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A B S T R A C T	   A R T I C L E   I N F O	

In	 this	work,	 the	multi‐objective	optimization	aspects	of	plasma	arc	machin‐
ing	 (PAM),	 electro‐discharge	machining	 (EDM),	 and	micro	 electro‐discharge	
machining	 (μ‐EDM)	 processes	 are	 considered.	 Experiments	 are	 performed	
and	 actual	 experimental	 data	 is	 used	 to	 develop	 regression	 models	 for	 the	
considered	machining	processes.	A	posteriori	version	of	Jaya	algorithm	(MO‐
Jaya	algorithm)	is	proposed	to	solve	the	multi‐objective	optimization	models
in	a	single	simulation	run.	The	PAM,	EDM	and	µ‐EDM	processes	are	optimized	
using	MO‐Jaya	algorithm	and	a	set	of	Pareto‐efficient	solutions	is	obtained	for	
each	of	the	considered	machining	processes	and	the	same	is	reported	in	this	
work.	This	Pareto	optimal	set	of	solutions	will	provide	 flexibility	to	 the	pro‐
cess	planner	to	choose	the	best	setting	of	parameters	depending	on	the	appli‐
cation.	 The	 aim	of	 this	work	 is	 to	 demonstrate	 the	performance	of	MO‐Jaya	
algorithm	and	to	show	its	effectiveness	in	solving	the	multi‐objective	optimi‐
zation	problems	of	machining	processes.	
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1. Introduction 

In	order	to	survive	in	a	 fierce	market	scenario	manufacturing	industries	are	required	to	main‐
tain	high	quality	standards,	produce	at	lowest	cost,	increase	production	rate,	conserve	resources	
and	 at	 the	 same	 time	minimize	 the	 environmental	 impact	 of	 the	 processes	 they	 use.	Machine	
tools	are	major	pillars	of	any	manufacturing	system	and	are	used	on	a	large	scale	for	processing	
of	materials.	However,	machining	processes	are	characterized	by	high	energy	consumption,	high	
tool	wear	rate,	poor	surface	quality	and	generation	of	large	scale	waste	products	in	the	form	of	
used	lubricants,	coolants,	dielectric	or	electrolytic	 fluids,	chips	and	debris	of	tool	or	workpiece	
materials,	etc.	Thus,	for	success	of	any	manufacturing	system	in	terms	of	economy	and	to	reduce	
its	impact	on	the	ecology	it	is	crucial	to	improve	the	efficiency	of	these	machine	tools.	Further‐
more,	in	order	to	improve	the	sustainability	of	the	process	it	is	imminent	that	the	machines	are	
operated	as	efficiently	as	possible.		

The	performance	of	any	machining	process	extensively	depends	upon	the	choice	of	process	
parameters.	Therefore,	for	best	performance	from	any	machining	process	it	is	important	to	set	
the	process	parameters	optimally.	In	order	to	determine	the	optimal	setting	of	process	parame‐
ters	it	is	important	to	map	the	relationship	between	input	and	output	parameters.	De	Wolf	et	al.	
[1]	investigated	the	effect	of	process	parameters	on	material	removal	rate,	electrode	wear	rate	
and	surface	finish	in	EDM	process.	Aich	and	Banerjee	[2]	applied	teaching	learning	based	opti‐
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mization	procedure	for	the	development	of	support	vector	machine	learned	EDM	process	and	its	
pseudo	 Pareto	 optimization.	 Zhang	 et	 al.	 [3]	 enumerated	 and	 characterized	 128	 scenarios	 in	
sustainable	machining	operation	involving	7	objectives	including	energy,	cost,	time,	power,	cut‐
ting	 force,	 tool	 life	 and	 surface	 finish.	Gupta	et	 al.	 [4]	presented	 the	 results	of	 optimization	of	
machining	parameters	and	cutting	fluids	during	nano‐fluid	based	minimum	quantity	lubrication	
turning	of	titanium	alloy	by	using	particle	swarm	optimization	and	bacteria	foraging	optimiza‐
tion	techniques.		

Researchers	have	also	applied	a	number	of	numerical	and	metaheuristic	optimization	algo‐
rithms	for	optimal	setting	of	machining	process	parameters	[5‐13].	The	metaheuristic	optimiza‐
tion	algorithms	are	mostly	inspired	by	the	theory	of	evolution	or	of	behavior	of	a	swarm.	All	evo‐
lutionary	algorithms	or	 swarm	based	algorithms	 require	 tuning	of	parameters	 like	population	
size,	number	of	iterations,	elite	size,	etc.	In	addition,	different	algorithms	require	their	own	algo‐
rithm‐specific	parameters.	The	 improper	tuning	of	algorithm‐specific	parameters	adversely	af‐
fects	the	performance	of	these	algorithms.	In	addition,	the	tuning	of	population	size	and	number	
of	iterations	is	also	required.		

Rao	[14]	proposed	the	Jaya	algorithm	which	algorithm‐specific	parameter‐less	algorithm.	The	
performance	of	Jaya	algorithm	has	already	been	tested	on	a	number	of	unconstrained	and	con‐
strained	benchmark	 functions	and	engineering	optimization	problems.	For	more	details	 about	
the	 algorithm,	 the	 readers	may	 refer	 to	 https://sites.google.com/site/jayaalgorithm.	 The	 Jaya	
algorithm	 is	 simple	 in	 implementation	 as	 a	 solution	 is	 updated	 only	 in	 a	 single	 phase	 using	 a	
single	equation.	However,	the	multi‐objective	version	of	Jaya	algorithm	is	not	yet	developed.		

In	the	case	of	machining	processes	due	to	co‐existence	of	multiple	performance	criteria	there	
is	 a	 need	 to	 formulate	 and	 solve	multi‐objective	 optimization	 problems	 (MOOP).	 A	 priori	 ap‐
proach	such	as	normalized	weighted	sum	approach,	epsilon	constraint	method,	etc.	require	as‐
signing	the	weights	of	importance	to	the	objectives	before	simulation	run	of	the	algorithm.	Fur‐
ther,	it	is	required	to	run	the	algorithm	independently	for	each	set	of	weights	to	obtain	distinct	
solutions.	A	posteriori	approach	does	not	require	assigning	weights	of	importance	to	the	objec‐
tives	in	advance.	This	approach	provides	a	set	of	Pareto‐efficient	solutions	for	a	MOOP	in	a	single	
run	of	simulation.	The	process	planner	can	then	select	one	out	of	the	set	of	Pareto‐efficient	solu‐
tions	based	on	the	order	of	importance	of	objectives.		

Thus,	 in	 this	work	 a	 parameter‐less	 posteriori	multi‐objective	 version	 of	 Jaya	 algorithm	 is	
named	as	multi‐objective	Jaya	(MO‐Jaya)	algorithm	is	proposed	and	the	MOOPs	of	three	modern	
machining	processes	namely	plasma	arc	machining	(PAM),	electro‐discharge	machining	(EDM),	
and	micro	electro‐discharge	machining	(µ‐EDM)	are	solved	using	MO‐Jaya	algorithm.	The	 Jaya	
and	MO‐Jaya	algorithms	are	described	in	following	sections.		

2. The Jaya algorithm 

In	 the	 Jaya	algorithm	P	 initial	 solutions	are	 randomly	generated	obeying	 the	upper	and	 lower	
bounds	of	the	process	variables.	Thereafter,	each	variable	of	every	solution	is	stochastically	up‐
dated	using	Eq.	1.	The	best	solution	is	the	one	with	maximum	fitness	(i.e.	best	value	of	objective	
function)	and	the	worst	solution	is	the	one	with	lowest	fitness	(i.e.	worst	value	of	objective	func‐
tion).	
	

ܱ௣ାଵ,௤,௥ ൌ 	 ௣ܱ,௤,௥ ൅ ௣,௤,ଵߙ 	ቀܱ௣,௤,௕௘௦௧ െ abs൫ ௣ܱ,௤,௥൯ቁ െ ௣,௤,ଶߙ ቀܱ௣,௤,௪௢௥௦௧ െ abs൫ ௣ܱ,௤,௥൯ቁ	 (1)
	

Here	best	and	worst	represent	the	index	of	the	best	and	worst	solutions	among	the	population.	p,	
q,	r	are	the	index	of	iteration,	variable,	and	candidate	solution.	Op,	q,	r	means	the	q‐th	variable	of	r‐
th	 candidate	 solution	 in	p‐th	 iteration.	αp,q,1	 and	αp,q,2	 are	 numbers	 generated	 randomly	 in	 the	
range	of	[0,	1].	The	random	numbers	αp,q,1	and	αp,q,2	act	as	scaling	factors	and	ensure	exploration.	
The	 absolute	 value	 of	 the	 variable	 (instead	 of	 a	 signed	 value)	 also	 ensures	 exploration.	 Fig.	 1	
gives	the	flowchart	for	Jaya	algorithm.	
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Fig.	1	Flowchart	of	Jaya	algorithm	

3. The multi‐objective Jaya algorithm 

The	MO‐Jaya	algorithm	is	a	posteriori	version	of	Jaya	algorithm	for	solving	MOOPs.	The	solutions	
in	the	MO‐Jaya	algorithm	are	updated	 in	the	similar	manner	as	 in	the	Jaya	algorithm	based	on	
Eq.	1.	 In	 the	 interest	of	handling	problems	 in	which	more	 than	one	objective	co‐exist	 the	MO‐
Jaya	algorithm	 is	embedded	with	dominance	ranking	approach	and	crowding	distance	evalua‐
tion	approach. 

The	MO‐Jaya	algorithm	is	a	posteriori	version	of	Jaya	algorithm	for	solving	MOOPs.	The	solu‐
tions	in	the	MO‐Jaya	algorithm	are	updated	in	the	similar	manner	as	in	the	Jaya	algorithm	based	
on	Eq.	1.	In	the	interest	of	handling	problems	in	which	more	than	one	objective	co‐exist	the	MO‐
Jaya	algorithm	 is	embedded	with	dominance	ranking	approach	and	crowding	distance	evalua‐
tion	approach	[12].  

In	 the	MO‐Jaya	 algorithm,	 the	 superiority	 among	 the	 solutions	 is	 decided	 according	 to	 the	
non‐dominance	rank	and	value	of	 the	density	estimation	parameter	 i.e.	 crowding	distance	 (ξ).	
The	solution	with	highest	rank	(rank	=	1)	and	largest	value	of	ξ	is	chosen	as	the	best	solution.	On	
the	other	hand	the	solution	with	the	lowest	rank	and	lowest	value	of	ξ	 is	selected	as	the	worst	
solution.	Such	a	selection	scheme	is	adopted	so	that	solution	in	less	populous	region	of	the	objec‐
tive	space	may	guide	the	search	process.	Once	the	best	and	worst	solutions	are	selected,	the	solu‐
tions	are	updated	based	on	the	Eq.	1.	

After	all	the	solutions	are	updated,	the	updated	solutions	are	combined	with	the	initial	popu‐
lation	to	so	that	a	set	of	2P	solutions	(where	P	is	the	size	of	initial	population)	is	formed.	These	
solutions	 are	 again	 ranked	 and	 the	 ξ	 value	 for	 every	 solution	 is	 computed.	Based	 on	 the	new	
ranking	and	ξ	value	P	good	solutions	are	chosen.		

The	flowchart	of	MO‐Jaya	algorithm	is	given	in	Fig.	2.	For	every	candidate	solution	the	MO‐
Jaya	algorithm	evaluates	the	objective	function	only	once	in	each	iteration.	Therefore,	the	total	
no.	of	function	evaluations	required	by	MO‐Jaya	algorithm	=	population	size	×	no.	of	iterations.	
However,	when	the	algorithm	is	run	more	than	once,	then	the	number	of	function	evaluations	is	
to	be	calculated	as:	no.	of	function	evaluations	=	no.	of	runs	×	population	size	×	number	of	itera‐
tions.	 The	 methodology	 used	 for	 ranking	 of	 solutions,	 computing	 the	 crowding	 distance	 and	
crowding	comparison	operator	are	described	in	the	following	sub‐sections.	
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Fig.	2	Flowchart	of	MO‐Jaya	algorithm 

 

3.1 Ranking methodology 

The	 approach	 used	 for	 ranking	 of	 solutions	 is	 based	 on	 the	 non‐dominance	 relation	 between	
solutions	and	is	described	as	follows.	In	an	M	objective	optimization	problem,	P	is	the	set	of	solu‐
tions	to	be	sorted	and	n	=	|P|.		

Domination:	A	solution	x1	is	said	to	dominate	another	solution	x2	if	and	only	if	fi	(x1)	≤	fi	(x2)	for	
all	1	≤	i	≤	M	and	fi	(x1)	<	fi	(x2)	for	at	least	one	i,	where	i	ϵ {1,...,M}	(when	all	objectives	are	to	be	
minimized).	

Non‐domination:	A	solution	x*	in	P	is	non‐dominated	if	there	does	not	exist	any	solution	xj	in	P	 ‐
which	dominates	x*.	

Similarly,	every	solution	in	P	competes	with	every	other	solution	and	the	non‐dominated	solu‐
tions	are	removed	from	P	and	assigned	rank	one.	The	remaining	solutions	in	P	are	again	sorted	
in	the	same	way	and	the	non‐dominated	solutions	are	removed	and	assigned	rank	two.	Unless	
all	the	solutions	in	P	receive	a	rank	this	procedure	is	continued.	A	group	of	solutions	with	same	
rank	is	known	as	front	(F).	

3.2 Computing the crowding distance 

The	crowding	distance	(ξj)	is	an	estimate	of	the	density	of	the	solutions	in	the	vicinity	of	a	par‐
ticular	solution	j.	For	a	particular	front	F,	let	l	=	|F|	then	for	each	member	in	F,	ξ	is	calculated	as	
follows.		

Step	1:	Initialize	ξj	=	0	
Step	2:	Sort	all	solutions	in	F	the	set	in	the	worst	order	of	objective	function	value	fm.	
Step	3:	In	the	sorted	list	of	mth	objective	assign	infinite	crowding	distance	to	solutions	at	the	ex‐
tremes	of	the	sorted	list	(i.e.	ξ1	=	ξl	=	∞),	for	j	=	2	to	(l	–	1),	calculate	ξj	as	follows:	
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௝ߦ ൌ ௝ߦ
௠݂
௝ାଵ െ ௠݂

௝ିଵ

௠݂
୫ୟ୶ െ ௠݂

୫୧୬	 (2)

Where	j	represents	a	solution	in	the	sorted	list,	fm	is	the	objective	function	value	of	m‐th	objec‐
tive	of	 j‐th	solution,	and	are	the	highest	and	the	lowest	values	of	the	m‐th	objective	function	in	
the	current	population.	Likewise,	ξ	is	computed	for	all	the	solutions	in	all	Fs.	

In	the	case	of	MOOPs	there	exist	more	than	one	optimal	solution.	Therefore,	the	aim	is	to	find	
a	set	of	Pareto‐efficient	solutions.	In	MO‐Jaya	algorithm	in	order	to	avoid	clustering	of	solutions	
about	a	single	good	(higher	rank)	solution,	the	good	solutions	in	the	isolated	region	of	the	search	
space	are	identified	based	on	the	ξ	value,	and	a	solution	with	a	higher	rank	and	higher	ξ	value	is	
considered	as	the	best	solution	in	the	next	generation.	Thus,	the	other	solutions	in	the	popula‐
tion	will	be	directed	towards	the	good	solution	which	lies	in	the	less	populous	(isolated)	region	
of	 the	search	space	 in	 the	next	generation.	This	will	prevent	 the	algorithm	from	converging	to	
single	optimum	solution	and	ensure	diversity	among	the	solutions.	For	this	purpose	a	solution	
from	the	more	isolated	region	of	search	space	is	given	more	preference	than	the	solution	in	the	
crowded	region	of	the	search	space.	In	the	MO‐Jaya	algorithm,	among	the	two	competing	solu‐
tions	 i	 and	 j,	 primarily,	 the	 solution	with	a	higher	 rank	 is	preferred.	 If	 the	 two	 solutions	have	
equal	rank	then	the	solution	with	a	higher	ξ	value	is	preferred.	

The	next	section	describes	the	experiments	performed	on	the	PAM,	EDM	and	µ‐EDM	process‐
es.	The	experiments	are	performed	at	the	Manufacturing	Science	Laboratory	of	IIT	Kanpur,	India	
by	the	team	of	Professor	J.	Ramkumar	(co‐author	of	this	paper)	and	validation	tests	are	also	per‐
formed	for	the	considered	machining	processes.	

4. Case studies 

The	MOOPs	of	PAM,	EDM	and	µ‐EDM	processes	are	described	in	the	following	sub‐sections	and	
the	same	are	solved	using	MO‐Jaya	algorithm.	 In	order	 to	get	a	set	of	50	Pareto‐efficient	solu‐
tions	a	population	size	of	50	is	chosen	for	MO‐Jaya	algorithm.	In	order	to	provide	enough	chance	
for	the	search	process	to	evolve	and	converge	at	the	Pareto‐efficient	set	of	solutions,	allowable	
iterations	are	set	to	100.	All	the	simulations	are	performed	on	a	computer	with	2.93	GHz	proces‐
sor	and	4	GB	RAM.	The	code	for	MO‐Jaya	algorithm	is	developed	in	MATLAB	R2009a. 

4.1 Optimization of plasma arc machining process 

This	work	 aims	 to	 improve	 the	 performance	 of	 PAM	process	 by	means	 of	 process	 parameter	
optimization.	The	regression	models	for	material	removal	rate	‘MRR’	(g/s)	and	dross	formation	
rate	‘DFR’	(g/s)	are	developed	using	the	data	collected	by	means	of	actual	experimentation,	and	
the	same	are	used	as	fitness	functions	for	MO‐Jaya	algorithm	in	order	to	obtain	multiple	trade‐
off	solutions.	

The	 experimental	 setup	 consisted	 of	mainly	 four	 components	 i.e.	 power	 supply	 unit,	 steel	
trailer,	plasma	torch,	a	work‐table	and	a	vibration	setup.	The	power	supply	unit	is	used	to	con‐
trol	 the	current	and	pressure	of	gas.	The	steel	 trailer	 is	used	 to	move	 the	plasma	 torch	on	2D	
surface.	The	plasma	torch	 is	used	 to	convert	 the	gas	 into	plasma	and	 the	worktable	 is	used	 to	
hold	the	workpiece	a	vibration	setup	is	also	mounted	on	the	worktable.	The	vibration	setup	con‐
sists	of	two	RM	slider	assembly,	a	moving	plate	and	a	fixed	plate,	an	induction	motor,	a	variable	
frequency	drive	to	control	the	speed	of	the	motor	and	a	cam	and	spring	assembly.	

The	 experiments	 are	 performed	 at	Manufacturing	 Science	 Laboratory	 of	 IIT	 Kanpur,	 India	
and	AISI	4340	steel	(0.16‐0.18	%	of	C)	 is	used	as	work	material.	The	experiments	are	planned	
according	to	the	central	composite	design	(CCD)	and	4	process	parameters	such	as	thickness	of	
workpiece	‘T’	(mm),	current	‘I’	(Amp),	arc	gap	voltage	‘Vg’	(V)	and	speed	‘S’	(mm/min)	are	con‐
sidered	each	at	5	levels.	Table	1	gives	the	plan	of	experiments	based	on	CCD.	
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Table	1	Design	of	experiments	and	values	of	MRR	and	DFR	measured	after	experimentation	
S.	No.	 T	(mm)	 I	(A)	 Vg	(V)	 S	(mm/min)	 MRR	(g/s)	 DFR	(g/s)	
1	 2	 40	 135	 500	 0.1514	 0.1164	
2	 1.5	 35	 145	 600	 0.1269	 0.1623	
3	 1.5	 45	 145	 600	 0.3088	 0.0058	
4	 2	 30	 135	 700	 0.2476	 0.02	
5	 2	 40	 155	 700	 0.3529	 0.0217	
6	 1	 40	 135	 700	 0.1495	 0.0428	
7	 1.5	 25	 145	 600	 0.1367	 0.0894	
8	 1.5	 35	 145	 600	 0.2537	 0.0204	
9	 2	 40	 135	 700	 0.3206	 0.0065	
10	 2.5	 35	 145	 600	 0.2939	 0.0643	
11	 1	 40	 155	 500	 0.0696	 0.1120	
12	 1	 40	 155	 700	 0.1958	 0.0427	
13	 1	 30	 155	 700	 0.1571	 0.0495	
14	 1.5	 35	 145	 400	 0.1230	 0.0799	
15	 2	 40	 155	 500	 0.2530	 0.0484	
16	 2	 30	 135	 500	 0.1791	 0.0330	
17	 1	 40	 135	 500	 0.0447	 0.0804	
18	 0.5	 35	 145	 600	 0.0023	 0.0858	
19	 1.5	 35	 145	 600	 0.15	 0.1260	
20	 2	 30	 155	 500	 0.1516	 0.1095	
21	 1.5	 35	 145	 800	 0.3106	 0.0235	
22	 1.5	 35	 125	 600	 0.1389	 0.0899	
23	 2	 30	 155	 700	 0.1351	 0.1921	
24	 1.5	 35	 145	 600	 0.1693	 0.1144	
25	 1	 30	 135	 700	 0.1330	 0.0218	
26	 1.5	 3555	 145	 600	 0.1440	 0.1274	
27	 1.5	 35	 165	 600	 0.1308	 0.1885	
28	 1	 30	 135	 500	 0.0580	 0.0679	
29	 1.5	 35	 145	 600	 0.1711	 0.1084	
30	 1	 30	 155	 500	 0.0236	 0.1363	

	
Thirty	experimental	runs	are	performed	and	MRR	and	DFR	are	measured	and	recorded.	The	

weight	of	each	test	specimen	is	measured	before	and	after	performing	an	experimental	run,	with	
dross	and	without	dross	and	the	MRR	and	DFR	are	determined	according	to	Eq.	3	to	Eq.	5.	

ܴܴܯ ൌ ሺݓଵ െ 	ݐ/ଶሻݓ (3)
ܴܨܦ ൌ ሺݓଶ െ 	ݐ/ଷሻݓ (4)

ݐ ൌ ܮ ൉ 60/ܵ	 (5)

Where	w1	is	the	weight	of	the	workpiece	in	grams	before	cutting;	w2	is	the	weight	of	the	work‐
piece	in	grams	after	cutting	with	dross;	w3	is	the	weight	of	the	workpiece	after	cutting	in	grams	
without	dross;	t	 is	the	cutting	time	in	s	and	L	 is	the	length	of	cut	on	each	workpiece	(125	mm)	
and	S	is	the	cutting	speed	(mm/min).	Thereafter,	regression	models	for	MRR	and	DFR	are	devel‐
oped	using	a	logarithmic	scale	and	are	expressed	by	Eq.	6	and	Eq.	7.	
	
ܴܴܯ					 ൌ exp 	ሼ202.0963939 ൅ 26.97654873 ሺlog ܶሻ െ 115.7823 ሺlog ሻܫ  
                            ൅36.5388	ሺlog ௚ܸሻ െ 32.2698 ሺlog ܵሻ െ 2.3015 ሺlog ܶሻଶ ൅ 3.07499	ሺlog  ሻଶܫ
                            െ10.03049	ሺlog 	 ௚ܸሻଶ ൅ 2.5766	ሺlog ܵሻଶ ൅ 0.70759	ሺlog	ܶ ൉ log  ሻܫ
                            െ0.25221	ሺlog	ܶ ൉ log 	 ௚ܸሻ െ 3.92965	ሺlog ܶ ൉ log ܵሻ ൅ 17.92577	൫log ܫ ൉ log	 ௚ܸ൯ 
                            ൅0.91766	ሺlog	ܫ ൉ log ܵሻ െ 0.07549 ሺlog ௚ܸ ൉ log ܵሻሽ 
 

ሺܴଶ ൌ 0.95ሻ

(6)

 

ܴܨܦ					 ൌ exp 	ሼെ310.030243 െ 7.0437	ሺlog ܶሻ ൅ 311.642 ሺlog ሻܫ െ 169.3030 ሺlog 	 ௚ܸሻ 
                           ൅56.3056	ሺlog ܵሻଶ െ 0.5839 ሺlog ܶሻଶ െ 16.1736 ሺlog ሻଶܫ ൅ 17.4766	ሺlog 	 ௚ܸሻଶ 
                           െ8.15487	ሺlog ܵሻଶ െ 4.90491	ሺlogܶ ൉ log ሻܫ ൅ 4.68153	ሺlog	ܶ ൉ log 	 ௚ܸሻ 
                           ൅0.17082	ሺlog	ܶ ൉ log ܵሻ െ 28.2996	ሺlog ܫ ൉ log ௚ܸሻ െ 8.91918	ሺlog ܫ ൉ log ܵሻ 
                           ൅15.42233	ሺlog ௚ܸ ൉ log ܵሻሽ 

ሺܴଶ ൌ 0.7ሻ

(7)

Now	MO‐Jaya	algorithm	is	applied	to	maximize	the	MRR	and	minimize	the	DFR,	simultaneously.	
The	regression	models	for	MRR	and	DFR	expressed	by	Eq.	6	and	Eq.	7	are	used	as	fitness	func‐
tion	for	MO‐Jaya	algorithm.	The	process	parameters	limits	are	expressed	by	Eqs.	8	to	11.	
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0.5 ≤ T ≤ 2.5 (8)
25 ≤ I≤ 45 (9)

125 ≤ Vg ≤ 165 (10)
400 ≤ S ≤ 800 (11)

The	set	of	Pareto‐efficient	solutions	provided	by	MO‐Jaya	algorithm	is	reported	Table	2	and	
the	Pareto‐front	 is	 shown	 in	 Fig.	 3.	 The	MO‐Jaya	 algorithm	 required	8	 iterations	 to	 obtain	 50	
Pareto‐efficient	 solutions.	The	CPU	 time	 required	by	MO‐Jaya	algorithm	 to	perform	100	 itera‐
tions	is	7.2	s.	

The	results	of	MO‐Jaya	algorithm	have	revealed	that,	the	optimal	value	for	current	and	speed	
are	45	(A)	and	800	(mm/min)	to	achieve	a	trade‐off	between	MRR	and	DFR.	The	MRR	increases	
continuously	 from	a	minimum	value	of	0.2342	(g/s)	 to	1.0769	(g/s)	as	 the	arc	gap	voltage	 in‐
creases	from	128.2032	(V)	to	165	(V).	However,	the	increase	in	MRR	is	achieved	on	the	expense	
of	 increase	 in	DFR.	Therefore,	 the	best	compromised	values	 for	DFR	 lie	 in	 the	range	of	0.0004	
(g/s)	to	0.0026	(g/s).	The	DFR	shows	an	inverse	trend	with	respect	to	thickness	of	workpiece.	
However,	as	the	arc	gap	voltage	increases	the	DFR	also	increases	(refer	to	Table	2).	

Table	2	Pareto	optimal	solution	set	provided	by	MO‐Jaya	algorithm	in	a	single	simulation	run	for	PAM	process	
S.	No.	 x1	(mm)	 x2	(A)	 x3	(V)	 x4	(mm/min)	 MRR	(g/s)	 DFR	(g/s)	
1	 2.5	 45	 128.2032	 800	 0.2342	 0.0004	
2	 2.5	 45	 130.0663	 800	 0.2573	 0.0004	
3	 2.5	 45	 134.3141	 800	 0.3127	 0.0004	
4	 2.5	 45	 137.139	 800	 0.3508	 0.0005	
5	 2.5	 45	 140.1553	 800	 0.392	 0.0005	
6	 2.5	 45	 141.3426	 800	 0.4082	 0.0005	
7	 2.5	 45	 142.5303	 800	 0.4243	 0.0005	
8	 2.4048	 45	 142.5775	 800	 0.4589	 0.0006	
9	 2.4115	 45	 144.2314	 800	 0.4804	 0.0006	
10	 2.3928	 45	 144.823	 800	 0.4961	 0.0006	
11	 2.3038	 45	 143.0715	 800	 0.5033	 0.0006	
12	 2.4004	 45	 147.4697	 800	 0.5308	 0.0007	
13	 2.3995	 45	 148.7112	 800	 0.5483	 0.0007	
14	 2.3583	 45	 148.559	 800	 0.564	 0.0007	
15	 2.2949	 45	 148.3905	 800	 0.5889	 0.0008	
16	 2.3668	 45	 150.6993	 800	 0.5898	 0.0008	
17	 2.3144	 45	 151.253	 800	 0.6215	 0.0008	
18	 2.268	 45	 150.9664	 800	 0.6388	 0.0008	
19	 2.0579	 45	 146.8665	 800	 0.6613	 0.0009	
20	 2.1508	 45	 150.1631	 800	 0.6794	 0.0009	
21	 2.1876	 45	 152.6231	 800	 0.7005	 0.001	
22	 2.1182	 45	 151.5029	 800	 0.7152	 0.001	
23	 2.0995	 45	 152.0345	 800	 0.7319	 0.001	
24	 2.0861	 45	 153.623	 800	 0.7628	 0.0011	
25	 2.0661	 45	 153.5103	 800	 0.7701	 0.0011	
26	 2.0207	 45	 153.3698	 800	 0.788	 0.0011	
27	 1.985	 45	 153.4289	 800	 0.804	 0.0012	
28	 1.9782	 45	 154.6089	 800	 0.8259	 0.0012	
29	 1.8797	 45	 153.3452	 800	 0.8429	 0.0013	
30	 1.9448	 45	 155.8998	 800	 0.8601	 0.0013	
31	 2.0101	 45	 158.4338	 800	 0.8681	 0.0014	
32	 1.8571	 45	 155.9489	 800	 0.8943	 0.0014	
33	 1.8422	 45	 156.0147	 800	 0.9005	 0.0015	
34	 1.7788	 45	 155.7694	 800	 0.9156	 0.0015	
35	 1.8493	 45	 157.9314	 800	 0.928	 0.0016	
36	 1.8344	 45	 158.1038	 800	 0.9358	 0.0016	
37	 1.901	 45	 160.6495	 800	 0.9464	 0.0017	
38	 1.8744	 45	 160.3258	 800	 0.9528	 0.0017	
39	 1.8186	 45	 159.9524	 800	 0.9681	 0.0017	
40	 1.8681	 45	 161.9012	 800	 0.9757	 0.0018	
41	 1.8435	 45	 162.0781	 800	 0.9874	 0.0018	
42	 1.6871	 45	 160.0925	 800	 1.004	 0.0019	
43	 1.6935	 45	 160.9864	 800	 1.0155	 0.002	
44	 1.7365	 45	 162.4991	 800	 1.0263	 0.002	
45	 1.7111	 45	 163.0979	 800	 1.0397	 0.0021	
46	 1.7012	 45	 163.4105	 800	 1.0457	 0.0022	
47	 1.7513	 45	 165	 800	 1.0518	 0.0022	
48	 1.7091	 45	 165	 800	 1.0624	 0.0023	
49	 1.6118	 45	 165	 800	 1.076	 0.0025	
50	 1.5829	 45	 165	 800	 1.0769	 0.0026	



Rao, Rai, Ramkumar, Balic 
 

278  Advances in Production Engineering & Management 11(4) 2016

 

 

Fig.	3	Pareto‐front	obtained	by	MO‐Jaya	algorithm	for	PAM	process	in	a	single	simulation	run	

4.2 Optimization of electro‐discharge machining process 

This	work	aims	to	maximize	the	MRR	(mg/min),	minimize	tool	wear	rate	‘TWR’	(mg/min),	min‐
imize	 taper	 angle	 Ɵ	 (degree)	 and	 minimize	 delamination	 factor	 ‘DF’,	 simultaneously,	 by	 the	
means	of	process	parameter	optimization.	For	this	purpose,	experiments	are	performed	and	the	
data	collected	is	used	to	develop	regression	models	for	MRR,	TWR	 ,	Ɵ	and	DF	and	the	same	are	
used	as	fitness	functions	for	MO‐Jaya	algorithm.	

The	survey	of	literature	revealed	that	there	are	number	of	process	parameters	which	control	
the	performance	of	the	EDM	process	such	as	pulse	current,	pulse	on	time,	gap	voltage,	%	duty	
cycle,	Z	depth,	sensitivity,	anti‐arc	sensitivity,	work‐time,	lift	time,	prepulse	sparking	current,	X	
displacement,	 Y	 displacement,	 polarity	 and	 tool	 rotation.	 Therefore,	 preliminary	 experiments	
were	conducted	to	find	out	the	most	critical	parameters	like	the	gap	voltage	‘Vg’	(V),	pulse	cur‐
rent	‘Ip’	(A),	pulse‐on	time	‘Ton’	(µs)	and	tool	rotation	speed	‘N’	(rpm).	

Design	of	experiments	is	used	as	a	tool	to	generate	the	experimental	procedure.	The	experi‐
ments	are	planned	according	to	the	rotational‐central	composite	design	(RCCD)	and	regression	
models	for	MRR,	TWR,	taper	angle	and	DF	are	developed.	The	experiments	are	conducted	with	4	
process	 parameters	 considering	 each	 at	 5	 levels.	 The	 values	 of	 other	 process	 parameters	 are	
maintained	as	constant	such	as	duty	cycle	40	%,	Z	depth	15	mm,	sensitivity	8,	anti‐arc	sensitivity	
7,	work	time	8.0	s,	lift	time	0.2	s,	prepulse	sparking	current	0	A	and	straight	polarity.		

The	experiments	are	performed	in	the	Manufacturing	Sciences	laboratory	of	IIT	Kanpur,	In‐
dia.	ZNC	Electronica	EDM	machine	with	a	copper	tool	of	3	mm	diameter	is	used	for	the	purpose	
of	 experimentation.	 Carbon‐carbon	 composite	materials	with	6	%	grade	with	 approximate	di‐
mensions	as	155	mm	×	75	mm	×	3.5	mm	is	used	as	the	workpiece	material.	A	copper	rod	of	3	
mm	 diameter	 and	 7	mm	 length	 is	 used	 as	 tool.	 The	 tool	 is	 given	 negative	 polarity	 while	 the	
workpiece	 is	given	positive	polarity.	30	experiments	with	6	replicates	of	 centre	point	are	per‐
formed.	Table	3	gives	the	experimental	plan	and	results.		

For	each	experiment	the	initial	and	final	weights	of	tool	and	workpiece	material	is	measured	
using	a	weighing	scale	(Citizen	CY	204),	care	is	taken	to	completely	remove	the	moisture	from	
the	workpiece	material	before	measurement.	The	MRR	is	calculated	by	taking	the	ratio	of	differ‐
ence	between	initial	and	final	weights	of	workpiece	to	the	machining	time	of	through	hole.	The	
TWR	is	calculated	by	taking	the	ratio	of	difference	between	initial	and	final	weights	of	the	tool	to	
the	machining	time	of	through	hole.	

In	the	EDM	process	as	the	material	 is	removed	from	tool	as	well	as	the	workpiece	all	holes	
machined	have	a	significant	taper	angle.	To	calculate	taper	angle	the	nominal	diameters	of	upper	
and	lower	part	of	the	machined	hole	are	measured	with	the	help	of	digital	microscope	and	Dino‐
lite	software.	Further,	the	taper	angle	is	calculated	as	follows.	

	

߆ ൌ tanିଵ ൬
௧௢௣ܦ െ ௕௢௧ܦ

2 ൉ ݐ
൰	 (12)
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Where	Dtop	and	Dbot	are	nominal	diameters	of	top	and	bottom	surfaces	of	the	machined	hole	and	t	
is	the	thickness	of	workpiece.		

The	delamination	factor	is	calculated	as	the	ratio	of	maximum	diameter	of	the	heat	affected	
zone	to	the	nominal	diameter	of	the	machined	hole.	The	regression	models	for	MRR,	TWR,	Ɵ	and	
DF	developed	using	a	 logarithmic	scale	with	uncoded	values	of	machining	parameters	and	are	
expressed	by	Eq.	13	to	Eq.	16.	

	
Table	3	Design	of	experiments	and	values	of	MRR,	TWR,	Ɵ	and	DF	measured	after	experimentation	

S.	No.	 Vg	(V)	 Ip	(A)	 Ton	(µs)	 N	(rpm)	 MRR	(mg/min)	 TWR	(mg/min)	 Ɵ	(degree)	 DF	
1	 40	 20	 500	 250	 11.774	 15.56	 0.49896	 1.13765	
2	 80	 20	 500	 250	 18.429	 28.071	 0.94956	 1.17407	
3	 40	 40	 500	 250	 17.984	 87.5	 2.14977	 1.19477	
4	 80	 40	 500	 250	 23.818	 169.129	 2.93734	 1.28756	
5	 40	 20	 1000	 250	 10.485	 9.706	 1.01307	 1.1483	
6	 80	 20	 1000	 250	 21.755	 35.145	 1.44775	 1.18842	
7	 40	 40	 1000	 250	 17.957	 89.586	 2.34904	 1.20387	
8	 80	 40	 1000	 250	 25.836	 189.062	 3.03773	 1.29591	
9	 40	 20	 500	 350	 9.409	 12.994	 1.21824	 1.12567	
10	 80	 20	 500	 350	 14.73	 22.858	 1.45351	 1.16211	
11	 40	 40	 500	 350	 14.251	 87.553	 2.47527	 1.18693	
12	 80	 40	 500	 350	 17.152	 141.074	 2.73688	 1.27143	
13	 40	 20	 1000	 350	 7.567	 13.593	 1.43657	 1.13062	
14	 80	 20	 1000	 350	 12.739	 26.774	 1.58195	 1.16556	
15	 40	 40	 1000	 350	 13.983	 88.552	 1.86935	 1.18385	
16	 80	 40	 1000	 350	 16.643	 145.738	 2.11996	 1.2753	
17	 25	 30	 750	 300	 7.135	 13.344	 1.56341	 1.15768	
18	 95	 30	 750	 300	 17.791	 97.223	 2.05367	 1.20508	
19	 60	 10	 750	 300	 16.462	 2.123	 0.609447	 1.1168	
20	 60	 45	 750	 300	 23.262	 189.031	 1.93848	 1.23504	
21	 60	 30	 300	 300	 19.481	 90.738	 1.2623	 1.23478	
22	 60	 30	 2000	 300	 11.879	 63.277	 2.5361	 1.20539	
23	 60	 30	 750	 200	 23.644	 92.36	 1.75735	 1.24253	
24	 60	 30	 750	 400	 4.167	 8.568	 1.45485	 1.21992	
25	 60	 30	 750	 300	 22.61	 76.726	 1.54156	 1.21704	
26	 60	 30	 750	 300	 22.532	 80.963	 1.51356	 1.21996	
27	 60	 30	 750	 300	 21.873	 75.491	 1.50756	 1.22892	
28	 60	 30	 750	 300	 22.095	 79.266	 1.53274	 1.22455	
29	 60	 30	 750	 300	 20.032	 75.118	 1.53498	 1.2119	
30	 60	 30	 750	 300	 22.263	 76.726	 1.52827	 1.2338	

	
	
ܴܴܯ ൌ exp 	ሼെ264.7311 ൅ 14.62835	ሺlog ௚ܸሻ ൅ 0.633896 ሺlog ௣ሻܫ ൅ 8.67444 ሺlog ௢ܶ௡ሻ 
                        ൅74.465	ሺlogܰሻ െ 1.0053 ሺlog ௚ܸሻଶ ൅ 0.2317 ሺlog ௣ሻଶܫ െ 0.3459 ሺlog ௢ܶ௡ሻଶ 
                        െ5.83289	ሺlogܰሻଶ െ 0.63041	ሺlog	 ௚ܸ ൉ log ௣ሻܫ ൅ 0.16643	ሺlog	 ௚ܸ ൉ log ௢ܶ௡ሻ 
                        െ0.87394 ሺlog	 ௚ܸ ൉ logܰሻ ൅ 0.12709 ሺlog ௣ܫ ൉ log ௢ܶ௡ሻ െ 0.94153 ሺlog	 ௢ܶ௡ ൉ logܰሻሽ 
	

ሺܴଶ ൌ 0.855ሻ

(13)

      ܹܴܶ ൌ exp 	ሼെ264.7887 ൅ 16.8	ሺlog ௚ܸሻ ൅ 7.1385 ሺlog ௣ሻܫ െ 1.206 ሺlog ௢ܶ௡ሻ 
                             ൅79.1385	ሺlogܰሻ െ 0.9912 ሺlog ௚ܸሻଶ െ 0.5355 ሺlog ௣ሻଶܫ ൅ 0.03906	ሺlog ௢ܶ௡ሻଶ 
                             െ6.3355	ሺlogܰሻଶ െ 0.3342	ሺlog	 ௚ܸ ൉ log ௣ሻܫ ൅ 0.4552	ሺlog	 ௚ܸ ൉ log ௢ܶ௡ሻ 
                             െ1.6904	ሺlog	 ௚ܸ ൉ logܰሻ ൅ 0.06969 ሺlog ௣ܫ ൉ log ௢ܶ௡ሻ െ 0.2617 ሺlog	 ௢ܶ௡ ൉ logܰሻሽ 
	

ሺܴଶ ൌ 0.926ሻ

(14)

߆         ൌ exp 	ሼെ60.4654 ൅ 3.7949	ሺlog ܸ݃ሻ ൅ 6.7335 ሺlog ሻ݌ܫ ൅ 10.0673 ሺlog  ሻ݊݋ܶ
                          ൅1.58424 ሺlogܰሻ ൅ 0.6458 ሺlog ௚ܸሻଶ ൅ 0.18217 ሺlog ௣ሻଶܫ ൅ 0.24652	ሺlog ௢ܶ௡ሻଶ 
                          ൅1.2749	ሺlogܰሻଶ െ 0.2535	ሺlog	 ௚ܸ ൉ log ௣ሻܫ െ 0.1392	ሺlog	 ௚ܸ ൉ log ௢ܶ௡ሻ 
                          െ1.20511 ሺlog	 ௚ܸ ൉ logܰሻ െ 0.89575 ሺlog ௣ܫ ൉ log ௢ܶ௡ሻ െ 1.6643 ሺlog	 ௢ܶ௡ ൉ logܰሻሽ 
	

ሺܴଶ ൌ 0.892ሻ

(15)

ܨܦ         ൌ exp 	ሼെ0.58509 ൅ 0.15295	ሺlog ܸ݃ሻ െ 0.14645 ሺlog ሻ݌ܫ ൅ 0.27323 ሺlog  ሻ݊݋ܶ
                          െ0.12994 ሺlogܰሻ െ 0.02262 ሺlog ௚ܸሻଶ ൅ 0.00873 ሺlog ௣ሻଶܫ ൅ 7.9329ିହ	ሺlog ௢ܶ௡ሻଶ 
                          ൅0.032075	ሺlogܰሻଶ ൅ 0.07168	ሺlog	 ௚ܸ ൉ log ௣ሻܫ െ 0.00957	ሺlog	 ௚ܸ ൉ log ௢ܶ௡ሻ 
                          െ0.01534 ሺlog	 ௚ܸ ൉ logܰሻ െ 0.01683 ሺlog ௣ܫ ൉ log ௢ܶ௡ሻ െ 0.03149 ሺlog	 ௢ܶ௡ ൉ logܰሻሽ 
	

ሺܴଶ ൌ 0.898ሻ

(16)
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Now	MO‐Jaya	algorithm	is	used	to	maximize	the	MRR,	minimize	TWR,	minimize	taper	angle	
and	minimize	DF,	simultaneously.	The	regression	models	expressed	by	Eq.	13	to	Eq.	16	are	used	
as	fitness	functions	for	MO‐Jaya	algorithm.	The	process	parameter	bounds	are	expressed	by	Eq.	
17	to	Eq.	20	as	follows.	

25 ≤ Vg ≤ 95 (17)
10 ≤ Ip≤ 45 (18)

300 ≤ Ton ≤ 2000 (19)
200 ≤ N ≤ 400 (20)

The	set	of	Pareto‐efficient	solutions	provided	by	MO‐Jaya	algorithm	in	a	single	run	of	simula‐
tion	is	reported	in	Table	4	for	all	4	objectives.	As	the	optimization	problem	is	having	4	objectives	
it	is	not	easy	to	show	the	4‐dimensional	Pareto	front	and	hence	the	Pareto	front	for	MRR,	TWR	
and	Ɵ	is	shown	as	Fig.	4(a)	and	the	Pareto	front	for	TWR,	Ɵ	and	DF	is	shown	as	Fig.	4(b).		

	
Table	4	Pareto	optimal	solution	set	provided	by	MO‐Jaya	algorithm	in	a	single	simulation	run	for	EDM	process	

S.	No.	 Vg	(V)	 Ip	(A)	 Ton	(µs)	 N	(rpm)	 MRR	(0.1	mg/s)	 TWR	(0.1	mg/s)	 Ɵ	(degree)	 DF	
1	 25	 10	 1913.724	 200	 1.2453	 0.0965	 3.3476	 1.1574	
2	 25.0495	 10	 1844.116	 200	 1.2865	 0.0986	 3.0562	 1.1558	
3	 25	 10	 1757.623	 200	 1.3199	 0.0996	 2.7192	 1.1536	
4	 26.2683	 10	 2000	 200	 1.4191	 0.1162	 3.7259	 1.1603	
5	 25	 10	 300	 200	 1.4245	 0.2215	 0.0811	 1.079	
6	 31.7003	 10	 2000	 200	 2.5179	 0.2405	 3.8046	 1.1629	
7	 28.5	 10	 932.73	 212.1907	 3.0999	 0.2672	 0.6472	 1.1259	
8	 33.8835	 10	 980.8407	 214.6995	 5.0426	 0.4827	 0.7417	 1.13	
9	 39.4565	 10	 1366.835	 200	 5.5058	 0.5499	 1.7016	 1.1488	
10	 39.5125	 10	 893.006	 200	 6.1636	 0.6041	 0.6878	 1.1325	
11	 43.1006	 10	 785.4233	 214.3395	 9.0452	 1.0027	 0.5488	 1.1238	
12	 60.5423	 10	 300	 200	 9.4074	 1.871	 0.159	 1.0949	
13	 50.252	 10	 951.2899	 200	 10.0145	 1.1314	 0.943	 1.1347	
14	 50.4624	 10	 1094.945	 209.8391	 11.047	 1.3154	 1.1924	 1.1359	
15	 95	 10	 300	 370.8176	 11.201	 1.547	 0.5758	 1.0749	
16	 53.9205	 10	 1193.568	 203.7774	 11.3644	 1.3979	 1.5711	 1.1404	
17	 61.7591	 10	 417.817	 200	 11.776	 1.8677	 0.269	 1.1054	
18	 52.3786	 10	 997.8612	 216.286	 12.7649	 1.5735	 0.9942	 1.1302	
19	 59.0602	 10	 1199.503	 212.3769	 14.2355	 1.9259	 1.6368	 1.1357	
20	 62.0647	 10	 782.3541	 212.8126	 16.3417	 2.1735	 0.7642	 1.1214	
21	 57.6466	 10	 899.7264	 241.1095	 17.1198	 2.3377	 0.8244	 1.1187	
22	 78.1695	 10	 300	 303.9107	 18.6777	 3.184	 0.3371	 1.0817	
23	 63.9669	 10	 721.4555	 233.2439	 19.5525	 2.7339	 0.6496	 1.1129	
24	 81.4454	 10.4816	 300	 263.1196	 20.3185	 4.6091	 0.3181	 1.0889	
25	 82.047	 10.242	 300	 276.3105	 20.4793	 4.1102	 0.3279	 1.0849	
26	 81.5354	 10	 407.3847	 289.2469	 22.0527	 3.4706	 0.4306	 1.0863	
27	 93.3095	 10	 460.6347	 290.8624	 23.1194	 3.5922	 0.5781	 1.0837	
28	 77.2987	 10	 847.0946	 243.5197	 23.7081	 3.6683	 1.0182	 1.1097	
29	 84.271	 11.0556	 628.0503	 247.9736	 24.8563	 5.7193	 0.7768	 1.1108	
30	 95	 10	 680.5518	 230.7705	 25.9749	 4.2886	 1.0235	 1.101	
31	 95	 10	 726.217	 247.0427	 26.8204	 4.4199	 1.0638	 1.0983	
32	 63.1759	 35.7338	 815.4502	 250.6803	 26.8784	 141.1848	 1.9473	 1.2461	
33	 46.8665	 45	 704.2118	 262.2001	 26.8928	 168.1049	 2.1411	 1.2377	
34	 66.0972	 36.3491	 644.0377	 251.924	 27.032	 153.657	 1.8928	 1.2522	
35	 63.4694	 37.0986	 865.4543	 259.8581	 27.2314	 155.9124	 2.0329	 1.2489	
36	 65.7791	 37.3432	 876.1797	 259.7034	 27.5357	 164.2039	 2.1005	 1.2531	
37	 48.7786	 45	 750.8355	 259.6498	 27.6576	 176.157	 2.1703	 1.2431	
38	 53.8153	 45	 571.8286	 249.4247	 27.9858	 200.6127	 2.1753	 1.2581	
39	 55.3277	 45	 591.4365	 277.3743	 28.3591	 208.3648	 2.2865	 1.2568	
40	 52.1831	 45	 875.1416	 246.9805	 28.454	 185.9188	 2.3039	 1.254	
41	 55.6714	 45	 867.8184	 251.2169	 29.5533	 205.7847	 2.3407	 1.2608	
42	 56.978	 45	 895.9178	 245.2088	 29.6352	 208.5368	 2.4141	 1.265	
43	 59.1992	 45	 664.6343	 264.8876	 29.8885	 224.7545	 2.3068	 1.2662	
44	 58.1049	 45	 835.4176	 253.878	 30.121	 218.1782	 2.3559	 1.2653	
45	 60.3879	 45	 738.0855	 255.0349	 30.42	 228.327	 2.3521	 1.27	
46	 62.1815	 45	 846.2731	 248.4064	 30.6445	 233.4057	 2.473	 1.2745	
47	 64.936	 45	 937.1024	 251.8109	 30.7501	 246.4366	 2.577	 1.278	
48	 64.7866	 45	 770.7681	 249.6904	 30.8257	 243.3128	 2.4831	 1.2792	
49	 69.817	 45	 810.0259	 259.0902	 30.8293	 260.9632	 2.5826	 1.2849	
50	 68.0958	 45	 836.1816	 252.7234	 31.0207	 256.4056	 2.5864	 1.2836	
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																																				(a)	MRR	vs	TWR	and		 																																					(b)	TWR	vs		and	DF	

Fig.	4 Pareto‐optimal	solution	obtained	by	MO‐Jaya	algorithm	for	EDM	process	in	a	single	simulation	run 

The	MO‐Jaya	algorithm	required	20	iterations	and	it	required	a	CPU	time	of	7.77	s	to	perform	
100	 iterations.	 The	 results	 show	 that	 the	 optimum	value	 of	MRR	 lies	 in	 the	 range	 of	 0.12453	
(mg/s)	to	3.10207	(mg/s).	The	MRR	 increases	with	increase	in	gap	voltage	and	current	due	to	
increase	in	energy	input	per	pulse	which	causes	more	melting	of	the	workpiece	material.	How‐
ever,	a	high	energy	input	also	results	in	melting	of	tool	material	increasing	the	TWR.	Therefore,	
the	TWR	 increases	with	the	increase	 in	MRR.	The	best	compromise	value	for	TWR	achieved	by	
MO‐Jaya	algorithm	lies	in	the	range	of	0.00965	mg/s	to	25.64	mg/s.		

It	is	observed	that	MRR	increases	steadily	as	the	current	increases	from	10	A	to	45	A.	Howev‐
er,	TWR	 is	low	at	lower	value	of	current	(10	A)	but	at	a	higher	value	of	current	(45	A)	the	tool	
wear	 rate	 increases	drastically.	As	 the	pulse‐on	 time	 increases,	 due	 to	more	 energy	 input	per	
pulse	MRR	also	increases.	However,	beyond	a	limiting	value	of	pulse‐on	time	the	MRR	decreases	
with	further	increase	in	pulse‐on	time	because	with	in	fixed	pulse	duration	the	increase	in	pulse‐
on	time	is	compensated	with	decrease	in	pulse‐off	time.	This	results	in	improper	flushing	of	de‐
bris	 by	 the	 electrolyte.	 The	 accumulation	of	 debris	 reduces	 the	 arc	 gap	 and	 thus	 the	MRR	 de‐
creases.	Furthermore,	accumulation	of	debris	in	the	arc	gap	causes	the	formation	of	arc	between	
workpiece	debris	and	the	tool	resulting	in	increase	in	TWR	without	removal	of	material	from	the	
tool.	Further,	with	increase	in	pulse‐on‐time	less	time	is	available	for	cooling	of	the	tool	which	
further	increases	the	TWR.	

The	taper	angle	increases	with	increase	in	pulse	on	time	because	the	workpiece	debris	result	
in	abrasive	action	on	 the	walls	of	 the	workpiece	during	 flushing.	The	 increase	 in	 input	energy	
increases	the	taper	angle	due	to	secondary	discharge	caused	due	to	increase	in	temperature	of	
dielectric	fluid	and	increase	in	workpiece	debris.	The	best	compromised	values	for	taper	angle	
suggested	by	MO‐Jaya	algorithm	lies	in	the	range	of	0.0811	degrees	to	3.8046	degrees.	The	best	
compromised	values	for	delamination	factor	suggested	by	MO‐Jaya	algorithm	lies	in	the	range	of	
1.0749	to	1.2849.	

4.3 Optimization of micro‐EDM process 

The	 objective	 of	 this	 work	 is	 to	 improve	 the	 performance	 of	 micro‐EDM	 milling	 process	 by	
means	of	process	parameter	optimization.	The	regression	models	for	MRR	(mm3/min)	and	TWR	
(mm3/min)	are	developed	based	on	actual	data	collected	by	means	of	experimentation	and	the	
same	 as	 used	 as	 fitness	 functions	 for	MO‐Jaya	 algorithm	 in	 order	 to	 obtain	multiple	 trade‐off	
solutions.	The	experiments	are	performed	at	Manufacturing	Science	Laboratory	of	 IIT	Kanpur,	
India	and	DT110	high	precision,	CNC	controlled,	micro‐machining	setup	with	integrated	multi‐
process	machine	tool	was	used	for	the	purpose	of	experimentation.	The	workpiece	is	die	materi‐
al	EN24,	cylindrical	tungsten	electrode	(dia.	500	µm)	is	used	as	tool	and	conventional	EDM	oil	is	
used	as	die	electric.	The	feature	shape	considered	for	the	study	is	a	µ‐channel	of	width	approxi‐
mately	equal	to	the	diameter	of	the	tool,	length	of	cut	1700	µm,	the	depth	of	channel	is	consid‐
ered	as	1000	µm.	

In	the	present	study	the	bulk	machining	approach	for	µ‐EDM	milling	is	used.	As	the	bulk	ma‐
chining	 approach	 results	 in	 excessive	 tool	wear	 intermittent	 tool	 dressing	with	 block	 electro‐
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discharge	grinding	(EDG)	process	is	used.	Review	of	literature	shows	that	there	are	a	number	of	
process	 parameters	 that	 affect	 the	 performance	 of	 µ‐EDM	milling	 process.	 Therefore	 prior	 to	
actual	 experimentation	 dimensional	 analysis	 is	 performed	 to	 identify	 the	most	 influential	 pa‐
rameters	of	the	process	such	as	Energy	‘E’	(µJ),	feed	rate	‘F’	(µm/s),	tool	rotation	speed	‘S’	(rpm)	
and	aspect	ratio	‘A’.	The	useful	levels	of	these	parameters	is	identified	using	one	factor	at	a	time	
(OFAT)	analysis	and	2	levels	of	energy,	4	levels	of	feed	rate,	3	 levels	of	rotational	speed,	and	4	
levels	of	aspect	ratio	are	identified.	The	measurement	of	MRR	and	TWR	during	experimentation	
is	carried	out	by	means	of	a	CAD	softwares	like	Solidworks	and	AutoCAD	along	with	images	of	
cross	section	at	the	entry	and	exit	of	the	micro	channel	which	are	recorded	using	a	USB	micro‐
scope	with	 a	digital	 scale	 interface.	 The	 amount	of	 re‐deposition	on	 the	microchannel	 surface	
was	studied	by	means	of	chemical	analysis	on	channel	surface	using	energy	dispersive	analysis	
X‐ray	technique	(EDAX).	

The	regression	models	for	MRR	and	TWR	are	formulated	by	considering	a	full	factorial	exper‐
imental	design,	 considering	all	 combination	of	process	parameter	values	a	 total	number	of	96	
experiments	are	conducted.	The	values	of	MRR	(mm3/min)	and	TWR	(mm3/min)	are	measured	
and	recorded	as	shown	in	Table	5.	The	regression	models	for	MRR	and	TWR	are	developed	using	
the	experimental	data,	using	a	logarithmic	scale,	and	are	expressed	by	Eq.	21	and	Eq.	22	in	the	
uncoded	form	of	process	parameters.	
	
ܴܴܯ ൌ exp 	ሼ11.15134 െ 1.79325	ሺlog ሻܨ െ 3.20333 ሺlog ܵሻ െ 0.114931 ሺlogܣሻ 
                        െ0.072533	ሺlogܧሻଶ ൅ 0.06657ሺlog ሻଶܨ ൅ 0.251122 ሺlog ܵሻଶ 
                        െ0.16314	ሺlog ሻଶܣ ൅ 0.21496	ሺlog ܧ ൉ log ሻܨ ൅ 0.099501ሺlogܧ ൉ log ܵሻ 
                        ൅0.16903	ሺlog ܧ ൉ logܣሻ ൅ 0.040721	ሺlog ܨ ൉ log ܵሻ െ 0.11206	ሺlog ܨ ൉ logܣሻ 
                        െ0.07489 ሺlog ܵ ൉ log  ሻሽܣ
	

ሺܴଶ ൌ 0.94ሻ

(21)

	
Table	5	Design	of	experiments	for	micro‐EDM	process	and	values	of	MRR	and	TWR	measured	after	experimentation	
S.	No.	 	E	(µJ)		 F	(µm/s)	 S	(rpm)	 A	 MRR	(10‐3mm3/min)	 TWR	(10‐3mm3/min)	
1	 2000	 60	 100	 1	 9.16	 1.99	
2	 2000	 60	 800	 1	 23.48	 5.16	
3	 500	 60	 800	 1	 12.88	 3.2	
4	 500	 60	 100	 1	 6.26	 0.92	
5	 500	 10	 100	 1	 4.53	 0.74	
6	 2000	 10	 800	 1	 12.58	 2.29	
7	 500	 10	 800	 1	 8.48	 1.48	
8	 500	 10	 500	 1.5	 7.06	 1.08	
9	 500	 25	 800	 1.5	 10.14	 1.67	
10	 500	 45	 500	 1.5	 9.92	 1.55	
11	 500	 45	 800	 0.5	 9.39	 1.43	
12	 500	 10	 500	 2	 5.97	 1.05	
13	 500	 25	 100	 0.5	 3.6	 0.54	
14	 2000	 45	 500	 2	 16	 3.66	
15	 2000	 60	 500	 1	 19.01	 4.48	
16	 500	 45	 100	 2	 4.05	 0.83	
17	 2000	 10	 100	 2	 6.05	 1.11	
18	 500	 60	 500	 1	 9.91	 2.15	
19	 500	 60	 100	 1.5	 6.57	 1.01	
20	 500	 10	 800	 0.5	 7.34	 1.19	
21	 2000	 60	 800	 1.5	 28.17	 5.87	
22	 2000	 25	 800	 2	 19.68	 3.83	
23	 500	 25	 800	 2	 11.69	 1.61	
24	 500	 25	 500	 0.5	 6.32	 0.81	
25	 2000	 10	 100	 1	 4.24	 0.53	
26	 500	 60	 100	 0.5	 5.52	 1.27	
27	 2000	 60	 100	 2	 12.08	 3.56	
28	 2000	 10	 500	 1	 5.28	 1.34	
29	 500	 25	 100	 1	 4.56	 0.79	
30	 2000	 25	 500	 1	 10.15	 2.45	
31	 500	 60	 800	 0.5	 12.71	 2.84	
32	 500	 45	 500	 1	 9.2	 1.92	
33	 2000	 60	 800	 2	 25.39	 5.14	
34	 500	 45	 100	 1.5	 5.72	 1.02	
35	 2000	 10	 500	 2	 7.66	 1.87	
36	 500	 10	 500	 1	 6.69	 1.23	
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Table	5	Design	of	experiments	for	micro‐EDM	process	and	values	of	MRR	and	TWR	measured	after	experimentation	
(continuation) 
37	 500	 25	 800	 1	 9.86	 1.64	
38	 2000	 45	 800	 2	 23.75	 5.06	
39	 2000	 25	 800	 1	 21	 3.33	
40	 500	 60	 800	 2	 12.02	 2.1	
41	 500	 60	 100	 2	 5.62	 0.93	
42	 2000	 45	 100	 2	 11.62	 3.12	
43	 500	 45	 800	 2	 12.62	 1.96	
44	 500	 60	 500	 0.5	 9.26	 1.49	
45	 2000	 25	 500	 1.5	 15	 3.32	
46	 2000	 25	 500	 0.5	 6.7	 1.13	
47	 2000	 10	 800	 1.5	 13.32	 2.77	
48	 500	 10	 800	 1.5	 9.03	 1.36	
49	 2000	 60	 500	 0.5	 16.12	 3.33	
50	 500	 45	 500	 2	 10.63	 1.73	
51	 500	 45	 100	 1	 5.55	 0.73	
52	 2000	 45	 500	 1	 17.65	 4.49	
53	 2000	 60	 500	 2	 17.46	 3.84	
54	 500	 10	 100	 2	 4.52	 0.73	
55	 2000	 45	 800	 1.5	 29.84	 6.4	
56	 500	 60	 500	 1.5	 10.08	 2.06	
57	 2000	 45	 500	 1.5	 22.29	 5.04	
58	 2000	 60	 100	 0.5	 7.32	 1.13	
59	 2000	 45	 100	 0.5	 4.84	 0.97	
60	 2000	 45	 800	 0.5	 23.2	 3.84	
61	 500	 45	 800	 1.5	 12.7	 1.97	
62	 500	 45	 100	 0.5	 5.3	 1.02	
63	 2000	 10	 800	 0.5	 9.88	 1.79	
64	 2000	 25	 100	 1	 6.13	 1.21	
65	 2000	 60	 800	 0.5	 25.64	 3.58	
66	 500	 10	 100	 0.5	 3.99	 0.63	
67	 2000	 25	 800	 1.5	 25.55	 4.23	
68	 2000	 45	 100	 1	 6.93	 1.37	
69	 500	 10	 500	 0.5	 6.02	 0.97	
70	 500	 10	 100	 1.5	 5.28	 0.93	
71	 2000	 25	 100	 1.5	 7.1	 1.44	
72	 2000	 60	 500	 1.5	 22.68	 5.3	
73	 500	 60	 800	 1.5	 13.8	 2.5	
74	 500	 25	 500	 1.5	 7.82	 1.19	
75	 2000	 10	 500	 1.5	 7.9	 1.73	
76	 2000	 10	 500	 0.5	 3.95	 0.64	
77	 500	 25	 500	 2	 8.48	 1.33	
78	 500	 45	 500	 0.5	 7.55	 1.11	
79	 2000	 60	 100	 1.5	 11.41	 3.82	
80	 2000	 10	 100	 1.5	 6.79	 0.95	
81	 2000	 45	 800	 1	 24.61	 5.82	
82	 500	 25	 100	 2	 4.75	 0.78	
83	 500	 45	 800	 1	 11.25	 2.33	
84	 2000	 45	 100	 1.5	 9.73	 2.14	
85	 2000	 10	 800	 2	 15.46	 3.47	
86	 500	 10	 800	 2	 11.33	 1.43	
87	 500	 60	 500	 2	 10.34	 1.83	
88	 2000	 10	 100	 0.5	 2.73	 0.31	
89	 2000	 25	 500	 2	 13.21	 3.46	
90	 500	 25	 100	 1.5	 5.31	 0.82	
91	 2000	 25	 100	 0.5	 3	 0.44	
92	 2000	 25	 100	 2	 7.88	 1.86	
93	 500	 25	 800	 0.5	 8.54	 1.07	
94	 2000	 45	 500	 0.5	 13.38	 1.79	
95	 500	 25	 500	 1	 7.44	 1.57	
96	 2000	 25	 800	 0.5	 17.29	 1.79	

 

ܹܴܶ ൌ exp 	ሼ5.68347 െ 2.22795	ሺlogܨሻ െ 1.77173 ሺlog ܵሻ െ 1.29611 ሺlogܣሻ 
                       െ0.07152 ሺlogܧሻଶ ൅ 0.175929ሺlogܨሻଶ ൅ 0.13946 ሺlog ܵሻଶ 
                       െ0.34761	ሺlogܣሻଶ ൅ 0.23781	ሺlogܧ ൉ log ሻܨ ൅ 0.1005	ሺlogܧ ൉ log ܵሻ 
                       ൅0.380612	ሺlog ܧ ൉ logܣሻ െ 0.015495	ሺlog ܨ ൉ log ܵሻ െ 0.120799	ሺlog ܨ ൉ logܣሻሽ 
                       െ0.096066 ሺlog ܵ ൉ log  ሻሽܣ

ሺܴଶ ൌ 0.933ሻ

(22)

Now	MO‐Jaya	algorithm	is	used	to	maximize	the	MRR	and	minimize	the	TWR,	simultaneously.	
The	regression	models	for	MRR	and	TWR	expressed	by	Eq.	21	and	Eq.	22,	respectively	are	used	
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as	fitness	functions	for	MO‐Jaya	algorithms.	The	process	parameter	bounds	are	expressed	by	Eq.	
23	to	Eq.	26	as	follows.	
 

500 ≤ E ≤ 2000 (23)
10 ≤ F≤ 60 (24)
100 ≤ S ≤ 800 (25)
0.5 ≤ A ≤ 2.0 (26)

	

The	Pareto‐efficient	set	of	solutions	obtained	using	MO‐Jaya	algorithm	in	a	single	simulation	
run	is	shown	Table	6	and	the	Pareto‐front	is	shown	in	Fig.	5.	The	MO‐Jaya	algorithm	required	11	
iterations	to	obtain	the	Pareto‐efficient	set	of	solutions.	The	MO‐Jaya	algorithm	required	6.086	s	
to	perform	100	iterations.		
	
Table	6	Pareto	optimal	solution	set	provided	by	MO‐Jaya	algorithm	in	a	single	simulation	run	for	micro‐EDM	process	
S.	No.	 E	(µJ)	 F	(µm/s)	 S	(rpm)	 A	 MRR	(10‐3	mm3/min)	 TWR	(10‐3	mm3/min)	

1	 2000	 10	 100	 0.5	 2.6219	 0.3307	
2	 2000	 12.9182	 100.0819	 0.5	 2.9267	 0.3709	
3	 2000	 19.5363	 100.2894	 0.5	 3.561	 0.4689	
4	 2000	 22.5177	 100	 0.6364	 4.4926	 0.6837	
5	 2000	 15.471	 100	 0.8852	 4.6108	 0.7671	
6	 2000	 11.1055	 525.5919	 0.5	 5.6157	 0.8431	
7	 2000	 14.9048	 494.173	 0.5018	 6.2136	 0.9265	
8	 2000	 17.4029	 520.7207	 0.5028	 7.0729	 1.0511	
9	 2000	 12.1938	 660.3727	 0.5	 7.2438	 1.0534	
10	 2000	 16.9822	 648.2183	 0.5023	 8.5232	 1.2308	
11	 2000	 15.3951	 800	 0.5	 9.9806	 1.389	
12	 1999.999	 16.3754	 800	 0.5	 10.3308	 1.4354	
13	 2000	 18.2665	 800	 0.5	 10.9949	 1.5265	
14	 2000	 23.1415	 729.9279	 0.5	 11.4719	 1.6347	
15	 2000	 22.9902	 800	 0.5	 12.6004	 1.7614	
16	 2000	 25.9902	 781.586	 0.5	 13.2492	 1.8773	
17	 1999.999	 26.7446	 800	 0.5	 13.8351	 1.9551	
18	 2000	 29.8817	 793.8799	 0.5	 14.7207	 2.1072	
19	 2000	 31.589	 800	 0.5022	 15.4229	 2.2233	
20	 2000	 33.7982	 800	 0.5	 16.0848	 2.3343	
21	 2000	 37.0695	 800	 0.5	 17.1046	 2.5167	
22	 2000	 37.6695	 800	 0.5	 17.2904	 2.5507	
23	 2000	 40.8566	 800	 0.5033	 18.3284	 2.751	
24	 2000	 42.1834	 800	 0.5	 18.6761	 2.8103	
25	 2000	 45.1411	 800	 0.5	 19.5745	 2.9847	
26	 2000	 48.3518	 800	 0.5	 20.5423	 3.1778	
27	 2000	 50.9093	 779.8629	 0.5	 20.7107	 3.2622	
28	 2000	 50.6162	 800	 0.5	 21.2207	 3.3163	
29	 2000	 52.5044	 800	 0.5	 21.7841	 3.4334	
30	 2000	 54.6281	 800	 0.5	 22.4155	 3.5667	
31	 2000	 56.967	 800	 0.5	 23.1082	 3.7154	
32	 2000	 60	 800	 0.5	 24.0027	 3.9115	
33	 2000	 60	 800	 0.5253	 24.5151	 4.0939	
34	 2000	 60	 800	 0.5524	 25.0289	 4.2814	
35	 2000	 60	 800	 0.5779	 25.4824	 4.4508	
36	 2000	 60	 794.4076	 0.6082	 25.7814	 4.6148	
37	 2000	 60	 800	 0.6292	 26.3089	 4.7687	
38	 2000	 60	 800	 0.652	 26.6441	 4.9011	
39	 2000	 60	 800	 0.6732	 26.9399	 5.0197	
40	 2000	 60	 800	 0.686	 27.1113	 5.0891	
41	 1999.999	 60	 800	 0.7105	 27.4242	 5.2172	
42	 1999.999	 60	 800	 0.7441	 27.8258	 5.3843	
43	 2000	 60	 800	 0.8279	 28.6992	 5.758	
44	 2000	 60	 800	 0.8464	 28.8696	 5.8326	
45	 1999.999	 60	 800	 0.891	 29.2525	 6.0023	
46	 2000	 60	 800	 0.9016	 29.3378	 6.0404	
47	 2000	 60	 800	 0.9574	 29.7536	 6.2287	
48	 2000	 60	 800	 1.0504	 30.3372	 6.499	
49	 2000	 60	 800	 1.1582	 30.8707	 6.7526	
50	 2000	 60	 800	 1.906	 32.1458	 7.404	
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Fig.	5	Pareto‐front	obtained	by	MO‐Jaya	algorithm	for	micro‐EDM	process	in	a	single	simulation	run	

The	 results	 of	MO‐Jaya	 algorithm	have	 revealed	 that,	 in	 order	 to	 achieve	 a	 trade‐off	 between	
MRR	and	TWR	the	optimal	setting	for	pulse	energy	is	2000	µJ	and	any	deviation	from	this	value	
may	result	in	non‐optimal	values	of	MRR	and	TWR.	With	aspect	ratio	fixed	at	0.5	an	increase	in	
MRR	is	observed	with	increase	in	feed	rate	and	speed.	However,	at	extreme	values	of	feed	rate	
and	speed	the	MRR	 increases	with	increase	in	aspect	ratio.	A	low	value	of	feed	rate,	speed	and	
aspect	ratio	results	in	minimum	tool	wear	(TWR	=	0.3307	×	10‐3	mm3/min,	refer	solution	1,	Ta‐
ble	 6).	 On	 the	 other	 hand,	 a	 high	 value	 of	 feed	 rate,	 speed	 and	 aspect	 ratio	 gives	 a	 high	MRR	
(32.1458	×	10‐3	mm3/min,	refer	solution	50,	Table	6)	but	at	the	expense	of	significant	increase	in	
TWR	(7.040	×	10‐3	mm3/min).	

5. Conclusion 

Multi‐objective	optimization	aspects	of	plasma	arc	machining,	electro‐discharge	machining,	and	
micro‐electro‐discharge	machining	processes	are	considered	in	the	present	work.	Mathematical	
models	are	developed	based	on	the	actual	experimental	data	and	these	models	are	used	as	fit‐
ness	functions	for	MO‐Jaya	algorithm.		

In	the	case	of	PAM	process,	the	MO‐Jaya	algorithm	is	applied	to	optimize	simultaneously	the	
MRR	 and	DFR.	The	MO‐Jaya	algorithm	has	provided	50	 trade‐off	 solutions	 in	8	 iterations.	The	
results	of	optimization	show	that	in	order	to	achieve	a	trade‐off	between	MRR	and	DFR	the	pro‐
cess	 planner	 should	 choose	 the	 values	 of	 current	 and	 speed	 close	 to	 their	 respective	 upper	
bounds	(45	A	and	800	mm/min).	However,	the	values	of	other	parameters	such	as	thickness	and	
arc	gap	voltage	must	be	selected	optimally	in	the	range	of	1.58	mm	to	2.5	mm	and	128	V	to	165	
V,	respectively.	The	Pareto	front	obtained	by	MO‐Jaya	algorithm	is	convex	in	nature	with	maxi‐
mum	MRR	equal	to	1.0769	(g/s)	and	minimum	DFR	equal	to	0.0004	(g/s).	

In	the	case	of	EDM	process,	the	MO‐Jaya	algorithm	is	applied	to	optimize	the	MRR,	TWR,	taper	
angle	and	DF,	simultaneously.	The	MO‐Jaya	algorithm	has	obtained	50	trade‐off	solutions	in	20	
iterations.	The	MO‐Jaya	 algorithm	could	achieve	 a	 value	of	MRR	 as	high	as	3.10207	 (mg/min)	
and	 values	 of	 TWR,	 taper	 angle	 and	 DF	 as	 low	 as	 0.00965	 (mg/min),	 0.0811	 (degrees)	 and	
1.0749,	respectively.	

In	the	case	of	micro‐EDM	process,	the	MO‐Jaya	algorithm	required	11	iterations	to	obtain	50	
trade‐off	solutions	for	MRR	and	TWR.	The	results	show	that	 in	order	to	achieve	a	trade‐off	be‐
tween	MRR	and	TWR	a	higher	value	of	pulse	energy	is	desired.	Therefore,	pulse	energy	may	be	
set	to	its	respective	upper	bound	(2000	µJ)	However,	the	feed	rate	and	rotation	speed	must	be	
set	optimally	within	their	respective	ranges.	The	Pareto	front	obtained	by	MO‐Jaya	algorithm	is	
continuous	and	convex	in	nature	with	the	value	of	MRR	as	high	as	0.03214	(mm3/min)	and	TWR	
as	low	as	0.3307	×	10‐3	(mm3/min).	

The	main	advantages	of	the	MO‐Jaya	algorithm	are	that:	(1)	the	algorithm	does	not	bur‐
den	the	user	with	the	task	of	tuning	the	algorithm‐specific	parameters,	and	(2)	the	algorithm	is	
simple	to	implement	as	the	solutions	are	updated	in	single	phase	using	a	single	equation	and	has	
low	computational	and	time	complexities.	The	effect	of	the	best	and	worst	solutions	in	the	cur‐
rent	 population	 are	 considered	 simultaneously	which	 gives	 a	 high	 convergence	 speed	 to	MO‐
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Jaya algorithm without trapping into local optima. The ranking mechanism based on the concept 
of non-dominance relation between the solutions helps MO-Jaya algorithm to maintain the good 
solutions in every generation and guides the search process towards the Pareto-optimal set.  

The population size in MO-Jaya algorithm is fixed at the beginning of the algorithm and is 
maintained constant in every generation throughout the simulation run. However, increasing or 
reducing the population size adaptively in every generation may save a considerable number of 
function evaluations which would otherwise be spent in updating a large population.  

The Pareto-efficient solutions provided by MO-Jaya algorithm can be used as ready reference 
by the process engineer in order to set the parameter values at their optimal levels for best per-
formance of machining process with sustainability. Thus the results presented in this work are 
very useful for real manufacturing environment. The application of MO-Jaya algorithm may be 
extended to other modern machining processes.  
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