80, 0, 0.<, 80, 0, 7.5<, 80, 0, −10.<,
80, 0, 0.<, 80, 0, 10.<, 80, 0, −7.5<, 80, 0, 0.<, 80, 0, 7.5<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 1.25<, 80, 0, 0.<, 80, 0, −1.25<, 80, 0, 0<, 80, 0, 0<,
80, 0, 0<, 80, 0, −3.75<, 80, 0, 0.<, 80, 0, 3.75<, 80, 0, −10.<, 80, 0, 0.<, 80, 0, 10.<<<

In[93]:= Map@D@NodeCoordinates, Ó D &, 8φ1, φ2, φ3<D

Out[93]= 8880, 0, −10.<, 80, 0, 0.<, 80, 0, 10.<, 80, 0, −5.<, 80, 0, 0.<, 80, 0, 5.<, 80, 0, 0<,
80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0.<, 80, 0, 0.<, 80, 0, 0.<, 80, 0, −5.<, 80, 0, 0.<, 80, 0, 5.<, 80, 0, −10.<,
80, 0, 0.<, 80, 0, 10.<, 80, 0, −5.<, 80, 0, 0.<, 80, 0, 5.<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<,
80, 0, 0<, 80, 0, −5.<, 80, 0, 0.<, 80, 0, 5.<, 80, 0, −10.<, 80, 0, 0.<, 80, 0, 10.<<<
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Fig. 15: Graphical representation of the y component of the design velocity field for the case of linear 
interpolation between shape parameters. 

 15: Grafični prikaz y komponente polja začetnih občutljivosti v primeru linearne interpolacije 
mreže med parametri oblike. 
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Fig. 16: Graphical representation of the y component of the design velocity field for the case of 
quadratic interpolation between shape parameters. 

 16: Grafični prikaz y komponente polja začetnih občutljivosti v primeru kvadratne interpolacije 
mreže med parametri oblike. 

3.3.2 Exact sensitivity analysis 

While the design velocity field can be defined and evaluated symbolically, the 
numerical analysis done by computer algebra systems cannot keep up with the run-
time efficiency of programming languages such as FORTRAN and C. The key idea of 
the used approach is to use a dual symbolic-numeric finite element environment. 
Such environment (AceFEM) was introduced in Section 2.5. The whole procedure of 
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the evaluation of analytical sensitivities is presented in Fig. 17 and can be applied on 
problems with arbitrary complexity.  

The sensitivity analysis is done on the basis of automatically derived finite element 
code explained in Chapter 2. The general expressions for sensitivity analysis are given 
in Fig. 8. 

φ
∂
∂

a

NodeCoordinates
φ

∂
∂

 

Fig. 17: Flowchart of shape sensitivity analysis by dual symbolic-numeric FE environment. 

 17: Potek občutljivostne analize s pomočjo simbolno numeričnega MKE okolja. 

3.4 Symbolical formulation of general finite strain plasticity 

For the representation of automatic derivation of internal force vector Ψ  and the 
tangential stiffness matrix K , the 4-node quadrilateral elastic-plastic finite element is 
derived next. 

Let a  be a vector of generalized displacements parameters of the element, b a vector 
of unknowns at Gauss point level and pb  a vector of history values at Gauss point 
level from the previous time step. The elasto-plastic problem is defined by a 
hyperelastic strain energy density function W , a yield condition f  and a set of 

algebraic constraints to be fulfilled at Gauss point level ( , , )pa b bΦ  that have to be 

solved for unknowns b when the material point is in plastic state. In general, vector 

Slika 
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b  is composed of an appropriate measure of plastic strains (or stresses in the small 
deformation case), the hardening variables and the consistency parameter λ  where Φ  
are composed of the corresponding set of discretized evolution equations that describe 
the evolution of plastic strains and hardening variables and the consistency condition 

0f = . The yield condition is evaluated for the trial state by freezing the state 

variables as follows 

 ( , )tr pf f= a b  (9) 

The general algorithm for the abstract symbolic description of elasto-plastic problems 
is presented in Fig. 18.  
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Fig. 18: Algorithm for the abstract symbolic description of elasto-plastic problems. 

 18: Algoritem za abstrakten simbolni zapis elasto-plastičnega problema. 

Here b�  denotes a vector of the local unknowns at Gauss point level within the 
iterative loop. A  is a matrix that follows from the linearization of the nonlinear 
equation set Φ . The "basic equation of the symbolic plasticity" is written as: 

 
0
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An efficient and accurate numerical solution of the corresponding coupled non-linear 
system of algebraic equations requires a quadratically convergent numerical 
procedure. For this the linearization of (11) is needed, which leads to the tangent 
stiffness matrix. This matrix can be derived for a finite element by directly applying 
the automatic differentiation procedure leading to 

 
∂

=
∂

K
a
Ψ

 (12) 

Tangent stiffness matrix derived in this way is already "consistent" with the 
algorithm used for plasticity. Hence no additional procedures to derive a consistent 
tangent modulus are required. 

The parts necessary for the abstract symbolic description are briefly summarized in 
Fig. 19.  
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Fig. 19: Summary of the finite strain plasticity equations. 

 19: Povzetek enačb plastičnosti. 

where eC  is right Cauchy-Green tensor and eF  is the deformation gradient. μ  and λ  
are the first and the second Lame's material constants and plλ  is the plastic 

Slika 
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multiplier. b  and pb are the vectors of state variables at the current step and at the 
end of previous time step, respectively. 

 

3.5 Finite element models 

In the work covered by the thesis 5 types of finite elements were used: 

- 2D and 3D Point Load finite element 

- 2D and 3D Line Load finite element 

- 3D Truss finite element 

- Quadrilateral, 4-node, elastic-plastic finite element 

- 6-parameter, elastic-plastic, shell finite elements 

All finite elements were derived and coded with the help of AceGen (Korelc 2007b). 
The equations used in the general algorithm for the abstract symbolic description 
shown in Fig. 18 for the used elements are summarized in Table 3. The load finite 
elements are used only to apply load on the numerical model.  
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Table 3: Strain energies for the use in the Automatic differentiation exceptions. 
 3: Izjeme pri avtomatskem odvajanju. 

 

Element  Equilibrium Equations on FE level 

Point Load 

P.
u∂

=
∂a

Ψ  

Line Load 

.
L

u
q dL
∂

=
∂∫ a

Ψ  
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2
0

1
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W AL Em dLε= ∫   ;  

e

W
d

Ω

∂
= Ω
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Ψ  

2d quadrilateral 

See Section 3.4 
 

 
3d shell 

See references (Wisniewski, Turska 2000, 2001). 

 

X, u, F 

Y, v, F

Z, w, Fz 

1 
2 

3 4

X, u, F 

Y, v, F

Z, w, Fz 

P – point load 

1 

X, u, F 

Y, v, F

1 

2 Z, w, Fz 

X, u, F 

Y, v, F

1 

2 Z, w, Fz 

q - continous load 

X, u, F x

Y, v, Fy 

1 
2 

34
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3.6 Example 

An example of sensitivity analysis of a single-storey steel building is presented. The 
finite element model of the structure is shown in Fig. 20.  

The model consists of the following parts: 

- The main structure consists of four portal frames modeled by the four 
node shell elements based on finite rotations, 6 parameter shell theory 
combined with ANS and two enhanced modes for improved 
performance (Wisniewski, Turska 2000, 2001) 

- The purlins and braced system are modeled by large displacement truss 
elements. 

- Special “load” elements were generated to apply wind and snow loads. 

The analytical shape sensitivity pseudo-load vector is derived for all elements by 
direct differentiation method and with the use of symbolic code generation explained 
in Chapter 2. 
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Fig. 20: Finite element model for the one story building. 

 20: Model konstrukcije enoetažne hale. 

In the example the angle of the roof (β) is used for the design shape parameter. Fig. 
21 presents the typical symbolic form of the nodal coordinate generated by the 
MDriver. Differentiation of the symbolically parameterized mesh with respect to β 
results in a design velocity field that is used within the sensitivity analysis 
(Michaleris, et al. 1994). The sensitivity of the vertical displacement is presented in 
Fig. 23. The results of analytical sensitivity analysis are then compared with the 
results obtained by the finite difference method in Fig. 22. The finite differences are 
computed considering a relative perturbation size of 9.5·10-8, for which an optimal 
perturbation size study has to be done. With the evaluated optimal perturbation size 
finite differences coincide with the analytical method with an average relative error of 
4·10-5. 

 

Slika 
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Fig. 21: Example of a nodal point coordinate in symbolic form. 

 21: Primer koordinat vozlišča mreže končnih elementov v simbolni obliki. 

 

Fig. 22: Comparison between analytic and FD method. 

 22: Primerjava analitične občutljivosti in občutljivosti po metodi končnih diferenc. 
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Fig. 23: Graphical sensitivity representation of the vertical displacement with respect to the roof 
angle. 

 23: Grafični način prikaza občutljivosti vertikalnega pomika glede na naklon strehe. 
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4 INITIAL IMPERFECTIONS 

4.1 Introduction  

Limit load design optimization requires the use of imperfect geometry of a structure 
in order to evaluate the correct limit load. While the imperfections are not known in 
advance, a method has to be used which is capable of proper involvement of 
imperfection effects. It is now well known that geometrical, structural, material and 
load imperfections play a crucial role in the load carrying behavior, especially of thin 
walled structures.  

The determination of the “definitely worst” imperfection can be formulated as a 
nonlinear optimization problem solved by one of the well-known nonlinear 
optimization methods as explained in Section 1.2.3. It is doubtful that an approach 
that requires a large number of fully nonlinear analyses could be used in everyday 
engineering design in foreseeable future.  

In the present work a computationally less expensive optimization method is 
developed that would still retain the generality of the optimization based “definitely 
worst” imperfection approach. 

Geometrical, structural and material imperfections are considered by means of 
equivalent geometrical imperfections. The basic idea of the approach is to replace the 
nonlinear optimization problem with an iterative procedure that would involve only 
linear optimization problems. Within the iteration the objective function for the 
minimum ultimate load is constructed by the means of a fully nonlinear direct and 
first order sensitivity analysis. Constraints on the shape and the amplitude of the 
imperfections have to be taken into account. When carefully constructed, they remain 
linear, thus enabling the use of efficient and readily available linear programming 
algorithms for the solution of the corresponding optimization problem. 

In the case where only the amplitude of the imperfections is constrained, numerical 
studies show that the procedure tends to lead to significantly lower ultimate loads 
than experimentally observed, as the result is associated with imperfection shapes 
that are not necessarily technologically feasible. Therefore it is essential to take into 
account realistic technological constraints on the shape and the amplitude of the 
imperfections. In the present approach the imperfections are represented by a linear 
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combination of base shapes with the base constructed from the sufficient number of 
buckling modes augmented by the eigenvectors of the structure subjected to 
“technological” boundary conditions and characteristic deformation modes. The 
construction of the shape base requires the solution of several generalized eigenvector 
problems and is done only once. The computational cost of each iteration is 
equivalent to one full nonlinear analysis up to the ultimate load accompanied by the 
nonlinear sensitivity analysis with respect to all base shapes and the solution of the 
linear optimization problem. Thus the total computational cost remains within the 
range that is acceptable for design procedures. 

4.2 Optimization method for the determination of the most 
unfavorable initial imperfection 

4.2.1 Representation of imperfections 

The applied initial imperfection shape with specified amplitudes has to represent a 
change in the geometry of a structure in the most unfavorable way so that the 
ultimate load of the imperfect structure is the smallest possible. The imperfections 
are represented as a linear combination of the chosen base shapes within amplitude 

0e  prescribed by the principle of equivalent geometrical imperfections. Equivalent 

geometrical imperfections include geometrical and structural imperfections. 
Geometrical imperfections represent a general deviation from the perfect geometry. 
Geometrical imperfections can be augmented to include structural imperfections that 
are not included into the finite element model directly. Structural imperfections arise 
from the manufacturing method, for example residual stresses produced by welding.  

The geometry of an imperfect structure X  is defined by:  

 Γ
1

N

p j j
j

α
=

= +∑X X , (13) 

where pX  is the initial perfect geometry, jα  are the unknown shape parameters and 

Γj  are the base shapes. The unknown shape parameters jα  are obtained as a 

solution of the optimization problem. The base shapes can be chosen arbitrary, but 
they have to be linearly independent in order to have a well defined minimum of the 
corresponding optimization problem. The overall numerical efficiency of the 
procedure strongly depends on the number of base shapes (N ). The obvious choice, 
well explored by other authors (see e.g.Song, et al. 2004), are buckling modes ( ΓA ) of 
the structure obtained by initial buckling analysis. Alternative and cheaper to 
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evaluate are the eigenvectors (ΓB ) of the initial elastic tangent matrix 0K . The 

kinematic boundary conditions for imperfections can be different than kinematic 
boundary conditions of the structure. This can be observed in rigid support 
connections where the member is usually considered clamped and it is not possible to 
describe the support imperfections with the eigenvectors of the original structure. For 
this purpose the base can be extended by eigenvectors (ΓC ) of the elastic tangent 
matrix 0K  of the same structure but with different kinematic boundary conditions. 

In this way the technological imperfections can be added. Some authors have 
observed (Schneider 2006, Schneider, Brede 2005, Schneider, et al. 2005) that 
sometimes the most unfavorable imperfection resembles deformation shapes rather 
than buckling modes. In order to reduce the total number of the necessary considered 
base shapes, an additional set of deformation shapes (ΓD ) of the structure in elastic 
and plastic range can be added. And finally, the set of shapes which are empirically 
known to represent the worst imperfections for certain type of structures (ΓE ) can be 
added. The total base Γ is then in general composed of: 

 = ∪ ∪ ∪ ∪Γ Γ Γ Γ Γ ΓA B C D E  (14) 

The optimized imperfection shape (most unfavorable initial imperfection shape) 
depends on the number of shapes included in the shape base and the density of the 
finite element mesh. For reasonable results it is necessary to increase them 
proportionally. With the increase of the considered shapes, the result converges to a 
final shape. For practical reasons it is necessary to include at least that much 
different shapes to allow including all local and global collapse mechanisms. The 
shape of the most unfavorable initial imperfection changes with different loading 
patterns, supporting conditions, changes in geometry or the amplitude of initial 
imperfections. In this sense, the shape of the most unfavorable initial imperfection in 
means of ultimate load of a structure has to be evaluated for every individual 
structure separately and can not be generalized. 

4.2.2 Description of the algorithm 

In the presented approach a fully geometrically and materially nonlinear analysis is 
used. When dealing with thin-walled structures with moderate thickness, it is 
necessary to take geometrical and material nonlinearity into account. Since the 
algorithm starts from the beginning with the imperfect structure, bifurcation points 
usually do not occur prior reaching the limit point in a load-deformation curve. By 
limiting the analysis to limit points one avoids tedious procedures involved in proper 
determination, classification and sensitivity analysis of bifurcation points. Only stable 
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equilibrium states have to be considered and no hypothetic states need to be taken in 
account. 

Within this method the most unfavorable initial imperfection shape is sought, defined 
by the shape base Γ and the shape parameters α  at which the ultimate load will be 
the lowest. Unknown shape parameters α  are evaluated iteratively by an 
optimization process. The iterative procedure for the k-th step can be written as: 
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∑
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X

X

, (15) 

where kX  is the imperfect geometry, k
iαΔ  the increment of the imperfection 

parameters, kΔX  the increment of the imperfection and kX  the total imperfection. 

The increment of the imperfection parameters in the k-th iteration k
iαΔ  is obtained 

as a solution of the corresponding optimization problem described in Section 4.2.2. 
The flowchart of the method is illustrated in Fig. 24. The algorithm starts with the 
first base shape 1Γ , normalized by the amplitude 0e , as the initial guess 0X for the 

geometry of the imperfect structure: 
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α α
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= +Δ ΓX X

 (16) 

and then improves the solution by solving a sequence of optimization problems until 

the convergence condition k
i toleranceαΔ <  is reached. Within each step of the 

iterative procedure a fully nonlinear direct and sensitivity analysis of the structure 
with imperfect geometry kX  is performed followed by the formulation and solution of 

the optimization problem. 
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Fig. 24: Flowchart of the method for the determination of the most unfavorable initial imperfection. 

 24: Potek metode določitve najbolj neugodne začetne nepopolnosti. Slika 
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The presented approach gives the advantage of use of arbitrary state of the art 
optimization algorithms, as the optimization part is completely separated from the 
direct and sensitivity analysis. An alternative approach would be performing a fully 
coupled nonlinear optimization where the most unfavorable imperfection shape 
parameters would be determined simultaneously within the direct and sensitivity 
analysis. Such an evaluation is to authors experience not feasible for larger structural 
systems at this time. 

 

4.2.3 Formulation of the optimization problem 

The ultimate load factor of the imperfect structure in k-th iteration k
lλ  represents the 

minimizing function, where the maximal amplitude of the total imperfection kX  has 

to be equal to or smaller than the amplitude of the prescribed equivalent geometrical 
imperfections 0e : 

 α
λ

Δ

≤0

min

( , ) 0

k
i

k
l

kC eX
 (17) 

where 0( , )kC eX is a constraint function. 

The decoupling of the direct analysis and optimization is achieved by expansion of 
the ultimate state load factor k

lλ  to a Taylor series around the ultimate state load 

factor of the current imperfect geometry. The ultimate load factor is then written as: 

 0 01

N k
lk k k

l l ikk k
iii iα α

λ
λ λ α

αΔ = Δ ==

⎛ ⎞∂ ⎟⎜+ ⋅ Δ⎟⎜ ⎟⎟⎜∂Δ⎝ ⎠∑� , (18) 

 where 
0

k
l k

iα
λ

Δ =
 is the evaluated ultimate load factor of the structure and 

0

k
l

k k
i iα

λ
α Δ =

∂
∂Δ

 the sensitivity of the ultimate load factor with respect to optimization 

parameters k
iαΔ  in the current step. The minimizing function k

lλ  in this instance is a 

linear function. The constraining function, on the other hand, can be a highly 
nonlinear function or a simple set of linear constraints, depending on way it is 
defined. The employment of constraints (17) arises from the demand of the technical 
standards (see e.g. EN 1090/2 2007) which specify requirements for execution of 
structures or manufactured components of structures. The location of the point of 
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maximal amplitude is unpredictable, which makes it very difficult to choose the 
appropriate restraining function.  

For small order problems (i.e. up to 5000 nodes) where nonlinear optimization 
algorithms can be used, a simple norm of the total imperfection (Deml, Wunderlich 
1997) gives satisfactory results. The norm that proved to be reliable for small order 
problems is the L2p vector norm with the exponent 2p. With the increase of the 
constant p the norm limits to the maximal value of components of the total 
imperfection vector kX : 

 

( )

22

1
22

2
1

lim max ;

 X
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N ppk
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j
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=

=
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∑

X X

X
, (19) 

The minimization problem (17) with inequality constraints can be solved by an 
advanced penalty method or an extended Lagrange multiplier type method. 

For large problems the necessity of a high exponent p of the L2p norm in order to 
achieve the necessary accuracy makes the huge constraint function highly nonlinear 
and the minimization problem difficult to solve.  In this case it is necessary to define 
a set of linear constraints for the maximal amplitude of the total imperfection vector: 

 [ ]0 1 2... , ,...,m m
k cpX e m n n n≤ ∈ , (20) 

where in  is the index of the i-th constrained component of the total imperfection 

vector, cpn  is the total number of constrained components and 0
me  is the amplitude 

value of the m-th constraint. In this way different constraint amplitudes can be 
applied for parts of a structure, which is of high significance when dealing with 
complicated structural systems where every part of the structure has its own 
prescribed amplitude of equivalent geometrical imperfection. While the minimizing 
function (18) and the set of constraints (20) are all linear, linear programming with 
an advanced interior point algorithm can be applied for the fast determination of a 
global minimum. 
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4.2.4 Direct and sensitivity analysis 

With the use of direct and sensitivity analysis of the imperfect structure under a real 

load the ultimate load factor k
lλ  and its derivatives 

k
l

k
i

λ
α

∂
∂Δ

 with respect to unknown 

base shape parameters k
iαΔ  are evaluated.  

The structure is analyzed in accordance with the standard “arc-length” type 
continuation method (see e.g.Crisfield 1996, 1997). Therefore, in direct and sensitivity 
analysis the equilibrium equations are extended with load factor λ  as an additional 
variable and constraint cg  as an additional equation imposed on the increments of 

generalized displacements. The general expressions are given in Section 3.2 and 
Section 3.3. The limit load sensitivity analysis of the imperfect structure is in fact 
equivalent to the standard shape sensitivity analysis and is done using the same 
procedures described in Sections 3.2 and 3.3. The only open question is the design 
velocity field. 

Because of the way the imperfection shape is parameterized, the design velocity field 
is easily obtainable, since the base shape iΓ  itself represents the design velocity field: 
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where iΓ  is the shape base, k
i

D
D αΔ

Ψ
 is the sensitivity with respect to shape parameters 

and k
iαΔ

∂
∂

X
 the design velocity field used within the standard shape sensitivity 

analysis.  
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4.3 Numerical examples (Test Problems and Results) 

To illustrate the proposed method, a simple example of a cantilever structure is 
presented. Further on, more complex structures are analyzed to represent the 
applicability of the proposed method to large scale models. 

4.3.1 Elasto-plastic cantilever structure 

The most unfavorable imperfection for a 2D cantilever structure is sought. The 
structure is modeled by plane stress, finite strain, ideal elasto-plastic, 4-node 
quadrilateral finite elements (Korelc 2002). On the free end, a horizontal force in 
axial direction is applied (Fig. 25 (a)). The height of the cantilever is 2 cm and the 
width is 1 cm. The elastic modulus has been taken as 210000 MPa and the yield 
stress as 235 MPa. The Poisson ratio was taken as 0.3.  

 

  
Fig. 25: Geometry and loading (a) and the logically most unfavorable shape without considering 

technological constraints (b) for the cantilever beam example. 

 25: Geometrija in obtežbe (a) ter logična optimalna oblika brez upoštevanja tehnoloških pogojev 
(b). 

According to the method described in Section 4.2, the shape base is defined first. The 
considered base consists of 20 buckling modes ( AΓ ), 20 alternative boundary 
condition shapes ( CΓ ), and the shape of the plastic deformed structure ( DΓ ) (see 
Fig. 26). The alternative boundary condition shapes are evaluated as eigenvectors of 
the linear elastic tangent matrix of a substitute system, which can give description of 
the “technological” imperfections in the vicinity of the support. In order to achieve 
that, the degrees of freedom have to be released to allow rotation of the structure in 
the originally fixed support.  
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Eigenvectors (alternative boundary conditions) CΓ  

     
1
CΓ  

N=1 
2
CΓ  

N=2 
3
CΓ  

N=3 
4
CΓ  

N=4 
5
CΓ … 

N=5… 
 

Buckling modes AΓ  and the plastic deformed shape DΓ  

     
1
AΓ  

N=21 
2
AΓ  

N=22 
3
AΓ  

N=23 
4
AΓ … 

N=24… 
1
DΓ  

N=41 
Fig. 26: The shape base for the cantilever beam example. 

 26: Baza oblik za primer konzole. 

The plastic deformed shape and the buckling modes are calculated in consideration of 
the perfect initial geometry of the structure. The final shape base Γ consists of 41 
base shapes. In the optimization part of the process it is necessary to satisfy the 
constraint conditions (17) which arise from the demand of the maximal amplitude of 
the equivalent geometrical imperfections. In this example an equivalent geometrical 
imperfection of L/250 is prescribed, where L is the length of the cantilever.  

In general it is not necessary to constrain all nodes of the model. The constraint 
equations in form of (20) taken in account were only connected to the center line and 
longitudinal boundary lines of the cantilever beam. As a result, 401 constraint 
equations connected to the center line considering the maximal initial imperfection 

amplitude of 
0

L/250ye =  in y direction and 802 constraint equations from the 
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boundary lines considering the maximal initial imperfection amplitude of 

0 0
/100yxe e=  in x direction were obtained. The constraints considering the 

imperfection amplitude in x direction were necessary to exclude unfeasible results due 
to the 2D finite element model used. The resulting minimizing function and all 
constraint equations are linear. The standard linear programming procedure with an 
interior point algorithm built in Mathematica was applied to solve the resulting linear 
optimization problem within each iteration of the global iterative procedure described 
in Section 4.2. 

The logical most unfavorable initial shape which causes the structure to fail at 
minimum load would be the one illustrated in Fig. 25(b). Such kind of imperfection 
shape is not technologically feasible because of the sharp edges in it. The feasibility 
issue can be eliminated by the employment of additional constraints in the 
calculation of the most unfavorable initial imperfection. In the present simple 
example it was not necessary to employ them explicitly as the shapes considered in 
the shape base had such geometries that no sharp edges could be produced. The 
maximal curvature was therefore implicitly controlled by the considered base shapes. 
In Fig. 27 the calculated most unfavorable initial imperfection shapes and the 
corresponding ultimate load factors are shown for different number of considered 
shapes in the shape base. 
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Number of 
considered 

shapes 

The most unfavorable initial imperfection 
geometry 

λu 

5 
 

0.200 

17 
 

0.197 

29 
 

0.196 

41 
 

0.194 

 
Fig. 27: Convergence to the most unfavorable shape by increasing the number of considered shapes 

in the shape base (scale factor fs = 10). 

 27: Konvergenca najbolj neugodne oblike z večanjem števila upoštevanih oblik (faktor povečave 
fs = 10) 

The shape and the amplitude of the equivalent geometric imperfections should be in 
general chosen in such a way that it has the same effect on the load bearing capacity 
of the structure as all relevant imperfections together.  

The shapes and amplitudes for geometric imperfections can be chosen in accordance 
with the manufacture tolerances (e.g. EN 1090/2 2007) although it is possible that 
taking the amplitude of the considered initial imperfections equal to the manufacture 
tolerances  can lead to a too low characteristic resistance. This can be even more 
pronounced where several different imperfections interact (Johansson, et al. 2007). 
There is little information about equivalent geometrical imperfections for a general 
structure found in existing technical standards. 

In the present example a comparison has been made for the ultimate load factor of 
the structure, considering different manually defined combinations of base shapes and 
the calculated most unfavorable initial shape. In Table 4 there are ultimate load 
factors (λu) shown for the cantilever structure with different initial imperfections 
considered according to the specified combination methods. The contribution of the 
chosen shapes from the shape base to the final result is represented by values of 
parameters iα . The smallest calculated ultimate load factor resulting from the use of 

various combinations of imperfection shapes is 0.219 for the combination method 

i jΓ = Γ + Γ%  where the most unfavorable combination of two base shapes is 
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considered. Other combination methods produce higher ultimate load factors. The 
ultimate load factor of the structure obtained by the proposed method, taking the 
calculated most unfavorable initial imperfect shape into account, is 0.194, which 
results in a 11% smaller ultimate load with respect to other combination methods. If 
the number of considered base shapes was increased, the corresponding most 
unfavorable imperfection shape would lead to an even lower ultimate load factor. To 
prevent the curvatures of the imperfection shape to exceed common values, the 
number of considered base shapes 41 was chosen in this example. 

Table 4: Ultimate load factors for various initial imperfection shapes for the 
cantilever beam example. 

 4: Mejni obtežni faktorji za različne kombinacije obtežb za primer konzole. 
 

 

Perfect geometry λu= 0.366 

Initial geometry according to recommended combinations of shapes: 
Shape combination method Combination at  minimal λu λu 

iΓ = Γ%  41i =  0.268 

i jΓ = Γ + Γ%  1, 41i j= =  0.219 

1
0.7

N

i j
j
j i
=
≠

Γ = Γ + Γ∑%  41i =  0.342 

1
,

0.7
N

i j k
k
k i j

=
≠

Γ = Γ + Γ + Γ∑%  1, 41i j= =  0.343 

0max
eΓ

Γ =
Γ

%

%  

Most unfavorable initial imperfection by proposed method: 
-2997 Γ1 + 106.6 Γ2 + 898 Γ3 + 33.5 Γ4 + 62.4 Γ5 - 4.4 Γ6 - 17.4 Γ7 + 3.3 Γ8 + 
4.3 Γ9 + 1.23 Γ10 - 3.47 Γ11 + 0.41 Γ12 - 5.25 Γ13 + 1.30 Γ14 + 2.07 Γ15 - 0.04 Γ16 

+ 2.06 Γ17 - 1.28 Γ18 + 0.28 Γ19 + 0.04 Γ20 - 2310 Γ21 - 3722 Γ22 + 1858 Γ23 - 762 
Γ24 + 0.71 Γ25 + 105 Γ26 + 10.0 Γ27 - 44.5 Γ28 - 18.9 Γ29 + 4.2 Γ30 + 11.8 Γ31 - 2.4 
Γ32 - 7.7 Γ33 - 5.9 Γ34 - 3.5 Γ35 - 1.8 Γ36 + 1.3 Γ37 + 4.6 Γ38 - 0.3 Γ39 - 0.4 Γ40 + 0 

Γ41  

λu = 0.194 

 

  

Tabela 
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4.3.2 Thin-walled T beam 

Structures composed of thin–walled components in general prove a high degree of 
imperfection sensitivity. The thin-walled girders in this section were modeled by 
elasto-plastic four node shell elements based on finite rotations, 6 parameter shell 
theory combined with assumed natural strain formulation and two enhanced strain 
modes for improved performance (Wisniewski, Turska 2000, 2001). 

The example refers to the ultimate load calculation of a simply supported thin-walled 
beam with a T cross-section, loaded with a concentrate force at the mid-length. The 
geometrical details and loads are presented in Fig. 28. The example was taken from 
(Lanzo, Garcea 1996) 

 

 
Fig. 28: Geometry, supporting and loading conditions for the thin-walled T beam example. 

 28: Geometrija, podpore in obtežba tankostenskega T nosilca. 

u[0,0,-32.5]=0 
v[0,0, 32.5]=v[450,0, 32.5] 
w[0,y,  z  ]=w[450,y,  z  ] 

 

Constraints 
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B

H

2 x B/200

2 x H/200
 

Fig. 29: Maximal allowable deviation from the perfect geometry used in the evaluation. 

 29: Največje dopustno odstopanje od popolne oblike pri izračunu. 

Different constraint conditions (20) were used for the flange and the web of the 
girder. The maximal amplitude of the equivalent geometrical imperfection for the web 
was taken as H/200, where H is the height of the web and the amplitude for the 
flange was taken as B/200, where B is the width of the flange. Within the 
optimization problem (17) it was therefore necessary to define 3150 constraint 
equations for the maximal initial imperfection amplitude perpendicular to the web 
and 2025 constraint equations for the maximal imperfection amplitude perpendicular 
to the flange. In this case, only the y-direction web components and the z-direction 

flange components of the total imperfection vector kX  are constrained. 
First the structure is analyzed considering the shape base Γ  consisting of buckling 
modes. In Fig. 30 the calculated limit load of the T-beam with increasing number of 
base shapes is shown. The results show clear convergence of the calculated limit load. 
  

Slika 
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Fig. 30: The calculated ultimate load of the T-beam considering the evaluated most unfavorable 
initial imperfection varying the number of base shapes. 

 30: Mejna obtežba T nosilca pri upoštevanju izračunane najbolj neugodne nepopolnosti pri 
različnem številu oblik v bazi. 

 
Furthermore the structure is analyzed by two different shape bases in order to assess 
the influence of the chosen shape base on the numerical efficiency of the proposed 
procedures. The first shape base (sbA) consists of 50 buckling modes ( AΓ ) and two 
deformation shapes ( DΓ ) and the second (sbB) of 50 eigenvectors of the elastic 
tangent matrix 0K  ( BΓ ) and two deformation shapes ( DΓ ). In Fig. 31 the ultimate 
load-deformation curves for the two cases are plotted. The difference in results 
between the two cases is small and decreases with increasing the number of 
considered shapes. In the present example the shape base composed of eigenvectors of 
the elastic tangent matrix (sbB) turned out to be more appropriate than the shape 
base composed of buckling modes (sbA), since a lower ultimate load was computed 
with the same number of considered base shapes. The shape base (sbB) is used for 
further analysis. The most unfavorable initial imperfection evaluated by the 
presented approach for the shape base (sbB) and the corresponding deformed state at 
collapse are presented in Fig. 32. 
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Fig. 31: The load displacement curves considering various imperfection shape bases for the T beam 

example. 

 31: Graf sila-pomik za T nosilec z upoštevanjem različnih baz oblik. 

 

 

 

 

 

 

 

 

Fig. 32: The most unfavorable initial imperfection shape of the T cross-section thin-walled girder (a) 
and the corresponding deformed shape at collapse (b). 

 32: Najbolj neugodna začetna nepopolnost za primer T nosilca (a) in pripadajoče stanje pri 
limitni obtežbi(b). 

Fig. 33 presents the convergence of the global iterative procedure for the considered 
shape base (sbB). The result of the first iteration, where the first eigenvector is taken 
for the initial imperfection, gives a good approximate to the final result. Only 9 
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iterations were necessary to achieve convergence within tolerances and to determine 
the most unfavorable initial imperfection. 
 

 
 
Fig. 33: Convergence of the global iteration process of finding the most unfavorable imperfection 

shape for the example with 52 base shapes. 

 33: Konvergenca globalnega iteracijskega procesa iskanja najbolj neugodne oblike z 
upoštevanjem 52 baznih oblik.. 

In Fig. 34 equilibrium paths calculated for various values of amplitudes of equivalent 
geometrical imperfections are plotted. The e0w is the maximal amplitude of the 
equivalent geometrical imperfections perpendicular to the surface of the web with 
height H and the e0f is the maximal amplitude of the equivalent geometrical 
imperfections perpendicular to the surface the flange with width B. The calculated 
ultimate load depends to a large extent on the amplitude of the used initial 
imperfection. The choice of the amplitude is therefore very important and a crucial 
part for determining the most unfavorable initial shape. For the purpose of 
comparison the equilibrium path calculated on a basis of the Koiters asymptotical 
approach to nonlinear instability for the same example was taken from (Lanzo, 
Garcea 1996). 
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Fig. 34: Equilibrium paths for the T cross-section thin-walled girder. 

 34: Ravnotežne poti za primer T nosilca. 

4.3.3 Thin-walled I beam 

In the third example, the most unfavorable imperfection for a standard 8m long 
HEA400 structural steel I beam is computed. The beam is fully rigidly supported at 
the ends. The elastic modulus has been taken as 21000 kN/cm2 and the yield stress as 
23.5 kN/cm2. The Poisson ratio was taken as 0.3. The structure is modeled by the 
same finite elements as in previous section. 

A vertical line load is applied along the upper flange center line. The considered 
shape base Γ  consists of 58 eigenvectors of the elastic tangent matrix 0K   and 2 

deformation shapes corresponding to the elastic deformed state and the plastic limit 
state. The optimization problem includes 3111 constraint equations. All components 

of the total imperfection vector kX  are constrained with the amplitude 
0

/200e H= , 

where the height of the cross-section 39cmH =  (see Fig. 35). 
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Fig. 35: Maximal allowable deviation from the perfect geometry used in the evaluation. 

 35: Največje dopustno odstopanje od popolne oblike pri analizi. 

In Fig. 36 equilibrium paths are plotted for various combinations of imperfection 
shapes taken from Γ . Shapes and combinations of shapes considered are: 

a) initial imperfection in the shape of elastic deformed shape, 

b) initial imperfection in the shape of the plastic deformed shape, 

c) combination of two shapes i jΓ + Γ , 

d) combination of all shapes in form 
1; ,

0.7
= ≠

Γ +Γ + Γ∑
N

i j k
k k i j

, 

e) computed most unfavorable initial imperfection shape for shape base Γ . 

 
In the case (c) as in the case (d) the minimum limit load calculated was achieved for 

34i =  and 37j = . All considered initial imperfection shapes were normalized by the 
value of the equivalent geometrical imperfection amplitude 0e  for the purpose of 

comparison. 
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Fig. 36: Ultimate load deformation curves for different initial imperfect geometries with the same 

amplitude for the I beam example. 

 36: Mejne krivulje za različne oblike začetnih nepopolnosti z enako amplitudo za primer I 
nosilca. 

The corresponding imperfect geometries are plotted in Fig. 37. For case (e) two load 
curves are plotted belonging to the first iteration of the global iterative procedure and 
the final converged state.  The various recommended combinations of shapes (a-d) 
result in significantly higher limit load when compared to the ultimate load obtained 
by the new approach.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
 

Fig. 37: Initial imperfect geometries used in analyses according to Fig. 36. 

 37: Prikaz začetnih nepopolnosti. 

4.3.4 Thin-walled Cylinder 

Among all thin-walled structures axisymetric structures (e.g. spheres and cylinders) 
prove to have the highest imperfection sensitivity. Several papers deal with the 
problem of finding the initial imperfection connected to the lowest ultimate load of 
cylindrical structures (Schmidt 2000, Schneider 2006, Schneider, Brede 2005, 
Schneider, et al. 2005, Schranz, et al. 2006, Song, et al. 2004). In the early stages of 
imperfection studies on cylinders, the analogy to column and plate buckling was 
considered appropriate and therefore the imperfection affine to the lowest eigenmode 
was taken as the worst initial imperfection. Recent studies dealing with the direct 
determination of the worst initial imperfections suggest that single dimple 
imperfections may be worse than eigenmode-affine patterns covering the whole 
structure (Wunderlich, Albertin 2000, 2002). 

In the present example an axially compressed cylinder is studied Fig. 38. The cylinder 
is fully rigidly supported at z=0 and free at z=H.  
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Fig. 38: Geometry of the axially and transversely loaded cylinder. 

 38: Geometrija osno in prečno obremenjenega cilindra. 

After the convergence study, the shape base was chosen that consists of 68 shapes 
including 59 eigenvectors ( BΓ ) of the elastic tangent matrix 0K , 7 buckling modes    

( AΓ ) and 2 deformation shapes ( DΓ ) corresponding to the elastic deformed state and 
the plastic ultimate state. Technical standards (EN 1993 1-6 2006) prescribe the 
maximal amplitudes for the equivalent geometrical imperfections for cylindrical 
structures. In the present example the maximal amplitude of the equivalent 
geometrical imperfections perpendicular to the cylinder wall was taken as 0 1.22 te =  

as for class A fabrication tolerance quality. 

In order for the constraints to remain linear and to preserve the possibility of using 
linear optimization methods the projection of the imperfection vector 

{ }, ,n n n n
x y zX X X=X  in the n -th node in the radial direction was chosen to be 

bounded. The resulting optimization problem includes 2888 linear constrained 

equations of the form 0.n n e≤X r , where nr  stands for a unit vector in radial 

direction. Additionally, the z  component of the nodal imperfection was constrained 

by 2888 linear constrained equations of the form  0 0.12 t
10

n
z

e
X < = . In this way 

each node of the perfect mesh can move to its imperfect location by 1.22 t  in radial 

direction of the x-y plane and by 0.12 t
 
in z direction. The optimization problem was 

solved using linear programming with an advanced interior point algorithm. Imposing 
constrain equations directly in radial direction would result in a nonlinear 
optimization problem that would be difficult to solve. 
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In Fig. 39 the most unfavorable initial imperfection calculated considering 68 base 
shapes for the cylindrical structure is presented. The load-displacement curve for the 
point at coordinates (0,-R,H) is plotted in Fig. 40. The corresponding deformation 
state at limit load is illustrated in Fig. 41. Further on, a fold line for the calculated 
most unfavorable imperfection shape was computed and is presented in Fig. 42. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 39: Most unfavorable initial imperfection for axially and transversely loaded cylinder considering 
the imperfection amplitude R/165. Scale factor fs=10. 

 39: Najbolj neugodna začetna nepopolnost pri amplitudi nepopolnosti R/165. 

 

 
 

Fig. 40: Load displacement curve considering the most unfavorable initial imperfection. 

 40: Krivulja sila-pomik z upoštevanjem izračunane najbolj neugodne začetne nepopolnosti. 
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Fig. 41: Deformation state at limit load. 

 41: Deformacijsko stanje v mejnem stanju. 

 

 
Fig. 42: Fold line of the axially and transversely loaded cylinder. 

 42: Nosilnost v odvisnosti od amplitude začetne nepopolnosti osno in prečno obremenjenega 
cilindra. 
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4.4 Partial conclusions 

An effective method for evaluating the most unfavorable imperfection is presented. 
Despite intensive research of theoretical, experimental and numerical aspects of 
stability limit of imperfection-sensible structures, there is still no consensus on how 
the ultimate state should be evaluated, owing to numerous difficulties which arise. 
According to the results of the presented approach, it is difficult to characterize 
certain structures with certain types of imperfections. Every change in thickness, 
geometry or loading conditions can lead to a drastic change of the worst imperfection 
shape. 

In complex structures where intuitive determination of initial most unfavorable 
imperfections is not possible or where there is a lack of known empirically obtained 
worst imperfections, the use of a method for determining the worst initial shape is 
essential. Within the presented approach it is shown that with the use of geometrical 
and material nonlinear direct and sensitivity analysis of imperfect structure combined 
with optimization it is possible to directly evaluate the imperfection shape of a 
structure, at which the ultimate load of the structure is the smallest. Additionally, 
the method is not limited to the linear natural equilibrium path and small 
imperfections and allows introduction of various constraints on the shape of the 
initial imperfection. 

The direct determination of the worst imperfection shape results in a highly nonlinear 
global optimization problem. Unfortunately, no truly effective optimization algorithm 
exists for the global optimization of problems where the numerical cost of the 
minimizing function allows only a small number of repetitions. Thus, depending on 
an initial guess for the worst imperfection shape, the obtained worst imperfection 
shape can correspond to the local minimum of the limit load rather than a global 
minimum. A natural choice for the initial guess is the imperfection affine to the 
lowest buckling mode. 

In the present approach, the imperfections are represented by a linear combination of 
base shapes with the base constructed from the subset of buckling modes augmented 
by the eigenvectors of the structure subjected to “technological” boundary conditions 
and characteristic deformation modes. The decision to include the base shapes that 
are not consistent with the kinematic boundary conditions of the problems should be 
based on technological considerations. With the increasing number of base shapes, 
the discretization error of the description of the worst imperfection shape approaches 
the discretization error of the underlying finite element mesh. This ensures the 



Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.   
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.  

 

81

convergence of the method with mesh refinement and increasing number of base 
shapes to at least a local worst imperfection shape.  

Because of the high unpredictability of the imperfection forms, the technical 
standards for designing thin-walled structures recommend to use empirical methods 
to define initial imperfections used for nonlinear analyses. The ultimate loads of 
structures evaluated in accordance with the method presented turned out to be 
smaller than the ultimate loads considering various combinations of imperfections 
prescribed by the technical standards or calculated with approaches based on Koiters 
asymptotic theory or parametric studies. It can be concluded that these methods may 
lead to too optimistic results. On the other hand, the probability of the real structure 
imperfections to take the exactly most unfavorable form is very low. However, the 
information about the structures lowest limit load due to initial imperfections is of 
high importance when analyzing structures. Usually imperfection analyses with a 
great number of repetitions are done to determine which combinations are 
unfavorable. Despite the effort it is still very hard to determine how the limit load is 
lowered by the gathered imperfection shapes in comparison with the most 
unfavorable ones. In this sense it is possible to establish that the consideration of 
imperfections in a geometrically and materially nonlinear analysis is a task where a 
holistic method for finding the worst imperfection is indispensable. 

The importance of the ability to evaluate the most unfavorable equivalent 
geometrical imperfections as presented in the thesis is further stressed out in the next 
chapter where it is used to optimize the shape of the structure in such a way that it 
has a minimum volume considering all optimization constraints and in the same time 
it is optimized to be at least sensible to initial imperfections. This represents a 
convenient way to properly optimize the shape of imperfection sensible structures. 
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5 LIMIT LOAD DESIGN SHAPE OPTIMIZATION 

In the present chapter a limit load shape optimization method will be presented using 
an analytical sensitivity analysis introduced in Chapter 3 with consideration of the 
most unfavorable initial imperfections presented in Chapter 4. 

5.1 Introduction 

The purpose of structural design problems is to find the best design among all 
possible candidates. For this reason, the design engineer has to specify both the 
candidates and the best design. To satisfy the problem constraints, the candidates 
have to exist in a feasible region, where all candidates are acceptable. The most 
appropriate design is usually the one that minimizes or maximizes different objective 
functions, such as for example weight, cost, deformation energy, frequency response, 
manufacturing or other technical requirements. In engineering design the mechanical 
laws are applied to determine the structural response while the loads, geometry and 
boundary conditions are given. When it comes to optimization design, the process has 
to be reversed and the load, material, topology or shape, etc. have to be determined 
for the required structural response. 

Basically, structural optimization can be divided into material optimization (MO), 
shape optimization (SO) and topology optimization (TO), depending on what is 
varied in the optimization process. This includes configuration and size optimization 
for discreet modeled structures. For the best results different approaches can be 
combined. An effective way is to combine topology optimization (determination of 
material distribution) and shape optimization (determination of the boundary shape). 
While TO is mostly used to define the general geometrical layout, SO can be used to 
additionally define the boundaries, as TO is mostly applied on a very coarse 
discretization mesh (see e.g. Chang, Tang 2001, Schwarz, et al. 2001, Tang, Chang 
2001). Additionally, it is possible to apply SO by subsequently adding holes with 
parameterized boundaries into the initial geometry. In this way it is possible to 
optimally distribute the material with exact boundaries essentially performing TO. 
Even though this approach is rather of subjective nature, it is very effective in 
practical design. The current work deals mostly with SO based on the supposition 
that the basic geometric layout is known or prescribed, either by manufacturing 
limitations, cost, aesthetic or serviceability demands. 
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5.2 Shape Optimization 

Structural optimization approaches to shape optimization can be classified into three 
categories: 

- Evolutionary approach 

- Optimality criteria 

- Mathematical programming 

The basic purpose of an optimization algorithm is to minimize the objective function 
and to find a feasible result at minimum computational cost. Regardless the approach 
used, optimization is done by some sort of iteration process. Application in structural 
engineering FEM modeling by considering geometrically and materially nonlinear 
structural response including most unfavorable initial imperfections requires a fair 
amount of computational time in the case of larger structural systems, even for a 
single iteration. The approach used for nonlinear structural design optimization 
therefore has to include a strategy allowing minimum number of iterations used for 
the determination of the optimum result. 

Numerous approaches have been used for nonlinear structural optimization. The use 
of the more sophisticated “smart” mathematical programming approaches requires 
computation of sensitivities needed for the mathematical treatment of the 
optimization problem. For the success of the optimization algorithm the sensitivities 
have to be evaluated exactly as described in Chapter 3. While this is a 
computationally demanding task, many other methods belonging to all three 
categories of optimization approaches have been developed in order to avoid the 
evaluation of sensitivity information. 

5.2.1 Evolutionary and Optimality Criteria approaches 

The category of evolutionary approaches covers many different heuristic approaches 
which take their inspiration from nature, such as Genetic Algorithms and Evolution 
Strategies. Modern approaches in this field include Swarm Optimization such as 
Particle Swarm Optimization and Ant colony optimization. Based on Darwin’s 
evolutional theory and the principle of the survival of the fittest all these approaches 
have one thing in common: the stochastic search of the optimum result is improved 
by strategies comparable to optimal processes discovered in nature. These methods 
and other stochastic methods, like Simulated Annealing, will find a good solution 
with high probability, but very little can be said about the mathematical properties 
of the solution. It is not guaranteed to even be a local optimum. Although far better 
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than calculating all the possible candidates and finding the optimum solution among 
all possible results, the number of iterations needed exceeds the reasonable amount of 
iterations for nonlinear structural optimization of full size engineering structures. One 
of the advances of evolutionary approaches is the relatively simple implementation of 
parallel computing, as several independent analyses have to be run in a single 
iteration. For small order problems, such as sizing or small order shape and topology 
optimization, successful evolutionary approaches have been used (see e.g. Cappello, 
Mancuso 2003, Che, Tang 2008, Garcia, Gonzalez 2004, Li, et al. 1999, Li, et al. 2005, 
Rong, et al. 2007, Ryu, Lee 2007). 

The second major category of structural optimization is covered by the Optimality 
Criteria (OC) approaches, e.g. Fully Stressed Design or Karush-Kuhn-Tucker OC 
method. The idea is to formulate an optimality criterion which has to be fulfilled by 
a feasible solution. The optimal solution is considered to be found, when the 
optimality criterion is fulfilled. When designing an OC-algorithm, an optimality 
criterion and a redesign formula for the update of variables has to be defined. These 
methods are not generally applicable and are mathematically unreliable, although 
they allow very fast convergence for suited problems. Some successful application to 
specific structural optimization problems can be found in references (Meske, et al. 
2006, Steven, et al. 2002). 

It can be concluded that geometrically and materially nonlinear structural limit load 
shape optimization of real world structures requires a mathematical programming 
method which is capable to determine the optimum result in the least possible 
number of iterations. Accurate sensitivity information to shape parameters is of 
crucial importance for achieving convergence within the lowest possible 
computational cost.  

5.2.2 Mathematical programming 

An optimization problem solved with principles of mathematics is called a 
mathematical program. Mathematical programming covers a large, growing spectrum 
of algorithms and methods for optimization purposes. Structural optimization 
problems have three main difficulties in common which makes them hard to solve. 
Typical structural optimization problems are nonlinear, constrained and the relevant 
constraints are not known in advance. In principle every nonlinear optimization 
algorithm tries to converge to the optimal solution iteratively with some sort of 
prediction where to move next and how far. While heuristic approaches, such as 
genetic, evolutionary, simulated annealing, particle swarm or a simple stohastic 
minimum search of trial solutions do, not use prediction information, the strength of 
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sophisticated mathematical programming approaches is the use of direction 
prediction. The only drawback is the unfavorable possibility of finding a local 
minimum only when there is lack of a good starting point. Some hybrid approaches 
can overcome this difficulty by combining heuristics with mathematical programming 
with a good possibility to find the global optimum. On the other hand, these 
approaches again induce the need of greater number of iterations and more 
computations of direct and sensitivity analysis and consequently more computational 
time requirement. The many available algorithms differ according to the way how the 
prediction is used and how it is calculated. Basically, they can be distinguished 
according to the problem they solve and according to the types of data do they use. 
The problems can be divided in constrained and unconstrained problems and the 
data they use can be either the function values only (direct methods), or additionally 
first order information (gradient methods), or additionally second order information 
(Newton type methods). 

Most of the strategies for constrained problems use the methods for solving 
unconstrained problems by subdividing the constrained problems into more 
unconstrained sub problems. Therefore, also methods for solving unconstrained 
problems are frequently used in structural optimization. Optimization is a fast 
growing field of scientific research. Numerous strategies and methods have been 
developed. For a greater preview the following references can be used (Arora 2004, 
Bonnans, et al. 2006, Choi, Kim 2005a, Choi, Kim 2005b, Nocedal, Wright 2006). In 
the following section a brief preview will be given regarding possible approaches to 
structural shape optimization. Specific algorithms used in numerical examples will be 
addressed within each example.  

5.2.2.1 Strategies for solving constrained optimization problems  

A basic constrained optimization problem can be defined as: 

 

minimize ( , ( ), ( ( )))

such that ( , ( ), ( ( ))) 0; 1,..

( , ( ), ( ( ))) 0; 1,..
i

j

f

g i n

h j m

φ φ φ
φ φ φ
φ φ φ

= =

≤ =

a b a
a b a
a b a

 (23) 

where f  is the objective function to be minimized, φ  are the design variables, 

{ },λa = a , a  the generalized displacements, λ the limit load factor, b  the state 

variables, ig  are the equality constraints and jh the inequality constraints. 

Mathematical programming strategies for constrained structural optimization can be 
divided with respect to the way of how the variables are defined. If N is the number 
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of unknowns (parameters) and M is the number of constraints, the strategies can be 
divided according to the space they are working in: 

- Primal methods   N  – dimensional 

- Dual  methods   N,M  – dimensional 

- Penalty and barrier methods   N  – dimensional 

- Lagrange methods   N+M – dimensional 

Primal methods are the simplest and work directly in the N-dimensional space of the 
optimization variables φ . No use of Lagrange multipliers or of the KTT necessary 

conditions is reacquired here. Direct search methods, evolutionary strategies and 
genetic algorithms belong to this group. They are preferably useful to handle discrete 
variables. Successful primal methods which make use of gradient information are 
known as general reduced gradient methods or methods of feasible directions. 

Penalty and Barrier function methods are working also in the N-dimensional space of 
the optimization variables. Here, the constrained problem is transformed into an 
unconstrained here by using penalty and barrier functions. The approach is in 
principle simple and quite robust. An old methodology is known as sequential 
unconstrained minimization technique, which generates a series of unconstrained sub-
problems to finally get a solution near the optimum. However, the exact optimum 
can not be reached. For this reason the method became unpopular. Recently the 
basic idea of using barrier functions has been incorporated into successful interior 
point methods which generate iterates that stay away from the boundary of the 
feasible region defined by the inequality constraints. As the solution of the nonlinear 
program is approached, the barrier effects are weakened to permit an increasingly 
accurate estimate of the solution. Interior-point methods have proved to be as 
successful for nonlinear optimization as for linear programming, and together with 
active-set SQP methods they are currently considered the most powerful algorithms 
for large-scale nonlinear programming. Some of the key ideas, such as primal-dual 
steps, are carried over directly from the linear programming case. 

Dual methods are working primarily in the dual M-dimensional space of Lagrange 
multipliers l. The primal optimization variables are determined by back substitution. 
Dual methods split the original optimization problem into two partial problems which 
have to be solved sequentially. One is unconstrained and formulated in terms of 
design variables φ , the other is formulated in terms of Lagrange multipliers l and is 

only constrained by simple bounds for the case of inequality constraints. It is 
unbounded in the case of equality constraints. Methods for unconstrained 
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optimization can be successfully applied because of the simple structure of the sub-
problems.  

Lagrange methods are working in the full (N+M) dimensional space of primal and 
dual variables. They make use of the Kuhn-Tucker necessary conditions directly by 
solving a sequence of linearized sub-problems with a quadratic objective and linear 
constraints. Because of the quadratic objective function these methods are called 
Sequential Quadratic Programming methods (SQP). SQP methods are considered to 
be one of the most effective methods for nonlinearly constrained optimization. They 
can be used both in line search and trust-region frameworks, and are appropriate for 
small or large problems. These methods show their strength when solving problems 
with significant nonlinearities in the constraints. However, they appear not to be 
robust enough for very large problems. 

5.3 Gradient based Shape Optimization combined with 
imperfection analysis 

The use of symbolic-numeric environment for solving a structural gradient based 
shape optimization problem enables one to take the great advantage of the powerful 
combination of symbolic capabilities and numeric efficiency provided by the 
environment (Korelc 2002, Korelc 2007a, b). 

The procedure of shape optimization within the symbolic-numeric environment is 
illustrated in Fig. 43. The mechanical problem description is written on a high 
abstract level in symbolic form (see Section 2.4). By using automatic formulae 
differentiation, simultaneous optimization of expressions and theorem proving with 
the help of AceGen (Korelc 2007b), an efficient finite element code is obtained for 
symbolic and numeric evaluation. For symbolic finite element computations a special 
finite element environment is required. AceFEM (Korelc 2007a) is used. According to 
the procedures described in Chapters 3.3.1 and 3.3.2 an analytical design velocity 
field is computed with the help of the part of the AceFEM system with symbolical 
evaluation capability MDriver. The analytical design velocity field is then used for 
analytical sensitivity evaluation with the numeric part of AceFEM (CDriver). The 
derivatives of the objective function and constraints with respect to design 
parameters are then passed to the gradient optimization algorithm implemented in 
the general algebra system Mathematica (Wolfram 2008). As pointed out before, 
accurate gradient information on the basis of analytical design velocity field used in 
sensitivity analysis is of crucial importance for the convergence of the optimization 
algorithm when dealing with geometrical an material nonlinearity. 
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AceGen and AceFEM operate within the general algebra system Mathematica 
(Wolfram 2008), which is very convenient as there is no need of using a special 
interface for coupling with other environment optimization software. Mathematica 
offers a great variety of state of the art optimization algorithms which can be used 
directly with AceFEM’s direct and sensitivity analysis. 

 

Fig. 43: Optimization using symbolic-numeric environment. 

 43: Optimizacija s pomočjo simbolno-numeričnega okolja. 

The general flow of the method is shown in Fig. 43. In Fig. 44 the optimization loop 
is further explained in detail. 

 

 

Slika 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

90

X

P φ=X X ( ) + X

P φ
φ φ

∂ ∂
=

∂ ∂
X X ( )

P φX ( )

 

Fig. 44: Optimization loop using symbolic-numeric environment. 

 44: Optimizacijska zanka s pomočjo simbolno-numeričnega okolja. 

Within the optimization process (see Fig. 44) the geometry of the structure is 
updated in two different loops. In the inner loop the geometry φX( )  is changed due 

to the change of the design parameters done by the optimization algorithm. In the 

Slika 
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outer loop the geometry is changed due to changed initial imperfections X . The 
method for evaluating the most unfavorable initial imperfections is presented in Fig. 
24. The geometry can be written as: 

 ( )P φ= +X X X  (24) 

where ( )P φX  is the perfect geometry ruled by the current design variables φ  and X  

the total imperfection vector described in Chapter 4. While the imperfections have to 
be considered in direct and sensitivity analysis, this is not true for the evaluation of 
the design velocity field:  

 P i Pφ φ
φ φ φ

∂ ∂ ∂
= =

∂ ∂ ∂
X X ( ) + X X ( )

 (25) 

The design velocity field does not depend on the total imperfection vector nor does it 
change by varying the design parameters. Therefore, it has to be evaluated only once. 

The most unfavorable imperfection is evaluated whenever the geometry changes to a 
certain extent. Together with the updated geometry the most unfavorable 
imperfection of the current geometry changes simultaneously. While the evaluation of 
the most unfavorable imperfections is a computationally demanding task, this is not 
done in every step of the optimization process. The initial imperfection is changed 
whenever the most unfavorable imperfection would cause a change in the limit load 
higher than a prescribed value ελ  or would evolve in a change of the limit load state.  

Conveniently, the basic shape of the most unfavorable imperfections generally does 
not change if minor updates of design variables are done by the optimization 
algorithm. Further on, the convergence of the optimization algorithm is better 
preserved when using the same initial imperfections and to update the initial 
imperfections sequentially on sets of optimal solution procedures. 

The practical application of the developed algorithms is shown in numerical examples 
in the next chapter. 
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5.4 Numerical examples 

5.4.1 2D cantilever shape optimization 

To illustrate the limit load optimization procedure, a simple case of a 2D cantilever is 
studied first. The mathematical model consists of elastic-plastic finite strain, 2D, 
quadrilateral elements. An ideal elasto-plastic material is used. The geometry (see 
Fig. 45a) is parametrized with parameters φ  which define the function of the height 
of the cross section along the x-axis ( )h φ . Constant continuous load q is applied at 

the top of the cantilever. 

 uq qλ= ⋅  (26) 

where λ  is the load factor and uq  is the prescribed limit load of the structure. In 

order to evaluate the optimal structure shape for the limit state, the calculated limit 
load factor ( )Lλ φ  has to be exactly 1. 

The goal is to minimize the volume of the structure: 

 

min ;

( )

( ) 1 0

0

L

k
P

f

f φ
λ φ

=

− =

Φ ≤

V
 (27) 

The constraints include a limit load factor equality constraint 1Lλ =  which forces 
the calculated limit load factor ( )Lλ φ  to take the prescribed value 1 at which the 
calculated limit load q  matches the prescribed limit load of the structure uq , and a 

set of inequality constraints 0k
PΦ ≤  which prescribe the minimum feasible values of 

parameters φ . The constrained problem is solved using an interior point method 
considering the merit function Bf : 

 1 2 3( 1) k
B L P

k

f w w Log wλ= + − + Φ∑V  (28) 

where wi are the weights, V is the volume and PΦ  is barier function. The problem is 

solved with a standard quasi-newton algorithm using Mathematica (Wolfram 2008). 
Fig. 45 shows the initial shape (a) and the optimal shape (b). Mises stresses are 
plotted. The structure with the optimal shape shows a smooth distribution of yield 
stress over the whole length of the structure. 
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Fig. 45: Initial shape (a), Optimal shape (b). 

 45: Začetna oblika (a) in optimalna oblika (b). 

The response load deformation curve of the structure with the optimal shape has to 
present a limit load curve with its maximum exactly at the given limit load uq q= , 

where 1Lλ = . The parameters φ  can describe an arbitrary function of the cross-

section height. The simple example has been chosen as the optimum result according 
to the beam theory is a straight line which can be presented by only two parameters: 

1φ  as the beginning height and 2φ  as the end height. The optimal shape remains the 
same, if the number of parameters φ  is raised and different curves are presumed for 
the height function ( )h φ , such as splines or higher order polynomials.  

The objective function fB depending on two shape parameters can be graphically 
represented as a surface in three-dimensional space. Convergence of the optimization 
process considering shape parameters 1φ  and 2φ  is illustrated in Fig. 46. The 

objective function is plotted together with the points evaluated by the optimization 
algorithm to get to the optimum which is presented by the red point.  
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Fig. 46: Convergence of the optimization process for two shape parameters. 

 46: Konvergence optimizacijskega procesa za 2 parametra oblike. 

In general, the responses of the structure with possible shapes tried by the 
optimization algorithm evolves in a different ultimate limit load factor Lλ  and a 

different displacement vA in every iteration as illustrated in Fig. 47. The ultimate 
limit load factor has to be exactly λL=1 at the optimum point, where the objective 
function has a minimum value. 

 

 

 

 

 

 

Fig. 47: Structural response of different shapes and the limit load optimal shape. 

 47: Odzivi konstrukcij z različnimi oblikami v primerjavi z optimalno obliko . 

The optimal shape shown in Fig. 45b is expected, as it can be verified analytically. 
To evaluate the result analytically, it has to be assumed that the optimal shape is the 
one where every material point of the structure in its limit state reaches yield point. 
The result can be evaluated with the help of the standard beam theory: 

Slika 

Slika 

vA 

       
    λ 

 Optimum (λL=1) 

Lλ

Lλ
  Lλ

Lλ



Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.   
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.  

 

95

 
( ) 2( ) ( )
( )PL y pl

pl y

M x qx h x x
W x b

σ σ
σ

= = → = , (29) 

where M(x),Wel(x) in Wpl(x) are the moment, elastic resistance moment and the 
plastic resistance moment at the length x measured from the free end of the 
cantilever, respectively. q is continuous load, b is the width and h the height of the 
cross section. A small difference in the numerical results ( 1 .( ) 20.41numh φ = ,

2 .( ) 0.29numh φ = ) with respect to the analytical results ( 1 .( ) 21.21analyth φ = ,

2 .( ) 0analyth φ = ) can be observed as the finite element mesh with the quad finite 

elements on the free end can not form an analytically sharp edge and there is no 
consideration of shear deformation in the analytical approach. 

 

5.4.2 3D H cross-section thin-walled cantilever structure 

In the present example a thin-walled cantilever structure is studied. Structures 
composed of thin–walled components in general prove a high degree of imperfection 
sensitivity. Therefore the use of imperfections in an analysis is mandatory for correct 
optimization results and the flow of the optimization process itself, as possible 
bifurcation points in the analysis are avoided and a realistic lowest limit load can be 
calculated.  

The specific shape of the structure was chosen for representation purposes, as a 
variety of collapse mechanisms can be observed at the limit load. In conventional 
shape optimization dealing with bearing capacity of structures the shape is usually 
optimized for the state of the structure at the time when the first material point 
exceeds the elastic resistance or the first member buckles. No post-buckling or post-
critical behavior is taken into account. In the present approach the collapse 
mechanism and the phenomena appearing at that time dictate the optimal shape of 
the structure. In this way, the shape of the structure is sought, which gives the 
maximal bearing resistance at the limit state, which is usually presented as a collapse 
of the structure. 

Varying the thickness of shell components by excluding it from the design variables 
specific collapse mechanisms can be enforced. The limit state of the structure is 
characterized by pure plastic limit state when the sheet components are thick enough. 
Lowering the thickness of sheet components results in a plastic buckling limit state 
and further on in an elastic buckling limit state. It has to be mentioned that within 
conventional shape optimization only one collapse mechanism is considered at the 
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same time and therefore the optimal shape is not computed considering more possible 
collapse mechanisms. 

The geometry of the studied cantilever structure is shown in Fig. 48. The thin-walled 
cantilever is modeled by elastic-plastic four-node shell elements based on finite 
rotations, 6 parameter shell theory combined with assumed natural strain formulation 
and two enhanced strain modes for improved performance (Wisniewski, Turska 2000, 
2001). An ideal elasto-plastic material model has been used. 

0

100

200

300

X

-20
0

20

Y

-20

0

20
Z

1

2

1

2

t = 20mm
case A 

t = 30mm

t = 5mm
case B 

t = 7 mm

A

A

B

B

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩

P=120kN

Pλ ⋅

Pλ ⋅

y

E= 210000 MPa

f = 235 MPa

= 0.3ν
yf

σ

ε
E

45 cm

45
cm

300 cm

 

Fig. 48: Initial geometry of H cross-section cantilever. 

 48: Začetna geometrija H konzolnega nosilca. 

Two fixed sets of wall thicknesses are considered: 

- Case A: thick sheets, where plastic behavior dominates. 

- Case B: thin sheets, where buckling behavior dominates. 

The shape of the structure is parameterized with parameters φ  as shown in Fig. 49. 

The geometry is symmetrical with respect to the XZ plane. The boundaries of the 
vertical sheets are varied in both Y and Z axes. The vertical sheets have to remain 
vertical and the horizontal sheet horizontal. The minimum dimension of both, 

Slika 



Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.   
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.  

 

97

vertical and horizontal sheet is 10% of the initial dimension. Second order splines 
were chosen for interpolation of the boundary shape between the shape parameters.  
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Fig. 49: H cross-section cantilever shape parameters. 

 49: Parametri oblike H konzolnega nosilca. 

The goal is to minimize the volume of the structure: 

 

min ;

( )

( ) 1 0

0

L

k
P

f

f φ
λ φ

=

− =

Φ ≤

V
 (30) 

The constraints include a limit load factor equality constraint 1Lλ =  which forces 
the calculated limit load factor ( )Lλ φ  to take the prescribed value 1 at which the 

calculated limit load Pλ ⋅ matches the prescribed limit load of the structure P  and a 

set of inequality constraints 0k
PΦ ≤  which prescribe the minimum feasible values of 

Slika 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

98

parameters φ . The constrained problem is solved using an interior point method 
considering the merit function Bf : 

 1 2 3( 1) ( )k k
B L B

k

f w w Log w Logλ φ φ= + − + −∑V  (31) 

where wi are the weights, V is the volume, Lλ  is the calculated limit load factor and 
k
Bφ  the minimum value of the k-th shape parameter. 

Within the optimization process the most unfavorable imperfection is evaluated 
according to the procedure described in Fig. 44. The shape optimization and the 
evaluation of the most unfavorable imperfection was done sequentially. The 
procedure stops when the evaluated most unfavorable imperfection does not evolve in 
a change of the calculated limit load factor Lλ  of the optimal structure more than λε, 

which was set to a value of 0.01. In Fig. 50 the most unfavorable imperfection shape 
is presented for the initial shape and the optimal shape considering case A shell 
thickness (thick sheets). 
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Fig. 50: The most unfavorable imperfection for the initial (a) and optimal shape (b) (Scale 
factor=30, Shell thickness A). 

 50: Najbolj neugodna začetna nepopolnost za začetno in optimalno obliko konstrukcije (Faktor 
povečave=30, Debelina pločevin A). 
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The limit load optimization iteration procedure can be observed in Fig. 51. The limit 
load curves are plotted for different iterates within optimization. The load-
displacement curve considering the optimal shape is plotted in red. Mises stresses are 
plotted in the illustrations. Red color represents yield stress.  
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Fig. 51: Limit load shape optimization process.  

 51: Proces optimizacije oblike v mejnem stanju. 
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The evaluated optimal shape for case A shell thickness is illustrated in Fig. 52. The 
initial geometry at shape parameters being zero (transparent mesh) is sketched 
behind the optimal shape in order to illustrate the difference between the initial and 
optimal design. 

 

Fig. 52: Initial and optimum shape of H cross-section cantilever geometry for case A shell thickness. 

 52: Začetna in optimalna oblika H konzolnega nosilca za primer debeline pločevin A. 

The material is not fully stressed to the yield point in the entire structure, as can be 
seen in Fig. 53, where Mises stresses are plotted for the optimal structure with a 
dense FE mesh. The explanation lies behind the way the constraints were chosen. 
The horizontal sheet has to remain horizontal and the vertical sheet under the 
horizontal sheet has a minimal height prescribed, which is at least 10% of the initial 
height of the vertical sheet. Using sheet thicknesses A, the sheets in compression stay 
compact throughout the optimization procedure and there is no risk of buckling. 
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Fig. 53: Mises stress at limit state for optimal H cross-section cantilever shape (undeformed).  

 53: Misesove napetosti v mejnem stanju nosilnosti za H konzolnega nosilec z optimalno obliko 
(nedeformirana oblika). 

 

Fig. 54: Deformation of H cross-section cantilever at limit state (Scale Factor = 1) with Mises stress 
plotted.  

 54: Deformacije H konzolnega nosilca pri mejni obtežbi (Faktor povečave = 1) z vrisanimi 
Misesovimi napetostmi. 
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There is only a small amount of lateral displacements in the limit state where 
extensive rotation occurs. The collapse mechanism can therefore be considered as full 
plastification with only small amount of plastic buckling. The plastification of the 
material with increasing load up to the limit state is shown in Fig. 55. 

 

Fig. 55: Mises stress for the corresponding load-deformation curve plotted in Fig. 51.  

 55: Misesove napetosti za krivuljo sila-pomik prikazano na sliki 51. 

Next, smaller shell thicknesses (case B) were chosen to stimulate the possibility of 
buckling behavior in order to additionally optimize the shape and to lower the 
volume of the structure. The initial imperfections calculated according to the method 
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explained in Chapter 4 used in the initial run and the final run of optimization are 
drawn in Fig. 56. 

 

 

Fig. 56: The most unfavorable imperfection for the initial (a) and optimal shape (b) (Scale 
factor=30, Shell thickness B). 

 56: Najbolj neugodna začetna nepopolnost za začetno in optimalno obliko konstrukcije (Faktor 
povečave=30, Debelina pločevin B). 

 

Slika 

a) 

b) 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

106

The evaluated optimal shape for shell thickness B is illustrated in Fig. 57 together 
with initial geometries. The limit load Mises stresses are plotted on the unreformed 
and deformed mesh in Fig. 58 and Fig. 59, respectively. 

 

Fig. 57: Initial and optimum shape of H cross-section cantilever for case B shell thickness. 

 57: Začetna in optimalna oblika H konzolnega nosilca za primer debeline pločevin B. 
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Fig. 58: Mises stress at limit state for optimal H cross-section cantilever shape (undeformed).  

 58: Misesove napetosti v mejnem stanju nosilnosti za H konzolnega nosilec z optimalno obliko 
(nedeformirana oblika). 

 

Fig. 59: Deformation of H cross-section cantilever at limit state (Scale Factor = 1) with Mises stress 
plotted.  

 59: Deformacije H konzolnega nosilca pri mejni obtežbi (Faktor povečave = 1) z izrisanimi 
Misesovimi napetostmi. 
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The plastification of the material with increasing load up to the limit state is shown 
in Fig. 60. 

 

Fig. 60: Mises stress for the corresponding load-deformation curve plotted in Fig. 61. 

 60: Misesove napetosti za obtežno krivuljo prikazano na sliki 61. 
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Fig. 61: Load-deformation curve for optimized shape in Case A and Case B. 

 61: Deformacijska krivulja za optimizirano obliko v primeru A in B. 

In Fig. 61 the load-displacement curve is plotted for both studied optimal structures. 
In case A the limit load deformation behavior can be described as mostly 
plastification, while in case B plastic buckling is more pronounced during the 
optimization procedure. However the optimized structure has been considerably 
improved regarding buckling behavior of initial designs. The horizontal sheet of the 
optimal structure was positioned by the optimization algorithm in the most favorable 
way to support the vertical sheets in the compressed part which is prone to buckle. 

The optimization algorithm searches for the minimum volume while the limit load 
must match the prescribed limit load. At the same time the most unfavorable initial 
imperfections are considered. This combination evolves in a search for a ductile, 
plastic structure behavior with a small sensitivity to buckling. The result is therefore 
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a robust structure with minimum weight and small sensitivity to buckling. The 
plastification zones are spread more widely through the structure which shows the 
full material usage. The whole optimization procedure can therefore be seen as an 
efficient tool for economical and safe design. 
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5.4.3 3D single storey steel building 

In the present example a single storey steel building is being optimized according to 
the presented method. The initial shape is shown in Fig. 62. Loading conditions and 
the parameterization illustrated in Fig. 63 and Fig. 64 were used. The outer frames 
are loaded with the half load described in Fig. 63. Self weight is automatically added 
by the program. The structure’s basic initial geometry is symmetrical according to 
the YZ plane. The shell parts of the structure are modeled by elastic-plastic four-
node shell elements (Wisniewski, Turska 2000, 2001). The truss parts are modeled by 
truss elements and have the function of lateral load transmission only. The entire 
load is added on the frames only. The distance between frames is e = 10m. 

 

Fig. 62: Initial geometry of single storey steel building. 

 62: Začetna geometrija enoetažne jeklene hale. 
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Fig. 63: Loading conditions and shape parameterization for the inner frame. 

 63: Obtežbe in prametrizacija oblike za notranji okvir. 

The shape parameters φ are used to change the height of the cross-section h in the 
way:  

 0 0 0(1 )h h h hφ φ= + ⋅ = +  (32) 

Second order splines were chosen for interpolation of the boundary shape between the 
shape parameters. 
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Fig. 64: Loading conditions and shape parameterization for the outer frame. 

 64: Obtežbe in prametrizacija oblike za zunanji okvir. 

The procedure described in Fig. 44 is applied to find the optimum shape of the 
structure. Optimization of the entire structure is computationally demanding. 
Further on, only the frames are subjected to shape optimization. Therefore the two 
characteristic frames were chosen for investigation: the outer frame with only half 
external load applied and the inner frame fully loaded by external forces. The initial 
and the optimal shape are illustrated for the final run of the optimization algorithm 
for the inner frame and the outer frame in Fig. 65 and Fig. 66, respectively. Mises 
stresses are plotted at the limit load deformation state in Fig. 67 and Fig. 68. 
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Fig. 65: Optimum shape of the inner frame of the steel structure with the initial geometry in the 
final optimization run. 

 65: Optimalna oblika notranjega okvira jeklene konstrukcije v zadnjem krogu optimizacijskega 
procesa. 

 

Fig. 66: Optimum shape of the outer frame of the steel structure with the initial geometry in the 
final optimization run. 

 66: Optimalna oblika zunanjega okvira jeklene konstrukcije v zadnjem krogu optimizacijskega 
procesa. 
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Fig. 67: Deformation of the inner frame at limit state (Scale Factor = 10).  

 67: Deformacije notranjega okvira pri mejni obtežbi (Faktor povečave = 10). 
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Fig. 68: Deformation of the outer frame at limit state (Scale Factor = 10).  

 68: Deformacije zunanjega okvira pri mejni obtežbi (Faktor povečave = 10). 
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Fig. 69: Mises stress for inner frame for the corresponding load-deformation curve plotted in Fig. 71. 

 69: Misesove napetosti za notranji okvir za obtežno krivuljo prikazano na sliki 71. 

 

 

 

 

Slika 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

118

 

Fig. 70: Mises stress for outer frame for the corresponding load-deformation curve plotted in Fig. 71. 

 70: Misesove napetosti za zunanji okvir za obtežno krivuljo prikazano na sliki 71. 
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Fig. 71: Load-deformation curves for the inner and the outer frame with the optimized shape. 

 71: Deformacijski krivulji za notranji in zunanji okvir z optimalno obliko. 

In Fig. 69 and Fig. 70 the Mises stress development with increasing the load up to 
the limit state is plotted. The corresponding load-displacement curves are plotted in 
Fig. 71. Because of the symmetrical shape parametrization and unsymmetrical 
loading conditions it is impossible for the entire structure to be in plastic state. The 
optimized structure has a shape which is optimal for the loading conditions 
considered in the example. Because of the symmetric parametrization the structure is 
optimized for opposite direction of loads in X direction also. If different ratios of 
horizontal and vertical loads had to be considered, this could be done with multi 
objective optimization procedures. Another way is to evaluate an optimum shape for 
every loading condition and then combine them in a way in which all constraints are 
still satisfied. 

The optimized structure is shown in Fig. 72. The optimization parameters for the 
optimized structure are shown in Table 5. 
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Fig. 72: Optimized shape of single story steel building. 

 72: Optimizirana oblika enonadstropne jeklene hale. 

 

Table 5: Optimization parameter values for the optimized structure. 
 5: Vrednosti projektnih parametrov pri optimalni obliki konstrukcije. 

Frame φ1 φ2 φ3 φ4 φ5 φ6 φ7 

inner 0,39 -0,42 -0,24 0,21 0,42 -0,61 0,23 

outer 1,52 -0,51 -0,17 0,64 -0,40 -0,79 0,46 
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6 FINAL CONCLUSIONS 

The objective of this thesis was to develop a shape optimization method which is 
capable to be used in practical design. According to the majority of technical 
standards a structure has to be designed with regard to all possible influences with a 
certain probability to occur in its lifetime. Modern technical standards prescribe 
ultimate limit state design for structures where the structure is designed for a variety 
of ultimate states in order not to collapse or to exceed limit states in the foreseen 
lifetime. Standard known shape optimization approaches do not consider ultimate 
states for arbitrary structures. Usually the structures are subjected to volume, cost or 
other behavior related (e.g. eigen frequency, stiffness, etc.) optimization criteria. As 
the evaluation of a realistic limit load is a demanding task, conventional shape 
optimization techniques use stress criteria, simple buckling or bifurcation criteria 
rather than a real limit load. These approaches are not capable of providing an 
optimal shape for the ultimate state of an arbitrary structure.  

In the presented approach a limit load optimization is introduced, capable of 
evaluating the limit load of a structure by simultaneously considering the effects of 
imperfections, geometrical nonlinearities and material nonlinearity. The limit load is 
then used in the optimization algorithm as a constraint. Residual stresses in form of 
initial stresses have not yet been included explicitly into the analysis, but were 
considered by the equivalent geometrical imperfections approach. According to the 
technical standards, with all relevant phenomena considered, the optimized structure 
therefore presents the final design with no checks further necessary.  

A numeric-symbolic approach to limit load shape optimization was studied. The 
numeric-symbolic system enables the use of arbitrary symbolical shape 
parameterization which is not possible within conventional approaches. The design 
velocity field can be analytically computed and therefore an exact sensitivity analysis 
can be carried out. Accurate sensitivity information is of crucial importance for 
proper gradient shape optimization used in the approach. 

Limit load evaluation and limit load shape optimization of imperfection sensitive 
structures demands a proper consideration of initial imperfections. The shape and size 
of initial imperfections have a major influence on the response of the structure and its 
ultimate state. Further on, shape optimization applied on the perfect geometry of 
structures can lead to non-optimal results, e.g. very light structures but very sensitive 



 Kristanič, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.  
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering. 

 

122

to buckling. Despite intensive research of theoretical, experimental and numerical 
aspects of stability limit of imperfection-sensible structures, there is still no consensus 
on how the ultimate state should be evaluated, owing to numerous difficulties which 
arise.  

While imperfections are not known in advance, a method for direct determination of 
the most unfavorable imperfection of structures by means of ultimate limit states was 
developed. The method has been implemented as an internal and separate 
optimization algorithm within the global shape optimization process. Within the 
presented approach it has been shown that with the use of geometrical and material 
nonlinear direct and sensitivity analysis of imperfect structure combined with 
optimization it is possible to directly evaluate the imperfection shape of a structure, 
at which the ultimate load of the structure is the smallest. Additionally, the method 
is not limited to the linear natural equilibrium path and small imperfections, and 
allows introduction of various constraints on the shape of the initial imperfection. 

Usually imperfection analyses with a great number of repetitions are done to 
determine which combinations are unfavorable. Despite the effort, it is still very hard 
to determine how the limit load is lowered by the gathered imperfection shapes in 
comparison with the most unfavorable ones. According to the results of the presented 
approach, it is difficult to characterize certain structures with certain types of 
imperfections. Every change in thickness, geometry or loading conditions can lead to 
a drastic change of the worst imperfection shape.  

In complex imperfection sensible structures, where intuitive determination of initial 
most unfavorable imperfections is not possible or where there is lack of known 
empirically obtained worst imperfections, the use of a method for determining the 
worst initial shape is essential.  

Because of the high unpredictability of the imperfection forms, the technical 
standards for designing thin-walled structures recommend to use empirical methods 
to define initial imperfections used for nonlinear analyses. The ultimate loads of 
structures evaluated in accordance with the method presented turned out to be 
smaller than the ultimate loads considering various combinations of imperfections 
prescribed by the technical standards or calculated with approaches based on Koiters 
asymptotic theory or parametric studies. It can be concluded that these methods may 
lead to too optimistic results. On the other hand, the probability of the real 
structure’s imperfections to take the exactly most unfavorable form is very low. 
However, the information about the structures lowest limit load due to initial 
imperfections is of high importance when analyzing structures. In this sense it is 
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possible to establish that the consideration of imperfections in a geometrically and 
materially nonlinear analysis is a task where a holistic method for finding the worst 
imperfection is indispensable. 

The importance of the ability to evaluate the most unfavorable initial geometrical 
imperfections as presented in the thesis is further stressed out within the limit load 
optimization procedure. Full geometrical and material nonlinearity is considered 
throughout the global optimization process consistently, resulting in efficient and 
robust, ultimate limit load structure design. The limit load approach used within the 
shape optimization algorithm and the optimization algorithm for finding the most 
unfavorable initial imperfection induces a search for a shape of the structure at which 
the structure develops plastic, ductile behavior, less sensitive to buckling and, on the 
other hand, with the minimum volume possible. The result is a robust structure with 
minimum weight and small sensitivity to buckling.  

The design of structures with the limit load optimization approach using the 
developed method for the determination of the most unfavorable imperfections 
presents a novel approach to economical engineering structure design. The use of a 
symbolic-numeric system offers a successful combination of limit load structural 
analysis and optimization methods. Considering all the relevant phenomena the 
presented approach can represent a design of economical and safe structures and 
therefore a superior alternative to conventional ultimate limit state design. 

The most important original contributions can be stressed out: 

- The development of the method for evaluation of the most unfavorable 
initial geometric imperfections. 

- The development of limit load shape optimization algorithms 
considering full nonlinearity and most unfavorable initial imperfections. 

- The evaluation of the analytical design velocity and the exact 
sensitivity analysis using symbolic-numeric environment. 
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7 POVZETEK 

7.1 Uvod 

Integracija optimizacijskih metod v procese projektiranja konstrukcij je kompleksna 
naloga, ki zahteva povezavo znanja iz več znanstvenih področij. Da bi sintezo 
konstrukcij lahko uporabili kot zamenjavo klasičnemu pristopu k projektiranju 
konstrukcij, je potrebno razviti učinkovito optimizacijsko metodo z upoštevanjem 
vseh bistvenih fenomenov, ki vplivajo na obnašanje konstrukcij. 

Splošen cilj dela v okviru disertacije je razviti metodo za optimizacijo oblike 
konstrukcij z upoštevanjem mejnega stanja, ki bi jo bilo možno uporabiti za 
projektiranje konstrukcij. Predstavljen je simbolno numerični pristop k optimizaciji 
oblike za mejno stanje konstrukcij. V sklopu določitve mejne obtežbe je bila razvita 
metoda za določitev najbolj neugodnih začetnih nepopolnosti, ki lahko bistveno 
vplivajo na nosilnost konstrukcij. Podrobno obravnavana področja so bila:  

- Uporaba simbolno numeričnega sistema za določitev mejne obtežbe konstrukcij 
ter optimizacijo oblike. Simbolni razvoj in avtomatska generacija končnih 
elementov za direktno in občutljivostno analizo. 

- Izračun najbolj neugodnih začetnih nepopolnosti konstrukcij, v smislu mejnih 
stanj konstrukcije. 

- Uporaba poljubne simbolne parametrizacije oblike in analitičen izračun polja 
začetnih občutljivosti ter točna občutljivostna analiza. 

- Razvoj učinkovitega optimizacijskega algoritma za optimizacijo oblike s 
pomočjo vseh zgoraj omenjenih prijemov. 

 

7.2 Direktna in občutljivostna analiza 

V okviru disertacije je bila uporabljena direktna in občutljivostna analiza s sočasno 
določitvijo mejnega stanja konstrukcije. Splošni izrazi, ki so prikazani v nadaljevanju, 
so uporabljeni tako pri določitvi najbolj neugodne začetne nepopolnosti kot tudi pri 
optimizaciji oblike konstrukcij. V vseh postopkih so uporabljeni rezultati direktne in 
občutljivostne analize v mejnem stanju konstrukcije.  
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Mejno stanje nosilnosti konstrukcij je v splošnem definirano z limitno točko 
ravnotežne poti. Takšna definicija se izkaže nezanesljiva v primeru realnih, 
nepopolnih konstrukcij. Limitno stanje lahko nastopi šele pri nerealno velikih pomikih 
ali deformacijah konstrukcije, zato je potrebno mejno stanje dodatno omejiti. Mejno 
stanje smo določili s pomočjo najmanjšega obtežnega faktorja, dobljenega po 
naslednjih kriterijih: maksimalni obtežni faktor (v limitni točki) (a), obtežni faktor 
pri bifurkaciji pred dosego limitne točke (b), obtežni faktor pri največji dovoljeni 
deformaciji, kadar pride do tega pred limitno ali bifurkacijsko točko (c). 

 

 1: Definicija računskih mejnih stanj (EN 1993 1-5 2004). 

7.2.1 Direktna analiza 

Za določitev mejnega stanja konstrukcije je potrebna geometrijsko in materialno 
nelinearna analiza. Problem, ki ga je potrebno rešiti, po terminologiji predstavljeni v 
(Michaleris, et al. 1994), predstavlja nelinearen, tranzienten, povezan sistem. 
Uporabljena je standardna metoda predpisanih pomikov (glej e.g. Crisfield 1996, 
1997), kjer je sistem enačb razširjen z dodatno spremenljivko λ  in dodatnim pogojem 

cg , ki predstavlja dodatno enačbo za prirastke posplošenih pomikov. Enačbe, ki jih je 

potrebno rešiti v vsaki integracijski točki, lahko zapišemo: 

Slika 
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Splošna formulacija polno implicitne, kvadratno konvergentne, direktne analize je 
predstavljena na sliki 2. 
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 2: Splošna formulacija za direktno analizo tranzientnih, povezanih, nelinearnih problemov. 

  

Slika 
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V uporabljenem zapisu a  predstavlja vektor globalnih parametrov elementa, b je 
vektor neznanih lokalnih parametrov, definiranih za vsako integracijsko točko 
(plastične deformacije, spremenljivke utrjevanja, itd.), pa  je vektor globalnih 
parametrov v prejšnjem koraku, pb  je neznanih lokalnih parametrov v prejšnjem 
koraku, Ψ  vektor globalnih enačb in Φ  vektor lokalnih enačb.  

7.2.2 Analitična občutljivostna analiza in polje začetnih občutljivosti 

Občutljivostna analiza se uporablja za izračun spremembe odziva konstrukcije z 
ozirom na variacijo projektnih parametrov φ  in predstavlja ključen del gradientnih 

metod optimizacije. Uporaba občutljivostne analize v optimizaciji oblike za mejno 
stanje konstrukcije zahteva rešitev tranzientnega, povezanega sistema enačb, z 
upoštevanjem geometrijske in materialne nelinearnosti. Zahtevnost izpeljave izrazov 
za občutljivostno analizo je bil ključen razlog za uporabo simbolno numeričnega 
sistema (Korelc 2007a, b). Uporabljena je metoda neposrednega odvajanja 
(Michaleris, et al. 1994). Zaradi tranzientne narave problema je potrebno 
občutljivosti izračunati na koncu vsakega obtežnega koraka skozi vso analizo. 
Ustrezne enačbe so predstavljene na sliki 3.  

Eden od ključnih problemov uporabe občutljivostne analize v gradientnih metodah 
optimizacije oblike, je izračun polja začetnih občutljivosti (Korelc, Kristanič 2005). 
Polje začetnih občutljivosti ( / φ∂ ∂X ) opiše spremembo koordinat vozlišč končnih 
elementov (X) glede na poljubno izbran projektni parameter φ . 

Medtem ko lahko odvode karakterističnih količin končnega elementa (reziduum, 
tangentne matrike, itd.) po projektnih parametrih izrazimo s pomočjo 
avtomatiziranih postopkov (Korelc 2007b), to ne velja za polje začetnih občutljivosti. 
Glavna ovira se pojavi pri povezavi projektnih parametrov s pozicijo vozlišč. Te 
povezave ni možno povsem splošno izraziti s standardnimi pristopi generacije mreže 
končnih elementov, niti s specializiranimi pred-procesorji ali CAD orodji, saj je izbira 
projektnih parametrov stvar svobodne izbire projektanta. 
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 3: Splošna formulacija za občutljivostno analizo tranzientnih povezanih nelinearnih problemov. 

Uporabljen je simbolno-numerični pristop izračuna polja začetnih občutljivosti, s 
pomočjo simbolno-algebraičnega sistema Mathematica (Wolfram 2008) in simbolno-
numeričnega okolja za končne elemente AceFEM (Korelc 2007a). Prednost simbolnih 
sistemov je ta, da operirajo s poljubnimi izrazi. Zato lahko projektni parametri v fazi 
opisa modela in generacije mreže končnih elementov ostanejo v simbolni obliki. 
Koordinate vozlišč končnih elementov tako predstavljajo formule, ki so eksplicitno 
izražene s projektnimi parametri. Polje začetnih občutljivosti lahko nato izračunamo 
naenkrat z enostavnim ukazom za odvajanje (npr. D[SMSNodes,φ]), kjer SMSNodes 
vsebuje koordinate vozlišč v simbolni obliki, φ pa predstavlja projektne parametre.  

Slika 
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Problem, ki se pri tem pojavi, je numerična neučinkovitost simbolnih sistemov v 
primerjavi z okolji za končne elemente, programiranimi v C-ju ali Fortran-u. Rešitev 
je v uporabi okolja za končne elemente, ki lahko deluje na simbolni ravni in je hkrati 
numerično učinkovito. Uporabljeno okolje AceFEM sestoji iz dveh funkcionalno 
identičnih modulov. Prvi je napisan v simbolnem jeziku programa Mathematica 
(MDriver) in omogoča izračun polja začetnih občutljivosti s simbolno podano mrežo 
KE. Drugi modul je napisan v jeziku C (CDriver) in je s programom Mathematica 
povezano s protokolom MathLink. Oba modula delujeta iz Mathematice in imata 
enako strukturo podatkov, funkcije, ukazni jezik in vhodne podatke (podrobno v 
Korelc 2007a, Korelc 2007b). Postopek analitične določitve polja začetnih 
občutljivosti z uporabo simbolno numeričnega sistema je shematsko prikazan na sliki 
4. Z uporabo analitično izračunanega polja začetnih občutljivosti je mogoče izvesti 
natančno občutljivostno analizo, ki je ključnega pomena za natančnost in učinkovit 
potek gradientnih metod optimizacije.  

φ
∂
∂

a

KoordinateMreže
φ

∂
∂

 

 4: Potek občutljivostne analize s pomočjo simbolno numeričnega MKE okolja. 

Opisane postopke je možno uporabiti na problemih poljubne kompleksnosti. 
Predstavljeni direktna in občutljivostna analiza, sta uporabljeni v določitvi najbolj 
neugodne začetne nepopolnosti kot tudi v optimizaciji oblike konstrukcij.  

 

  

Slika 
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7.3 Določitev najbolj neugodnih začetnih nepopolnosti 

Začetna nepopolnost konstrukcij je posledica napak pri izdelavi, ki se jim praktično ni 
mogoče izogniti. Rezultati nelinearnih numeričnih analiz konstrukcijskih elementov in 
konstrukcij so lahko v veliki meri odvisni od izbire oblike začetnih nepopolnosti, kar 
je še posebej izraženo pri obravnavi tankostenskih konstrukcij, občutljivih na 
spremembo začetne geometrije. Dobro znane razlike med mejno nosilnostjo 
konstrukcij, izračunane z računalniškimi analizami, ter izmerjene s preizkusi v 
laboratoriju, je možno zmanjšati z ustreznim upoštevanjem začetnih nepopolnosti.  

Pri določitvi mejnega stanja konstrukcij v okviru optimizacije oblike, je upoštevanje 
začetnih nepopolnosti zelo ugodno, saj pripomore k natančnejši določitvi mejne 
obtežbe in hkrati ugodno vpliva na proces optimizacije, saj se je na tak način mogoče 
izogniti bifurkacijskim točkam v ravnotežni poti idealnih modelov konstrukcij. 

Določitev najbolj neugodne začetne nepopolnosti predstavlja zahteven nelinearen 
optimizacijski problem, ki je v splošnem v vsakdanji inženirski praksi, praktično 
nerešljiv v danem časovnem okviru. Z uporabo direktne in občutljivostne analize ter 
optimizacijskih algoritmov je možno neposredno določiti najbolj neugodno obliko 
geometrijske nepopolnosti, pri kateri konstrukcija izkaže najnižjo možno nosilnost v 
okviru obravnavanega problema (Kristanič, Korelc 2008). Pri tem so upoštevane 
geometrijske, konstrukcijske in materialne nepopolnosti, ki so zajete v obliki 
ekvivalentnih geometrijskih nepopolnostih ter predpisanih lastnostih materiala.  

Osnovna ideja predlaganega pristopa je zamenjava nelinearnega optimizacijskega 
problema z iteracijskim postopkom, v katerem je potrebno reševati le linearne 
optimizacijske probleme. V okviru metode je možno uporabiti tehnološke pogoje, 
katerih uporaba je ključnega pomena, saj se je izkazalo, da pri neupoštevanju 
pravilnih geometrijskih pogojev lahko privede do izračuna nerealistično majhnih   
mejnih obtežb. 

Oblika iskane najbolj neugodne začetne nepopolnosti je določena z linearno 
kombinacijo izbranih baznih oblik: 

 Γ
1

N

p j j
j

α
=

= +∑X X , (3) 

kjer je pX  začetna, popolna geometrija, N je število izbranih oblik v bazi, jα  so 

neznani parametri oblike in jΓ  j-ta oblika iz baze oblik. Baza oblik Γ  je lahko 

izbrana poljubno, vendar mora biti linearno neodvisna. Vsebuje lahko različne nabore 
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oblik. To so uklonske oblike (ΓA ), lastni vektorji (ΓB ) začetne togostne matrike   

0K , lastni vektorji (ΓC ) togostne matrike 0K  konstrukcije s spremenjenimi robnimi 

pogoji, deformacijske oblike (ΓD ) in empirično znane neugodne oblike (ΓE ). Končna 
baza oblik Γ je tako: 

 = ∪ ∪ ∪ ∪Γ Γ Γ Γ Γ ΓA B C D E  (4) 

V okviru metode je iskana tista nepopolna oblika X , pri kateri je mejna nosilnost 
konstrukcije najnižja. Potek metode je prikazan na sliki 5. Neznani parametri α , pri 
katerih bo mejna nosilnost najnižja, so računani iterativno v okviru optimizacijskega 
procesa. V k-ti iteraciji lahko zapišemo:  
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, (5) 

kjer je kX  nepopolna oblika, k
iαΔ  prirastek parametrov, kΔX  prirastek nepopolnosti 

in kX  skupna nepopolnost. Prirastek parametrov k
iαΔ  v k-ti iteraciji je dobljen z 

rešitvijo optimizacijskega problema. Za začetni približek je lahko izbrana kar prva 
bazna oblika 1Γ : 
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max0;
0 1

ii i

p

e
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i
α α

α

⎧⎪⎪ =⎪ Γ= Δ = ⎨⎪⎪ ≠⎪⎩
= +Δ ΓX X

 (6) 

Postopek je zaključen, ko je dosežen pogoj k
i tolerancaαΔ < . 

V vsaki iteraciji je izvedena nelinearna direktna in občutljivostna analiza konstrukcije 
z geometrijo kX . Parametri oblike k

iα  najbolj neugodne oblike kX  v trenutnem 

koraku, so izračunani s pomočjo optimizacijskega postopka, ki je popolnoma ločen od 
direktne in občutljivostne analize. Takšen pristop nam omogoča uporabo poljubnega 
naprednega optimizacijskega algoritma.   
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 5: Potek metode določitve najbolj neugodne začetne nepopolnosti. 

Alternativen in bolj točen pristop bi lahko predstavljalo reševanje polno povezanega 
problema, vendar zaradi numerične prezahtevnosti trenutno za večje sisteme, še ni 
mogoč. Polno povezan problem je bil poenostavljen na ta način, da je bil z uporabo 

Slika 
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občutljivosti mejni obtežni faktor nepopolne konstrukcije razvit v Taylorjevo vrsto 
okoli mejnega obtežnega faktorja nepopolne konstrukcije. Enačbo mejnega obtežnega 
faktorja lahko zapišemo na sledeči  način: 
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αΔ = Δ ==
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kjer je 
0

k
l k

iα
λ

Δ =
 izračunani mejni obtežni faktor v k-ti iteraciji in 
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k
l

k k
i iα

λ
α Δ =

∂
∂Δ

 

občutljivost mejnega obtežnega faktorja na optimizacijske parametre v trenutnem 
koraku. Uporabljen iterativni pristop nam omogoča, da najbolj neugodno nepopolno 
obliko konstrukcije iščemo na nepopolni konstrukciji. Pri tem se najbolj neugodna 
oblika iz prejšnje iteracije uporabi za začetno nepopolnost v trenutni iteraciji. S tem 
je zagotovljena natančnost tudi v primerih velikih nepopolnosti. V vsaki iteraciji je 
potrebno rešiti minimizacijski problem (8), kjer iščemo takšne k

iαΔ , pri katerih bo 
k
lλ  minimalen, pod pogojem, da je amplituda oblike, ki jo določajo parametri k

iα , v 
predpisanih mejah. Mejne amplitude 0e  so določene s principom ekvivalentnih 

geometrijskih nepopolnosti, ki jih določajo tehnični predpisi (EN 1993 1-5 2004, EN 
1993 1-6 2006). Optimizacijski problem lahko zapišemo: 

 α
λ

Δ

≤0

min

( , ) 0

k
i

k
l

kC eX
, (8) 

kjer 0( , )kC eX  predstavlja omejitveno funkcijo. Funkcija lλ  je linearna, medtem ko je 

omejitvena funkcija 0( , )kC eX  v odvisnosti od zasnove lahko samo ena, izrazito 

nelinearna funkcija, ali skupek več linearnih funkcij. V prvem primeru je potrebno 
problem reševati z razširjeno Lagrangevo metodo, v drugem primeru in predvsem pri 
obravnavi večjih problemov, pa lahko uporabimo metode linearnega programiranja. 

Z večanjem števila upoštevanih oblik v bazi oblik se napaka diskretizacije najbolj 
neugodne oblike približuje napaki diskretizacije mreže končnih elementov, kar 
zagotavlja konvergenco metode z gostenjem mreže končnih elementov in večanjem 
števila upoštevanih oblik. 
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7.4 Optimizacija oblike konstrukcij 

V okviru disertacije je bil razvit algoritem za gradientno optimizacijo oblike 
konstrukcij za mejno stanje konstrukcije. Za izračun gradientov je bila uporabljena 
analitična občutljivostna analiza. V direktni in občutljivostni analizi so bile 
upoštevane začetne nepopolnosti, določene z metodo za določitev najbolj neugodne 
začetne nepopolnosti.  

Uporabljeno simbolno numerično okolje pri reševanju problemov z gradientnimi 
metodami optimizacije, omogoča uporabo kombinacije naprednih simbolnih zmožnosti 
ter hkratne numerične učinkovitosti okolja (Korelc 2002, Korelc 2007a, b). 

Postopek optimizacije v simbolno numeričnem okolju je prikazan na sliki 6. Z 
uporabo avtomatskega odvajanja, simultane optimizacije in preverjanja izrazov z 
uporabo AceGen–a (Korelc 2007b), je pridobljena učinkovita koda končnega 
elementa. Za simbolno obravnavo v okviru metode končnih elementov je uporabljeno 
okolje AceFEM (Korelc 2007a). V skladu s postopki, opisanimi v 7.2.2, je izračunano 
analitično polje začetnih občutljivosti z delom AceFEM-a, z zmožnostjo simbolnega 
obravnavanja problemov MDriver. Analitično polje začetnih občutljivosti je nato 
uporabljeno v izračunu občutljivosti z numeričnim delom AceFEM-a (CDriver). 
Odvodi namenske funkcije in pogojev po projektnih spremenljivkah so nato 
posredovani optimizacijskemu algoritmu v okviru okolja Mathematica (Wolfram 
2008). Kot je bilo že poudarjeno, so natančne gradientne informacije, izračunane na 
podlagi analitičnega polja začetnih občutljivosti, odločilnega pomena za konvergenco 
optimizacijskega algoritma, še posebej, kadar obravnavamo probleme z upoštevanjem 
geometrijske in materialne nelinearnosti. 

AceGen in AceFEM delujeta znotraj okolja Mathematica, kar je zelo priročno, saj ni 
potrebno uporabljati vmesnikov za povezavo z drugimi okolji za optimizacijo. Poleg 
tega Mathematica  nudi paleto modernih optimizacijskih algoritmov, ki se neprestano 
nadgrajujejo in jih je možno uporabiti direktno z AceFEM-ovo direktno in 
občutljivostno analizo. 

Splošen potek optimizacijske metode je predstavljen na sliki 6, splošna optimizacijska 
zanka na sliki 7. 
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 6: Optimizacija s pomočjo simbolno-numeričnega okolja. 

 

 

Slika 
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Okolje za optimizacijo

Simbolno numerično okolje za KE AceFEM

Opis modela z metodo končnih elementov

Matematično programiranje

Optimalna oblika
Konvergenčni kriteriji doseženi

Izračun najbolj neugodne začetne 
nepopolnosti

Parametri oblike v
simbolni obliki

Numerične
vrednosti za 

parametre oblike

Konvergenčni kriteriji
NISO zadoščeni;

Spremeni 
projektne spremenljivke

Preveri potrebo po 
ponovnem izračunu 

začetnih nepopolnosti

Direktna in občutljivostna 
analiza

Analitično polje začetnih 
občutljivosti

Simbolna generacija mreže  
KE

z MDRIVER

Numerična generacija 
mreže KE

z CDRIVER

X

P φ=X X ( ) + X

P φ
φ φ

∂ ∂
=

∂ ∂
X X ( )

P φX ( )

 

 7: Optimizacijska zanka s pomočjo simbolno-numeričnega okolja. 

 

 

 

Slika 
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Znotraj optimizacijskega procesa (slika 7) je geometrija konstrukcije posodobljena 
zaporedoma v dveh iteracijskih zankah. V notranji zanki se v skladu z 
optimizacijskim algoritmom spreminjajo projektne spremenljivke φ , ki določajo 
geometrijo φX( ) . V zunanji iteracijski zanki se geometrija konstrukcije spremeni 

zaradi spremenjenih najbolj neugodnih začetnih nepopolnosti X . Metoda za določitev 
najbolj neugodne nepopolnosti je predstavljena na sliki 5. Geometrijo konstrukcije 
lahko zapišemo kot: 

 ( )P φ= +X X X  (9) 

kjer je ( )P φX  idealna geometrija konstrukcije in X  celoten vektor nepopolnosti kot 

opisano v poglavju 7.3. Nepopolna oblika mora biti upoštevana v direktni in 
občutljivostni analizi, medtem ko se za izračun polja začetnih občutljivosti lahko 
uporabi idealna geometrija konstrukcije, saj velja:  

 P i Pφ φ
φ φ φ

∂ ∂ ∂
= =

∂ ∂ ∂
X X ( ) + X X ( )

 (10) 

Polje začetnih občutljivosti ni odvisno od celotnega vektorja začetnih nepopolnosti X  
in se ne spreminja pri spremembi projektnih spremenljivk φ . Zaradi tega ga je 

potrebno izračunati le enkrat. 

Najbolj neugodno začetno nepopolnost je potrebno izračunati vsakič, ko se geometrija 
konstrukcije v okviru optimizacije oblike spremeni do določene mere. Skupaj s 
spremenjeno geometrijo se spreminja tudi oblika najbolj neugodne nepopolnosti. 
Izračun najbolj neugodne nepopolnosti je računsko zahteven, zato je ugodno, če 
izračuna ni potrebno izvajati v vsaki iteraciji optimizacije oblike. Izračun je izveden 
samo takrat, ko bi spremenjena oblika začetnih nepopolnosti spremenila mejni 
obtežni faktor za več kot ελ , ali bi se spremenilo mejno stanje. Ugotovljeno je bilo, 

da se oblika neugodnih začetnih nepopolnosti ne spreminja bistveno pri majhnih 
spremembah projektnih spremenljivk. Poleg tega je konvergenca optimizacijskega 
algoritma bolje ohranjena, če se oblika začetnih nepopolnosti ne spreminja. V 
predlaganem pristopu se izračun najbolj neugodnih nepopolnosti izvrši izmenoma z 
optimizacijo oblike, kar se je izkazalo kot uspešen pristop pri iskanju optimalne 
končne oblike konstrukcije.  
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7.5 Zaključek 

Cilj disertacije je bil razviti optimizacijsko metodo, katero bi bilo možno uporabiti v 
projektiranju konstrukcij. Večina modernih tehničnih standardov pri projektiranju 
konstrukcij zahteva, da je nosilnost konstrukcije takšna, da bo v svoji življenjski dobi 
z dano verjetnostjo prenesla vse predvidene obtežbe in da ne bo presegla 
projektiranih mejnih stanj. Standardni postopki optimizacije oblike konstrukcij v 
splošnem ne upoštevajo mejnih stanj konstrukcij. Običajno se konstrukcije optimizira 
z ozirom na njihov volumen, ceno, ali kakšno drugo lastnost, kot recimo lastna 
frekvenca ali togost. Izračun pravilne mejne obtežbe konstrukcije je zahtevna naloga, 
zato se pri klasični optimizaciji oblike konstrukcij uporabljajo kriteriji napetosti, 
prvega nastopa elastičnega uklona ali nastop bifurkacijske točke. Ti pristopi v 
splošnem ne omogočajo izračuna optimalne oblike za dejansko mejno stanje 
konstrukcije. 

V predstavljenem pristopu je prikazana optimizacija oblike za mejno stanje, v okviru 
katere je možno natančno določiti mejno obtežbo konstrukcije, s hkratnim 
upoštevanjem začetnih nepopolnosti ter materialnih in geometrijskih nelinearnosti ter 
jo uporabiti kot pogoj v procesu optimizacije. V metodo še ni implementirana 
možnost eksplicitnega upoštevanja zaostalih napetosti. Upoštevati jih je možno 
implicitno s pomočjo metode nadomestnih geometrijskih nepopolnosti. V skladu s 
tehničnimi standardi je na tak način ob predpostavki, da so zajeti vsi relevantni 
fenomeni, s pomočjo optimizacijskih algoritmov možno projektirati konstrukcije. 

V okviru disertacije je bil uporabljen simbolno numerični pristop k optimizaciji 
oblike. Ta omogoča poljubno simbolno parametrizacijo konstrukcije, kar ni mogoče 
pri klasičnih pristopih k optimizaciji oblike. Simbolna oblika omogoča analitičen 
izračun polja začetnih občutljivosti, s čimer je možno izvesti natančno občutljivostno 
analizo, ki je temeljnega pomena za uspeh uporabljenih gradientnih metod 
optimizacije.  

V primeru konstrukcij, ki so občutljive na spremembo začetne geometrije, določitev 
mejne obtežbe ter optimizacija oblike v mejnem stanju, zahtevata pravilno 
upoštevanje začetnih nepopolnosti. Velikost in oblika začetnih nepopolnosti lahko ima 
velik vpliv na odziv konstrukcije ter njeno mejno stanje. Nadalje je možno, da je ob 
neupoštevanju začetnih nepopolnosti rezultat optimizacije napačen, saj se kot 
rezultati lahko pojavijo zelo lahke konstrukcije, ki so zelo občutljive na pojav uklona. 
Kljub številnim raziskavam, eksperimentalnemu delu ter numeričnim analizam 
konstrukcij, občutljivih na spremembo geometrije, med strokovnjaki še vedno ni 
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enotnega mnenja, na kakšen način izračunati mejno stanje, kar je možno pripisati 
številnim težavam, ki se pojavijo.  

Nepopolnosti konstrukcije niso znane v naprej, zato je bila razvita metoda za 
določitev najbolj neugodne nepopolnosti nanašajoč se na mejno stanje konstrukcije. 
Metoda je implementirana kot interni ločen optimizacijski algoritem znotraj globalne 
optimizacije oblike konstrukcije. Prikazano je, da je s pomočjo geometrijsko in 
materialno nelinearne analize nepopolnih konstrukcij kombinirane z optimizacijo, 
možno direktno določiti začetno nepopolno obliko, pri kateri konstrukcija izkaže 
najmanjšo možno mejno nosilnost. Metoda ni omejena na linearno obtežno pot in ne 
na majhne nepopolnosti ter omogoča vpeljavo različnih tehnoloških pogojev glede 
same oblike. 

Običajno je potrebno za določitev neugodne kombinacije začetnih nepopolnosti 
opraviti številne analize. Kljub naporu je težko določiti stopnjo, do katere se zmanjša 
mejna obtežba konstrukcije z upoštevanjem tako dobljenih začetnih nepopolnosti in z 
izračunano najbolj neugodno nepopolnostjo. Na podlagi rezultatov predstavljenega 
pristopa je težko okarakterizirati določene konstrukcije z določenimi tipi nepopolnosti. 
Vsaka sprememba v debelini, obliki ali obtežbi lahko povzroči drastično spremembo 
najbolj neugodne oblike. 

Pri kompleksnih konstrukcijah, občutljivih na spremembo oblike, kjer je težko 
intuitivno določiti neugodne nepopolnosti in kjer empirično pridobljenih neugodnih 
oblik ni na voljo, je uporaba metode za določitev najbolj neugodnih nepopolnosti 
nujna. 

Zaradi nepredvidljivosti oblik nepopolnosti, tehnični standardi predlagajo uporabo 
empiričnih metod določanja začetnih nepopolnosti v numeričnih analizah. Mejne 
obtežbe konstrukcij, izračunane s pomočjo predstavljene metode, so se izkazale za 
manjše, kot bi jih dobili s pomočjo kombiniranja različnih oblik po priporočilih 
standardov ali s pristopi, ki temeljijo na Koiterjevi asimptotični teoriji ali 
parametričnimi študijami. Te metode lahko pripeljejo do preveč optimističnih 
rezultatov. Po drugi strani je verjetnost, da bi realna konstrukcija imela najbolj 
neugodno začetno obliko, zelo majhna. Kljub temu je informacija, katera nepopolnost 
je najbolj neugodna, zelo pomembna, kadar numerično simuliramo obnašanje 
konstrukcij. V tem smislu je mogoče povzeti, da je uporaba celostne metode določitve 
najbolj neugodnih nepopolnosti pri geometrijsko in materialno nelinearni analizi, 
nepogrešljiva. 
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Pomembnost možnosti izračuna najbolj neugodnih začetnih nepopolnosti se nadalje 
izkaže pri uporabi le teh v optimizaciji oblike v mejnem stanju nosilnosti. Skozi 
celoten proces optimizacije je konsistentno upoštevana polna geometrijska in 
materialna nelinearnost, kar omogoča efektiven in robusten način projektiranja 
konstrukcij.  Pristop, ki upošteva dejansko mejno obtežbo ter uporabo najbolj 
neugodnih nepopolnosti,  povzroči, da je v okviru optimizacije oblike iskana takšna 
konstrukcija, ki izkazuje plastično in duktilno obnašanje z zmanjšano nevarnostjo 
nastanka nestabilnosti ter po drugi strani minimalnim volumnom konstrukcije. Na 
tak način je rezultat predlagane metode optimizacije robustna konstrukcija z 
minimalno težo ter minimalno možnostjo uklona pri danih pogojih.  

Projektiranje konstrukcij z integracijo metod optimizacije oblike za mejno stanje ter 
določitve najbolj neugodne začetne nepopolnosti, predstavlja nov in napreden pristop 
k projektiranju konstrukcij. Uspešno kombinacijo analize mejne obtežbe in 
optimizacijskih metod omogoča uporaba simbolno numeričnega okolja za analizo 
konstrukcij. Z upoštevanjem vseh pomembnih fenomenov, lahko predlagan pristop 
predstavlja način projektiranja varnih in ekonomičnih konstrukcij, ter s tem boljšo 
alternativo klasičnemu projektiranju konstrukcij na mejna stanja.  

Pomembnejše izvirne prispevke k tehničnim znanostim predstavljajo naslednji razviti 
postopki: 

- Razvoj metode za določitev najbolj neugodne začetne geometrijske 
nepopolnosti. 

- Razvoj algoritmov za optimizacijo oblike konstrukcij v mejnem stanju z 
upoštevanjem najbolj neugodnih nepopolnosti. 

- Izračun analitičnega polja začetnih nepopolnosti in točna občutljivostna 
analiza s pomočjo simbolno-numeričnega okolja. 
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