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Abstract:

Optimization has become an important tool in engineering activities because it represents a
systematic method to improve design with respect to certain criteria. Within the thesis a
numeric-symbolic approach to limit load shape optimization is studied which enables the use
of an optimization algorithm as an ultimate state design tool. Shape is parameterized
symbolically using a general computer algebra system. Therefore the design velocity filed can
be computed analytically and an exact sensitivity analysis can be carried out. Accurate

sensitivity information is of crucial importance for proper gradient shape optimization.

When analyzing imperfection sensitive structures it turns out that the choice of the shape
and size of initial imperfections has a major influence on the response of the structure and its
ultimate state. Further on, shape optimization applied on the perfect mathematical model
can lead to non-optimal results, e.g. a very light structure but very sensitive to buckling.
While imperfections are not known in advance, a method for direct determination of the most
unfavorable imperfection of structures by means of ultimate limit states was developed. The
method is implemented as an internal and separate optimization algorithm within the global

shape optimization process.

Full geometrical and material nonlinearity is considered throughout the global optimization
process consistently, resulting in efficient and robust, ultimate limit load structure design
algorithm. The numerical examples indicate that the use of a symbolic-numeric system for
gradient shape optimization combined with the use of the most unfavorable imperfections can

represent a superior alternative to conventional ultimate limit state design.
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Izvleéek. Optimizacija postaja vedno bolj pomembno orodje v inZenirski praksi saj
predstavlja sistemati¢no metodo izboljsanja izdelkov glede na dane kriterije. V okviru
disertacije je predstavljen simbolno-numeri¢ni pristop k optimizaciji oblike konstrukcij v
mejnem stanju nosilnosti. Pristop omogoc¢a uporabo optimizacijskega algoritma kot orodje za
projektiranje konstrukcij. Oblika konstrukcije je parametrizirana simbolno s pomodcjo sistema
za splosno racunalnisko algebro, ki s pomoc¢jo neposrednega odvajanja omogoca analitic¢en
izracun polja zacetnih obcutljivosti. Posledi¢no je moZno izvesti natancen izracun
obc¢utljivosti odziva, kar je klju¢nega pomena, saj so toc¢ne obcutljivosti pogoj za uspesno

uporabo gradientnih metod optimizacije oblike.

Kadar obravnavamo konstrukcije, ob¢utljive na spremembo zacetne geometrije, se izkaze, da
ima izbira oblike in velikosti zacetnih nepopolnosti velik vpliv na odziv konstrukcije in njeno
mejno stanje. Poleg tega uporaba idealne oblike konstrukcije lahko privede do nestabilnosti
optimizacijskih algoritmov ali do neoptimalnih rezultatov, na primer izjemno lahkih
konstrukcij, ki so mo¢no obcutljive na nepopolnosti. Zacetne nepopolnosti niso znane v
naprej, zato je v okviru disertacije bila razvita metoda za dolo¢itev najbolj neugodne zacetne
nepopolnosti v smislu mejnega stanja konstrukcij. Metoda je implementirana kot ugnezden

optimizacijski algoritem v okviru globalne optimizacije oblike.

Skozi celoten proces optimizacije oblike je uporabljen polno nelinearen pristop, ki omogoca
uc¢inkovito in robustno sintezo konstrukcij. Prikazani primeri prikazujejo uporabnost metode
in nakazujejo, da uporaba simbolno numeri¢nega okolja za gradientno optimizacijo oblike v
povezavi z metodo dolocitve najbolj neugodnih zacetnih nepopolnosti predstavlja napredno

alternativo klasi¢nemu projektiranju konstrukcij.
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1 INTRODUCTION

It is in the nature of mankind and nature itself to strive after the achievement of a
goal with the least possible amount of effort. Technical development has always
required incessant improvement of solutions. This has been achieved by systematic
improvement of initial design, by redesigning, implementing new knowledge and
learning from past mistakes. In this manner the initial form of design optimization
has been a sort of trial and error process which in the end has given better and better
solutions. Although a very time consuming process, the basic idea is adopted by most
modern design optimization strategies. Nowadays the technical development is
accompanied with a growing competition which demands lower design and production
cost, higher quality, less energy consumption, environment friendly and recycling
ability design and design of products with the required aesthetic value.

To meet the increasing necessity for competitive products, a scientific approach is
needed. The latest knowledge from the field of computational mechanics, sensitivity
analysis and optimization has to be used. Within the work presented by the thesis a
limit load shape optimization method including worst imperfection evaluation was
developed using the latest symbolic-numerical environment technology.

It is difficult to fulfill all the requirements and to claim that one of the evaluated
potential optimum designs was the best possible. The decision is left to the design
engineer to define the performance criteria and restrictions. In the present work the
optimum design is therefore defined as the one that maximizes the chosen
performance criteria and satisfies al the constraints given by the engineer.

1.1 Structural limit load design optimization

It is important to recognize the difference between structural analysis and structural
design. The analysis problem is concerned with determining the behavior of an
existing structural system with a known design, while structural design is a task

where the design is varied to meet performance requirements.

Until recently conventional structural design has mostly been used for designing
structures. Conventional structural design is a trial and error procedure and depends
on the designer’s intuition, experience and skill. It can be a difficult challenge for an
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engineer to achieve efficiency, cost-effectiveness and an overall integrity of a designed
structure. Sometimes this approach can lead to erroneous results and uneconomical
structures when dealing with complex structural systems.

The growing industrial competition is forcing engineers to consider different
approaches, economical and better design. Design optimization is one of such
approaches. The difference between conventional design and design optimization
called synthesis is clearly illustrated in Fig. 1.

4 )
Definition of
Design variables,
Cost function,
Constraints to satisfy
( N 4 )
Collection of data to Collection of data to
describe structural system describe structural system
- J . J
( N 4 )
Estimation of initial design Estimation of initial design
. J . J
4 N\ 4 N\
Analysis of the structural Analysis of the structural
system system
- J . J
( Check of verformance h (Evaluation of performance\
.p . criteria and check for the
criteria traints
9 ) 9 constrain )
4 N\ 4 N\
YES 3 : YES
Satisfactory Design ? End Design satls'ﬁes. 9 End
convergence criteria ?
- J
NO NO
(. N\ 4 )
Change of design based on Change of design using
heuristics/experience y L optimization method
a) b)
Fig. 1:  Flow charts of conventional structural design (a) and optimum structural design (b).

Slika 1:  Obic¢ajni potek projektiranja (a) in projektiranje s pomod¢jo optimizacije (b)
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Design optimization process forces the designer to define a set of design variables, an
objective function to be optimized, and the constraint functions to be taken into
account. Despite the extra work the path to better design is certainly shorter than
within conventional design. Although the optimization approach seems more formal,
it can substantially benefit from the designer’s experience and intuition in
formulating the problem, choosing proper parameterization and identifying the
critical constraints. Thus, the best approach would be an optimum design process
aided by the designer’s interaction.

Proper mathematical formulation of the design optimization problem is a key to good
solutions. The optimization loop within the optimum structural design algorithm
(Fig. 1b) can be divided into three characteristic steps:

- Evaluating the performance measure of the structure by using the
current design variables (direct analysis).

- Evaluating sensitivity of the design to changes of all design variables,
where sensitivities are the gradients of the objective and constraint
functions used by the optimization algorithm (design sensitivity
analysis).

- Updating the design variables using sensitivity information in a way
that improves the objective function (optimization).

Limit load structural optimization design demands a complex interaction of different
approaches, used algorithms and methods. When designing structures for the
ultimate state, the limit load of the designed structure has to be known and is usually
given by technical standards and codes. In the optimization algorithm the limit load
presents a constraint that has to be fulfilled.

When dealing with imperfection sensible structures, e.g. thin walled structures,
imperfections have to be taken into account. A method for automatic evaluation of
the most unfavorable initial imperfection is presented.

In the optimization process the design is changed by varying design variables
represented by shape parameters. When using gradient based shape optimization
approaches, the hardest problem is to evaluate accurate sensitivities with respect to
shape parameters for the gradient information. With the use of a symbolic-numeric
system, exact sensitivities can be evaluated by using an analytically calculated
velocity field. Arbitrary symbolic shape parameterization can be used with no

limitation.
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Direct and sensitivity analyses within shape optimization and the evaluation of the
most unfavorable initial imperfections are performed to the ultimate limit state of the
structure. Within conventional shape optimization methods usually the minimum
weight is sought for a certain stress distribution state, the state at first yielding point
or buckling load, but no real limit state is considered as it is difficult to define and to
evaluate. Within the presented approach the optimal shape is sought for the ultimate
limit state of the structure resulting in a robust optimal design which has to satisfy
all design criteria.

The combination of a symbolic-numeric system and an algorithm for the automatic
determination of most unfavorable initial imperfections gives rise to an effective
structural design shape limit load optimization method appropriate to be used as an
efficient designing tool.

1.2 Background of work and state of the art

1.2.1 Limit Load Shape Optimization

Historically, structural optimization used to be a global process of progress in
structural design, mainly based on experience and experiments. The engineering skills
have improved gradually and the results of designs have became more and more
optimal. Many results of current basic structural optimization problems solved by
contemporary optimization methods are in close relation to the results gained
through the historical design development.

The most important point in structural optimization is to define the relation between
geometry and the internal flow of forces. Throughout the historical design
development this was the focus of experiments and intuitive design. The first
analytical works of structural optimization appeared in 17th and 18th century.
Important contributors were Galilei (1638; Discorsi e Dimostrazioni Matematiche,
intorno a due nuove scienze), Bernoulli (1687; The brachistochrone problem) and
Lagrange (1770; Miscellanea Taurinensia). Mainly the first analytical works were
interested in particular cases of optimal sections of beams and columns and no
general application was developed. In the 19th and 20th century numerical methods
constantly developed further.

The key to the modern design was the development of computers, structural analysis
methods and mathematical programming. The first to integrate numerical methods
into optimization techniques was Schmit (1960) who proposed the concept of
structural synthesis. The basic idea of structural synthesis is to integrate finite
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element structural analysis into nonlinear mathematical programming methods,
which results in an automated optimum design process.

The field of structural synthesis developed further in the next decades. Several other
disciplines had to be involved, i.e. structural sensitivity evaluation, CAD
preprocessors, and control systems for managing different phases, which interact with
each other in the solving process. The first optimization problems considered within
structural synthesis were mainly concerned with size optimization of discrete

structures.

In size optimization, the geometry of the mathematical model is known (e.g. shape,
topology) and the characteristics of the mathematical model elements have to be
determined (e.g. cross section, material). An example may be a truss structure
modeled with truss finite elements where the cross-sections of the trusses have to be
determined so that the overall weight of the structure is the smallest.

In shape optimization, the geometry of the mathematical model itself is the subject
under consideration. The crucial difference between sizing and shape optimization is
related to how design variables affect the analysis rather than to the physical
optimization problem itself. In size optimization the design variables are related to
the properties of the finite elements where in shape optimization the design variables
are related to the positions of the finite element nodes and therefore directly affect
the implementation within structural analysis.

The first attempts of shape optimization were therefore performed on discrete
modeled structural systems. Zienkiewicz and Campbell (1973) considered finite
element nodes coordinates as design variables which later turned out not to be ideal
for solving optimization algorithms. Nevertheless they were the first to set up a shape

optimization problem in a general form.

The use of optimization in design began to strengthen in the 1980’s together with the
intensive development of numerical analysis methods and nonlinear mathematical
programming and with expanding computer capabilities. The start of the
development of new shape optimization methods gave a clear indication that
numerous new problems would arise, which were not known in classical discrete
optimization (Haftka, Grandhi 1986).

Nowadays discrete optimization is well developed and already integrated in everyday
structural analysis programs. Shape optimization, on the other hand, remains the
subject of continuous scientific research (see e.g. Bletzinger, Ramm 2001, Camprubi,
et al. 2004, Choi, Kim 2005a, Choi, Kim 2005b, Maute, et al. 1999, Ramm, Mehlhorn
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1991, Schwarz, et al. 2001, Uysal, et al. 2007). In continuous shape optimization the
design parameterization is not automatically given by the structural model and has
to be explicitly defined by the designer in relation to the structural analysis model or
to an underlying geometrical model. Within most modern approaches the need of
general shape parameterization has evolved in an implicit relation of design variables
with respect to the positions of the finite element nodes. As a consequence a complex
interaction of the finite element method and sensitivity analysis has to be taken into
account. An essential part of the procedure is to evaluate the design velocity field
which is defined as the derivative of finite element node coordinates with respect to
design variables.

Within the presented work a numeric-symbolic approach to optimization is studied
which enables the use of arbitrary symbolic shape parameterization and evaluation of
an analytical design velocity field. As a consequence, an exact sensitivity analysis can
be carried out. Accurate sensitivity information is of crucial importance for proper
gradient shape optimization. The sensitivity analysis and the evaluation of the design
velocity field will be further addressed in the next section.

1.2.2  Sensitivity analysis

To overcome the difficulties of evaluating sensitivity within shape optimization,
numerous methods have been developed in the past (see review by van Keulen, et al.
2005). The four broad categories of methods in common use for obtaining the

derivatives of performance measures with respect to structural parameters are:

a) Overall finite differences

)
b) Discrete derivatives
c) Continuum derivatives

d) Computational or automatic differentiation

The choice of the method is particularly important in gradient shape optimization
where the shape design variables change the discretization of the discretizied
problem, e.g. finite element mesh.

All methods except for the finite differences can be implemented using direct or
adjoint approach (called also the reverse mode of automatic differentiation explained
in Section 2.2). In the direct approach, the derivatives of the entire structural
response are evaluated. The sensitivities of performance measures can then be
obtained from the chain rule of differentiation. In the adjoint approach an adjoint

problem which depends on the performance measure is defined. The sensitivities of
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performance measures can then be obtained using the structural and adjoint
responses. This approach is of most advantage when the problem consists of many
design variables and few performance measures while not all system response

sensitivities are required.

Overall finite differences (see e.g. Hornlein H.R.E.M. 2000, Oral 1996) present the
simplest method. The method, also called global finite difference, is based on repeated
evaluation of structural analysis code and the use of a finite difference formula to
obtain the derivative. Forward, backward and central differences can be used. Higher
order difference formulae are very rare. Finite difference derivatives can suffer from
truncation errors with large step sizes and also from errors when the step size is too
small. The computational time is high due to the repeated code evaluation. Global
finite differences become very useful when using commercial structural analysis
programs where the analysis code is in a form of a black box with no ability to solve
the sensitivity problem.

Continuum derivatives are obtained by differentiating the governing continuum
equations. Most commonly these consist of partial differential equations or an integral
form, for example, derived from the principle of virtual work. The differentiation
leads to a set of continuum sensitivity equations that are then solved numerically.
The same discretization as for the original structural response can be used. For shape
sensitivities, the two main approaches for continuum derivatives are the material
derivative approach (see e.g. Saliba, et al. 2005) and the control volume approach
(see e.g. Arora, et al. 1992). The advantage of these methods is the possibility of
different meshes for response and sensitivity analysis.

The most widely used methods are the discrete derivatives. While the continuum
sensitivity equations are derived by differentiating the governing continuum
equations with respect to the design variables and are then subsequently discretized,
for discrete derivatives this order is reversed. The advances of these methods are low
computational cost and high consistency. They can be separated into analytical and
semi-analytical.

The analytical methods use analytical derivatives on the global level as well on the
finite element level (see e.g. Maute, et al. 2000). The analytical differentiation process
may become tedious. This holds true especially for shape design variables, therefore
symbolic computing software can be applied (Korelc 2002, Korelc 2007a, b) which
often features the automatic generation of the source code. This code has to be
integrated in the used software. Additional procedures must be implemented for each
finite element used within the structural analysis. The procedure must account for all
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possible design variables, i.e. size, material and shape design variables, as the actual
code depends on the type of the design variable. Shape design variables are the most

complex ones to implement.

The semi-analytical methods (see e.g. Hornlein H.R.E.M. 2000, Oral 1996) use finite
difference schemes on the finite element level, while the dicretized governing
equations on the structure level are differentiated analytically. The main reason for
the simplification is the significant implementation effort needed for the evaluation of
the finite element sensitivity pseudo-load vector. Therefore approximations in the
form of finite differences are frequently accepted for the pseudo-load vector, which
reduces the effort. Disadvantages of these methods are common for all finite
difference methods, the dependency with respect to the perturbation size, which has a
pronounced effect on both consistency and efficiency.

The highest consistency is proved by the methods which use automatic
differentiation. Analytical derivation is used on all levels. Even if the finite element
program is composed of many complicated subroutines and functions, they are
basically a collection of elementary functions. The automatic differentiation method
defines the partial derivatives of these elementary functions, and then the derivatives
of complicated subroutines and functions are computed using propagation of the
partial derivatives and the chain rule of differentiation. Thus, no approximation is
introduced.

For the highest efficiency of automatically generated codes it is necessary to fulfill
specific requirements in order to produce element source codes that are as efficient as
manually written codes (see e.g.Korelc 2002). More reference is given in Chapter 2.

A major step in performing shape design sensitivity analysis is the evaluation of the
design velocity field. The purpose of design velocity field is to characterize the
changes of the finite element nodal point coordinates with respect to the changes of
arbitrary design parameters. While the design derivatives of the finite element
quantities (residual, tangent matrix, etc.) can be constructed by automatic
procedures (see e.g.Korelc 2002), this is not true for the design velocity field.

Within standard approaches to finite element mesh generation, either with specialized
preprocessors or with CAD tools, there exist no explicit relations between the
positions of the finite element nodes and the shape design parameter as the choice of
the shape parameters is an arbitrary decision of the designer. A number of methods
have been proposed in the literature to compute the design velocity field (Choi,
Chang 1994).
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Most frequently used methods for evaluating the design velocity field are the finite
difference methods using mesh generators (a), isoparametric mapping methods (b),
boundary displacement and fictitious load methods (c), and methods which combine
isoparametric mapping and boundary displacement methods (d). All these methods

are based on different numerical approximations.

The most sophisticated methods in use are the design model concept methods
basically fitting into the isoparametric approach section (see e.g. Kegl 2000, Samareh
1999). A great review was done by Haftka and Grandhi (Haftka, Grandhi 1986). The
basic idea of the design element approach relies on the assumption that the
geometrical data of the structure are not a simple set of constants defining directly
the finite element mesh. Instead of that, the structural data are extracted from a set
of geometrical objects called the design elements. The shape of the design elements is
connected to the finite element mesh and varied with a few shape parameters using
e.g. Bezier curves or polynomials. Although an analytical design velocity field can be
evaluated, these methods are limited in the choice of design shape parameters. In
complex structural systems the shape has to be composed of many design elements
which limit the general applicability. For example, no shape parameters can be
defined for global structure dimensions.

To overcome the difficulties of the design element approach, an arbitrary symbolic
parameterization is used in the current work using a symbolic-numeric system

(Korelc 2007a, b) further addressed in Chapter 2.

Most methods for evaluating design sensitivity are limited to the use of linear or
simple nonlinear material models. The use of complicated nonlinear material models
makes the evaluation of design sensitivity very difficult. The attempts to develop
methods that address this field are therefore rare.

Nonlinear limit load design sensitivity analysis used in the present work for the use in
gradient based limit load shape optimization demands complex interaction between
shape parameterization and finite element code. Within the development of
integration of commercial finite element analysis programs and new design
approaches using optimization, every effort was made (see e.g. Chang, et al. 1995,
OptiStruct 2008) although to the author’s knowledge an efficient tool for nonlinear
limit load design optimization is not available.

1.2.3 Imperfections

Limit load design optimization requires an accurate evaluation of the limit load of a
structure. In order to evaluate the limit load correctly, all the relevant phenomena
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have to be considered e.g. geometrical and material imperfections, load imperfections,
residual stresses and strains, damage, etc. It is now well known that geometrical,
structural, material and load imperfections play a crucial role in the load carrying
behavior, especially of thin walled structures.

Most  structural imperfections (residual stresses, geometrical and welding
imperfections, etc.) are not known in advance. To include the imperfections in a
structural analysis, they have to be assumed. Technical standards therefore suggest
different approaches to include imperfections on an empirical basis. A convenient way
to include all relevant imperfections (i.e. geometrical, structural and material
imperfections) is to consider equivalent geometrical imperfections. In this way the
geometrical imperfections are augmented by the influence of other relevant
imperfections to produce the same effect on the load carrying behavior of a structure.

The idea to find imperfections that will cause the structure to fail at the lowest
possible load is as old as the ascertainment of the crucial role of imperfections itself.
The known discrepancy between theoretical results and experimentally obtained
values for ultimate loads of structures can be reduced by properly including
imperfections in an analysis. In order to achieve this for a general structure, a series
of full geometrical and material nonlinear analyses up to the ultimate limit state need
to be performed for a large range of possible imperfections, varying both their shapes
and amplitudes. The computational cost involved discourages this kind of direct
approach and has been the motivation for the development of computationally less

expensive methods.

Numerous approaches for analyzing the effect of imperfections on the response of
structures have been proposed. Among them one can basically distinguish between
those which are derived from the hypothesis that it is possible to obtain a sufficiently
accurate structural response for an imperfect structure from the properties of a
perfect structure (“perturbation approach”) and those that obtain the structural
response by analyzing the imperfect structure itself (“direct approach”). The review
of different approaches accompanied with the impact on modern design procedures of
engineering structures can be found in (Schmidt 2000).

The origin of the perturbation approach goes to the pioneering work on stability of
shells done by (Koiter 1945).The perturbation approach applies to structures showing
bifurcation phenomena along their natural equilibrium path and is based on
asymptotic descriptions of the initial post critical behavior. Although simple for
implementation and numerically efficient, the original Koiters theory does not
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account for several effects that can significantly lower the ultimate load of the
structure, such as:

a) nonlinear natural equilibrium path,

o

) nonlinear material behavior,

o

) buckling mode interactions,

Q.

) consideration of realistic technological constraints on the shape and
amplitude of the imperfections,

e) large postcritical deflections,

f) large imperfections.

The interaction of several buckling modes can be assessed by the “minimum path
theory” of (Ho 1974, Lanzo 2000, Lanzo, Garcea 1996). An overview of some other
methods was given by (Godoy 2000). There are numerous difficulties obtaining non-
linear post critical behavior. Even with modern methods such as arc-length schemes,
branch switching procedures, direct computation of stability points and stabilization
techniques, it is sometimes impossible to overcome problems like secondary
bifurcations, coincidental or clustered singularities and post critical paths, that cross
each other, to get all the possible hypothetic equilibrium paths or at least the

minimum one.

Another approach is the “minimum perturbation energy concept”, which has recently
been applied also to dynamic stability problems (Dinkler, Pontow 2006, Ewert, et al.
2006). The basic idea of the method is to lower the buckling load of a perfect
structure by introducing a certain amount of energy into the system, which causes a
snap through to the post-buckling path, or to a secondary path in dynamic problems.

Common to all perturbation methods is that they become exceedingly complicated for
implementation and numerically inefficient when phenomena such as mode
interaction or plasticity are included. This has been an inspiration for the research on
the second branch of methods where the structure is analyzed using a full nonlinear
analysis that by definition includes phenomena (a), (b), (e) and (f). The buckling or
limit load of a theoretically perfect structure is lowered by introducing imperfections
directly into the geometry of the structure. There exists a huge amount of
uncertainties in the determination of the shape and amplitude of real imperfections
because of the nature of the production processes. Therefore it would be natural to
use probabilistic approaches where imperfections are introduced as random variables
with a certain distribution (Elishakoff 2000, Papadopoulos, Papadrakakis 2005,
Schenk, Schueller 2003). However, these methods rely upon very scarce data banks of
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measured imperfections and are therefore useful for a certain assortment of
applications.

An alternative approach to include imperfections in an analysis is the concept of the
“definitely worst” imperfection (Deml, Wunderlich 1997, El Damatty, Nassef 2001,
Song, et al. 2004, Wunderlich, Albertin 2000, 2002). Within the “definitely worst”
imperfection concept the shape of imperfections is searched that would lead to the
lowest ultimate load of the structure. The shape of imperfections is additionally
bounded by the given imperfection amplitude. Several variants of the procedure are
possible and discussed (Schmidt 2000).

Deml and Wunderlich (Deml, Wunderlich 1997) introduced an elaborate method to
obtain the “definitely worst” imperfection. In their case imperfections are treated as
additional degrees of freedom. The approach results in an extended system of
equations composed of equilibrium equations, equations for direct computation of
stability points (Wriggers, Simo 1990), condition equations for the worst
imperfections shape and constraint equations that limit the amplitude of the
imperfection. The system has to be solved simultaneously for the equilibrium state,
the worst imperfection shape and the corresponding ultimate load. The result is the
“definitely worst” imperfection within the considered amplitude. Such procedure is
rather time consuming and is therefore useful for problems of small order
(Wunderlich, Albertin 2000, 2002). Within the approach of Deml and Wunderlich
(Deml, Wunderlich 1997) the condition equations for the worst imperfection are
based on Koiters asymptotic theory, thus limiting the approach to small
imperfections and linear fundamental paths.

The determination of the “definitely worst” imperfection can also be formulated as a
nonlinear optimization problem solved by one of the well-known nonlinear
optimization methods. This is the most general approach that includes all the
relevant phenomena, but is for the same reason also the most computationally
expensive one. For example, a genetic optimization algorithm for obtaining the worst
imperfection of shell structures was used by (El Damatty, Nassef 2001). Apart from
the obvious disadvantage of the optimization approach, i.e. the need for a potentially
large number of full nonlinear analyses, there are also advantages. Since the
bifurcation-type instability always represents some type of a symmetry breakdown,
bifurcations can be avoided if the symmetry is deliberately destroyed by introducing
imperfections (Bazant, Cedolin 2003). By limiting the analysis to limit points, one
avoids tedious procedures involved in proper determination, classification and
sensitivity analysis of bifurcation points. Another certain advantage of the direct
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approach is that only stable equilibrium states have to be considered and no

hypothetic or unstable states need to be relied upon.

It is doubtful that an approach requiring a large number of fully nonlinear analyses
could be used in everyday engineering design in foreseeable future.

In the present work a computationally less expensive optimization method is
developed that would still retain the generality of the optimization based “definitely
worst” imperfection approach. The method is further addressed in Chapter 4.

1.3 Motivation and Objectives

The integration of optimization methods into engineering design is a complex task.
As pointed out in the previous sections, there are numerous difficulties to achieve this
for a general nonlinear case. To facilitate the use of synthesis to design engineering
structures, an effective optimization method has to be used considering full
nonlinearity with the use of automatic definition of proper initial imperfections.

The general objective of this work is to develop a finite element based limit load
shape optimization technique which can be used for the ultimate limit design of

structures.

The key aspects to be investigated in this work are:

- The use of a symbolic-numeric system for limit load analysis and
optimization purposes. Symbolic derivation and automatic code
generation of finite elements for direct and sensitivity analysis.

- The evaluation of most unfavorable initial imperfections of a structure
by means of ultimate limit states.

- Analytical evaluation of the design velocity field, using arbitrary shape
parameterization, for the use in exact sensitivity analysis.

- Development of an efficient gradient based limit load shape
optimization method based on all the above components.

1.4 Methodology

Limit load shape optimization is performed with state of the art optimization
algorithms using the computer algebra software Mathematica (Wolfram 2008) and a
symbolic-numeric approach using automatic code generator AceGen (Korelc 2007b)
and finite element environment AceFEM (Korelc 2007a). Finite element method is
used to model the structure subjected to optimization. Direct and sensitivity analysis
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of structures by using the most unfavorable initial imperfect geometry is performed in
AceFEM. All the necessary finite element codes are developed using abstract
symbolic description with simultaneous optimization of expressions, automatic
differentiation technique, theorem proving and automatic generation of finite element
code (Korelc 2002) using AceGen.

The use of the numeric-symbolic system offers the possibility one to use an analytical
approach. Sensitivity calculation with the use of an analytically evaluated design
velocity field is of crucial importance for the convergence of the gradient optimization
algorithm, especially when dealing with highly geometrical and material nonlinear
problems. The overall algorithm is presented in Fig. 2.

Design model Symbolic numeric
Design variables finite element code
in symbolic form generation
(optlmlzatlon ( AceGen )
parameters)
Analysis model
(FEM)

Most unfavorable Analytlcal design
Imperfection velocity field
evaluation evaluation

C ( Mathematica )

Bl !

Direct and Sensitivity analysis

l J

Optimization
( Mathematica )

( AceFEM )

Fig. 2: Schematic representation of the overall algorithm for limit load shape optimization.

Slika 2: Prikaz celotnega postopka optimizacije oblike konstrukcij v mejnem stanju.
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1.5 Thesis Outline

The thesis is organized in 4 main chapters.

- Chapter 2 introduces the symbolic description of mechanical
problems, the use of advanced automatic differentiation techniques and

the hybrid symbolic-numeric environment.

- Chapter 3 is devoted to the structural sensitivity analysis using an

analytical design velocity field. The general expressions for the direct

and sensitivity analysis which can be used for abstract symbolic
description of transient nonlinear coupled systems are given.

- Chapter 4 explains the use of imperfections in a limit load structural
analysis. A method for the evaluation of the worst imperfect geometry

is presented.

- Chapter 5 incorporates all the relevant techniques presented in

previous chapters to perform a limit load shape design optimization.

Examples are given for typical civil engineering structures.

- Chapter 6 summarizes the conclusions drawn from present work.
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2 FINITE ELEMENT MODELING AND SYMBOLIC
APPROACH

The most effective and widely spread method for solving problems in solid mechanics
nowadays is the finite element method (FEM). The method originates from the needs
to solve complex, structural analysis problems in civil and aeronautical engineering.
Today FE methods are far more advanced and can be used for highly nonlinear direct
and sensitivity analyses, inverse modeling and optimization of Multi-field, Multi-
scale, Multi-body, Multi-phase and Multi-objective problems. Te purpose of the
present work is not to introduce fundamental knowledge of Continuum Mechanics
and of Finite Element Methods, as many references can be found on these matters.
An introduction to Continuum Mechanics is given by (see e.g. Marsden, Hughes
1994) and (Lemaitre, Chaboche 1990). An overture to the Finite Element Method
can be found in (Zienkiewicz, Taylor 2000b) and (Crisfield 1996; Crisfield 1997).

With the employment of FEM to increasingly complicated and bounded problems,
the implementation of the method has become highly sophisticated. The struggle to
automate some of the tasks in the overall processes which starts with the
development of theories and ends with a working program is therefore highly
appreciated. Some major achievements have been attained in this field of
computational mechanics in the last decade. Automation of the finite element method
has attracted attention of researches from the fields of mathematics, computer science
and computational mechanics, resulting in a variety of approaches and available
software tools.

The use of advanced software technologies, especially symbolic and algebraic systems,
problem solving environments and automatic differentiation tools influences directly
how the mechanical problem and corresponding numerical model are postulated and
solved, leading to the automation of the finite element method. In order to formulate
nonlinear finite elements symbolically in a general but simple way, a clear
mathematical formulation is needed at the highest abstract level possible.

The finite element technology used in the present work is based on a symbolic-
numeric approach with a high degree of automation implemented in software
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packages AceGen and AceFEM (Korelc 2007a, b). The basic techniques and methods
used within are described in next sections.

2.1 Automation of FEM

Automation of FEM is a complex task because of the various transformations,
differentiation, matrix operations, and a large number of degrees of freedom involved
in the derivation of characteristic FE quantities, which often leads to exponential
growth of expressions in space and time (Korelc 2002). The complete FE simulation
can be, from the aspect of the automation level, decomposed into the following steps:

- formulation of strong form of initial boundary-value problem;
transformation of the strong form into weak form or wvariational
functionals;

- definition of the domain discretization and approximation of the
unknowns and the virtual fields;

- derivation and solution of additional algebraic equations defined at the
element level (e.g. plastic evolution equations);

- derivation of algebraic equations that describe the contribution of one
element to the global internal force vector and to the global tangential
stiffness matrix;

- coding of the derived equations in required compiled language;
- generation of finite element mesh and boundary conditions;
- solution of global problem:;

- presentation and analysis of results.

Alternatively, one can also start from the free Helmholtz energy of the problem and
derive element equations directly as a gradient of the free energy. This approach is
especially appealing for the automation due to the numerical efficiency of the solution
when the gradient is obtained by the backward mode of automatic differentiation.

There are almost countless ways of how a particular problem can be solved by the
FE method. If the automation of all nine steps is chosen, then only very specific
subset of possible formulations can be covered. On the other hand, the standard
discretization is of little use for problems involving coarse mesh, locking phenomena
and distorted element shapes where highly problem specific formulations have to be
used.
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The following techniques, which are the result of rapid development in computer
science in the last decades, are particularly relevant for the description of a nonlinear
finite element model on a high abstract level, while preserving the numerical
efficiency:

- Symbolic and algebraic computational systems
- Automatic differentiation tools
- Problem solving environments

- Hybrid approaches

Computer algebra (CA) systems are tools for the manipulation of mathematical
expressions in symbolic form. Widely used CA systems such as Mathematica or Maple
have become an integrated computing environment that covers all aspects of
computational process, including numerical analysis and graphical presentation of the
results.

In the case of complex mechanical models, the direct use of CA systems is not
possible due to several reasons. For the numerical implementation, CA systems
cannot keep up with the run-time efficiency of programming languages such as
FORTRAN and C and by no means with highly problem-oriented and efficient
numerical environments used for finite element analysis. However, CA systems can be
used for the automatic derivation of appropriate formulae and generation of
numerical codes. The FE method is within the general CA systems usually
implemented as an additional package or toolbox such as AceFEM (Korelc 2007a) for
Mathematica used in the work covered by this thesis.

The major limitation of symbolic systems, when applied to complex engineering
problems, is an uncontrollable growth of expressions and consequently redundant
operations and inefficient codes. (see Korelc 1997, Korelc 2002) This is especially
problematic when CA systems are used to derive formulae needed in numerical
procedures such as finite element method where the numerical efficiency of the
derived formulae and the generated code are of utmost priority.

The automation level of FE method can be greatly increased by combining several
approaches and tools. A hybrid symbolic numeric system is used within the thesis
described in Section 2.3
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2.2 Automatic differentiation

Differentiation is an arithmetic operation that plays crucial role in the development
of new numerical procedures. The exact analytical derivatives are difficult to derive,
which is why the numerical differentiation is often used instead. The automatic
differentiation (AD) represents an alternative solution to the numerical differentiation
as well as to the symbolic differentiation performed either manually or by a computer
algebra system. With the AD technique, one can avoid the problem of expression
growth that is associated with the symbolic differentiation performed by the CA
system.

2.2.1 Principles of automatic differentiation

If one has a computer code which allows to evaluate a function f and needs to
compute the gradient Vf of f with respect to arbitrary variables, then the automatic
differentiation tools, see e.g. Griewank (2000), Bartholomew-Biggs et al. (2000),
Bischof et al. (2002), can be applied to generate the appropriate program code. There
are two approaches for the automatic differentiation of a computer program, often

recalled as the forward and the backward mode of automatic differentiation. The
procedure is illustrated on a simple example of function f defined by

f =bec,withb = Zaiz andc = Sin(b) (1)
i=1

where ay,ay,...,a, are n independent variables. The forward mode accumulates the

derivatives of intermediate variables with respect to the independent variables as

follows
Vb:{ji}:{%vz} i=12..,n
de
Ve = {d } = {Cos(b)Vb; } i=12,..,n (2)
‘/L‘Z
df
Vf = 7 ={Vbc+bVe¢g} i=12..n
... _ of
In contrast to the forward mode, the backward mode propagates adjoins = = e

which are the derivatives of the final values, with respect to intermediate variables:
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+_daf
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C_dc_8c =0/ 1 (3)
g:zii_J; aff—}— ¢ = cf + Cos(b)e 1

Vf_{a}_{ } {2a, b} i=12..n

The numerical efficiency of the differentiation can be measured by numerical work

ratio

of
8(LL‘)

numerical cost(f(ay,a9,a3,...,a,),Vf =

wratio(f) =

(4)

numerical cost(f(a,as,as,...,a,))

The numerical work ratio is defined as the ratio between the numerical cost of the
evaluation of function f together with its gradient Vf and the numerical cost of the

evaluation of function f alone. The ratio is proportional to the number of
independent variables O(n) in the case of forward mode and constant in the case of
backward mode. The upper bound for the ratio in the case of backward mode is
wratio(f) < 5 and is usually around 1.5 if care is taken in handling the quantities
that are common to the function and gradient. Although numerically superior, the
backward mode requires potential storage of a large amount of intermediate data
during the evaluation of the function f that can be as high as the number of
numerical operations performed. Additionally, a complete reversal of the program
flow is required. This is because the intermediate variables are used in reverse order
when related to their computation.

There exist many strategies how the AD procedure can be implemented. The most
efficient are source-to-source transformation strategies that transform the source code
for computing a function into the source code for computing the derivatives of the
function. The AD tools based on source-to-source transformation have been
developed for most of the programming languages, e.g. ADIFOR for Fortran, ADOL-
C for C, MAD for Matlab and AceGen for Mathematica.

2.2.2 Automatic differentiation and FEM

The tools for automatic differentiation were primary developed for the evaluation of
the gradient of objective function used within the gradient-based optimization
procedures or the Hessian of objective function used within the Newton-type
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optimization procedures. The objective function is often defined by a large, complex
program composed of many subroutines. Thus, one can apply the AD tools directly
on the complete FE environment to obtain the required derivatives when the
evaluation of the objective function involves FE simulation.

The AD technology can also be used for the evaluation of specific quantities that
appear as part of a finite element simulation. It would be difficult and
computationally inefficient to apply the AD tools on large FE systems to get e.g. the
global stiffness matrix of large-scale problem directly. This is especially problematic
when a fully implicit Newton type procedure is used to solve nonlinear, transient and
coupled problems involving various types of elements, complicated continuation or
arc-length methods and adaptive procedures.

However, one can still use automatic differentiation at the single element level to
evaluate element specific quantities in an efficient way, such as:

- strain and stress tensors;

- nonlinear coordinate transformations;
- consistent stiffness matrix;

- residual vector;

- sensitivity pseudo-load vector.

A direct use of automatic differentiation tools for the development of nonlinear finite
elements turns out to be complex and not straightforward. Furthermore, the
numerical efficiency of the resulting codes is poor. Another solution, followed mostly
in hybrid object-oriented systems, is to use problem specific solutions to evaluate
local tangent matrix in an optimal way. Another solution, followed in hybrid
symbolic-numeric systems, see e.g. (Korelc 2002), is to combine a general computer
algebra system and the AD technology.

The implementation of the AD procedure has to fulfill specific requirements in order
to get element source codes that are as efficient as manually written codes. Some

basic requirements are:

- The AD procedure can be initiated at any time and at any point of the
derivation of the formulas and as many times as required (e.g. in the
example at the end the AD is used 13 times during the generation of
element subroutine). The recursive use of standard AD tools on the
same code, if allowed at all, leads to numerically inefficient source code.
This requirement limits the use of standard AD tools. An alternative
approach is implemented in (Korelc 2007b) where the source-to-source
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transformation strategy is replaced by the method that consistently
enhances the existing code rather than produces a new one.

- The storage of the intermediate variables is not a limitation when the
backward differentiation method is used at the single element level. The
finite element formulations involve, at the single element level, a
relatively small set of independent and intermediate variables.

- For the reasons of efficiency, the results of all previous uses of AD have
to be accounted for when AD is used several times inside the same
subroutine.

- The user has to be able to use all the capabilities of the symbolic
system on the final and the intermediate results of the AD procedure.

- The AD procedure must offer a mechanism for the descriptions of

various mathematical formalisms used within the FE formulation.

The mathematical formalisms that are part of the traditional FE formulation are e.g.
d(s) D
d(e) D (e)

all be represented by the AD procedure, if possible exceptions are treated in a proper

partial derivatives , total derivatives or directional derivatives. They can

way. However, the result of AD procedure may not automatically correspond to any
of the above mathematical formalisms. Let us define a "conditional derivative" with

the following formalism

_ 9f(a,b(a))
VI=""0@ owy, 8

d(a)

where function f depends on a set of mutually independent variables a and a set of

mutually independent intermediate variables b. The above formalism has to be taken
in an algorithmic way. It represents the automatic differentiation of function f with
respect to variables a. During the AD procedure, the total derivatives of
intermediate variables b with respect to independent variables are set to be equal to
matrix M. Some situations that typically appear in the formulation of finite elements

are presented in Table 1.

In case A there exists an explicit algorithmic dependency of b with respect to a,
hence the derivatives can be obtained in principle automatically, without user
intervention, simply by the chain rule. However, there also exists a profound
mathematical relationship that enables evaluation of derivatives in a more efficient
way. This is often the case when the evaluation of b involves iterative loops, inverse

matrices, etc..
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Case B represents the situation when variables b are independent variables and
variables a implicitly depend on b. This implicit dependency has to be considered
for the differentiation. In this case, automatic differentiation would not provide the
correct result without the user intervention. A typical example for this situation is a
differentiation that involves a transformation of coordinates. Usually the numerical
integration procedures as well as interpolation functions require additional reference
coordinate. An exception for automatic differentiation of type B is then introduced to

properly handle differentiation involving coordinate transformations from initial X to
reference coordinates § as follows:

d(e) . (e
X X

o _[ox|!
oxX

o (6)
In case C there exists an explicit dependency between variables b and a that has to
be neglected for differentiation. The status of dependent variable b is thus
temporarily changed. For the duration of the AD procedure, it is changed into an
independent variable. The situation frequently appears in the formulation of
mechanical problems where instead of the total variation some arbitrary variation of
a given quantity has to be evaluated.

The exceptions of cases A, B and C are imposed within automatic differentiation only
during the execution of the particular call of the AD procedure. Case D is equal to
case A with an AD exception defined globally, thus valid for every call of the AD
procedure during the derivation of the problem. When in collision, then exceptions of
type A, B and C overrule the D type exception.
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Table 1:  Automatic differentiation exceptions.
Tabela 1: Izjeme pri avtomatskem odvajanju.
Type Formalism Schematic AceGen input
ar SM5Real[a$5]
vf = 9fa b)) 2 suSReallassl
A a(a) a(b) M L F D'Nﬂrlﬂl.':éﬂl I-b =] ]
d(a) &6f e SMSD[f[a, b], a, "Implicit® = (b, a, M}]
af(b) b = SMSReal[b$5)
B V= B(a(b))|om) a r SMSFreeze[£4[b]]
o ™ §£r SMSD[£[b], a, "Implicit" + (b, a, M}]
af(a, b(a)) a k SMSReal[a$$]
Vf bE £}, [a]
C d(a) |am)_, b
O(e) &f r SMSD[f[a, b], a, "Constant" - b]
ar BMEReal[as$$]
J(e) b e SMSFreeze[fy, [a], "Dependency” - {a, M} ]
D d(e)[ob)_y, .
(@) 5€; £ SMSD[£4 [a, b], a]

2.3 Hybrid symbolic-numerical approach

The real

unconventional ideas is provided by general-purpose CA systems. However, their use

power of the symbolic approach for testing and applying new,
is limited to problems that lead to large systems like finite element simulations.
Furthermore, the use of large commercial finite element environments to analyze a
variety of problems is an everyday engineering practice. The hybrid symbolic-
numerical (HSN) approach is a way to combine both.

Although large FE environments often offer a possibility to incorporate user defined
elements and material modes, it is time consuming to develop and test these user
defined new pieces of software. Practice shows that at the research stage of the
derivation of a new numerical model, different languages and different platforms are
the best means for the assessment of specific performances and, of course, failures of
the numerical model. The basic tests, which are performed on a single finite element
or on a small patch of elements, can be done most efficiently by using general CA
system.

Many design flaws, such as element instabilities or poor convergence properties, can
be easily identified, if the element quantities are investigated on a symbolic level.
Unfortunately a standalone CA system becomes very inefficient once there is a larger
number of nonlinear finite elements to process or if iterative numerical procedures

have to be executed. In order to assess element performances under real conditions,
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the easiest way is to run the necessary test simulations on sequential machines with
good debugging capabilities and with the open source FE environment designed for
research purposes, e.g. FEAP, AceFEM or Diffpack. At the end, for real industrial
simulations involving complex geometries, a large commercial FE environment has to

be used.

In order to meet all these demands in an optimal way, an approach is needed that
would offer multi-language and multi-environment generation of numerical codes. The
automatically generated code is then incorporated into the FE environment that is
most suitable for the specific step of the research process. The structure of the hybrid
symbolic-numerical system AceGen for multi-language and multi-environment code
generation introduced by (Korelc 2002) is presented in Fig. 3. Using the classical
approach, re-coding of the element in different languages would be time consuming
and is rarely done. With the general CA systems, re-coding comes practically free,
since the code can be automatically generated for several languages and for several
platforms from the same basic symbolic description. An advantage of using a general
CA system is also that it provides well known and defined description language for
the derivation of FE equations, generation of FE code and possibly also for the
complete FE analysis, as opposed to the hybrid object-oriented systems which
introduce their own domain-specific language.
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Fig. 3: Multi-language and multi-environment FE code generation.

Slika 3:  Vec jezi¢no Vet okoljsko generiranje kode konénega elementa.

When the symbolic approach is used in a standard way to describe complex
engineering problems then the common experience of computer algebra users is an
uncontrollable swell of expression, as pointed out before, leading to inefficient or even
unusable codes. Not many attempts have been undertaken to design a general FE
code generator, where this key issue of the FE code generation would be treated
within the automatic procedure.

The classical way of optimizing expressions in CA systems is to search for common
sub-expressions after all the formulae have been derived and before the generation of
the numerical code. This seems to be insufficient for the general non-linear
mechanical problems. An alternative approach for automatic code generation is
employed in AceGen and called Simultaneous Stochastic Simplification of numerical
code, see (Korelc 1997). This approach avoids the problem of expression swell by
combining the following techniques: symbolic and algebraic capabilities of general
computer algebra system Mathematica, automatic differentiation technique and
simultaneous optimization of expressions with automatic selection and introduction of

appropriate intermediate variables. Formulae are optimized, simplified and replaced
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by the auxiliary variables simultaneously with the derivation of the problem. A
stochastic evaluation of the formulae is applied for determining the equivalence of
algebraic expressions instead of the conventional pattern matching technique. The
simultaneous approach is also appropriate for problems where intermediate
expressions can be subjected to the uncontrolled swell.

2.3.1 Typical example of automatic code generation procedure

To illustrate the standard AceGen procedure, a simple example is considered. A
typical numerical sub-program that returns a determinant of the Jacobean matrix of
nonlinear transformation from the reference to initial configuration for quadrilateral
element topology is derived. The syntax of the AceGen script language is the same as
the syntax of the Mathematica script language with some additional functions. The
input for AceGen can be divided into six characteristic steps:

- At the beginning of the session the SMSInitialize function initializes the
system.

- The SMSModule function defines the input and output parameters of
the subroutine ”"DetJ”.

- The SMSReal function assigns the input parameters X$$ and k$$ and
e$$ of the subroutine to the standard Mathematica symbols. Double $
character indicates that the symbol is an input or output parameter of
the generated subroutine.

- During the description of the problem special operators (k,4,F) are used
to perform the simultaneous optimization of expressions to create of
new intermediate variables. The SMSD function performs an automatic
differentiation of one or several expressions with respect to the arbitrary
variable or the vector of variables by simultaneously enhancing the
already derived code.

- The results of the derivation are assigned to the output parameter J$$
of the subroutine by the SMSExport function.

- At the end of the session the SMSWrite function writes the contents of
the vector of the generated formulae to the file in a prescribed language
format. The generated subroutine in C and FORTRAN language are
presented in Fig. 5.
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<« AceBen’®;
EMSInitialize["DetJ", "Language® -» "C"];
SMS5Module[ "Datd" .,

Real [X55[2, 4], k55, e85, J55] ]«
{€, n} = S¥3Real[{k53, e55}];
{¥i, Yi} ¢ SMSReal [Array [X55, {2, 4}]);
Bie{(1-£) (1-m}. (1+£) (1-7).

(L) (Lam)s (=€) (2+n))S 42

Je SMED[{Hi.Xi, Ni.Yi), {£. nl]):
SMSExport[Det[J] . J55);
sMsSWrite[];

Fig. 4:  Typical AceGen input.
Slika 4:  Tipi¢ni vhodni podatki za AceGen.
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Fig. 5: Typical automatically generated subroutine in FORTRAN and C language.
Slika 5:  Tipi¢na avtomatsko generirana subrutina za jezika FORTRUN in C.

2.4 Abstract symbolic formulations in computational mechanics

The true benefit of using symbolic tools is not about the development of a theory
which is normally done manually on a sheet of paper using a pencil, or if a computer
shall be used a simple word processor is adequate for such task. The advantage of the
symbolic approach in computational mechanics becomes apparent only when the
description of the problem, which means that the basic equations are written down, is
appropriate for the symbolic description. Unfortunately, some of the traditional
descriptions used in computational mechanics are not appropriate for the symbolic
description. The symbolic formulation of the computational mechanics problems often
differs from the classical one and thus brings up the need for rethinking and
reformulating known and traditional ways. Despite that, there exist strong arguments

why at the end symbolic formulations are indeed beneficial, i.e.:
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A symbolic formulation is more compressed and thus gives fewer
possibilities for an error.

- Algebraic operations, such as differentiation, are done automatically.
- Automatically generated codes are highly efficient and portable.

- The multi-language and multi-environment capabilities of symbolic
systems enable generation of numerical codes for various numerical
environments from the same symbolic description.

- An available collection of prepared symbolic inputs for a broad range of
finite elements can be easily adjusted for the user specific problem
leading to the on-demand numerical code generation.

- The multi-field and multi-physic problems can be easily implemented.
For example, the symbolic inputs for mechanical analysis and thermal
analysis can be combined into a new symbolic input that would create a
finite element for fully coupled and quadratically convergent thermo-
mechanical analysis.

For example, the standard formulation (see e.g. Crisfield 1996, 1997, Hughes 2000,
Zienkiewicz, Taylor 2000a, Zienkiewicz, Taylor 2000b) of the tangential stiffness
matrix B’DB can be easily repeated using the symbolic tools. Having in mind that
element tangential stiffness matrix is either the jacobian of the resulting system of
discrete algebraic equations or the hessian of the variational functional, then the
automatic differentiation should be sufficient for obtaining the tangent matrix. The
work of implementing B'DB formulation and the efficiency of the resulting code is
inferior to the approach when tangent matrix is derived by the backward AD. The
latter approach requires, regardless of the complexity of the topology and the
material model, a single line of symbolic input. The standard B'DB formulation
would require much more input for the same result.

It should be pointed out that the symbolic differentiation is one of the algebraic
operations prone to severe expression growth and it can results even for relatively
simple nonlinear elements in hundreds of pages of code. Thus, the use of hybrid
system (e.g. AceGen) that combines the symbolic tool with the automatic
differentiation technique is essential for the high abstract symbolic formulation of FE
models. To increase the numerical efficiency of the generated code and to limit the
physical size of the generated code, it is essential to minimize the number of calls to
automatic differentiation procedure. In backward mode of automatic differentiation
the expression SMSD[a,c]+ SMSD[b,c] can result in a code that is twice as large

and twice slower than the code produced by the equivalent expression
SMSDJa + b,c].



Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization. 31

Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

In this section, an abstract symbolic formulation is described, which is needed to
obtain the contribution of a single element to the internal force vector ¥ and to the
tangential stiffness matrix K. The variational functional approach and the weak form
approach are the two basic possibilities open for the derivation of variational

formulation of equilibrium equations and their linearizations.

A weak form approach is used for the derivation of a 2D quadrilateral finite element
formulation in Section 3.4.

2.5 Symbolic-numerical environment AceFEM

Within the work covered by the thesis the AceFEM package (Korelc 2007a) is used
for direct and sensitivity analysis. AceF’EM is a general finite element environment
designed to solve multi-physics and multi-field problems. It explores advantages of
symbolic capabilities of Mathematica while maintaining numerical efficiency of
commercial finite element environment. The main part of the package includes
procedures that are not numerically intensive such as processing of the user input
data, mesh generation, control of the solution procedures, graphic post-processing of
the results, etc. These procedures are written in Mathematica language and executed
inside Mathematica. The second part includes numerically intensive operations,a such
as evaluation and assembly of the finite element quantities (tangent matrix, residual,
sensitivity vectors, etc.), solution of the linear system of equations, contact search
procedures, etc. The numerical module exists in two versions. The basic version called
CDriver is an independent executable written in C language and is connected with
Mathematica via the MathLink protocol.

The alternative version called MDriver is completely written in Mathematica's
symbolic language. It has the advantage of using advanced capabilities of
Mathematica, such as high precision arithmetic, interval arithmetic, or even symbolic
evaluation of FE quantities to analyze various properties of the numerical procedures
on relatively small examples.

Both environments operate from Mathematica and they also have the same data
structures, functions, command language and input data (for details of the
environment see (Korelc 2007a, b)).

Direct and sensitivity analysis using AceF'EM is further explained in Chapter 3.
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3 DIRECT AND SENSITIVITY LIMIT LOAD ANALYSIS

In Chapter 2 the symbolic approach to computational mechanics was introduced and
all advances were outlined. In the present Chapter direct and sensitivity limit load
analyses is explained which are used later on within the procedure for the evaluation
of the most unfavorable imperfections (Chapter 4) as well within the limit load
optimization procedure (Chapter 5).

In Chapter 1 an overview was given over the history and the development of different
methods of sensitivity analysis. Although sensitivity analysis is used in many areas of
science and is by itself a major field of research in structural engineering, the scope of
the present work is mostly dedicated to shape optimization. For this reason
application to gradient based shape optimization will be studied. Accurate sensitivity
analysis with the use of symbolic approach, which is needed for correct gradient
shape optimization, will be presented.

3.1 Definition of ultimate states

For the limit load structural analysis, used for the limit load shape optimization, the
criteria for the limit load have to be defined. An ultimate state of a structure is
generally defined with the limit point of the equilibrium path. In real, imperfect
structures, this criterion proves unreliable because of possible exceeding of permissible
tolerances of displacements or deformations before reaching the limit point. It is
therefore necessary to additionally define the ultimate state of a structure. The
ultimate state can be defined as the lowest load factor obtained by the following
criteria (see Fig. 6):

a) The maximum load factor on the load-deformation curve (limit load).

b) The bifurcation load factor, before reaching the limit point of the load-
deformation curve (does not occur in the presented case).

c) The largest tolerable deformation, where this occurs during loading path
before reaching a bifurcation load or limit load.
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Load factor \

Largest tolerable _N
deformation

.
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Fig. 6:  Definition of ultimate states (EN 1993 1-5 2004).
Slika 6:  Definicija ra¢unskih mejnih stanj (EN 1993 1-5 2004).

When the first criterion of all criteria defined in Fig. 6 is reached on the load-

displacement curve, the equilibrium point is defined as the ultimate load. Throughout
the thesis ultimate load analysis is used.

3.2 Direct Analysis

Nonlinear mechanical problems can be in general classified into 4 categories shown in
Table 2:

Table 2:  Residual form of equations for mechanical problems.
Tabela 2: Ravnotezne enacbe za razli¢ne probleme v mehaniki.

Steady-state non-linear systems Y(a)=0
Transient non-linear systems ‘I’( a,a’ ) =0
Y(a,b) =0

Steady-state coupled non-linear systems ®(a,b) = 0
lI’(a,ap,b,bp) =

Transient coupled non-linear systems

oS O

®(a,a’b,b” ) =
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In the notation used, a represents a vector of global generalized displacement
parameters (displacements, rotations, enhanced mode parameters, etc.), b a vector of
unknown state variables defined for each integration point (plastic deformations,
hardening variables, etc.), a? a vector of generalized displacement parameters at the
end of previous time step, b? a vector of state variables at the end of previous time
step, ¥ a set of equilibrium equations, and ® a set of local plastic evolution
equations.

For an ultimate limit load structural analysis the consideration of geometrical and
material nonlinearity is mnecessary. According to terminology introduced by
Michaleris, Tortorelli and Vidal (Michaleris, et al. 1994), the formulation of the
system which has to be solved presents a nonlinear transient coupled non-linear
System.

A standard “arc-length” type continuation method is used for structural analysis (see

e.g. Crisfield 1996, 1997). Therefore, in structural analysis the equilibrium equations
are extended with load factor A as an additional variable and constraint ¢g. as an

additional equation imposed on the increments of generalized displacements.

The complete set of equations which need to be solved for each integration point and
for the whole structure can be written as:

_ {\If(a,ap,b,bp)}
U = =0

g.(aar)
®(a,a’,b,b?) =0 (7)

a={a\}
& = (a7, A7)

The general formulation of the fully implicit quadratically convergent direct analysis
is for our case presented in Fig. 7.
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Structural level

T (3, ba)) =0
ob 0P ob
*% %2 Pa  da
@K:%—\f
gKaa + ¥ =0
a:=a-+ Aa

Integration point level

&(b) =0
o

K==
¢ ob

sKab +®= 0
b:=b+ab

Fig. T: General formulation of direct analysis of transient coupled nonlinear problems.

Slika 7:  Splosna formulacija za direktno analizo tranzientnih povezanih nelinearnih problemov.

The actual form of the equations in Fig. 7 is for structural finite elements (trusses,
beams, shells etc.) well known and presented elsewhere. In all examples the simplest
form of continuation methods, called “displacement controlled at a specific

variable” (Crisfield 1996, 1997), was used. In this case the following displacement
increment constraint equation g, is used:

gc = Uy, _71_Lm (8)

where u,, is the actual and u,, the prescribed m-th scalar component of a generalized
displacement vector a. Parameter <y is used to parameterize the direct analysis. As
soon as one of the criteria for the ultimate load presented in section 3.1 is reached,
the analysis is stopped and the ultimate load is determined.
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3.3 Sensitivity Analysis

Design sensitivity analysis is used to compute a rate of performance measure change
with respect to the system design parameters variation. In structural engineering
problems the system performance measure can include any quantity that may be
used to characterize system behavior, such as displacements, stress, strain, energy,
buckling or limit load, frequency response, weight, etc. The dependence to design
parameters such as material property, sizing, shape and configuration parameters is
in general implicitly defined by the laws of mechanics. Rarely, in the case of simple
problems, there exists an explicit relation (see e.g. Choi, Kim 2005a).

Sensitivities are obtained by derivation. The level of derivation effort required differs
drastically in dependence of the nature of the problem and the approach used to
evaluate sensitivity. The four general categories of mechanical problems were
presented in Table 2.

The derivation of sensitivity terms is significantly more complex for nonlinear
systems than linear which will not be addressed here. For transient systems an
additional dependency on time has to be considered in the derivations. Further
complexity is gained with the choice of design parameters. In the case of sizing or
material optimization (e.g. beam cross-section, shell thickness, elastic modulus etc.)
the design variables appear explicitly in the variational equations, where in the case
of shape optimization the design variables gain an implicit relation to the variational
equations. If using FEM for structural analysis, a change in shape design variables
implies a change in the finite element model. The dependency of design variables with
respect to the coordinates of finite element nodes presents the main difficulty in
evaluating sensitivity analysis.

The limit load structural shape optimization leads to a transient coupled nonlinear
system of equations where geometrical and material nonlinearities are taken into
account. The difficulty of sensitivity expression derivation was an encouragement to
use a symbolic-numeric approach which is thoroughly explained in Chapter 2.

The sensitivity analysis based on direct differentiation method (Michaleris, et al.
1994) is used to evaluate the sensitivity of the objective function fwith respect to the
shape parameters ¢. Due to the transient nature of the problem, the sensitivity
analysis has to be evaluated at the end of each time step and integrated through the
whole analysis. The corresponding equations are presented in Fig. 8.
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Structural level

¥ (a,a’,b ,b"¢ )=0
Da _ D%
*“ D¢ D¢
D¥ Da’  D¥ Db’  DW¥
Da? D¢ ~ Db? D¢ D¢

DW DW .

T | =22 (K

Dé Db(‘I> )

D® D® Da? DV Da?

+ +
D¢ = Da” Dy ~ Da? D¢

Integration point level

®(a ,a’,b ,b") =0

Db D®
‘I)D_Gb_[)_gb
D®Da

pe | DaDé
Dé | D® Da? D@ Db’

+

_l_
Da? D¢ ~ Db’ D¢

Fig. 8:  General formulation of shape sensitivity analysis of transient coupled nonlinear problems.

Slika 8:  Splosna formulacija za ob¢utljivostno analizo tranzientnih povezanih nelinearnih problemov.

The evaluation of the underlined term in Fig. 8 requires the derivatives of the finite
element node coordinates with respect to shape design parameters (¢). The term is

usually called “design velocity field” and is required as input for the sensitivity
analysis (Korelc, Kristani¢ 2005).
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3.3.1 The Analytical Design Velocity Field

As pointed out before, the most important part of the process of evaluating shape
design sensitivity needed in structural gradient based shape optimization is
constructing the design velocity field.

The purpose of design velocity field (0X / 0¢) is to characterize the changes of the
finite element nodal point coordinates (X) with respect to the changes of arbitrary
design parameters (¢). While the design derivatives of the finite element quantities
(residual, tangent matrix, etc.) can be constructed by automatic procedures (Korelc,
Kristani¢ 2005), this is not true for the design velocity field. Within standard
approaches to finite element mesh generation, either with specialized preprocessors or
with CAD tools, there exist no explicit relations between the position of the finite
element nodes and the shape design parameter.

The problem of constructing the design velocity field has therefore attracted a lot of
attention and various approaches have been proposed (Chang, et al. 1995, Hansen, et
al. 2001, Hardee, et al. 1999, Jang, Kim 2005, Kegl 2000). The simplest approach is
to evaluate derivatives numerically by the finite difference method. However, the
method is prone to large errors for a certain type of shape sensitivity problems.
Alternatively, the domain of the problem can be divided in smaller parts, termed the
design elements, for which analytical design velocity field can be derived and then
evaluated at the positions of the finite element nodes. The approach fails when the
design parameter relates to some global measure of the structure for which explicit
relations to parameters of the design elements are hard to derive.

The symbolic-numeric approach is used for the evaluation of the design velocity field
by general computer algebra system Mathematica (Wolfram 2008) and the dual
symbolic-numeric FEM environment AceFEM (Korelc 2007a). Symbolic systems can
deal with arbitrary formulae. Thus, if the particular shape parameter is kept in
symbolic form during the model description and mesh generation, then the nodal
coordinates of the mesh will be an explicit function of the parameter involved. The
design velocity field is then obtained by the direct differentiation of the symbolically
parameterized mesh by a single command for symbolic derivation, as can be seen in
the next example.

3.3.1.1  Example

A simple cantilever structure modeled by 2D elasto-plastic finite elements is
considered where the shape is parametrized with 3 shape parameters as shown in Fig.
9. In Fig. 10 the input data for AceFFEM are presented.
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Py P ¢
2. 3 6 9 12 15
2 4 6 8
2 5 8 11 14
1 3 5 7
1 4 7 10 13
L
Fig. 9: Geometry of cantilever with marked node numbers and shape parameters.
Slika 9:  Geometrija konzolne konstrukcije z oznacenimi vozlis¢i in parametri oblike.
in[63]:= << ACeFEM™;
L =40;
H=20;
T= 1;
fy = 23.5;
Em = 21000;
intord = 3;
Ng¢ = 3;

¢ = Table[ToExpression["¢" <> ToString[i]], {i, N¢}]

SMTInputData["CDriver™];

domains = {{"Domainl", "ElastPlast2DSens", (T, Em, 0.3, fy}}, {"Load", "SurfaceLoadGConst", {0, -1, T}},
{"PrescDispl", "PrescribedDispl2DY", {1}}};

SMTAddDomain[domains];

SMTAddEssentialBoundary[{"X" = 0&, 0, 0}];

SMTMesh["Domainl", "Q1", (4, 2}, {Table[{(i-1)L/ (Np-1), -(H/2+H/2¢[[i1]1)}, {i, No}1,
Tabler{(i-1yL/ (Ng-1), (H/2+H/2¢[[111)}, {i, N¢31}, "InterpolationOrder" » intordj;

¢init= {0, 0, 0};
srch = MapThread [Rule, {¢ // Flatten, ¢init// Flatten}];
SMTAnalysis["SearchFunction" » (# /. srché&)1;

Fig. 10: AceFEM input data for the structure illustrated in Fig. 9.
Slika 10: AceFEM podatki za konstrukcijo iz slike 9 .

The node coordinates can be kept in symbolic form. In the example the three chosen
parameters ¢;, ¢ and ¢; define the upper and the lower boundary line which is

defined by an arbitrary spline function. In Fig. 11 and Fig. 12 the node coordinates in
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symbolic form are shown with respect to the use of a linear and quadratic spline

function.
Node Number |X coordinate Y coordinate
1 0 10. +1. (10. ¢1 -10. ¢2) +10. ¢2 +
1. (-20. -1. (10. 1 -10. ¢2) - 20. ¢2 + 1. (-10. ¢1 + 10. ¢2))
2 0 10. +1. (10. ¢1-10. ¢2) + 10. ¢2 +
0.5 (-20. -1. (10. ¢1 - 10. ¢2) -20. $2+ 1. (-10. ¢1 + 10. ¢2))
3 0 10. +1. (10. ¢1 - 10. ¢2) +10. ¢2
10. 10. + 0.5 (10. ¢1 - 10. ¢2) +10. ¢2 +
1. (-20. -0.5 (10. ¢1 -10. ¢2) - 20. $2 + 0.5 (-10. ¢1 + 10. ¢2))
5 10. 10. + 0.5 (10. ¢1-10. ¢2) + 10. ¢2 +
0.5 (-20. -0.5 (10. ¢1 - 10. ¢2) - 20. $2+ 0.5 (-10. ¢1 + 10. ¢2))
Out[88]= 6 10. 10. + 0.5 (10. ¢1-10. ¢2) + 10. ¢2
7 20. 10. +1. (-20. - 20. ¢2) + 10. ¢2
8 20. 10. + 0.5 (-20. -20. ¢2) + 10. ¢2
9 20. 10. + 10. ¢2
10 30. 10. + 0.5 (10. $2 - 10. ¢3) +10. ¢3 +
1. (-20. -0.5 (10. ¢2 -10. ¢3) - 20. 3 + 0.5 (-10. ¢2 + 10. ¢3))
11 30. 10. + 0.5 (10. ¢2-10. ¢3) + 10. ¢3 +
0.5 (-20. -0.5 (10. ¢2 - 10. ¢3) - 20. ¢3+ 0.5 (-10. 2 + 10. ¢3))
12 30. 10. + 0.5 (10. ¢2-10. ¢#3) +10. ¢3
13 40. 10. +1. (-20. - 20. ¢3) + 10. ¢3
14 40. 10. + 0.5 (-20. -20. ¢3) + 10. ¢3
15 40. 10. +10. ¢3

Fig. 11:  AceFEM node coordinates for linear boundary shape approximation.

Slika 11: Koordinate vozlis¢ z linearno interpolacijo parametrizirane mreze v AceFEM.

Node Number |X coordinate Y coordinate
1 0 10. +1. (10. ¢1 -10. ¢2) +10. ¢2 +
1. (-20. -1. (10. ¢1-10. ¢2) - 20. ¢2 + 1. (-10. ¢1 + 10. ¢2))
2 0 10. + 1. (10. ¢1-10. ¢2) + 10. ¢2 +
0.5 (-20. -1. (10. ¢1 - 10. ¢2) -20. $2+ 1. (-10. ¢1 + 10. ¢2))
3 0 10. +1. (10. ¢1 - 10. ¢2) +10. ¢2
10. 10. +10. ¢2 -

0.25 (-2. (10. ¢1-10. ¢2) + 0.5 (2. (10. 1 -10. ¢2) + 1. (-10. ¢1 +10. ¢3))) + 1. (-20. -
20.$2-0.25 (-2. (-10. ¢1 + 10. ¢2) + 0.5 (2. (-10. ¢1 +10. ¢2) + 1. (10. ¢1 -10. ¢3))) +
0.25 (-2. (10. ¢1 -10. ¢2) + 0.5 (2. (10. ¢1 -10. ¢2) + 1. (-10. 1 + 10. ¢3))))

5 10. 10. +10. ¢2 -

0.25 (-2. (10. ¢1 -10. ¢2) + 0.5 (2. (10. ¢1 - 10. ¢2) +1. (-10. ¢1 + 10. ¢3))) + 0.5 (-20. -
20. ¢2-0.25 (-2. (-10. ¢1 + 10. ¢2) + 0.5 (2. (-10. ¢1 +10. ¢2) + 1. (10. ¢1 - 10. ¢3))) +
0.25 (-2. (10. ¢1 -10. ¢2) + 0.5 (2. (10. ¢1 -10. ¢2) + 1. (-10. ¢1 + 10. ¢3))))

Out[74]= 6 10. 10. +10. ¢2-0.25 (-2. (10. ¢1-10. ¢2) + 0.5 (2. (10. ¢1-10. ¢2) +1. (-10. ¢1 + 10. ¢3)))
7 20. 10. +1. (-20. - 20. ¢2) +10. ¢2
8 20. 10. +0.5 (-20. -20. ¢2) +10. ¢2
9 20. 10. + 10. ¢2
10 30. 10. -

0.25 (-0.25 (-2. (10. ¢1 - 10. ¢2) + 2. (10. ¢2-10. $3)) - 2. (10. ¢2 - 10. ¢3)) + 10. ¢3 + 1.
(~20. +0.25 (-0.25 (-2. (10. ¢1 -10. ¢2) + 2. (10. $2 - 10. ¢3)) - 2. (10. ¢2 - 10. ¢3)) - 20.
$3-0.25 (-2. (-10. ¢2 + 10. $3) - 0.25 (-2. (-10. ¢1+10. ¢2) + 2. (~10. ¢2+10. ¢3))))

11 30. 10. -
0.25 (-0.25 (-2. (10. ¢1 - 10. ¢2) + 2. (10. $2-10. ¢3)) - 2. (10. ¢2 - 10. ¢3)) + 10. $3 + 0.5
(~20. +0.25 (-0.25 (-2. (10. ¢1 -10. ¢2) + 2. (10. ¢2 - 10. ¢3)) - 2. (10. ¢2 - 10. ¢3)) - 20.
$3-0.25 (-2. (-10. ¢2 + 10. ¢3) - 0.25 (-2. (~-10. ¢1+10. ¢2) + 2. (~-10. ¢2+10. ¢3))))

12 30. 10.-0.25 (-0.25 (-2. (10. ¢1-10. ¢2) +2. (10. $2-10. ¢3)) - 2. (10. ¢2 - 10. ¢3)) + 10. ¢3
13 40. 10. +1. (-20. - 20. ¢3) +10. ¢3

14 40. 10. + 0.5 (-20. - 20. ¢3) +10. ¢3

15 40. 10. + 10. ¢3

Fig. 12:  AceFEM node coordinates for quadratic boundary shape interpolation.

Slika 12: Koordinate vozlis¢ s kvadratno interpolacijo parametrizirane mreze v AceFEM.
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The design velocity field can easily be computed with the use of symbolic derivation
function (D[ ]) in Mathematica, as shown in Fig. 13 and Fig. 14.

inft101:= Map[D[NodeCoordinates, #]1 &, {¢1, ¢2, $3}]

out[110= {{{0, 0, -10.}, {0, O, O.}, {0, O, 10.}, (O, O, -3.75}, (0,0, O.3, {0, O, 3.75}, {0, O, O},
{0, o, 03, {0, O, 03, {0, O, 1.25}, (O, O, 0.3, (O, O, -1.25;, (O, O, O}, {0, 0O, O}, {0, 0, O}3,
{{0,0,0.3, {0,0,0.y, (0,0,0.}, (0,0, -7.5}, {0, 0,0.3, {0, 0, 7.5}, (0,0, -10.3},
{0, 0, 0.3, {0, 0, 10.3, (0,0, -7.5}, {0,0,0.3, {0, O, 7.5}, (O, 0, O}, {O, 0, O}, {O,0, 03},
{{o0, o, 0y, {0, 0, 0y, ¢O, 0, 0}, (O, O, 1.25}, {0, 0,0.}, {0, O, -1.25}, (O, O, O}, {0, O, O},
{0, 0, 0y, (0, 0, -3.75}, (0, 0,0.3, {0, 0, 3.75}, {0, 0, -10.3, {0, 0, 0.}, {0, 0, 10.}}}

Fig. 13: Design velocity field by symbolical derivation of FE node coordinates for the case of linear
interpolation between shape parameters.

Slika 13: Polje zacetnih obcutljivosti izra¢unano s simboli¢nim odvajanjem koordinat vozlis¢ mreze
kon¢nih elementov za primer linearne interpolacije mreze med parametri oblike.

inf93:= Map [D[NodeCoordinates, #] &, {¢1, ¢2, ¢3}]

out93= {{{0, 0, -10.}, (0, 0, 0.3, {0, O, 10.}, (0,0, -5.3, (0,0, 0.}, (0,0, 5.}, {0, 0, O},
{0, 0, 0y, 0, 0, Oy, {0, 0O, Oy, {0, O, O}, {O, O, O}, (O, O, O}, {0, 0, 0}, {0, O, 0},
{{0,0,0.3, {0,0,0.3, (0,0,0.3, {(0,0, -5.}, {0, 0,0.3, {0,0,5.3, (0,0, -10.3},
{0,0,0.3, {0, 0, 10.3, (0,0, -5.3, {0,0,0.}, {0, O, 5.3, {0, 0,0}, {0,0,0}, {0,0, 03},
{{0, 0, 03, {0, 0, 03, {0, O, 03, {0, o0, 0y, {0, 0,0y, {O, 0,0y, {O,0, O}, {O, 0, O},
{0, 0, 0, (0,0, -5.3, {0, 0,0.}, {0,0,5.}, {0, 0, -10.}, {0,0,0.3, {0, 0, 10.}}}

Fig. 14: Design velocity field by symbolical derivation of FE node coordinates for the case of
quadratic interpolation between shape parameters.

Slika 14: Polje zacetnih obcutljivosti izra¢unano s simboli¢nim odvajanjem koordinat vozlis¢ mreze
kon¢nih elementov za primer kvadratne interpolacije mreze med parametri oblike.

The design velocity field can be graphically represented as a scalar function. The 2~
coordinates do not depend with respect to design variables in the present example as
can be seen in Fig. 11 and Fig. 12. The y-coordinate dependence with respect to
design variables is plotted in Fig. 15 and Fig. 16 for the case of linear and quadratic
spline interpolation between shape parameters respectively.
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Fig. 15:

Slika 15:

Max.
10.

Min.
-10.

AceFEM

Graphical representation of the y component of the design velocity field for the case of linear
interpolation between shape parameters.

Grafi¢ni prikaz y komponente polja zacetnih obcutljivosti v primeru linearne interpolacije
mreze med parametri oblike.
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Fig. 16:  Graphical representation of the y component of the design velocity field for the case of
quadratic interpolation between shape parameters.

Slika 16: Grafi¢ni prikaz y komponente polja zacetnih ob¢utljivosti v primeru kvadratne interpolacije
mreZze med parametri oblike.

3.3.2 Exact sensitivity analysis

While the design velocity field can be defined and evaluated symbolically, the
numerical analysis done by computer algebra systems cannot keep up with the run-
time efficiency of programming languages such as FORTRAN and C. The key idea of
the used approach is to use a dual symbolic-numeric finite element environment.
Such environment (AceFEM) was introduced in Section 2.5. The whole procedure of
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the evaluation of analytical sensitivities is presented in Fig. 17 and can be applied on

problems with arbitrary complexity.

The sensitivity analysis is done on the basis of automatically derived finite element
code explained in Chapter 2. The general expressions for sensitivity analysis are given

in Fig. 8.
MODEL
DESCRIPTION
|
Numeric values for Design parameters
design parameters left in symbolic form

/
Numeric mesh generation Symbolic mesh generation
by CDRIVER by MDRIVER

v

Direct analysis &
Sensitivity analysis

Design velocity field )
0 NodeCoordinates

99 J

C N

Design sensitivity
9a
9¢

Fig. 17:  Flowchart of shape sensitivity analysis by dual symbolic-numeric FE environment.

Slika 17: Potek obcutljivostne analize s pomocjo simbolno numeri¢nega MKE okolja.

3.4 Symbolical formulation of general finite strain plasticity

For the representation of automatic derivation of internal force vector W and the
tangential stiffness matrix K the 4-node quadrilateral elastic-plastic finite element is
derived next.

Let a be a vector of generalized displacements parameters of the element, b a vector
of unknowns at Gauss point level and b” a vector of history values at Gauss point

level from the previous time step. The elasto-plastic problem is defined by a
hyperelastic strain energy density function W, a yield condition f and a set of

algebraic constraints to be fulfilled at Gauss point level ®(a,b,b”) that have to be

solved for unknowns b when the material point is in plastic state. In general, vector
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b is composed of an appropriate measure of plastic strains (or stresses in the small
deformation case), the hardening variables and the consistency parameter \ where ®
are composed of the corresponding set of discretized evolution equations that describe
the evolution of plastic strains and hardening variables and the consistency condition
f=20. The yield condition is evaluated for the trial state by freezing the state

variables as follows
f" = f(a,b?) (9)

The general algorithm for the abstract symbolic description of elasto-plastic problems

is presented in Fig. 18.
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summation over GA USS points
x = X(¢§) + u(a,g)
use AD exception of type B for coordinate transformation
ox

= X |oe :[83]*1
0X

o¢
irial :=7(a,b”)
f(ry <0 {b:=b"
local NEWTON loop
b = b?
repeat
_ 0%(a,b,b")

db
Ab := —A~'®(a,b,b?)
f(—rm‘”) >0 b:=b+ Ab
until |Ab| < TOL

b:=">b

define AD exception of type D for b

()

(") |op A-102(a,b,b?)
Oa

use AD exception of typeC

_ 0W(a,b)

| b
Oa 8(.):0

\US

ow
K.=—
Oa
end loop

Fig. 18:  Algorithm for the abstract symbolic description of elasto-plastic problems.

Slika 18: Algoritem za abstrakten simbolni zapis elasto-plasti¢nega problema.

Here b denotes a vector of the local unknowns at Gauss point level within the
iterative loop. A is a matrix that follows from the linearization of the nonlinear
equation set ®. The "basic equation of the symbolic plasticity" is written as:

v= 22 Q) (11)
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An efficient and accurate numerical solution of the corresponding coupled non-linear
system of algebraic equations requires a quadratically convergent numerical
procedure. For this the linearization of (11) is needed, which leads to the tangent
stiffness matrix. This matrix can be derived for a finite element by directly applying
the automatic differentiation procedure leading to

ow
K=— 12
%a (12)
Tangent stiffness matrix derived in this way is already "consistent" with the
algorithm used for plasticity. Hence no additional procedures to derive a consistent

tangent modulus are required.

The parts necessary for the abstract symbolic description are briefly summarized in
Fig. 19.

F, = FF,
C, = F'F,
J? = Det(C,)
W = g(tr(Ce) —3—In(J?) + %(J2 —1—1In(J?))
Cow OW
T =2F, 50 F;
tr(t)
=1-——"1
S T 3

a =2 /3\
f=+vVs-s—2/3(Y0+ Ha)
F, — enp(~Oy — N SR B = 0
f=0
b={F;"\;}

b? = {Fp 1 p}

P =

Fig. 19: Summary of the finite strain plasticity equations.

Slika 19: Povzetek enac¢b plasti¢nosti.

where C, is right Cauchy-Green tensor and F, is the deformation gradient. p and A
are the first and the second Lame's material constants and A, is the plastic
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multiplier. b and b” are the vectors of state variables at the current step and at the
end of previous time step, respectively.

3.5 Finite element models

In the work covered by the thesis 5 types of finite elements were used:

- 2D and 3D Point Load finite element

- 2D and 3D Line Load finite element

- 3D Truss finite element

- Quadrilateral, 4-node, elastic-plastic finite element

- 6-parameter, elastic-plastic, shell finite elements

All finite elements were derived and coded with the help of AceGen (Korelc 2007b).
The equations used in the general algorithm for the abstract symbolic description
shown in Fig. 18 for the used elements are summarized in Table 3. The load finite
elements are used only to apply load on the numerical model.
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Table 3:  Strain energies for the use in the Automatic differentiation exceptions.
Tabela 3: Izjeme pri avtomatskem odvajanju.

Element Equilibrium Equations on FE level
Point Load
Z,w, F,
Y,v,F
01 3u
v—P.—
P — point load 6a
X, u, F
Line Load
Z,w,F, o2
Y, v, F /
ou
. T= f 2har
1 g Oa
L
q - continous load
X, u, F
Truss
Z,w,F, o2
Y,v,F
4 1 ow
,/ W:f—ALOEmEQdL;\Il:f—dQ
1 2 Oa
L Q
X, u, F
2d quadrilateral
Y,v, Fy,
4 3
See Section 3.4
1
X, u, Fy 2
3d shell
Z,w,F,
Y, v, F 4 3
See references (Wisniewski, Turska 2000, 2001).
1
2
X, u, F
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3.6 Example

An example of sensitivity analysis of a single-storey steel building is presented. The
finite element model of the structure is shown in Fig. 20.

The model consists of the following parts:

- The main structure consists of four portal frames modeled by the four
node shell elements based on finite rotations, 6 parameter shell theory
combined with ANS and two enhanced modes for improved
performance (Wisniewski, Turska 2000, 2001)

- The purlins and braced system are modeled by large displacement truss
elements.

- Special “load” elements were generated to apply wind and snow loads.
The analytical shape sensitivity pseudo-load vector is derived for all elements by

direct differentiation method and with the use of symbolic code generation explained
in Chapter 2.
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Fig. 20: Finite element model for the one story building.
Slika 20: Model konstrukcije enoetazne hale.

In the example the angle of the roof (3) is used for the design shape parameter. Fig.
21 presents the typical symbolic form of the nodal coordinate generated by the
MDriver. Differentiation of the symbolically parameterized mesh with respect to 3
results in a design velocity field that is used within the sensitivity analysis
(Michaleris, et al. 1994). The sensitivity of the vertical displacement is presented in
Fig. 23. The results of analytical sensitivity analysis are then compared with the
results obtained by the finite difference method in Fig. 22. The finite differences are
computed considering a relative perturbation size of 9.5-10°, for which an optimal
perturbation size study has to be done. With the evaluated optimal perturbation size

finite differences coincide with the analytical method with an average relative error of
4-107,
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Fig. 21: Example of a nodal point coordinate in symbolic form.

Slika 21: Primer koordinat vozlis¢éa mreze kon¢nih elementov v simbolni obliki.

ST
<. 16 Y ==O== Analitic (elastic) |
< 14 + s«+X <+ Finite differeces (elastic)
12 + Analitic (plastic)
10 1 +«+X:+« Finite differeces (plastic)
8 | 3
6 1
4 +
21 e
0
0 10 20 30 40 50

Roof angle (3 [°]

Fig. 22: Comparison between analytic and FD method.

Slika 22: Primerjava analiti¢ne obc¢utljivosti in ob¢utljivosti po metodi kon¢nih diferenc.
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Fig. 23: Graphical sensitivity representation of the vertical displacement with respect to the roof
angle.

Slika 23: Grafi¢ni nac¢in prikaza obc¢utljivosti vertikalnega pomika glede na naklon strehe.
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4 INITIAL IMPERFECTIONS

4.1 Introduction

Limit load design optimization requires the use of imperfect geometry of a structure
in order to evaluate the correct limit load. While the imperfections are not known in
advance, a method has to be used which is capable of proper involvement of
imperfection effects. It is now well known that geometrical, structural, material and
load imperfections play a crucial role in the load carrying behavior, especially of thin
walled structures.

The determination of the “definitely worst” imperfection can be formulated as a
nonlinear optimization problem solved by one of the well-known nonlinear
optimization methods as explained in Section 1.2.3. It is doubtful that an approach
that requires a large number of fully nonlinear analyses could be used in everyday

engineering design in foreseeable future.

In the present work a computationally less expensive optimization method is
developed that would still retain the generality of the optimization based “definitely
worst” imperfection approach.

Geometrical, structural and material imperfections are considered by means of
equivalent geometrical imperfections. The basic idea of the approach is to replace the
nonlinear optimization problem with an iterative procedure that would involve only
linear optimization problems. Within the iteration the objective function for the
minimum ultimate load is constructed by the means of a fully nonlinear direct and
first order sensitivity analysis. Constraints on the shape and the amplitude of the
imperfections have to be taken into account. When carefully constructed, they remain
linear, thus enabling the use of efficient and readily available linear programming
algorithms for the solution of the corresponding optimization problem.

In the case where only the amplitude of the imperfections is constrained, numerical
studies show that the procedure tends to lead to significantly lower ultimate loads
than experimentally observed, as the result is associated with imperfection shapes
that are not necessarily technologically feasible. Therefore it is essential to take into
account realistic technological constraints on the shape and the amplitude of the
imperfections. In the present approach the imperfections are represented by a linear
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combination of base shapes with the base constructed from the sufficient number of
buckling modes augmented by the eigenvectors of the structure subjected to
“technological” boundary conditions and characteristic deformation modes. The
construction of the shape base requires the solution of several generalized eigenvector
problems and is done only once. The computational cost of each iteration is
equivalent to one full nonlinear analysis up to the ultimate load accompanied by the
nonlinear sensitivity analysis with respect to all base shapes and the solution of the
linear optimization problem. Thus the total computational cost remains within the
range that is acceptable for design procedures.

4.2 Optimization method for the determination of the most
unfavorable initial imperfection

4.2.1 Representation of imperfections

The applied initial imperfection shape with specified amplitudes has to represent a
change in the geometry of a structure in the most unfavorable way so that the
ultimate load of the imperfect structure is the smallest possible. The imperfections
are represented as a linear combination of the chosen base shapes within amplitude
ey prescribed by the principle of equivalent geometrical imperfections. Equivalent
geometrical imperfections include geometrical and structural imperfections.
Geometrical imperfections represent a general deviation from the perfect geometry.
Geometrical imperfections can be augmented to include structural imperfections that
are not included into the finite element model directly. Structural imperfections arise
from the manufacturing method, for example residual stresses produced by welding.

The geometry of an imperfect structure X is defined by:

N
X=X,+> al;, (13)
j=1
where X, is the initial perfect geometry, «; are the unknown shape parameters and

I'; are the base shapes. The unknown shape parameters «; are obtained as a

solution of the optimization problem. The base shapes can be chosen arbitrary, but
they have to be linearly independent in order to have a well defined minimum of the
corresponding optimization problem. The overall numerical efficiency of the
procedure strongly depends on the number of base shapes (N ). The obvious choice,
well explored by other authors (see e.g.Song, et al. 2004), are buckling modes (I'4) of
the structure obtained by initial buckling analysis. Alternative and cheaper to
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evaluate are the eigenvectors (I'?) of the initial elastic tangent matrix K,. The

kinematic boundary conditions for imperfections can be different than kinematic
boundary conditions of the structure. This can be observed in rigid support
connections where the member is usually considered clamped and it is not possible to
describe the support imperfections with the eigenvectors of the original structure. For
this purpose the base can be extended by eigenvectors (FC) of the elastic tangent
matrix K, of the same structure but with different kinematic boundary conditions.

In this way the technological imperfections can be added. Some authors have
observed (Schneider 2006, Schneider, Brede 2005, Schneider, et al. 2005) that
sometimes the most unfavorable imperfection resembles deformation shapes rather
than buckling modes. In order to reduce the total number of the necessary considered
base shapes, an additional set of deformation shapes (FD ) of the structure in elastic
and plastic range can be added. And finally, the set of shapes which are empirically
known to represent the worst imperfections for certain type of structures (I'?) can be
added. The total base I' is then in general composed of:

r-=r4yr?yrcyrPuyret (14)

The optimized imperfection shape (most unfavorable initial imperfection shape)
depends on the number of shapes included in the shape base and the density of the
finite element mesh. For reasonable results it is necessary to increase them
proportionally. With the increase of the considered shapes, the result converges to a
final shape. For practical reasons it is necessary to include at least that much
different shapes to allow including all local and global collapse mechanisms. The
shape of the most unfavorable initial imperfection changes with different loading
patterns, supporting conditions, changes in geometry or the amplitude of initial
imperfections. In this sense, the shape of the most unfavorable initial imperfection in
means of ultimate load of a structure has to be evaluated for every individual
structure separately and can not be generalized.

4.2.2 Description of the algorithm

In the presented approach a fully geometrically and materially nonlinear analysis is
used. When dealing with thin-walled structures with moderate thickness, it is
necessary to take geometrical and material nonlinearity into account. Since the
algorithm starts from the beginning with the imperfect structure, bifurcation points
usually do not occur prior reaching the limit point in a load-deformation curve. By
limiting the analysis to limit points one avoids tedious procedures involved in proper
determination, classification and sensitivity analysis of bifurcation points. Only stable
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equilibrium states have to be considered and no hypothetic states need to be taken in

account.

Within this method the most unfavorable initial imperfection shape is sought, defined
by the shape base I' and the shape parameters o at which the ultimate load will be
the lowest. Unknown shape parameters o are evaluated iteratively by an
optimization process. The iterative procedure for the k-th step can be written as:

Xy = Xj1 + AX;,
N

i=1
_ )
af = af ™+ Adf

_ N
Xi = Zaf T;
i=1

where X, is the imperfect geometry, Aa’ the increment of the imperfection
parameters, AX, the increment of the imperfection and X, the total imperfection.
The increment of the imperfection parameters in the k-th iteration Aaf is obtained

as a solution of the corresponding optimization problem described in Section 4.2.2.

The flowchart of the method is illustrated in Fig. 24. The algorithm starts with the
first base shape I';, normalized by the amplitude e;, as the initial guess X, for the

geometry of the imperfect structure:

SV |
aO = O; Aa? = maxl"l- N
0 i=1 (16)

X, =X, +Aaf T}

and then improves the solution by solving a sequence of optimization problems until

the convergence condition HAO(Z“ < tolerance is reached. Within each step of the

iterative procedure a fully nonlinear direct and sensitivity analysis of the structure
with imperfect geometry X, is performed followed by the formulation and solution of

the optimization problem.
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Fig. 24: Flowchart of the method for the determination of the most unfavorable initial imperfection.

Slika 24: Potek metode doloc¢itve najbolj neugodne zacetne nepopolnosti.
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The presented approach gives the advantage of use of arbitrary state of the art
optimization algorithms, as the optimization part is completely separated from the
direct and sensitivity analysis. An alternative approach would be performing a fully
coupled nonlinear optimization where the most unfavorable imperfection shape
parameters would be determined simultaneously within the direct and sensitivity
analysis. Such an evaluation is to authors experience not feasible for larger structural
systems at this time.

4.2.3 Formulation of the optimization problem

The ultimate load factor of the imperfect structure in k-th iteration A represents the
minimizing function, where the maximal amplitude of the total imperfection X, has

to be equal to or smaller than the amplitude of the prescribed equivalent geometrical
imperfections ey :

mln N
Aa (17)
C(Xk, 60) S 0

where C(X;,e))is a constraint function.

The decoupling of the direct analysis and optimization is achieved by expansion of
the ultimate state load factor A to a Taylor series around the ultimate state load

factor of the current imperfect geometry. The ultimate load factor is then written as:

o\
A=A Lt l - Aaf 18
: : Z[@Aa AakF=0 ! (18)
where A ok is the evaluated ultimate load factor of the structure and
ai':o
ON' . : : L
7 the sensitivity of the ultimate load factor with respect to optimization
8AO(Z A(X,L- =0

parameters Aaf in the current step. The minimizing function A’ in this instance is a
linear function. The constraining function, on the other hand, can be a highly
nonlinear function or a simple set of linear constraints, depending on way it is
defined. The employment of constraints (17) arises from the demand of the technical
standards (see e.g. EN 1090/2 2007) which specify requirements for execution of
structures or manufactured components of structures. The location of the point of
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maximal amplitude is unpredictable, which makes it very difficult to choose the
appropriate restraining function.

For small order problems (i.e. up to 5000 nodes) where nonlinear optimization
algorithms can be used, a simple norm of the total imperfection (Deml, Wunderlich
1997) gives satisfactory results. The norm that proved to be reliable for small order
problems is the L* vector norm with the exponent 2p. With the increase of the
constant p the norm limits to the maximal value of components of the total
imperfection vector X :

lim ||Xk|| = maX|Xk|;
2p—00 2p

. (19)

N 2p

(%)

J=1

Xy, =

The minimization problem (17) with inequality constraints can be solved by an
advanced penalty method or an extended Lagrange multiplier type method.

For large problems the necessity of a high exponent p of the L norm in order to
achieve the necessary accuracy makes the huge constraint function highly nonlinear
and the minimization problem difficult to solve. In this case it is necessary to define
a set of linear constraints for the maximal amplitude of the total imperfection vector:

‘)_(,2"‘ <¢ ...me[nl,ng,...,ncp], (20)

where n; is the index of the #th constrained component of the total imperfection

vector, 7N, is the total number of constrained components and ej" is the amplitude

value of the m-th constraint. In this way different constraint amplitudes can be
applied for parts of a structure, which is of high significance when dealing with
complicated structural systems where every part of the structure has its own
prescribed amplitude of equivalent geometrical imperfection. While the minimizing
function (18) and the set of constraints (20) are all linear, linear programming with
an advanced interior point algorithm can be applied for the fast determination of a

global minimum.
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4.2.4 Direct and sensitivity analysis

With the use of direct and sensitivity analysis of the imperfect structure under a real

ON
k

Q;

load the ultimate load factor A and its derivatives with respect to unknown

base shape parameters Aal are evaluated.

The structure is analyzed in accordance with the standard “arc-length” type
continuation method (see e.g.Crisfield 1996, 1997). Therefore, in direct and sensitivity
analysis the equilibrium equations are extended with load factor A\ as an additional
variable and constraint g. as an additional equation imposed on the increments of
generalized displacements. The general expressions are given in Section 3.2 and
Section 3.3. The limit load sensitivity analysis of the imperfect structure is in fact
equivalent to the standard shape sensitivity analysis and is done using the same
procedures described in Sections 3.2 and 3.3. The only open question is the design
velocity field.

Because of the way the imperfection shape is parameterized, the design velocity field
is easily obtainable, since the base shape I'; itself represents the design velocity field:

DT 9¥ X

Dacl  0X daal (21)
N k
x o X, +Zl Z()Aa;" T
dAaf “onal =% =T (22)

D
where I'; is the shape base, —— is the sensitivity with respect to shape parameters
Aal‘

and — the design velocity field used within the standard shape sensitivity

aAOzi
analysis.
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4.3 Numerical examples (Test Problems and Results)

To illustrate the proposed method, a simple example of a cantilever structure is
presented. Further on, more complex structures are analyzed to represent the
applicability of the proposed method to large scale models.

4.3.1 Elasto-plastic cantilever structure

The most unfavorable imperfection for a 2D cantilever structure is sought. The
structure is modeled by plane stress, finite strain, ideal elasto-plastic, 4-node
quadrilateral finite elements (Korelc 2002). On the free end, a horizontal force in
axial direction is applied (Fig. 25 (a)). The height of the cantilever is 2 cm and the
width is 1 cm. The elastic modulus has been taken as 210000 MPa and the yield
stress as 235 MPa. The Poisson ratio was taken as 0.3.

L=2m ——

A\

Lp

Fig. 25: Geometry and loading (a) and the logically most unfavorable shape without considering
technological constraints (b) for the cantilever beam example.

Slika 25: Geometrija in obtezbe (a) ter logi¢na optimalna oblika brez upostevanja tehnologkih pogojev

(b).

According to the method described in Section 4.2, the shape base is defined first. The
considered base consists of 20 buckling modes (T'*), 20 alternative boundary
condition shapes (I'C), and the shape of the plastic deformed structure (I'P) (see
Fig. 26). The alternative boundary condition shapes are evaluated as eigenvectors of
the linear elastic tangent matrix of a substitute system, which can give description of
the “technological” imperfections in the vicinity of the support. In order to achieve
that, the degrees of freedom have to be released to allow rotation of the structure in
the originally fixed support.
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Eigenvectors (alternative boundary conditions rc
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Buckling modes T'* and the plastic deformed shape T'°®

rf r4 r{ rs... rp
N=21 N=22 N=23 N=24... N=41

Fig. 26:  The shape base for the cantilever beam example.

Slika 26: Baza oblik za primer konzole.

The plastic deformed shape and the buckling modes are calculated in consideration of
the perfect initial geometry of the structure. The final shape base I' consists of 41
base shapes. In the optimization part of the process it is necessary to satisfy the
constraint conditions (17) which arise from the demand of the maximal amplitude of
the equivalent geometrical imperfections. In this example an equivalent geometrical
imperfection of L./250 is prescribed, where L is the length of the cantilever.

In general it is not necessary to constrain all nodes of the model. The constraint
equations in form of (20) taken in account were only connected to the center line and
longitudinal boundary lines of the cantilever beam. As a result, 401 constraint
equations connected to the center line considering the maximal initial imperfection

amplitude of eg =L/250 in y direction and 802 constraint equations from the
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boundary lines considering the maximal initial imperfection amplitude of

e = eé’ /100 in 2z direction were obtained. The constraints considering the

imperfection amplitude in x direction were necessary to exclude unfeasible results due
to the 2D finite element model used. The resulting minimizing function and all
constraint equations are linear. The standard linear programming procedure with an
interior point algorithm built in Mathematica was applied to solve the resulting linear
optimization problem within each iteration of the global iterative procedure described
in Section 4.2.

The logical most unfavorable initial shape which causes the structure to fail at
minimum load would be the one illustrated in Fig. 25(b). Such kind of imperfection
shape is not technologically feasible because of the sharp edges in it. The feasibility
issue can be eliminated by the employment of additional constraints in the
calculation of the most unfavorable initial imperfection. In the present simple
example it was not necessary to employ them explicitly as the shapes considered in
the shape base had such geometries that no sharp edges could be produced. The
maximal curvature was therefore implicitly controlled by the considered base shapes.
In Fig. 27 the calculated most unfavorable initial imperfection shapes and the
corresponding ultimate load factors are shown for different number of considered
shapes in the shape base.
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Num.ber of The most unfavorable initial imperfection
considered A
shapes geometry
!
5 — e 0.200
&
17 E s | 0. 197
10
29 _; e | 0.196
g
41 - | 0.194

Fig. 27:  Convergence to the most unfavorable shape by increasing the number of considered shapes
in the shape base (scale factor f;= 10).

Slika 27: Konvergenca najbolj neugodne oblike z vecanjem $tevila upostevanih oblik (faktor povecave
£= 10)

The shape and the amplitude of the equivalent geometric imperfections should be in
general chosen in such a way that it has the same effect on the load bearing capacity
of the structure as all relevant imperfections together.

The shapes and amplitudes for geometric imperfections can be chosen in accordance
with the manufacture tolerances (e.g. EN 1090/2 2007) although it is possible that
taking the amplitude of the considered initial imperfections equal to the manufacture
tolerances can lead to a too low characteristic resistance. This can be even more
pronounced where several different imperfections interact (Johansson, et al. 2007).
There is little information about equivalent geometrical imperfections for a general
structure found in existing technical standards.

In the present example a comparison has been made for the ultimate load factor of
the structure, considering different manually defined combinations of base shapes and
the calculated most unfavorable initial shape. In Table 4 there are ultimate load
factors (A,) shown for the cantilever structure with different initial imperfections
considered according to the specified combination methods. The contribution of the
chosen shapes from the shape base to the final result is represented by values of
parameters «;. The smallest calculated ultimate load factor resulting from the use of
various combinations of imperfection shapes is 0.219 for the combination method
[=0;+T j where the most unfavorable combination of two base shapes is
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considered. Other combination methods produce higher ultimate load factors. The
ultimate load factor of the structure obtained by the proposed method, taking the
calculated most unfavorable initial imperfect shape into account, is 0.194, which
results in a 11% smaller ultimate load with respect to other combination methods. If
the number of considered base shapes was increased, the corresponding most
unfavorable imperfection shape would lead to an even lower ultimate load factor. To
prevent the curvatures of the imperfection shape to exceed common values, the
number of considered base shapes 41 was chosen in this example.

Table 4:  Ultimate load factors for various initial imperfection shapes for the
cantilever beam example.
Tabela 4: Mejni obtezni faktorji za razlicne kombinacije obtezb za primer konzole.

Perfect geometry A= 0.366
Initial geometry according to recommended combinations of shapes:
Shape combination method Combination at minimal A, A,
[=T; i =41 0.268
[=T+T, i=1 j=41 0.219
} N
L=Ti+0.7) T i = 41 0.342
B
3 N
[=T;+I;+0.7) Iy i—1, j=41 0.343
=
Fr=— e
max‘l"‘

Most unfavorable initial imperfection by proposed method:

22097 T, + 106.6 T, + 898 Ty + 33.5 T, + 62.4 ;- 4.4 T,- 17.4 T+ 3.3 [y +
43Ty + 1.23 Tyy- 3.47 Ty, + 0.41 Tyy- 5.25 Tyy + 1.30 Ty, + 2.07 Tys- 0.04 Ty
+ 2.06 Ty;- 1.28 Tys + 0.28 Tyy+ 0.04 Ty 2310 Ty, - 3722 Ty + 1858 Ty - 762
T+ 0.71 Tps + 105 T+ 10.0 Ty 44.5 o 18.9 Ty + 4.2 Ty + 11.8 Ty, - 2.4
[g- 7.7 Tg3-0.9 - 35 Tg5- 1.8 g+ 1.3, + 4.6 54- 03I5-04T,,+ 0

r41

A, = 0.194
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4.3.2 Thin-walled T beam

Structures composed of thin—walled components in general prove a high degree of
imperfection sensitivity. The thin-walled girders in this section were modeled by
elasto-plastic four node shell elements based on finite rotations, 6 parameter shell
theory combined with assumed natural strain formulation and two enhanced strain
modes for improved performance (Wisniewski, Turska 2000, 2001).

The example refers to the ultimate load calculation of a simply supported thin-walled
beam with a T cross-section, loaded with a concentrate force at the mid-length. The
geometrical details and loads are presented in Fig. 28. The example was taken from
(Lanzo, Garcea 1996)

Cross FEM model
section 38
i
v =
- |V
O
1
ZW
Constraints

u[0,0,-32.5]=0
v[0,0, 32.5]=v[450,0, 32.5]
w[O0,y, z ]J=w[450,y, z ]

Load A

zZ,w 450 |

Fig. 28: Geometry, supporting and loading conditions for the thin-walled T beam example.

Slika 28: Geometrija, podpore in obtezba tankostenskega T nosilca.
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Fig. 29: Maximal allowable deviation from the perfect geometry used in the evaluation.

Slika 29: Najvecje dopustno odstopanje od popolne oblike pri izra¢unu.

Different constraint conditions (20) were used for the flange and the web of the
girder. The maximal amplitude of the equivalent geometrical imperfection for the web
was taken as H/200, where H is the height of the web and the amplitude for the
flange was taken as B/200, where B is the width of the flange. Within the
optimization problem (17) it was therefore necessary to define 3150 constraint
equations for the maximal initial imperfection amplitude perpendicular to the web
and 2025 constraint equations for the maximal imperfection amplitude perpendicular
to the flange. In this case, only the y-direction web components and the zdirection

flange components of the total imperfection vector Xk are constrained.

First the structure is analyzed considering the shape base I consisting of buckling
modes. In Fig. 30 the calculated limit load of the T-beam with increasing number of
base shapes is shown. The results show clear convergence of the calculated limit load.
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Fig. 30: The calculated ultimate load of the T-beam considering the evaluated most unfavorable
initial imperfection varying the number of base shapes.

Slika 30: Mejna obtezba T nosilca pri upoStevanju izra¢unane najbolj neugodne nepopolnosti pri
razli¢nem $tevilu oblik v bazi.

Furthermore the structure is analyzed by two different shape bases in order to assess
the influence of the chosen shape base on the numerical efficiency of the proposed
procedures. The first shape base (sbA) consists of 50 buckling modes (I'*) and two
deformation shapes (I'P) and the second (sbB) of 50 eigenvectors of the elastic
tangent matrix K, (T'®) and two deformation shapes (I'® ). In Fig. 31 the ultimate
load-deformation curves for the two cases are plotted. The difference in results
between the two cases is small and decreases with increasing the number of
considered shapes. In the present example the shape base composed of eigenvectors of
the elastic tangent matrix (sbB) turned out to be more appropriate than the shape
base composed of buckling modes (sbA), since a lower ultimate load was computed
with the same number of considered base shapes. The shape base (sbB) is used for
further analysis. The most unfavorable initial imperfection evaluated by the
presented approach for the shape base (sbB) and the corresponding deformed state at
collapse are presented in Fig. 32.
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Fig. 31: The load displacement curves considering various imperfection shape bases for the T beam
example.

Slika 31: Graf sila-pomik za T nosilec z upostevanjem razli¢nih baz oblik.
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Fig. 32: The most unfavorable initial imperfection shape of the T cross-section thin-walled girder (a)
and the corresponding deformed shape at collapse (b).

Slika 32: Najbolj neugodna zadetna nepopolnost za primer T nosilca (a) in pripadajoce stanje pri
limitni obtezbi(b).

Fig. 33 presents the convergence of the global iterative procedure for the considered
shape base (sbB). The result of the first iteration, where the first eigenvector is taken
for the initial imperfection, gives a good approximate to the final result. Only 9
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iterations were necessary to achieve convergence within tolerances and to determine
the most unfavorable initial imperfection.
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Slika 33:

Iteration

Convergence of the global iteration process of finding the most unfavorable imperfection
shape for the example with 52 base shapes.

Konvergenca globalnega iteracijskega procesa iskanja mnajbolj neugodne oblike z
upostevanjem 52 baznih oblik..

In Fig. 34 equilibrium paths calculated for various values of amplitudes of equivalent
geometrical imperfections are plotted. The e, is the maximal amplitude of the
equivalent geometrical imperfections perpendicular to the surface of the web with
height H and the e, is the maximal amplitude of the equivalent geometrical
imperfections perpendicular to the surface the flange with width B. The calculated
ultimate load depends to a large extent on the amplitude of the used initial
imperfection. The choice of the amplitude is therefore very important and a crucial
part for determining the most unfavorable initial shape. For the purpose of
comparison the equilibrium path calculated on a basis of the Koiters asymptotical
approach to nonlinear instability for the same example was taken from (Lanzo,
Garcea 1996).
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Fig. 34: Equilibrium paths for the T cross-section thin-walled girder.

Slika 34: Ravnotezne poti za primer T nosilca.

4.3.3 Thin-walled I beam

In the third example, the most unfavorable imperfection for a standard 8m long
HEA400 structural steel I beam is computed. The beam is fully rigidly supported at
the ends. The elastic modulus has been taken as 21000 kN/cm® and the yield stress as
23.5 kN/cm®. The Poisson ratio was taken as 0.3. The structure is modeled by the
same finite elements as in previous section.

A vertical line load is applied along the upper flange center line. The considered
shape base I consists of 58 eigenvectors of the elastic tangent matrix K, and 2

deformation shapes corresponding to the elastic deformed state and the plastic limit
state. The optimization problem includes 3111 constraint equations. All components

of the total imperfection vector X, are constrained with the amplitude e, = H /200,

where the height of the cross-section H = 39cm (see Fig. 35).
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Fig. 35: Maximal allowable deviation from the perfect geometry used in the evaluation.

Slika 35: Najvecje dopustno odstopanje od popolne oblike pri analizi.

In Fig. 36 equilibrium paths are plotted for various combinations of imperfection
shapes taken from I'. Shapes and combinations of shapes considered are:

a) initial imperfection in the shape of elastic deformed shape,

b) initial imperfection in the shape of the plastic deformed shape,

c¢) combination of two shapes I'; +T';,

N

d) combination of all shapes in form I'j +-T'; +0.7 Z Iy,
k=1;k=i,]j

e) computed most unfavorable initial imperfection shape for shape base T .

In the case (c) as in the case (d) the minimum limit load calculated was achieved for
i =34 and j=37. All considered initial imperfection shapes were normalized by the

value of the equivalent geometrical imperfection amplitude e, for the purpose of

comparison.
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Fig. 36: Ultimate load deformation curves for different initial imperfect geometries with the same
amplitude for the I beam example.

Slika 36: Mejne krivulje za razlitne oblike zacetnih nepopolnosti z enako amplitudo za primer I
nosilca.

The corresponding imperfect geometries are plotted in Fig. 37. For case (e) two load
curves are plotted belonging to the first iteration of the global iterative procedure and
the final converged state. The various recommended combinations of shapes (a-d)

result in significantly higher limit load when compared to the ultimate load obtained
by the new approach.
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Fig. 37: Initial imperfect geometries used in analyses according to Fig. 36.

Slika 37: Prikaz za¢etnih nepopolnosti.

4.3.4 Thin-walled Cylinder

Among all thin-walled structures axisymetric structures (e.g. spheres and cylinders)
prove to have the highest imperfection sensitivity. Several papers deal with the
problem of finding the initial imperfection connected to the lowest ultimate load of
cylindrical structures (Schmidt 2000, Schneider 2006, Schneider, Brede 2005,
Schneider, et al. 2005, Schranz, et al. 2006, Song, et al. 2004). In the early stages of
imperfection studies on cylinders, the analogy to column and plate buckling was
considered appropriate and therefore the imperfection affine to the lowest eigenmode
was taken as the worst initial imperfection. Recent studies dealing with the direct
determination of the worst initial imperfections suggest that single dimple
imperfections may be worse than eigenmode-affine patterns covering the whole
structure (Wunderlich, Albertin 2000, 2002).

In the present example an axially compressed cylinder is studied Fig. 38. The cylinder
is fully rigidly supported at z=0 and free at z=H.
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Fig. 38: Geometry of the axially and transversely loaded cylinder.

Slika 38: Geometrija osno in pre¢no obremenjenega cilindra.

After the convergence study, the shape base was chosen that consists of 68 shapes
including 59 eigenvectors (I'®) of the elastic tangent matrix K,, 7 buckling modes
(T'*) and 2 deformation shapes (T'°) corresponding to the elastic deformed state and
the plastic ultimate state. Technical standards (EN 1993 1-6 2006) prescribe the
maximal amplitudes for the equivalent geometrical imperfections for cylindrical
structures. In the present example the maximal amplitude of the equivalent
geometrical imperfections perpendicular to the cylinder wall was taken as e; = 1.22t

as for class A fabrication tolerance quality.

In order for the constraints to remain linear and to preserve the possibility of using
linear optimization methods the projection of the imperfection vector
X" ={>ZQ,>?9,>?Z”} in the n-th node in the radial direction was chosen to be

bounded. The resulting optimization problem includes 2888 linear constrained

equations of the form ‘)_(”.r”‘ﬁeo, where r" stands for a unit vector in radial
direction. Additionally, the z component of the nodal imperfection was constrained

< % — 0.12t. In this way

each node of the perfect mesh can move to its imperfect location by 1.22t in radial

direction of the x-y plane and by 0.12t in z direction. The optimization problem was

by 2888 linear constrained equations of the form ‘X' 7

solved using linear programming with an advanced interior point algorithm. Imposing
constrain equations directly in radial direction would result in a nonlinear

optimization problem that would be difficult to solve.
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In Fig. 39 the most unfavorable initial imperfection calculated considering 68 base
shapes for the cylindrical structure is presented. The load-displacement curve for the

point at coordinates (0,-R,H) is plotted in Fig.

40. The corresponding deformation

state at limit load is illustrated in Fig. 41. Further on, a fold line for the calculated
most unfavorable imperfection shape was computed and is presented in Fig. 42.
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Fig. 39:

Most unfavorable initial imperfection for axially and transversely loaded cylinder considering
the imperfection amplitude R/165. Scale factor f,=

10.

Slika 39: Najbolj neugodna zacetna nepopolnost pri amplitudi nepopolnosti R/165.
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Load displacement curve considering the most unfavorable initial imperfection.

Slika 40: Krivulja sila-pomik z upostevanjem izra¢unane najbolj neugodne zacetne nepopolnosti.
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Fig. 41: Deformation state at limit load.

Slika 41: Deformacijsko stanje v mejnem stanju.

eyt
Fig. 42:  Fold line of the axially and transversely loaded cylinder.

Slika 42: Nosilnost v odvisnosti od amplitude zacetne nepopolnosti osno in pre¢no obremenjenega

cilindra.
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4.4 Partial conclusions

An effective method for evaluating the most unfavorable imperfection is presented.
Despite intensive research of theoretical, experimental and numerical aspects of
stability limit of imperfection-sensible structures, there is still no consensus on how
the ultimate state should be evaluated, owing to numerous difficulties which arise.
According to the results of the presented approach, it is difficult to characterize
certain structures with certain types of imperfections. Every change in thickness,
geometry or loading conditions can lead to a drastic change of the worst imperfection
shape.

In complex structures where intuitive determination of initial most unfavorable
imperfections is not possible or where there is a lack of known empirically obtained
worst imperfections, the use of a method for determining the worst initial shape is
essential. Within the presented approach it is shown that with the use of geometrical
and material nonlinear direct and sensitivity analysis of imperfect structure combined
with optimization it is possible to directly evaluate the imperfection shape of a
structure, at which the ultimate load of the structure is the smallest. Additionally,
the method is not limited to the linear natural equilibrium path and small
imperfections and allows introduction of various constraints on the shape of the

initial imperfection.

The direct determination of the worst imperfection shape results in a highly nonlinear
global optimization problem. Unfortunately, no truly effective optimization algorithm
exists for the global optimization of problems where the numerical cost of the
minimizing function allows only a small number of repetitions. Thus, depending on
an initial guess for the worst imperfection shape, the obtained worst imperfection
shape can correspond to the local minimum of the limit load rather than a global
minimum. A natural choice for the initial guess is the imperfection affine to the

lowest buckling mode.

In the present approach, the imperfections are represented by a linear combination of
base shapes with the base constructed from the subset of buckling modes augmented
by the eigenvectors of the structure subjected to “technological” boundary conditions
and characteristic deformation modes. The decision to include the base shapes that
are not consistent with the kinematic boundary conditions of the problems should be
based on technological considerations. With the increasing number of base shapes,
the discretization error of the description of the worst imperfection shape approaches
the discretization error of the underlying finite element mesh. This ensures the
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convergence of the method with mesh refinement and increasing number of base
shapes to at least a local worst imperfection shape.

Because of the high unpredictability of the imperfection forms, the technical
standards for designing thin-walled structures recommend to use empirical methods
to define initial imperfections used for nonlinear analyses. The ultimate loads of
structures evaluated in accordance with the method presented turned out to be
smaller than the ultimate loads considering various combinations of imperfections
prescribed by the technical standards or calculated with approaches based on Koiters
asymptotic theory or parametric studies. It can be concluded that these methods may
lead to too optimistic results. On the other hand, the probability of the real structure
imperfections to take the exactly most unfavorable form is very low. However, the
information about the structures lowest limit load due to initial imperfections is of
high importance when analyzing structures. Usually imperfection analyses with a
great number of repetitions are done to determine which combinations are
unfavorable. Despite the effort it is still very hard to determine how the limit load is
lowered by the gathered imperfection shapes in comparison with the most
unfavorable ones. In this sense it is possible to establish that the consideration of
imperfections in a geometrically and materially nonlinear analysis is a task where a
holistic method for finding the worst imperfection is indispensable.

The importance of the ability to evaluate the most unfavorable equivalent
geometrical imperfections as presented in the thesis is further stressed out in the next
chapter where it is used to optimize the shape of the structure in such a way that it
has a minimum volume considering all optimization constraints and in the same time
it is optimized to be at least sensible to initial imperfections. This represents a
convenient way to properly optimize the shape of imperfection sensible structures.
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5 LIMIT LOAD DESIGN SHAPE OPTIMIZATION

In the present chapter a limit load shape optimization method will be presented using
an analytical sensitivity analysis introduced in Chapter 3 with consideration of the
most unfavorable initial imperfections presented in Chapter 4.

5.1 Introduction

The purpose of structural design problems is to find the best design among all
possible candidates. For this reason, the design engineer has to specify both the
candidates and the best design. To satisfy the problem constraints, the candidates
have to exist in a feasible region, where all candidates are acceptable. The most
appropriate design is usually the one that minimizes or maximizes different objective
functions, such as for example weight, cost, deformation energy, frequency response,
manufacturing or other technical requirements. In engineering design the mechanical
laws are applied to determine the structural response while the loads, geometry and
boundary conditions are given. When it comes to optimization design, the process has
to be reversed and the load, material, topology or shape, etc. have to be determined
for the required structural response.

Basically, structural optimization can be divided into material optimization (MO),
shape optimization (SO) and topology optimization (TO), depending on what is
varied in the optimization process. This includes configuration and size optimization
for discreet modeled structures. For the best results different approaches can be
combined. An effective way is to combine topology optimization (determination of
material distribution) and shape optimization (determination of the boundary shape).
While TO is mostly used to define the general geometrical layout, SO can be used to
additionally define the boundaries, as TO is mostly applied on a very coarse
discretization mesh (see e.g. Chang, Tang 2001, Schwarz, et al. 2001, Tang, Chang
2001). Additionally, it is possible to apply SO by subsequently adding holes with
parameterized boundaries into the initial geometry. In this way it is possible to
optimally distribute the material with exact boundaries essentially performing TO.
Even though this approach is rather of subjective nature, it is very effective in
practical design. The current work deals mostly with SO based on the supposition
that the basic geometric layout is known or prescribed, either by manufacturing
limitations, cost, aesthetic or serviceability demands.
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5.2 Shape Optimization

Structural optimization approaches to shape optimization can be classified into three

categories:

- Evolutionary approach
- Optimality criteria

- Mathematical programming

The basic purpose of an optimization algorithm is to minimize the objective function
and to find a feasible result at minimum computational cost. Regardless the approach
used, optimization is done by some sort of iteration process. Application in structural
engineering FEM modeling by considering geometrically and materially nonlinear
structural response including most unfavorable initial imperfections requires a fair
amount of computational time in the case of larger structural systems, even for a
single iteration. The approach used for nonlinear structural design optimization
therefore has to include a strategy allowing minimum number of iterations used for
the determination of the optimum result.

Numerous approaches have been used for nonlinear structural optimization. The use
of the more sophisticated “smart” mathematical programming approaches requires
computation of sensitivities needed for the mathematical treatment of the
optimization problem. For the success of the optimization algorithm the sensitivities
have to be evaluated exactly as described in Chapter 3. While this is a
computationally demanding task, many other methods belonging to all three
categories of optimization approaches have been developed in order to avoid the

evaluation of sensitivity information.
5.2.1 Evolutionary and Optimality Criteria approaches

The category of evolutionary approaches covers many different heuristic approaches
which take their inspiration from nature, such as Genetic Algorithms and Evolution
Strategies. Modern approaches in this field include Swarm Optimization such as
Particle Swarm Optimization and Ant colony optimization. Based on Darwin’s
evolutional theory and the principle of the survival of the fittest all these approaches
have one thing in common: the stochastic search of the optimum result is improved
by strategies comparable to optimal processes discovered in nature. These methods
and other stochastic methods, like Simulated Annealing, will find a good solution
with high probability, but very little can be said about the mathematical properties
of the solution. It is not guaranteed to even be a local optimum. Although far better
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than calculating all the possible candidates and finding the optimum solution among
all possible results, the number of iterations needed exceeds the reasonable amount of
iterations for nonlinear structural optimization of full size engineering structures. One
of the advances of evolutionary approaches is the relatively simple implementation of
parallel computing, as several independent analyses have to be run in a single
iteration. For small order problems, such as sizing or small order shape and topology
optimization, successful evolutionary approaches have been used (see e.g. Cappello,
Mancuso 2003, Che, Tang 2008, Garcia, Gonzalez 2004, Li, et al. 1999, Li, et al. 2005,
Rong, et al. 2007, Ryu, Lee 2007).

The second major category of structural optimization is covered by the Optimality
Criteria (OC) approaches, e.g. Fully Stressed Design or Karush-Kuhn-Tucker OC
method. The idea is to formulate an optimality criterion which has to be fulfilled by
a feasible solution. The optimal solution is considered to be found, when the
optimality criterion is fulfilled. When designing an OC-algorithm, an optimality
criterion and a redesign formula for the update of variables has to be defined. These
methods are not generally applicable and are mathematically unreliable, although
they allow very fast convergence for suited problems. Some successful application to
specific structural optimization problems can be found in references (Meske, et al.
2006, Steven, et al. 2002).

It can be concluded that geometrically and materially nonlinear structural limit load
shape optimization of real world structures requires a mathematical programming
method which is capable to determine the optimum result in the least possible
number of iterations. Accurate sensitivity information to shape parameters is of
crucial importance for achieving convergence within the lowest possible
computational cost.

5.2.2 Mathematical programming

An optimization problem solved with principles of mathematics is called a
mathematical program. Mathematical programming covers a large, growing spectrum
of algorithms and methods for optimization purposes. Structural optimization
problems have three main difficulties in common which makes them hard to solve.
Typical structural optimization problems are nonlinear, constrained and the relevant
constraints are not known in advance. In principle every nonlinear optimization
algorithm tries to converge to the optimal solution iteratively with some sort of
prediction where to move next and how far. While heuristic approaches, such as
genetic, evolutionary, simulated annealing, particle swarm or a simple stohastic
minimum search of trial solutions do, not use prediction information, the strength of



86 Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.

Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

sophisticated mathematical programming approaches is the wuse of direction
prediction. The only drawback is the unfavorable possibility of finding a local
minimum only when there is lack of a good starting point. Some hybrid approaches
can overcome this difficulty by combining heuristics with mathematical programming
with a good possibility to find the global optimum. On the other hand, these
approaches again induce the need of greater number of iterations and more
computations of direct and sensitivity analysis and consequently more computational
time requirement. The many available algorithms differ according to the way how the
prediction is used and how it is calculated. Basically, they can be distinguished
according to the problem they solve and according to the types of data do they use.
The problems can be divided in constrained and unconstrained problems and the
data they use can be either the function values only (direct methods), or additionally
first order information (gradient methods), or additionally second order information
(Newton type methods).

Most of the strategies for constrained problems use the methods for solving
unconstrained problems by subdividing the constrained problems into more
unconstrained sub problems. Therefore, also methods for solving unconstrained
problems are frequently used in structural optimization. Optimization is a fast
growing field of scientific research. Numerous strategies and methods have been
developed. For a greater preview the following references can be used (Arora 2004,
Bonnans, et al. 2006, Choi, Kim 2005a, Choi, Kim 2005b, Nocedal, Wright 2006). In
the following section a brief preview will be given regarding possible approaches to
structural shape optimization. Specific algorithms used in numerical examples will be
addressed within each example.

5.2.2.1  Strategies for solving constrained optimization problems

A basic constrained optimization problem can be defined as:

minimize  f(¢,a(¢),b(a(¢)))

such that  g;(¢,a(¢),b(a(®))) = 0; i=1..n (23)

where f is the objective function to be minimized, ¢ are the design variables,

a = {a,\}, a the generalized displacements, A the limit load factor, b the state

variables, ¢ are the equality constraints and @ the inequality constraints.

Mathematical programming strategies for constrained structural optimization can be
divided with respect to the way of how the variables are defined. If N is the number
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of unknowns (parameters) and M is the number of constraints, the strategies can be
divided according to the space they are working in:

- Primal methods N - dimensional
- Dual methods N,M - dimensional
- Penalty and barrier methods N - dimensional
- Lagrange methods N+M — dimensional

Primal methods are the simplest and work directly in the N-dimensional space of the
optimization variables ¢. No use of Lagrange multipliers or of the KTT necessary
conditions is reacquired here. Direct search methods, evolutionary strategies and
genetic algorithms belong to this group. They are preferably useful to handle discrete
variables. Successful primal methods which make use of gradient information are
known as general reduced gradient methods or methods of feasible directions.

Penalty and Barrier function methods are working also in the N-dimensional space of
the optimization variables. Here, the constrained problem is transformed into an
unconstrained here by using penalty and barrier functions. The approach is in
principle simple and quite robust. An old methodology is known as sequential
unconstrained minimization technique, which generates a series of unconstrained sub-
problems to finally get a solution near the optimum. However, the exact optimum
can not be reached. For this reason the method became unpopular. Recently the
basic idea of using barrier functions has been incorporated into successful interior
point methods which generate iterates that stay away from the boundary of the
feasible region defined by the inequality constraints. As the solution of the nonlinear
program is approached, the barrier effects are weakened to permit an increasingly
accurate estimate of the solution. Interior-point methods have proved to be as
successful for nonlinear optimization as for linear programming, and together with
active-set SQP methods they are currently considered the most powerful algorithms
for large-scale nonlinear programming. Some of the key ideas, such as primal-dual
steps, are carried over directly from the linear programming case.

Dual methods are working primarily in the dual M-dimensional space of Lagrange
multipliers [. The primal optimization variables are determined by back substitution.
Dual methods split the original optimization problem into two partial problems which
have to be solved sequentially. One is unconstrained and formulated in terms of
design variables ¢, the other is formulated in terms of Lagrange multipliers [ and is
only constrained by simple bounds for the case of inequality constraints. It is
unbounded in the case of equality constraints. Methods for unconstrained
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optimization can be successfully applied because of the simple structure of the sub-
problems.

Lagrange methods are working in the full (N+M) dimensional space of primal and
dual variables. They make use of the Kuhn-Tucker necessary conditions directly by
solving a sequence of linearized sub-problems with a quadratic objective and linear
constraints. Because of the quadratic objective function these methods are called
Sequential Quadratic Programming methods (SQP). SQP methods are considered to
be one of the most effective methods for nonlinearly constrained optimization. They
can be used both in line search and trust-region frameworks, and are appropriate for
small or large problems. These methods show their strength when solving problems
with significant nonlinearities in the constraints. However, they appear not to be
robust enough for very large problems.

5.3 Gradient based Shape Optimization combined with
imperfection analysis

The use of symbolic-numeric environment for solving a structural gradient based
shape optimization problem enables one to take the great advantage of the powerful
combination of symbolic capabilities and numeric efficiency provided by the
environment (Korelc 2002, Korelc 2007a, b).

The procedure of shape optimization within the symbolic-numeric environment is
illustrated in Fig. 43. The mechanical problem description is written on a high
abstract level in symbolic form (see Section 2.4). By using automatic formulae
differentiation, simultaneous optimization of expressions and theorem proving with
the help of AceGen (Korelc 2007b), an efficient finite element code is obtained for
symbolic and numeric evaluation. For symbolic finite element computations a special
finite element environment is required. AceF'EM (Korelc 2007a) is used. According to
the procedures described in Chapters 3.3.1 and 3.3.2 an analytical design velocity
field is computed with the help of the part of the AceFEM system with symbolical
evaluation capability MDriver. The analytical design velocity field is then used for
analytical sensitivity evaluation with the numeric part of AceFEM (CDriver). The
derivatives of the objective function and constraints with respect to design
parameters are then passed to the gradient optimization algorithm implemented in
the general algebra system Mathematica (Wolfram 2008). As pointed out before,
accurate gradient information on the basis of analytical design velocity field used in
sensitivity analysis is of crucial importance for the convergence of the optimization

algorithm when dealing with geometrical an material nonlinearity.
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AceGen and AceFEM operate within the general algebra system Mathematica

(Wolfram 2008), which is very convenient as there is no need of using a special

interface for coupling with other environment optimization software. Mathematica

offers a great variety of state of the art optimization algorithms which can be used

directly with AceFEM’s direct and sensitivity analysis.

Code Generator Environment AceGen

Finite Element source code

AceGen
MDRIVER
code generator CDRIVER C Mathematica

Numeric code Symbolic code

\ 4

v

'SymboliC—Numeric Finite Element Environment AceFEM

Finite Element
Model Description

Most unfavorable

initial imperfection Direct and Se‘n31t1V1ty Analytl.cal Design
evaluation analysis velocity field
(Chapter 4) (Chapter 3) (Section 3.3.1)
Optimization environment
Mathematical programming Optimum result

Fig. 43: Optimization using symbolic-numeric environment.

Slika 43: Optimizacija s pomo¢jo simbolno-numeri¢nega okolja.

The general flow of the method is shown in Fig. 43. In Fig. 44 the optimization loop

is further explained in detail.
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[/

| »| Optimum result
Convergence criteria reached

Fig. 44:  Optimization loop using symbolic-numeric environment.

Slika 44: Optimizacijska zanka s pomocjo simbolno-numeri¢nega okolja.

Within the optimization process (see Fig. 44) the geometry of the structure is
updated in two different loops. In the inner loop the geometry X(¢) is changed due

to the change of the design parameters done by the optimization algorithm. In the
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outer loop the geometry is changed due to changed initial imperfections X. The
method for evaluating the most unfavorable initial imperfections is presented in Fig.
24. The geometry can be written as:

X = Xp(¢)+ X (24)

where Xp(¢) is the perfect geometry ruled by the current design variables ¢ and X

the total imperfection vector described in Chapter 4. While the imperfections have to
be considered in direct and sensitivity analysis, this is not true for the evaluation of
the design velocity field:

IX _ 9Xp(d) +X _ 9Xp(9)

9 8¢ T 99 (25)

The design velocity field does not depend on the total imperfection vector nor does it
change by varying the design parameters. Therefore, it has to be evaluated only once.

The most unfavorable imperfection is evaluated whenever the geometry changes to a
certain extent. Together with the updated geometry the most unfavorable
imperfection of the current geometry changes simultaneously. While the evaluation of
the most unfavorable imperfections is a computationally demanding task, this is not
done in every step of the optimization process. The initial imperfection is changed

whenever the most unfavorable imperfection would cause a change in the limit load
higher than a prescribed value A\, or would evolve in a change of the limit load state.

Conveniently, the basic shape of the most unfavorable imperfections generally does
not change if minor updates of design variables are done by the optimization
algorithm. Further on, the convergence of the optimization algorithm is better
preserved when using the same initial imperfections and to update the initial

imperfections sequentially on sets of optimal solution procedures.

The practical application of the developed algorithms is shown in numerical examples
in the next chapter.
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5.4 Numerical examples

5.4.1 2D cantilever shape optimization

To illustrate the limit load optimization procedure, a simple case of a 2D cantilever is
studied first. The mathematical model consists of elastic-plastic finite strain, 2D,

quadrilateral elements. An ideal elasto-plastic material is used. The geometry (see
Fig. 45a) is parametrized with parameters ¢ which define the function of the height

of the cross section along the x-axis h(¢). Constant continuous load ¢ is applied at

the top of the cantilever.
qg=2Aq (26)

where A is the load factor and ¢, is the prescribed limit load of the structure. In

order to evaluate the optimal structure shape for the limit state, the calculated limit
load factor A\;(¢) has to be exactly 1.

The goal is to minimize the volume of the structure:

min f;
f=V(©9)
A(¢)—1=0
Pk <0
The constraints include a limit load factor equality constraint A; = 1 which forces
the calculated limit load factor A;(¢) to take the prescribed value 1 at which the
calculated limit load ¢ matches the prescribed limit load of the structure ¢, , and a

(27)

set of inequality constraints (D]]% <0 which prescribe the minimum feasible values of
parameters ¢. The constrained problem is solved using an interior point method
considering the merit function fg:

fz = w)V + wyLog(A\, — 1) + w3y ®h (28)
T

where w, are the weights, V is the volume and P p is barier function. The problem is

solved with a standard quasi-newton algorithm using Mathematica (Wolfram 2008).
Fig. 45 shows the initial shape (a) and the optimal shape (b). Mises stresses are
plotted. The structure with the optimal shape shows a smooth distribution of yield
stress over the whole length of the structure.
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Fig. 45: Initial shape (a), Optimal shape (b).
Slika 45: Zadetna oblika (a) in optimalna oblika (b).

The response load deformation curve of the structure with the optimal shape has to
present a limit load curve with its maximum exactly at the given limit load ¢ = g,

where A\; = 1. The parameters ¢ can describe an arbitrary function of the cross-

section height. The simple example has been chosen as the optimum result according

to the beam theory is a straight line which can be presented by only two parameters:
¢, as the beginning height and ¢, as the end height. The optimal shape remains the

same, if the number of parameters ¢ is raised and different curves are presumed for
the height function h(¢), such as splines or higher order polynomials.

The objective function f; depending on two shape parameters can be graphically
represented as a surface in three-dimensional space. Convergence of the optimization
process considering shape parameters ¢ and ¢, is illustrated in Fig. 46. The
objective function is plotted together with the points evaluated by the optimization
algorithm to get to the optimum which is presented by the red point.
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Fig. 46: Convergence of the optimization process for two shape parameters.

Slika 46: Konvergence optimizacijskega procesa za 2 parametra oblike.

In general, the responses of the structure with possible shapes tried by the
optimization algorithm evolves in a different ultimate limit load factor \; and a

different displacement v, in every iteration as illustrated in Fig. 47. The ultimate
limit load factor has to be exactly A\;=1 at the optimum point, where the objective

function has a minimum value.

A AL

——————————————————— <O Optimum (A,=1)

>

Uy

Fig. 47:  Structural response of different shapes and the limit load optimal shape.

Slika 47: Odzivi konstrukcij z razli¢nimi oblikami v primerjavi z optimalno obliko .

The optimal shape shown in Fig. 45b is expected, as it can be verified analytically.
To evaluate the result analytically, it has to be assumed that the optimal shape is the
one where every material point of the structure in its limit state reaches yield point.
The result can be evaluated with the help of the standard beam theory:



Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization. 95

Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

M) B /2_q
O-PL(X) _Wp| (X) - O-y - hpl(x) - bUy X, (29)

where M(z),W,(z) in W,(z) are the moment, elastic resistance moment and the

plastic resistance moment at the length x measured from the free end of the

cantilever, respectively. ¢ is continuous load, b is the width and h the height of the
cross section. A small difference in the numerical results (A(¢)yu, = 20.41,

P(#)num. = 0.29) with respect to the analytical results (h(¢y)umay. = 21.21,

M#2)anare. = 0) can be observed as the finite element mesh with the quad finite

elements on the free end can not form an analytically sharp edge and there is no
consideration of shear deformation in the analytical approach.

5.4.2 3D H cross-section thin-walled cantilever structure

In the present example a thin-walled cantilever structure is studied. Structures
composed of thin—walled components in general prove a high degree of imperfection
sensitivity. Therefore the use of imperfections in an analysis is mandatory for correct
optimization results and the flow of the optimization process itself, as possible
bifurcation points in the analysis are avoided and a realistic lowest limit load can be
calculated.

The specific shape of the structure was chosen for representation purposes, as a
variety of collapse mechanisms can be observed at the limit load. In conventional
shape optimization dealing with bearing capacity of structures the shape is usually
optimized for the state of the structure at the time when the first material point
exceeds the elastic resistance or the first member buckles. No post-buckling or post-
critical behavior is taken into account. In the present approach the collapse
mechanism and the phenomena appearing at that time dictate the optimal shape of
the structure. In this way, the shape of the structure is sought, which gives the
maximal bearing resistance at the limit state, which is usually presented as a collapse
of the structure.

Varying the thickness of shell components by excluding it from the design variables
specific collapse mechanisms can be enforced. The limit state of the structure is
characterized by pure plastic limit state when the sheet components are thick enough.
Lowering the thickness of sheet components results in a plastic buckling limit state
and further on in an elastic buckling limit state. It has to be mentioned that within
conventional shape optimization only one collapse mechanism is considered at the
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same time and therefore the optimal shape is not computed considering more possible
collapse mechanisms.

The geometry of the studied cantilever structure is shown in Fig. 48. The thin-walled
cantilever is modeled by elastic-plastic four-node shell elements based on finite
rotations, 6 parameter shell theory combined with assumed natural strain formulation
and two enhanced strain modes for improved performance (Wisniewski, Turska 2000,
2001). An ideal elasto-plastic material model has been used.

E= 210000 MPa
f,= 235 MPa

t1,= 20mm
case

ty, = 30mm
t1,= Smm

case B
{t2B: 7 mm

Fig. 48: Initial geometry of H cross-section cantilever.

Slika 48: Zacetna geometrija H konzolnega nosilca.

Two fixed sets of wall thicknesses are considered:

- Case A: thick sheets, where plastic behavior dominates.

- Case B: thin sheets, where buckling behavior dominates.

The shape of the structure is parameterized with parameters ¢ as shown in Fig. 49.
The geometry is symmetrical with respect to the XZ plane. The boundaries of the
vertical sheets are varied in both Y and Z axes. The vertical sheets have to remain
vertical and the horizontal sheet horizontal. The minimum dimension of both,
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vertical and horizontal sheet is 10% of the initial dimension. Second order splines

were chosen for interpolation of the boundary shape between the shape parameters.

Fig. 49: H cross-section cantilever shape parameters.

Slika 49: Parametri oblike H konzolnega nosilca.

The goal is to minimize the volume of the structure:
min f;
f=V(9)
A(¢)—1=10
Pk <0

(30)

The constraints include a limit load factor equality constraint A; = 1 which forces
the calculated limit load factor A;(¢) to take the prescribed value 1 at which the

calculated limit load A - P matches the prescribed limit load of the structure P and a

set of inequality constraints (ﬂfa <0 which prescribe the minimum feasible values of
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parameters ¢. The constrained problem is solved using an interior point method
considering the merit function fp:

fp = wiV +wy Log(A\p — 1) + w:sz Log(¢" — ¢f) (31)
k

where w, are the weights, V is the volume, A; is the calculated limit load factor and

(/5% the minimum value of the Ath shape parameter.

Within the optimization process the most unfavorable imperfection is evaluated
according to the procedure described in Fig. 44. The shape optimization and the
evaluation of the most unfavorable imperfection was done sequentially. The
procedure stops when the evaluated most unfavorable imperfection does not evolve in
a change of the calculated limit load factor A\; of the optimal structure more than A,
which was set to a value of 0.01. In Fig. 50 the most unfavorable imperfection shape
is presented for the initial shape and the optimal shape considering case A shell
thickness (thick sheets).
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Fig. 50: The most unfavorable imperfection for the initial (a) and optimal shape (b) (Scale
factor=30, Shell thickness A).

Slika 50: Najbolj neugodna zacetna nepopolnost za zacetno in optimalno obliko konstrukcije (Faktor
povecave=30, Debelina plocevin A).
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The limit load optimization iteration procedure can be observed in Fig. 51. The limit
load curves are plotted for different iterates within optimization. The load-
displacement curve considering the optimal shape is plotted in red. Mises stresses are
plotted in the illustrations. Red color represents yield stress.
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Fig. 51:  Limit load shape optimization process.

Slika 51: Proces optimizacije oblike v mejnem stanju.
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The evaluated optimal shape for case A shell thickness is illustrated in Fig. 52. The
initial geometry at shape parameters being zero (transparent mesh) is sketched
behind the optimal shape in order to illustrate the difference between the initial and
optimal design.
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Fig. 52: Initial and optimum shape of H cross-section cantilever geometry for case A shell thickness.

Slika 52: Zadetna in optimalna oblika H konzolnega nosilca za primer debeline plo¢evin A.

The material is not fully stressed to the yield point in the entire structure, as can be
seen in Fig. 53, where Mises stresses are plotted for the optimal structure with a
dense FE mesh. The explanation lies behind the way the constraints were chosen.
The horizontal sheet has to remain horizontal and the vertical sheet under the
horizontal sheet has a minimal height prescribed, which is at least 10% of the initial
height of the vertical sheet. Using sheet thicknesses A, the sheets in compression stay
compact throughout the optimization procedure and there is no risk of buckling.
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Fig. 53:  Mises stress at limit state for optimal H cross-section cantilever shape (undeformed).

Slika 53: Misesove napetosti v mejnem stanju nosilnosti za H konzolnega nosilec z optimalno obliko
(nedeformirana oblika).
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Fig. 54: Deformation of H cross-section cantilever at limit state (Scale Factor = 1) with Mises stress
plotted.

Slika 54: Deformacije H konzolnega nosilca pri mejni obtezbi (Faktor povecave = 1) z vrisanimi
Misesovimi napetostmi.
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There is only a small amount of lateral displacements in the limit state where
extensive rotation occurs. The collapse mechanism can therefore be considered as full
plastification with only small amount of plastic buckling. The plastification of the
material with increasing load up to the limit state is shown in Fig. 55.
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Fig. 55:  Mises stress for the corresponding load-deformation curve plotted in Fig. 51.

Slika 55: Misesove napetosti za krivuljo sila-pomik prikazano na sliki 51.

Next, smaller shell thicknesses (case B) were chosen to stimulate the possibility of
buckling behavior in order to additionally optimize the shape and to lower the
volume of the structure. The initial imperfections calculated according to the method



Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization. 105
Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

explained in Chapter 4 used in the initial run and the final run of optimization are
drawn in Fig. 56.

b)

_40

~20-100 10 20

Fig. 56: The most unfavorable imperfection for the initial (a) and optimal shape (b) (Scale
factor=30, Shell thickness B).

Slika 56: Najbolj neugodna zacetna nepopolnost za zacetno in optimalno obliko konstrukcije (Faktor
povecave=30, Debelina plo¢evin B).
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The evaluated optimal shape for shell thickness B is illustrated in Fig. 57 together
with initial geometries. The limit load Mises stresses are plotted on the unreformed
and deformed mesh in Fig. 58 and Fig. 59, respectively.
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Fig. 57: Initial and optimum shape of H cross-section cantilever for case B shell thickness.

Slika 57: Zacetna in optimalna oblika H konzolnega nosilca za primer debeline plo¢evin B.
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Fig. 58:  Mises stress at limit state for optimal H cross-section cantilever shape (undeformed).

Slika 58: Misesove napetosti v mejnem stanju nosilnosti za H konzolnega nosilec z optimalno obliko
(nedeformirana oblika).
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Fig. 59: Deformation of H cross-section cantilever at limit state (Scale Factor = 1) with Mises stress
plotted.

Slika 59: Deformacije H konzolnega nosilca pri mejni obtezbi (Faktor povecave = 1) z izrisanimi
Misesovimi napetostmi.
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The plastification of the material with increasing load up to the limit state is shown

in Fig. 60.
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Slika 60: Misesove napetosti za obtezno krivuljo prikazano na sliki 61.
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Fig. 61: Load-deformation curve for optimized shape in Case A and Case B.

Slika 61: Deformacijska krivulja za optimizirano obliko v primeru A in B.

In Fig. 61 the load-displacement curve is plotted for both studied optimal structures.
In case A the limit load deformation behavior can be described as mostly
plastification, while in case B plastic buckling is more pronounced during the
optimization procedure. However the optimized structure has been considerably
improved regarding buckling behavior of initial designs. The horizontal sheet of the
optimal structure was positioned by the optimization algorithm in the most favorable
way to support the vertical sheets in the compressed part which is prone to buckle.

The optimization algorithm searches for the minimum volume while the limit load
must match the prescribed limit load. At the same time the most unfavorable initial
imperfections are considered. This combination evolves in a search for a ductile,
plastic structure behavior with a small sensitivity to buckling. The result is therefore
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a robust structure with minimum weight and small sensitivity to buckling. The
plastification zones are spread more widely through the structure which shows the
full material usage. The whole optimization procedure can therefore be seen as an
efficient tool for economical and safe design.
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5.4.3 3D single storey steel building

In the present example a single storey steel building is being optimized according to
the presented method. The initial shape is shown in Fig. 62. Loading conditions and
the parameterization illustrated in Fig. 63 and Fig. 64 were used. The outer frames
are loaded with the half load described in Fig. 63. Self weight is automatically added
by the program. The structure’s basic initial geometry is symmetrical according to
the YZ plane. The shell parts of the structure are modeled by elastic-plastic four-
node shell elements (Wisniewski, Turska 2000, 2001). The truss parts are modeled by
truss elements and have the function of lateral load transmission only. The entire
load is added on the frames only. The distance between frames is e = 10m.

3000

600

400

200

0

500
X

Fig. 62: Initial geometry of single storey steel building.

Slika 62: Zacetna geometrija enoetazne jeklene hale.
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Fig. 63: Loading conditions and shape parameterization for the inner frame.
Slika 63: Obtezbe in prametrizacija oblike za notranji okvir.

The shape parameters ¢ are used to change the height of the cross-section h in the

way:
(32)

h=hy+¢-hg=h(l+¢)
Second order splines were chosen for interpolation of the boundary shape between the

shape parameters.
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Fig. 64: Loading conditions and shape parameterization for the outer frame.

Slika 64: Obtezbe in prametrizacija oblike za zunanji okvir.

The procedure described in Fig. 44 is applied to find the optimum shape of the
structure. Optimization of the entire structure is computationally demanding.
Further on, only the frames are subjected to shape optimization. Therefore the two
characteristic frames were chosen for investigation: the outer frame with only half
external load applied and the inner frame fully loaded by external forces. The initial
and the optimal shape are illustrated for the final run of the optimization algorithm
for the inner frame and the outer frame in Fig. 65 and Fig. 66, respectively. Mises
stresses are plotted at the limit load deformation state in Fig. 67 and Fig. 68.
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Fig. 65: Optimum shape of the inner frame of the steel structure with the initial geometry in the
final optimization run.

Slika 65: Optimalna oblika notranjega okvira jeklene konstrukcije v zadnjem krogu optimizacijskega
procesa.

Fig. 66: Optimum shape of the outer frame of the steel structure with the initial geometry in the
final optimization run.

Slika 66: Optimalna oblika zunanjega okvira jeklene konstrukcije v zadnjem krogu optimizacijskega
procesa.
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Fig. 67:  Deformation of the inner frame at limit state (Scale Factor = 10).

Slika 67: Deformacije notranjega okvira pri mejni obtezbi (Faktor povecave = 10).
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Fig. 68: Deformation of the outer frame at limit state (Scale Factor = 10).

Slika 68: Deformacije zunanjega okvira pri mejni obtezbi (Faktor povecave = 10).
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Fig. 69: Mises stress for inner frame for the corresponding load-deformation curve plotted in Fig. 71.

Slika 69: Misesove napetosti za notranji okvir za obtezno krivuljo prikazano na sliki 71.
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Fig. 70: Mises stress for outer frame for the corresponding load-deformation curve plotted in Fig. 71.

Slika 70: Misesove napetosti za zunanji okvir za obtezno krivuljo prikazano na sliki 71.
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Fig. 71: Load-deformation curves for the inner and the outer frame with the optimized shape.

Slika 71: Deformacijski krivulji za notranji in zunanji okvir z optimalno obliko.

In Fig. 69 and Fig. 70 the Mises stress development with increasing the load up to
the limit state is plotted. The corresponding load-displacement curves are plotted in
Fig. 71. Because of the symmetrical shape parametrization and unsymmetrical
loading conditions it is impossible for the entire structure to be in plastic state. The
optimized structure has a shape which is optimal for the loading conditions
considered in the example. Because of the symmetric parametrization the structure is
optimized for opposite direction of loads in X direction also. If different ratios of
horizontal and vertical loads had to be considered, this could be done with multi
objective optimization procedures. Another way is to evaluate an optimum shape for
every loading condition and then combine them in a way in which all constraints are
still satisfied.

The optimized structure is shown in Fig. 72. The optimization parameters for the
optimized structure are shown in Table 5.
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Fig. 72:

Slika 72: Optimizirana oblika enonadstropne jeklene hale.

Optimized shape of single story steel building.

Table 5:  Optimization parameter values for the optimized structure.

Tabela 5: Vrednosti projektnih parametrov pri optimalni obliki konstrukcije.
Frame o @, @y N o8 Po &
inner 0,39 -0,42 -0,24 0,21 0,42 -0,61 0,23
outer 1,52 -0,51 -0,17 0,64 -0,40 -0,79 0,46
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6 FINAL CONCLUSIONS

The objective of this thesis was to develop a shape optimization method which is
capable to be used in practical design. According to the majority of technical
standards a structure has to be designed with regard to all possible influences with a
certain probability to occur in its lifetime. Modern technical standards prescribe
ultimate limit state design for structures where the structure is designed for a variety
of ultimate states in order not to collapse or to exceed limit states in the foreseen
lifetime. Standard known shape optimization approaches do not consider ultimate
states for arbitrary structures. Usually the structures are subjected to volume, cost or
other behavior related (e.g. eigen frequency, stiffness, etc.) optimization criteria. As
the evaluation of a realistic limit load is a demanding task, conventional shape
optimization techniques use stress criteria, simple buckling or bifurcation criteria
rather than a real limit load. These approaches are not capable of providing an
optimal shape for the ultimate state of an arbitrary structure.

In the presented approach a limit load optimization is introduced, capable of
evaluating the limit load of a structure by simultaneously considering the effects of
imperfections, geometrical nonlinearities and material nonlinearity. The limit load is
then used in the optimization algorithm as a constraint. Residual stresses in form of
initial stresses have not yet been included explicitly into the analysis, but were
considered by the equivalent geometrical imperfections approach. According to the
technical standards, with all relevant phenomena considered, the optimized structure
therefore presents the final design with no checks further necessary.

A numeric-symbolic approach to limit load shape optimization was studied. The
numeric-symbolic  system enables the wuse of arbitrary symbolical shape
parameterization which is not possible within conventional approaches. The design
velocity field can be analytically computed and therefore an exact sensitivity analysis
can be carried out. Accurate sensitivity information is of crucial importance for
proper gradient shape optimization used in the approach.

Limit load evaluation and limit load shape optimization of imperfection sensitive
structures demands a proper consideration of initial imperfections. The shape and size
of initial imperfections have a major influence on the response of the structure and its
ultimate state. Further on, shape optimization applied on the perfect geometry of
structures can lead to non-optimal results, e.g. very light structures but very sensitive
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to buckling. Despite intensive research of theoretical, experimental and numerical
aspects of stability limit of imperfection-sensible structures, there is still no consensus
on how the ultimate state should be evaluated, owing to numerous difficulties which

arise.

While imperfections are not known in advance, a method for direct determination of
the most unfavorable imperfection of structures by means of ultimate limit states was
developed. The method has been implemented as an internal and separate
optimization algorithm within the global shape optimization process. Within the
presented approach it has been shown that with the use of geometrical and material
nonlinear direct and sensitivity analysis of imperfect structure combined with
optimization it is possible to directly evaluate the imperfection shape of a structure,
at which the ultimate load of the structure is the smallest. Additionally, the method
is not limited to the linear natural equilibrium path and small imperfections, and
allows introduction of various constraints on the shape of the initial imperfection.

Usually imperfection analyses with a great number of repetitions are done to
determine which combinations are unfavorable. Despite the effort, it is still very hard
to determine how the limit load is lowered by the gathered imperfection shapes in
comparison with the most unfavorable ones. According to the results of the presented
approach, it is difficult to characterize certain structures with certain types of
imperfections. Every change in thickness, geometry or loading conditions can lead to
a drastic change of the worst imperfection shape.

In complex imperfection sensible structures, where intuitive determination of initial
most unfavorable imperfections is not possible or where there is lack of known
empirically obtained worst imperfections, the use of a method for determining the
worst initial shape is essential.

Because of the high unpredictability of the imperfection forms, the technical
standards for designing thin-walled structures recommend to use empirical methods
to define initial imperfections used for nonlinear analyses. The ultimate loads of
structures evaluated in accordance with the method presented turned out to be
smaller than the ultimate loads considering various combinations of imperfections
prescribed by the technical standards or calculated with approaches based on Koiters
asymptotic theory or parametric studies. It can be concluded that these methods may
lead to too optimistic results. On the other hand, the probability of the real
structure’s imperfections to take the exactly most unfavorable form is very low.
However, the information about the structures lowest limit load due to initial

imperfections is of high importance when analyzing structures. In this sense it is
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possible to establish that the consideration of imperfections in a geometrically and
materially nonlinear analysis is a task where a holistic method for finding the worst
imperfection is indispensable.

The importance of the ability to evaluate the most unfavorable initial geometrical
imperfections as presented in the thesis is further stressed out within the limit load
optimization procedure. Full geometrical and material nonlinearity is considered
throughout the global optimization process consistently, resulting in efficient and
robust, ultimate limit load structure design. The limit load approach used within the
shape optimization algorithm and the optimization algorithm for finding the most
unfavorable initial imperfection induces a search for a shape of the structure at which
the structure develops plastic, ductile behavior, less sensitive to buckling and, on the
other hand, with the minimum volume possible. The result is a robust structure with
minimum weight and small sensitivity to buckling.

The design of structures with the limit load optimization approach using the
developed method for the determination of the most unfavorable imperfections
presents a novel approach to economical engineering structure design. The use of a
symbolic-numeric system offers a successful combination of limit load structural
analysis and optimization methods. Considering all the relevant phenomena the
presented approach can represent a design of economical and safe structures and

therefore a superior alternative to conventional ultimate limit state design.

The most important original contributions can be stressed out:

- The development of the method for evaluation of the most unfavorable
initial geometric imperfections.

- The development of limit load shape optimization algorithms
considering full nonlinearity and most unfavorable initial imperfections.

- The evaluation of the analytical design velocity and the exact
sensitivity analysis using symbolic-numeric environment.
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7 POVZETEK

7.1 Uvod

Integracija optimizacijskih metod v procese projektiranja konstrukcij je kompleksna
naloga, ki zahteva povezavo znanja iz ve¢ znanstvenih podrocij. Da bi sintezo
konstrukcij lahko uporabili kot zamenjavo klasicnemu pristopu k projektiranju
konstrukcij, je potrebno razviti ucinkovito optimizacijsko metodo z upostevanjem
vseh bistvenih fenomenov, ki vplivajo na obnasanje konstrukcij.

Splosen cilj dela v okviru disertacije je razviti metodo za optimizacijo oblike
konstrukcij z upostevanjem mejnega stanja, ki bi jo bilo mozno uporabiti za
projektiranje konstrukcij. Predstavljen je simbolno numeri¢ni pristop k optimizaciji
oblike za mejno stanje konstrukcij. V sklopu doloc¢itve mejne obtezbe je bila razvita
metoda za doloc¢itev najbolj neugodnih zacéetnih nepopolnosti, ki lahko bistveno
vplivajo na nosilnost konstrukcij. Podrobno obravnavana podroéja so bila:

- Uporaba simbolno numeri¢nega sistema za doloc¢itev mejne obtezbe konstrukcij
ter optimizacijo oblike. Simbolni razvoj in avtomatska generacija konc¢nih
elementov za direktno in obc¢utljivostno analizo.

- Izracun najbolj neugodnih zac¢etnih nepopolnosti konstrukcij, v smislu mejnih
stanj konstrukcije.

- Uporaba poljubne simbolne parametrizacije oblike in analiticen izra¢un polja
zacetnih obc¢utljivosti ter to¢na obc¢utljivostna analiza.

- Razvoj ucinkovitega optimizacijskega algoritma za optimizacijo oblike s
pomocjo vseh zgoraj omenjenih prijemov.

7.2 Direktna in obc¢utljivostna analiza

V okviru disertacije je bila uporabljena direktna in obcutljivostna analiza s socasno
doloc¢itvijo mejnega stanja konstrukcije. Splosni izrazi, ki so prikazani v nadaljevanju,
so uporabljeni tako pri doloc¢itvi najbolj neugodne zacetne nepopolnosti kot tudi pri
optimizaciji oblike konstrukcij. V vseh postopkih so uporabljeni rezultati direktne in
obcutljivostne analize v mejnem stanju konstrukcije.
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Mejno stanje nosilnosti konstrukcij je v splosnem definirano z limitno tocko
ravnotezne poti. Taksna definicija se izkaZe nezanesljiva v primeru realnih,
nepopolnih konstrukecij. Limitno stanje lahko nastopi Sele pri nerealno velikih pomikih
ali deformacijah konstrukcije, zato je potrebno mejno stanje dodatno omejiti. Mejno
stanje smo doloc¢ili s pomocjo najmanjSega obteznega faktorja, dobljenega po
naslednjih kriterijih: maksimalni obtezni faktor (v limitni tocki) (a), obtezni faktor
pri bifurkaciji pred dosego limitne tocke (b), obtezni faktor pri najvecji dovoljeni
deformaciji, kadar pride do tega pred limitno ali bifurkacijsko tocko (c).
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Slika 1:  Definicija ra¢unskih mejnih stanj (EN 1993 1-5 2004).

7.2.1 Direktna analiza

Za dolocitev mejnega stanja konstrukcije je potrebna geometrijsko in materialno
nelinearna analiza. Problem, ki ga je potrebno resiti, po terminologiji predstavljeni v
(Michaleris, et al. 1994), predstavlja nelinearen, tranzienten, povezan sistem.
Uporabljena je standardna metoda predpisanih pomikov (glej e.g. Crisfield 1996,
1997), kjer je sistem enacb razsirjen z dodatno spremenljivko A in dodatnim pogojem
g, , ki predstavlja dodatno enac¢ho za prirastke posplosenih pomikov. Enacbe, ki jih je

potrebno resiti v vsaki integracijski tocki, lahko zapisemo:
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(2)

Splosna formulacija polno implicitne, kvadratno konvergentne, direktne analize je

predstavljena na sliki 2.

Slika 2:

Globalni nivo

¥(a, b(a))=0
JOb 0P Ob
* % da  da
WK =7
gKaa + ¥ =
a:=a-+ Aa

Lokalni nivo

®(b) =0
0P
oK =5y

.I;.KAb +¢: 0
b:=b+ ab

Splosna formulacija za direktno analizo tranzientnih, povezanih, nelinearnih problemov.
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V uporabljenem zapisu a predstavlja vektor globalnih parametrov elementa, b je
vektor neznanih lokalnih parametrov, definiranih za vsako integracijsko tocko
(plasticne deformacije, spremenljivke utrjevanja, itd.), a” je vektor globalnih
parametrov v prejsnjem koraku, b? je neznanih lokalnih parametrov v prejsnjem
koraku, W vektor globalnih enacb in ® vektor lokalnih enachb.

7.2.2  Analiti¢na obéutljivostna analiza in polje zaéetnih obcutljivosti

Obcutljivostna analiza se uporablja za izracun spremembe odziva konstrukcije z
ozirom na variacijo projektnih parametrov ¢ in predstavlja kljuc¢en del gradientnih
metod optimizacije. Uporaba obcutljivostne analize v optimizaciji oblike za mejno
stanje konstrukcije zahteva reSitev tranzientnega, povezanega sistema enach, z
upostevanjem geometrijske in materialne nelinearnosti. Zahtevnost izpeljave izrazov
za obcutljivostno analizo je bil klju¢en razlog za uporabo simbolno numeri¢nega
sistema (Korelc 2007a, b). Uporabljena je metoda neposrednega odvajanja
(Michaleris, et al. 1994). Zaradi tranzientne narave problema je potrebno
obc¢utljivosti izrac¢unati na koncu vsakega obteznega koraka skozi vso analizo.
Ustrezne enache so predstavljene na sliki 3.

Eden od klju¢nih problemov uporabe obc¢utljivostne analize v gradientnih metodah
optimizacije oblike, je izra¢un polja zacetnih obcutljivosti (Korele, Kristani¢ 2005).
Polje zacetnih obc¢utljivosti (0X / d¢ ) opise spremembo koordinat vozlis¢ konénih

elementov (X) glede na poljubno izbran projektni parameter ¢.

Medtem ko lahko odvode karakteristi¢nih koli¢in kon¢nega elementa (reziduum,
tangentne matrike, itd.) po projektnih parametrih izrazimo s pomodjo
avtomatiziranih postopkov (Korelc 2007b), to ne velja za polje zacetnih obé¢utljivosti.
Glavna ovira se pojavi pri povezavi projektnih parametrov s pozicijo vozlise. Te
povezave ni mozno povsem splo§no izraziti s standardnimi pristopi generacije mreze
kon¢nih elementov, niti s specializiranimi pred-procesorji ali CAD orodji, saj je izbira
projektnih parametrov stvar svobodne izbire projektanta.
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Slika 3:  Splosna formulacija za ob¢utljivostno analizo tranzientnih povezanih nelinearnih problemov.

Uporabljen je simbolno-numeri¢ni pristop izracuna polja zacetnih obcutljivosti, s
pomocjo simbolno-algebrai¢nega sistema Mathematica (Wolfram 2008) in simbolno-
numeri¢nega okolja za kon¢ne elemente AceFEM (Korelc 2007a). Prednost simbolnih
sistemov je ta, da operirajo s poljubnimi izrazi. Zato lahko projektni parametri v fazi
opisa modela in generacije mreZze konc¢nih elementov ostanejo v simbolni obliki.
Koordinate vozlis¢ konc¢nih elementov tako predstavljajo formule, ki so eksplicitno
izrazene s projektnimi parametri. Polje zacetnih obcutljivosti lahko nato izrac¢unamo
naenkrat z enostavnim ukazom za odvajanje (npr. D[SMSNodes,q|), kjer SMSNodes
vsebuje koordinate vozlis¢ v simbolni obliki, ¢ pa predstavlja projektne parametre.
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Problem, ki se pri tem pojavi, je numeri¢na neucinkovitost simbolnih sistemov v
primerjavi z okolji za kon¢ne elemente, programiranimi v C-ju ali Fortran-u. Resitev
je v uporabi okolja za konc¢ne elemente, ki lahko deluje na simbolni ravni in je hkrati
numeri¢no uc¢inkovito. Uporabljeno okolje AceFEM sestoji iz dveh funkcionalno
identi¢cnih modulov. Prvi je napisan v simbolnem jeziku programa Mathematica
(MDriver) in omogoca izracun polja zacetnih obc¢utljivosti s simbolno podano mrezo
KE. Drugi modul je napisan v jeziku C (CDriver) in je s programom Mathematica
povezano s protokolom MathLink. Oba modula delujeta iz Mathematice in imata
enako strukturo podatkov, funkcije, ukazni jezik in vhodne podatke (podrobno v
Korele 2007a, Korele 2007b). Postopek analiticne doloc¢itve polja zadetnih
obc¢utljivosti z uporabo simbolno numeri¢nega sistema je shematsko prikazan na sliki
4. 7 uporabo analiti¢no izracunanega polja zacetnih obcutljivosti je mogoce izvesti
natancéno obcutljivostno analizo, ki je klju¢nega pomena za natancénost in ucinkovit

potek gradientnih metod optimizacije.

OPIS
MODELA
|

v v

4 )
Numeri¢ne vrednosti Projektni parametri v

projektnih parametrov simbolni obliki
- J/

v v

Generacija mreze KE Generacua mreze KE I
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v —
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obcutljivostna analiza 9 KoordinateMreze
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Projektna ob¢utljivost
Ja
¢

Slika 4:  Potek obcutljivostne analize s pomodcjo simbolno numeri¢nega MKE okolja.

Opisane postopke je mozno uporabiti na problemih poljubne kompleksnosti.
Predstavljeni direktna in obc¢utljivostna analiza, sta uporabljeni v doloc¢itvi najbolj
neugodne zacetne nepopolnosti kot tudi v optimizaciji oblike konstrukcij.
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7.3 Dolocitev najbolj neugodnih zac¢etnih nepopolnosti

Zacetna nepopolnost konstrukeij je posledica napak pri izdelavi, ki se jim prakti¢no ni
mogoce izogniti. Rezultati nelinearnih numeri¢nih analiz konstrukcijskih elementov in
konstrukcij so lahko v veliki meri odvisni od izbire oblike zac¢etnih nepopolnosti, kar
je 8e posebej izrazeno pri obravnavi tankostenskih konstrukcij, obc¢utljivih na
spremembo zacetne geometrije. Dobro znane razlike med mejno nosilnostjo
konstrukcij, izra¢unane z racunalniskimi analizami, ter izmerjene s preizkusi v

laboratoriju, je mozno zmanjsati z ustreznim upostevanjem zacetnih nepopolnosti.

Pri doloc¢itvi mejnega stanja konstrukcij v okviru optimizacije oblike, je upostevanje
zacetnih nepopolnosti zelo ugodno, saj pripomore k natancnejsi doloc¢itvi mejne
obtezbe in hkrati ugodno vpliva na proces optimizacije, saj se je na tak nac¢in mogoce
izogniti bifurkacijskim tockam v ravnotezni poti idealnih modelov konstrukcij.

Dolocitev najbolj neugodne zacetne nepopolnosti predstavlja zahteven nelinearen
optimizacijski problem, ki je v splosnem v vsakdanji inZenirski praksi, prakti¢no
neresljiv v danem ¢asovnem okviru. Z uporabo direktne in obcutljivostne analize ter
optimizacijskih algoritmov je moZzno neposredno doloc¢iti najbolj neugodno obliko
geometrijske nepopolnosti, pri kateri konstrukcija izkaze najnizjo mozno nosilnost v
okviru obravnavanega problema (Kristani¢, Korelc 2008). Pri tem so upostevane
geometrijske, konstrukcijske in materialne nepopolnosti, ki so zajete v obliki
ekvivalentnih geometrijskih nepopolnostih ter predpisanih lastnostih materiala.

Osnovna ideja predlaganega pristopa je zamenjava nelinearnega optimizacijskega
problema z iteracijskim postopkom, v katerem je potrebno reSevati le linearne
optimizacijske probleme. V okviru metode je mozno uporabiti tehnoloske pogoje,
katerih uporaba je klju¢nega pomena, saj se je izkazalo, da pri neupoStevanju
pravilnih geometrijskih pogojev lahko privede do izra¢una nerealisticno majhnih
mejnih obtezb.

Oblika iskane najbolj neugodne zacetne nepopolnosti je dolo¢ena z linearno
kombinacijo izbranih baznih oblik:

N
X=X,+> o, (3)

J=1
kjer je X, zacetna, popolna geometrija, N je stevilo izbranih oblik v bazi, «; so
neznani parametri oblike in I'; jta oblika iz baze oblik. Baza oblik I' je lahko

izbrana poljubno, vendar mora biti linearno neodvisna. Vsebuje lahko razliéne nabore
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oblik. To so uklonske oblike (I'*), lastni vektorji (I'?) zacetne togostne matrike
K, , lastni vektorji ('Y ) togostne matrike K, konstrukcije s spremenjenimi robnimi
pogoji, deformacijske oblike (I'”) in empiri¢no znane neugodne oblike (I'*). Kon¢na
baza oblik I' je tako:

r=ryr?yr‘urfyr’ (4)

V okviru metode je iskana tista nepopolna oblika X, pri kateri je mejna nosilnost
konstrukcije najnizja. Potek metode je prikazan na sliki 5. Neznani parametri o , pri
katerih bo mejna nosilnost najnizja, so ra¢unani iterativno v okviru optimizacijskega

procesa. V k-ti iteraciji lahko zapisemo:

Xy = Xp1 + AXy
N
AX; = > AofT,

=1
_ )
af =af ' 4+ Ak

_ N
i=1

kjer je X, nepopolna oblika, Aa¥ prirastek parametrov, AX, prirastek nepopolnosti
in X, skupna nepopolnost. Prirastek parametrov Aal v kti iteraciji je dobljen z

reSitvijo optimizacijskega problema. Za zacetni priblizek je lahko izbrana kar prva
bazna oblika I’ :

€
a) =0; Ao = {maxT
0 i=1 (6)

X, =X, +Aaqf T}

1 =1

< toleranca .

Postopek je zakljucen, ko je dosezen pogoj H Aaf

V vsaki iteraciji je izvedena nelinearna direktna in ob¢utljivostna analiza konstrukcije

z geometrijo X, . Parametri oblike o najbolj neugodne oblike X, v trenutnem

koraku, so izra¢unani s pomocjo optimizacijskega postopka, ki je popolnoma lo¢en od
direktne in obcutljivostne analize. TakSen pristop nam omogoca uporabo poljubnega
naprednega optimizacijskega algoritma.
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Slika 5:  Potek metode doloc¢itve najbolj neugodne zacetne nepopolnosti.

Alternativen in bolj toc¢en pristop bi lahko predstavljalo resevanje polno povezanega
problema, vendar zaradi numeri¢ne prezahtevnosti trenutno za vecje sisteme, Se ni

mogoc¢. Polno povezan problem je bil poenostavljen na ta nacin, da je bil z uporabo
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obc¢utljivosti mejni obtezni faktor nepopolne konstrukcije razvit v Taylorjevo vrsto
okoli mejnega obteznega faktorja nepopolne konstrukcije. Enacbo mejnega obteznega
faktorja lahko zapisemo na slede¢i nacin:

k k y 6)‘lk k
N = + Aoy, 7
Z Z oF=0 2 OAaf |nak= ' (™)
ok TR Co o ON
kjer je N . izratunani mejni obtezni faktor v k-ti iteraciji in ———
Aa=0 OAQ) | AaF=0

obc¢utljivost mejnega obteznega faktorja na optimizacijske parametre v trenutnem
koraku. Uporabljen iterativni pristop nam omogoca, da najbolj neugodno nepopolno
obliko konstrukcije is¢emo na nepopolni konstrukciji. Pri tem se najbolj neugodna
oblika iz prejsnje iteracije uporabi za zacetno nepopolnost v trenutni iteraciji. S tem
je zagotovljena natan¢nost tudi v primerih velikih nepopolnosti. V vsaki iteraciji je
potrebno resiti minimizacijski problem (8), kjer is¢emo taksne Aal, pri katerih bo
MA¥ minimalen, pod pogojem, da je amplituda oblike, ki jo dolo¢ajo parametri o, v
predpisanih mejah. Mejne amplitude e, so dolo¢ene s principom ekvivalentnih
geometrijskih nepopolnosti, ki jih dolo¢ajo tehni¢ni predpisi (EN 1993 1-5 2004, EN
1993 1-6 2006). Optimizacijski problem lahko zapisemo:

min A

Aok : (8)

C(X},e0) <0

kjer C’()_(k,eo) predstavlja omejitveno funkcijo. Funkcija A; je linearna, medtem ko je
omejitvena funkcija C(X;,e)) v odvisnosti od zasnove lahko samo ena, izrazito
nelinearna funkcija, ali skupek vec¢ linearnih funkcij. V prvem primeru je potrebno
problem resevati z razsirjeno Lagrangevo metodo, v drugem primeru in predvsem pri

obravnavi ve¢jih problemov, pa lahko uporabimo metode linearnega programiranja.

7, vetanjem Stevila upostevanih oblik v bazi oblik se napaka diskretizacije najbolj
neugodne oblike priblizuje napaki diskretizacije mreze kon¢nih elementov, kar
zagotavlja konvergenco metode z gostenjem mreze kon¢nih elementov in vecanjem

stevila upostevanih oblik.
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7.4 Optimizacija oblike konstrukcij

V okviru disertacije je bil razvit algoritem za gradientno optimizacijo oblike
konstrukcij za mejno stanje konstrukcije. Za izracun gradientov je bila uporabljena
analiti¢na obcutljivostna analiza. V direktni in ob¢utljivostni analizi so bile
upostevane zacetne nepopolnosti, dolo¢ene z metodo za doloc¢itev najbolj neugodne
zacCetne nepopolnosti.

Uporabljeno simbolno numeri¢no okolje pri resevanju problemov z gradientnimi
metodami optimizacije, omogoc¢a uporabo kombinacije naprednih simbolnih zmoznosti

ter hkratne numeri¢ne uc¢inkovitosti okolja (Korelc 2002, Korelc 2007a, b).

Postopek optimizacije v simbolno numeri¢cnem okolju je prikazan na sliki 6. Z
uporabo avtomatskega odvajanja, simultane optimizacije in preverjanja izrazov z
uporabo AceGen—a (Korelc 2007b), je pridobljena udinkovita koda koné¢nega
elementa. Za simbolno obravnavo v okviru metode koncénih elementov je uporabljeno
okolje AceFEM (Korelc 2007a). V skladu s postopki, opisanimi v 7.2.2, je izra¢unano
analiti¢no polje zacetnih obcutljivosti z delom AceFEM-a, z zmoznostjo simbolnega
obravnavanja problemov MDriver. Analiticno polje zacetnih obc¢utljivosti je nato
uporabljeno v izra¢unu obcutljivosti z numeriénim delom AceFEM-a (CDriver).
Odvodi namenske funkcije in pogojev po projektnih spremenljivkah so nato
posredovani optimizacijskemu algoritmu v okviru okolja Mathematica (Wolfram
2008). Kot je bilo ze poudarjeno, so natan¢ne gradientne informacije, izra¢unane na
podlagi analiticnega polja zacetnih obcutljivosti, odloc¢ilnega pomena za konvergenco
optimizacijskega algoritma, Se posebej, kadar obravnavamo probleme z upostevanjem

geometrijske in materialne nelinearnosti.

AceGen in AceFEM delujeta znotraj okolja Mathematica, kar je zelo priro¢no, saj ni
potrebno uporabljati vmesnikov za povezavo z drugimi okolji za optimizacijo. Poleg
tega Mathematica nudi paleto modernih optimizacijskih algoritmov, ki se neprestano
nadgrajujejo in jih je mozno uporabiti direktno z AceFEM-ovo direktno in
obcutljivostno analizo.

Splosen potek optimizacijske metode je predstavljen na sliki 6, splosna optimizacijska
zanka na sliki 7.
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'Okolje generiranja kode AceGen
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Matemati¢no programiranje » Optimalna oblika

Slika 6:  Optimizacija s pomo¢jo simbolno-numeri¢nega okolja.



Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization.

137

Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

[Simbolno numeriéno okolje za KE AceFEM
Opis modela z metodo kon¢nih elementov
[
v
Preveri potrebo po Izra¢un najbolj neugodne zacetne
_| ponovnem izracunu nepopolnosti
[/ | zacetnih nepopolnosti _
| X
: # v
Konvergenéni kriteriji 4 .
| NISO zadosgeni; _ vljégiiztcin;a Parametri oblike v
| / Spremeni " . simbolni obliki
I projektne spremenljivke \parametre oblike
| v v
| (" Numericna generacija ) (Simbolna generacija mreze)
[ mreze KE KE
| z CDRIVER z MDRIVER
= X X
| v
| (" Analiticno polje zacetnih )
| obc¢utljivosti
| Direktna :; ;)lti);::tl_]lvostna < X 0% p ()
| ¢ 0¢
I
| . J - J
! g
I
I
I ; T
| Okolje za optimizacijo
| v
"\
~ Matemati¢no programiranje
| »| Optimalna oblika
Konvergenéni kriteriji dosezeni

Slika 7:

Optimizacijska zanka s pomocjo simbolno-numeri¢nega okolja.
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Znotraj optimizacijskega procesa (slika 7) je geometrija konstrukcije posodobljena
zaporedoma v dveh iteracijskih zankah. V notranji zanki se v skladu =z
optimizacijskim algoritmom spreminjajo projektne spremenljivke ¢, ki dolocajo
geometrijo X(¢). V zunanji iteracijski zanki se geometrija konstrukcije spremeni
zaradi spremenjenih najbolj neugodnih zacetnih nepopolnosti X . Metoda za dolocitev
najbolj neugodne nepopolnosti je predstavljena na sliki 5. Geometrijo konstrukcije

lahko zapisemo kot:
X =Xp(¢) +X (9)

kjer je Xp(¢) idealna geometrija konstrukcije in X celoten vektor nepopolnosti kot
opisano v poglavju 7.3. Nepopolna oblika mora biti upostevana v direktni in
obc¢utljivostni analizi, medtem ko se za izracun polja zacetnih obcutljivosti lahko
uporabi idealna geometrija konstrukcije, saj velja:

OX  Xp(p)+ X 9Xp(0)

o (10)

Polje zacetnih obéutljivosti ni odvisno od celotnega vektorja zacetnih nepopolnosti X
in se ne spreminja pri spremembi projektnih spremenljivk ¢. Zaradi tega ga je

potrebno izrac¢unati le enkrat.

Najbolj neugodno zac¢etno nepopolnost je potrebno izracunati vsaki¢, ko se geometrija
konstrukcije v okviru optimizacije oblike spremeni do dolocene mere. Skupaj s
spremenjeno geometrijo se spreminja tudi oblika najbolj neugodne nepopolnosti.
Izra¢un najbolj neugodne nepopolnosti je racunsko zahteven, zato je ugodno, ce
izracuna ni potrebno izvajati v vsaki iteraciji optimizacije oblike. Izrac¢un je izveden
samo takrat, ko bi spremenjena oblika zacetnih nepopolnosti spremenila mejni
obtezni faktor za ve¢ kot A., ali bi se spremenilo mejno stanje. Ugotovljeno je bilo,
da se oblika neugodnih zacetnih nepopolnosti ne spreminja bistveno pri majhnih
spremembah projektnih spremenljivk. Poleg tega je konvergenca optimizacijskega
algoritma bolje ohranjena, ¢e se oblika zacetnih nepopolnosti ne spreminja. V
predlaganem pristopu se izra¢un najbolj neugodnih nepopolnosti izvrsi izmenoma z
optimizacijo oblike, kar se je izkazalo kot uspesen pristop pri iskanju optimalne

koné¢ne oblike konstrukcije.
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7.5 Zakljucek

Cilj disertacije je bil razviti optimizacijsko metodo, katero bi bilo mozno uporabiti v
projektiranju konstrukcij. Ve¢ina modernih tehni¢nih standardov pri projektiranju
konstrukcij zahteva, da je nosilnost konstrukcije taksna, da bo v svoji zivljenjski dobi
z dano verjetnostjo prenesla vse predvidene obtezbe in da ne bo presegla
projektiranih mejnih stanj. Standardni postopki optimizacije oblike konstrukcij v
splosnem ne upostevajo mejnih stanj konstrukcij. Obicajno se konstrukcije optimizira
z ozirom na njihov volumen, ceno, ali kaksno drugo lastnost, kot recimo lastna
frekvenca ali togost. Izra¢un pravilne mejne obtezbe konstrukcije je zahtevna naloga,
zato se pri klasi¢ni optimizaciji oblike konstrukcij uporabljajo kriteriji napetosti,
prvega nastopa elasticnega uklona ali nastop bifurkacijske tocke. Ti pristopi v
splosnem ne omogocajo izracuna optimalne oblike za dejansko mejno stanje
konstrukcije.

V predstavljenem pristopu je prikazana optimizacija oblike za mejno stanje, v okviru
katere je mozno natan¢no dolo¢iti mejno obtezbo konstrukcije, s hkratnim
upostevanjem zacetnih nepopolnosti ter materialnih in geometrijskih nelinearnosti ter
jo uporabiti kot pogoj v procesu optimizacije. V metodo Se ni implementirana
moznost eksplicitnega upostevanja zaostalih napetosti. Upostevati jih je mozno
implicitno s pomoc¢jo metode nadomestnih geometrijskih nepopolnosti. V skladu s
tehni¢nimi standardi je na tak nacin ob predpostavki, da so zajeti vsi relevantni

fenomeni, s pomocjo optimizacijskih algoritmov mozno projektirati konstrukcije.

V okviru disertacije je bil uporabljen simbolno numeri¢ni pristop k optimizaciji
oblike. Ta omogoc¢a poljubno simbolno parametrizacijo konstrukcije, kar ni mogoce
pri klasi¢nih pristopih k optimizaciji oblike. Simbolna oblika omogoca analiti¢en
izracun polja zacetnih obcutljivosti, s ¢imer je mozno izvesti natan¢no obcutljivostno
analizo, ki je temeljnega pomena za uspeh uporabljenih gradientnih metod
optimizacije.

V primeru konstrukcij, ki so ob¢utljive na spremembo zacetne geometrije, doloc¢itev
mejne obtezbe ter optimizacija oblike v mejnem stanju, zahtevata pravilno
upostevanje zacetnih nepopolnosti. Velikost in oblika zac¢etnih nepopolnosti lahko ima
velik vpliv na odziv konstrukcije ter njeno mejno stanje. Nadalje je mozno, da je ob
neupostevanju zacetnih nepopolnosti rezultat optimizacije napacen, saj se kot
rezultati lahko pojavijo zelo lahke konstrukcije, ki so zelo ob¢utljive na pojav uklona.
Kljub &tevilnim raziskavam, eksperimentalnemu delu ter numeri¢nim analizam

konstrukcij, obcutljivih na spremembo geometrije, med strokovnjaki Se vedno ni
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enotnega mnenja, na kakSen nac¢in izracunati mejno stanje, kar je mozno pripisati
Stevilnim tezavam, ki se pojavijo.

Nepopolnosti konstrukcije niso znane v naprej, zato je bila razvita metoda za
dolo¢itev najbolj neugodne nepopolnosti nanasajo¢ se na mejno stanje konstrukcije.
Metoda je implementirana kot interni lo¢en optimizacijski algoritem znotraj globalne
optimizacije oblike konstrukcije. Prikazano je, da je s pomoc¢jo geometrijsko in
materialno nelinearne analize nepopolnih konstrukcij kombinirane z optimizacijo,
mozno direktno dolociti zacetno nepopolno obliko, pri kateri konstrukcija izkaze
najmanj$o mozno mejno nosilnost. Metoda ni omejena na linearno obtezno pot in ne
na majhne nepopolnosti ter omogoca vpeljavo razlicnih tehnoloskih pogojev glede
same oblike.

Obicajno je potrebno za dolo¢itev neugodne kombinacije zacetnih nepopolnosti
opraviti stevilne analize. Kljub naporu je tezko dolociti stopnjo, do katere se zmanjsa
mejna obtezba konstrukcije z upostevanjem tako dobljenih zacetnih nepopolnosti in z
izracunano najbolj neugodno nepopolnostjo. Na podlagi rezultatov predstavljenega
pristopa je tezko okarakterizirati dolocene konstrukcije z dolo¢enimi tipi nepopolnosti.
Vsaka sprememba v debelini, obliki ali obtezbi lahko povzro¢i drasti¢no spremembo
najbolj neugodne oblike.

Pri kompleksnih konstrukcijah, obc¢utljivih na spremembo oblike, kjer je tezko
intuitivno dolo¢iti neugodne nepopolnosti in kjer empiri¢no pridobljenih neugodnih
oblik ni na voljo, je uporaba metode za dolo¢itev najbolj neugodnih nepopolnosti

nujna.

Zaradi nepredvidljivosti oblik nepopolnosti, tehni¢ni standardi predlagajo uporabo
empiri¢nih metod dolo¢anja zacetnih nepopolnosti v numeri¢nih analizah. Mejne
obtezbe konstrukcij, izra¢unane s pomocjo predstavljene metode, so se izkazale za
manjse, kot bi jih dobili s pomoc¢jo kombiniranja razlicnih oblik po priporocilih
standardov ali s pristopi, ki temeljijo na Koiterjevi asimptoti¢ni teoriji ali
parametricnimi $Studijami. Te metode lahko pripeljejo do preve¢ optimisti¢nih
rezultatov. Po drugi strani je verjetnost, da bi realna konstrukcija imela najbolj
neugodno zacetno obliko, zelo majhna. Kljub temu je informacija, katera nepopolnost
je majbolj neugodna, zelo pomembna, kadar numeri¢no simuliramo obnaganje
konstrukcij. V tem smislu je mogoce povzeti, da je uporaba celostne metode dolocitve
najbolj neugodnih nepopolnosti pri geometrijsko in materialno nelinearni analizi,

nepogresljiva.



Kristani¢, N. 2008. Limit State Design Using Exact Sensitivity Analysis and Shape Optimization. 141

Doctoral thesis. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

Pomembnost moznosti izra¢una najbolj neugodnih zacetnih nepopolnosti se nadalje
izkaze pri uporabi le teh v optimizaciji oblike v mejnem stanju nosilnosti. Skozi
celoten proces optimizacije je konsistentno upostevana polna geometrijska in
materialna nelinearnost, kar omogoca efektiven in robusten nac¢in projektiranja
konstrukcij.  Pristop, ki upoSteva dejansko mejno obtezbo ter uporabo najbolj
neugodnih nepopolnosti, povzroci, da je v okviru optimizacije oblike iskana taksna
konstrukcija, ki izkazuje plasti¢cno in duktilno obnaSanje z zmanjSano nevarnostjo
nastanka nestabilnosti ter po drugi strani minimalnim volumnom konstrukcije. Na
tak nacin je rezultat predlagane metode optimizacije robustna konstrukcija z

minimalno tezo ter minimalno moznostjo uklona pri danih pogojih.

Projektiranje konstrukcij z integracijo metod optimizacije oblike za mejno stanje ter
doloc¢itve najbolj neugodne zacetne nepopolnosti, predstavlja nov in napreden pristop
k projektiranju konstrukcij. Uspesno kombinacijo analize mejne obtezbe in
optimizacijskih metod omogoc¢a uporaba simbolno numeri¢nega okolja za analizo
konstrukcij. Z upostevanjem vseh pomembnih fenomenov, lahko predlagan pristop
predstavlja nac¢in projektiranja varnih in ekonomic¢nih konstrukcij, ter s tem boljso
alternativo klasi¢cnemu projektiranju konstrukcij na mejna stanja.

Pomembnejse izvirne prispevke k tehni¢nim znanostim predstavljajo naslednji razviti
postopki:
- Razvoj metode za doloc¢itev najbolj neugodne zacetne geometrijske
nepopolnosti.

- Razvoj algoritmov za optimizacijo oblike konstrukcij v mejnem stanju z
upostevanjem najbolj neugodnih nepopolnosti.

- Izracun analiti¢nega polja zacetnih nepopolnosti in to¢na obc¢utljivostna
analiza s pomocjo simbolno-numeri¢nega okolja.
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