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Abstract/Izvleéek

The Null Hypothesis Significance Testing (NHST) framework has sparked
considerable debate within the scientific community, leading to numerous studies
advocating for a re-evaluation of the current system. New polystochastic statistical
inference defines methods of statistical inference that integrate rules and
thresholds for both rejecting the null hypothesis and confirming the alternative
hypothesis. This approach unifies the control of respondents' influence on
statistical significance and introduces criteria such as effect size and Bayesian
inference for confirming the alternative hypothesis. Unlike NHST, polystochastic
statistical inference controls Type I error (p-value) and aims to optimize the

confirmation of evidence without increasing the risk of Type II errors.

Novo polistohasti¢no statisti¢no sklepanje v druZboslovju —
Dolo¢itev novih pravil in mejnih vrednosti

Okvir testiranja pomembnosti nicelne hipoteze (angl. Null Hypothesis
Significance Testing — NHST) je sprozil precej$njo razpravo v znanstveni
skupnosti. To je vodilo do Stevilnih studij, ki zagovarjajo ponovno oceno
sedanjega sistema. Novo polistohasticno statisticno sklepanje definira metode
statisticnega sklepanja, ki zdruzujejo pravila in pragove tako za zavracanje nicelne
hipoteze kot za potrditev alternativne hipoteze. Ta pristop poenoti nadzor nad
vplivom anketirancev na statisticno pomembnost in uvede merila, kot sta velikost
ucinka in Bayesov sklep za potrditev alternativne hipoteze. Za razliko od NHST
polistohasti¢no statisticno sklepanje nadzoruje napako tipa I (p-vrednost) in Zeli

optimizirati potrditev dokazov brez povecanja tveganja napak tipa I1.
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Introduction: A 100-Year-Old Problem (Fisher 1925 - today)

Statistical significance has been a topic of intense debate in many scientific disciplines
for a long time, particularly regarding its proper use and potential misuse. According to
Rovetta (2024), it is one of the most controversial issues in contemporary science. The
binary choice between statistically significant and insignificant results not only reflects
a mathematical error but also fails to capture the complexity of statistical methods
needed to communicate findings to the public, especially in fields like healthcare. This
issue is not limited to medical research; it also affects most other scientific fields. Social
sciences face significant challenges in statistical inference, which are compounded by
the complexity of the phenomena being studied. Factors such as latent variables, issues
of causality, inappropriate scales

for statistical analysis (parametric tests), implausibility, incoherence, hard-to-control
extraneous factors, lack of objectivity, and reliability problems all contribute to these
challenges. As one author notes, any scientific discipline that grapples with such
challenges will achieve long-lasting relevance. To put this issue in historical context, the
concept of statistical significance was first introduced by Ronald Fisher in 1925.

In fact, the concept began earlier with the work of Francis Edgeworth (1845-1920),
who created a procedure for testing two arithmetic means (subsamples) that was later
extended by Pearson to the Chi-square test (Pearson, 1900). Edgeworth’s pioneering
contribution lies at the beginnings of the development of statistical inference in testing
arithmetic means and specificities such as skewness and kurtosis. Ronald Fisher further
advanced these ideas in 1925, laying the groundwork for hypothesis testing in inferential
statistics. His influential work, Statistical Methods for Research Workers, helped define the
concept of statistical significance (p-value) as we understand it today.

The value for which P=0.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this
point as a limit in judging whether a deviation ought to be considered significant or not.
Deviations exceeding twice the standard deviation are thus formally regarded as
significant. Using this criterion, we should be led to follow up a false indication only
once in 22 trials, even if the statistics were the only guide available. Small effects will
still escape notice if the data are insufficiently numerous to bring them out, but no
lowering of the standard of significance would meet this difficulty. (Fisher, 1925, 45)
Fisher’s work laid the foundation for inferential statistics and initiated the field of
hypothesis testing. Later, Newman and Pearson built upon Fisher’s methods,
introducing the concepts of Type I error (rejecting the null hypothesis, HO, when it is
true) and Type II error (failing to reject HO when it is false) (Perezgonzalez, 2015).
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The contributions of Newman and Pearson are significant, particularly in the context
of enhancing statistical power for repeated sampling while considering Type 1 and II
errors, as well as effect size (Holmberg, 2024). However, a notable drawback of the
Newman and Pearson approach is its rigidity; it relies on a series of predetermined steps
and lacks the flexibility found in Fisher’s method. McShane et al. (2019) emphasize the
need to abandon the NHST approach (null hypothesis significance testing) in all areas
of scientific activity in the biomedical and social sciences, i.e. they offer a broader
concept (but one that is unclear): “Results need not first have a p-value or some other
purely statistical measure that attains some threshold before consideration is given to
the currently subordinate factors. Instead, treated continuously, statistical measures
should be considered along with the currently subordinate factors as just one among
many pieces of evidence and should not take priority thereby yielding a more holistic
view of the evidence” (p. 25).
Although the p-value is considered the “scientific default” in inferential statistics, it is
frequently misused and misinterpreted. Many papers in the literature emphasize the
need to redefine p-values, supplement them with new methods, or even abolish them
completely, leading to confusion across various scientific disciplines. Additionally, some
scientific journals discourage the use of p-values. Considering the ongoing concerns
surrounding statistical significance and p-values, the American Statistical Association
(ASA) published the Statement on Statistical Significance and P-Values. This document
includes several important statements, as noted by Wasserstein and Lazar (20106):
1. P-values can indicate how incompatible the data are with a specified statistical
model.
2. P-values do not measure the probability that the studied hypothesis is true, or
the probability that the data were produced by random chance alone.
3. Scientific conclusions and business or policy decisions should not be based only
on whether a p-value passes a specific threshold.
Proper inference requires full reporting and transparency p-value; debate.
5. A p-value, or statistical significance, does not measure the size of an effect or
the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence regarding a
model or hypothesis.
Consequently, the ASA presents a significant challenge in the realm of inferential
statistics and clearly defines the meaning of the p-value, offering a more comprehensive

approach to statistical inference.
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The conclusion suggests the incorporation of new methods “but they may more directly
address the size of an effect (and its associated uncertainty) or whether the hypothesis
is correct” (Ibid. p. 132).

The limit of statistical significance, or the null hypothesis, has been a topic of
considerable debate in the literature for many years. Opinions range from calls for its
complete abolition to suggestions like those from Benjamin et al. (2017), who propose
reducing the threshold from 0.05 to 0.005. According to the authors, this change would
be a significant step forward that could enhance reproducibility in research. They
emphasize that this redefinition of the p-value, with its new standard, pertains
specifically to research records and not to scientific publications. The aim is to observe
how scientists behave under stricter criteria. I believe such a dual approach is
unnecessary since we often select levels of statistical significance (0.05 and 0.01) for
hypothesis testing in the social sciences (inferential statistics). Of course, the 0.005 level
is quite stringent, and the authors highlight this viewpoint in their paper. They justify
their approach in relation to Bayesian analysis, as it corresponds to Bayes factors ranging
from approximately 14 to 26 in favour of the alternative hypothesis (H1).

Lakens et al. (2018) suggest that instead of lowering the significance threshold from
0.05 to 0.0005, researchers should abandon the term “statistical significance” altogether.
They recommend that scientists focus on controlling error rates with an alpha level that
is determined by the researcher. Similarly, de Ruiter (2019), while critiquing the proposal
to lower the significance level to 0.005, argues that setting an alpha level of p < 0.005
does not enhance replicability. He believes that the rationale for adopting a new alpha
level of 0.005 is weak and that such a change could potentially harm scientific practice.
I agree with the recommendations made by the ASA, emphasizing that it is the
responsibility of educators to ensure that scientists understand the term “statistically
significant.” However, without clear criteria, we risk entering a realm of scientific
“sfumato”, a form of voluntarism lacking defined standards. The p-value critetion (p <
0.05) is inadequate because it is influenced by sample size and fails to accurately reflect
the true magnitude of differences or relationships (e. g. in subsamples). Moreover,
rejecting the null hypothesis does not provide evidence for confirming the alternative
hypothesis. Null Hypothesis Significance Testing (NHST) is a statistical procedure that
involves establishing a null hypothesis, generating data related to it, and assessing how
much the outcome disagrees with the null hypothesis, using statistical estimates.

While it may be a questionable criterion, having some standard is certainly better than
having none at all, or focusing solely on the individual scientist and their choice of

methods and procedures.
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It is important to define when something exists or does not exist, and the criteria used
to reject the null hypothesis when confirming an alternative hypothesis. When Fisher
established the p<0.05 threshold, he acknowledged that it was not necessarily the best
option available. The absence of any criteria is indeed worse than having an arbitrary
yet compromise-based standard. Now, 100 years after Fisher introduced this threshold,
we still struggle to reach a scientific consensus on how to conduct statistical inference.
Authors tend to concentrate too much on identifying what is wrong, what requires
change, and proving the “pollution” of our current model instead of secking an effective
solution. This solution will not be perfect; after all, determinism is increasingly less

relevant as a scientific postulate, making way for a focus on probabilism.
Polystochastic Statistical Inference in the Social Sciences

Polystochastic Statistical Inference in the Social Sciences is a concept that combines a
revised form of the Null Hypothesis Significance Testing (NHST) system, dependent
on the sample size (n), with Bayesian inference and effect size, within certain limits. The
framework of polystochastic statistical inference consists of two main components:

1. Rejection of the null hypothesis (HO).

2. The confirmation or rejection of the alternative hypothesis (Hn).

When the sample size is >120 (n >120):

e Use a significance level of p < 0.01 (or smaller). For large samples (n > 100,
ie., 120), the sample mean reliably approximates a normal distribution,
particularly in populations with pronounced skewness. A stricter criterion is
necessaty because sample size has a significant effect on statistical significance,
as noted by Opi¢ and Rijavec (2022). This leads to an increased risk of Type I
error. With larger samples, even minor differences can appear statistically
significant. Additionally, as the sample size increases, the standard error
decreases. This is particularly important when dealing with pronounced
asymmetry (skewness) or variability (variance), since sample size greatly
influences the normalisation of the distribution. One valuable and effective
method is bootstrapping (resampling), where the sample is treated as a

population.
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In Bayesian inference, sample size is less critical than in the Frequentist

approach; consequently, a smaller sample size is sufficient to achieve the same

level of efficiency, as discussed by Ali, Waheed, Shah, and Raza (2023).
Although it is generally considered that the Central Limit Theorem (CLT) begins to
apply when the sample size (n) is greater than 30, this is conditional. The assumption is
that the population does not exhibit significant skewness or kurtosis. For populations
with pronounced skewness or heavy tails (platykurtic distributions, such as the t-
distribution with low degrees of freedom), a much larger sample size is required to meet
the prerequisite of normal distribution. However, this does not apply to distributions
like the Pareto distribution, which is not influenced by the CLT since it has unlimited
variance. For sample sizes greater than 120, the t-distribution closely resembles a normal
distribution. This is why a sample size limit of 120 is defined.
So, if we have a category of large samples (n>120), CLT also works in the case when
asymmetries (skewness) and kurtosis (heavy-tailed) are expressed, which indicates that
we meet the main prerequisite for normal distribution, which is required for parametric
statistics. However, we then need to reduce the level of statistical significance to p=0.01
because the size of the sample affects the statistical significance; i.e., we will reject the
null hypothesis sooner on large samples than on small samples. The 0.01 criterion is not
too strict, and it is already used in medical research (often a much stricter criterion), and
in research with high stakes; accordingly, it should become the default for social sciences
as well. Therefore, stronger evidence is needed to reject the null hypothesis, but the type
2 error does not increase significantly (as in the case of proposals, it is reduced to a very
strict criterion, e. g., 0.0005; (Benjamin et al. 2017).
Rationale for application of the criteria - there are no restrictions on the application of the
change of criteria. The advantage is the fact that stronger evidence against the null
hypothesis will be needed, thus reducing the type one error. Reducing the p-value
criterion to p=0.01 controls the influence of the sample size (n) on statistical
significance when it comes to rejecting the null hypothesis, but it still does not solve the

confirmation of the alternative hypothesis.

When the sample is <120 (n<120)

e Use the significance level p=<0.05 (or smaller). In smaller samples, the
influence on statistical significance is not so pronounced.

Both basic conditions refer only to confirming/rejecting the null hypothesis.
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To confirm the alternative hypothesis, at least 2 out of 3 criteria must be met:

1. **Statistical Significance**: Confirmed level of statistical significance (n>120;
p=0.01 (or smaller), i.e. n<120, p<0.05 or smaller) to reject the null hypothesis. The
null hypothesis must be rejected (Mandatory).

2. **Effect Size**: The effect size should be at least moderate. The effect size (d)
provides insight into the actual magnitude of differences in differential designs (Sullivan
and Feinn, 2012; Balow, 2017). While statistical significance indicates that the result is
unlikely to occur by chance, effect size quantifies how substantial the differences are.
The most commonly used effect size in differential designs is Cohen's d (Cohen, 1968),
where 0.2 is considered small, 0.5 medium, and 0.8 large. Therefore, to provide evidence
in favour of the alternative hypothesis (Hn), it is necessary to meet the criterion of a

medium (moderate) effect size for a given test.

Table 1

Shows the most commonly used effect sizes with reference values.

Effect size small Medium large
Cohen’s d (t test) 0.2 0.5 0.8
Eta squared 72 (ANOVA) 0.01 0.06 0.14
Cohen’s f (one way ANOVA/ANCOVA) 0.1 0.25 0.4
Omega squared w2 (ANOVA) 0.01 0.06 0.14

Multivariate Omega squared w2

(one way ANOVA, MANOVA) 0.01 0.06 014
F-Squared /2 (multiple nad partial corr) 0.02 0.15 0.35
r Pearson 0.1 0.3 0.5
Odds Ratio (OR) close to 1 Around 2 3or more
Odds ratio (2*2) 1.5 3.5 9.0
12 (multiple regression) 0.02 0.13 0.26
Cohen’s w (chi square) 0.1 0.3 0.5
Spearman rho (Friedman) 0.1 0.3 0.5
. 0.5 Min(r-1,c-
0.1 (Min(r-1,c- (1))3: (11;418(;1’0 )=1),
Cramer V (r x ¢ frequency tables) D :1)10'07 (Min(e- Min(r-1,c- O.iS(Mm(r-l,c—
1,c-1)=2), 0.06 1)=2), 0.17 1)=2), 0.29
Min(r-1,c-1)=3) AN Min(r-1,c-
Min(r-1,c-1)=3) 1)=3)

(Soutce; Vacha-Haase and Thomson, 2004; Cohen, 1992; Cohen, 2008); https://imaging.mrc-
cbu.cam.ac.uk/statswiki/FAQ/ effectSize)
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Of course, as with any other statistical indicator, there are limitations. For example,
McGrath and Meyer, 2006) show that rpb (point-biserial correlation) is sensitive to
sample size, but when it comes to unequal variances, this is also the case with Cohen’s
d. (compare Ruscio, 2008), and a correction was proposed; they suggested larger values
to represent effects (small-medium-large) as the group sizes become more unequal.
Calculating effect size is an arbitrary procedure, similar to what Fisher noted about
p<0.05. Therefore, it is recommended for use only when no better basis for estimating
the index is available (Cohen, 1988, p. 25). However, there is no ideal statistical
procedure, and there are no certain limitations, but the Effect size is very little
influenced by the sample size and shows the real relationship between the variables
(shown in the empirical part of the paper) and a very useful indicator in favour of the
alternative hypothesis (Hn).

Rationale for the application of the criteria — the list of effect sizes is large, and the author
selects a specific one that corresponds to the test used to test the hypotheses. Table 1
shows the most used ones, but this does not mean that the list is not expanding.
However, the author chooses a certain and calculated value that should have at least a

medium effect to fulfil this criterion - in favor of the alternative hypothesis (Hn).
3. **Bayes factor**

It should be BF(10) > 3, that is, indicating Moderate evidence for H1.

Bayes factor and Bayesian inference are highly useful statistical approaches, and many
papers indicate the advantages of using them over p-values (Stern, 2016., Hoijtink, van
Kooten, Hulsker, 2016., Jarosz and Wiley, 2014., Assaf and Tsionas, 2018, Goodman,
2008, 2005., Lavine and Schervish, 1999., Morey, Romeijn and Rouder, 2016,
Andraszewicz et al, 2015).

Pr (Data | H1)

Bayes factor defined; Pr(Data| HO)’

where is the posterior probability.

Pr (Data) | HO)- Pr (HO)
Pr(Data)

Pr (HO|Data) = , analogously

Pr (Data) | H1)- Pr (H1)
Pr(Data)

Pr (H1|Data) = (Bayes theorem)

The Bayes factor is a significant step forward in statistical inference, especially because
it allows insight into the probability of an alternative hypothesis (which is not the case
with NHST), but like all approaches in statistics, it has limitations.
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One of these is the Jeffreys-Lindley paradox (Bartlett, 1957; Lindley, 1957). This
concerns the influence of sample size on the BF value. In the frequentist approach,
large samples affect lower p values, i. e., in favour of the Alternative hypothesis (Hn -
or rejecting an HO), while in the Bayesian approach, large samples affect higher values
of BF(01), i.e., in favour of HO. So, we have a paradox because the sample size in the
frequentist approach significantly affects the probability of rejecting HO, but at the same
time in the Bayesian approach, it can affect a higher probability in favour of HO
(Huisman, 2023).

In the literature and machine learning, the interpretation of BF is confusing: the
interpretation of BF can be B10, i. e., alternative vs null hypothesis, or BFO1, null vs
alternative. Most often, when the label is not used, it means BF01.

BF10>1: Evidence favours H1. BF10<1: Evidence Favors HO.
BF01>1: Evidence favours HO. BF01<1: Evidence Favors H1.
Bayes interpretation table (Adjusted to BF10; From Jeffreys, 1961)

Table 2
Bayes factor (BF10)
> 100 Extreme evidence for H1
30 100 Very strong evidence for H1
10 30 Strong evidence for H1
3 10 Moderate evidence for H1
3 Anecdotal evidence for H1
1 No evidence
1/3 1 Anecdotal evidence for HO
1/10 1/3 Moderate evidence for HO
1/30 1/10 Strong evidence for HO
1/100 1/30 Very strong evidence for HO
< 1/100 Extreme evidence for HO

This condition stipulates that the Bayes Factor (BF10) must be at least 3 - indicating
moderate evidence for the alternative hypothesis (H1). While a stricter criterion could
have been applied, it would likely have caused more issues than benefits, particularly
when considering certain limitations of Bayesian inference, such as the Jeffreys-Lindley
paradox. This is especially relevant in cases of specific definition prior probability (P(0)),

particularly when using a non-informative prior (uniform).
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Rationale for the application of the criterion - the application of this criterion may be limited
because e.g. in multivariate tests, the application of Bayesian inference (BF) is limited
and under development. Moreover, in complex models, there ate a number of
limitations (challenges) in the application of BF (Bollen, Harden, Ray, and Zavisca,
2014), including the problem of using an ordinal scale, and the problem of using BF in
non-parametric tests (Yuan, and Johnson, 2008). Of course, there are always challenges,
but at the same time, most of the works in the univariate approach have BF calculations
in statistical programs for data processing, and further development and application are
expected.

We can therefore show Polystochastic Statistical Inference in the Social Sciences
graphically (Table 3):

Table 3
Polystochastic Statistical Inference in the Social Sciences

In case n<120 p=0,05 (or smaller)
Rejecting null hypothesis (HO) In case n>120 p=<0,01 (or smaller)
Rejected HO
. . when n<120; p=0,05 or smaller Condition 1 (mandatory)
Proving the alternative when n>120; p<0,01 or smaller
hypothesis (Hn) —
Bayes factor BF10 > 3 Condition 2
Effect size - medium Condition 3
A total of 2 out of 3
conditions must be met

An empirical example

For the simulations (scenarios X1, X2, and X3), a matrix was utilized with the
independent variable being study type (undergraduate, graduate, integrated study;
>'n=75) and the dependent variable measured on an ordinal scale using a Likert scale
with 5 points.

Differences between sub-groups were tested using ANOVA;
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Scenario X1, n=75

nl =25 yields %1 = 3.40; 01 = 1.258; stdErorr = 0,252
X1n2 =21 — F(2.72) =1.451, p=0.241; X2 =3.71; 02 = 1.056; stdErorr = 0,230
n3 =29 %3 =3.90; 03 = 0.900; stdErorr = 0,167

MSB=1.672; MSW=1,152

Effect size; n2= 0.039 ; CI (95%) = 0.00010wer to 0.138 ypper
€2=0.012; CI (95%) =-0.028)ower to 0.114 ypper

BE(10) =0.052 (JZS)

In a sample of n=75, the null hypothesis, which posits that there are no differences
between the subsamples concerning the dependent variable, is confirmed. The effect
size, measured by eta squared, indicates a very weak real difference. Moreover, Bayesian
inference shows a Bayes Factor of BF(10) =0.052, which does not lend support to the
alternative hypothesis (Hn).

When the results are multiplied in a larger matrix sample of n=150, the findings are as

follows (scenario X2):
Scenario X2; n=150

nl =50 ... X1 = 3.40; 01 = 1.245; stdErorr = 0.176
X2n2 = 42 — F(2.147) =2.963, p=0.055 X2 = 3.71; 02 = 1.043; stdErorr = 0.161
n3 =58 %3 =3.90; 63 = 0.892; stdErorr = 0.117

MSB=3.345; MSW=1.129

Effect size; 72= 0.039; C1(95%6)=0.0000yer — 0.108pper
€2=0.026; C1(95%)=-0.01410yer — 0.096 ypper

BF(10) =0.117 (ZS)

By duplicating the results in the matrix, the arithmetic mean remained unchanged (nl,
n2, n3). However, the standard errors decreased because the denominator includes Vn.
The results of the F ratio suggest that we are nearing the threshold for rejecting the null
hypothesis at a statistical significance level of p < 0.05. Nonetheless, the effect size
values remained the same (n* = 0.039). Additionally, the Bayesian inference results
(BF10 = 0.117) do not support the alternative hypothesis.

Then, multiplying the results in the matrix (N=300), the results are as follows (scenario
X3):
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Scenario X3; n=300

nl =100 yields %1 = 3.40; o1 = 1.239; stdErorr = 0.124
X3 n2 = 84 —— F(2.297)=5.896;p=0.003; X2 = 3.71; 02 = 1.036; stdErorr = 0.113
n3 =116 %3 = 3.90; 03 = 0.888; stdErorr = 0.082

MSB=6.689; MSW=1.118

Effect size; 2= 0.039; CI (95%) = 0.00515wer to 0.086upper
e?= 0.032; CI (95%) = - 0.0021ower to 0.080upper

BE(10) =1.146 (JZS)

For a sample of 300 respondents, the results indicate a rejection of the null hypothesis,
with a p-value of 0.003. In scenario X3 (n=300), the arithmetic means remained
unchanged since the data set was identical. However, the null hypothesis significance
testing (NHST) still led to a rejection of the null hypothesis (p=0.003). The effect size,
measured by 7% was consistent at 0.039 across the x1, x2, and x3 models, indicating a
very weak real difference. Additionally, the Bayesian inference showed a Bayes Factor
(BF10) of 1.146, which does not support the alternative hypothesis (Hn).

The Jeffreys-Lindley paradox is not evident in this case, despite using a non-informative
prior (a uniform prior over the mean). This is because increasing the sample size (n) did
not result in a decrease in the Bayes factor in support of the null hypothesis. Cleatly, the
sample size has a stronger impact on the p-value than on the Bayes factor. In this case,
the null hypothesis is rejected in the X3 model. However, there is not enough evidence
to confirm the differences between the subsamples, as neither Bayesian analysis nor
effect size support such a conclusion. According to the polystochastic inference
approach, to validate the alternative (affirmative) hypothesis, at least two out of three
conditions must be met. In this instance, only one condition has been satisfied.
Therefore, even though the null hypothesis was rejected in scenario 3, the alternative
hypothesis (Hn) regarding the existence of differences between the subsamples is not
confirmed.

In the subsequent section, a new simulation is introduced (y1; y2; y3; y4). The
differences between male students (n1=32) and female students (n=40) regarding the
dependent variable (The online classes were well organized) using a sample size of n=72 were

tested. A T-test for independent samples was conducted. The results are as follows:
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Scenatio Y1; n = 72

nl =32 ylelds _ _ x1 =341 o1 = 1.012;stdError = 0.179
yi (70) =-0.956,p=0.342 o5 _ 365 o2 = 1.122; stdError = 0.177

n2 =40

Although the disproportion of the subsample is partially expressed, the group is
homogeneous; F (70;68.957) =0.126, p=0.724. Also, when sampling the distribution,
there is no significant asymmetry, skew=-0.813, nor is it a pronounced significant
leptokurtic distribution (Kurtosis=0.272). Analogously, in the case of subsamples, the
sampling distribution is not markedly asymmetric, nor is significant kurtosis
pronounced.
Effect size; Cohen’s d = - 0.227; CI (95%) = -0.6921ower t0 0.2404pper

Hedges” correction = - 0.224; CI (95%) = - 0.68510wer t0 0.238 ypper

Glass delta = - 0.217; CI (95%) = - 0.6831ower t0 0.251 ypper

BF(01) =3.650, posterior distribution in intervals is shown in Figure 1

Cl(95%)Lower=0,27, Upper=0,75
- posterior mean diff=0,24-

Posterior Distribution mean: V2.1. The online classes were well organized Difference.
20 ‘.IIIIIIIIIIIII...I‘

Likelihood

-04 -0.2 0,0000 02 04 06 08 10

Mean: V2.1. The online classes were well organized

Figure 1 - posterior distribution (Credible Intervals)

Thus, on a sample of 72 subjects, the NHTS approach is confirmed by the null
hypothesis of no difference between subsamples, Cohen’s d indicates a very low
difference between subsamples, nor does and BF(01) favour the alternative (affirmative)
hypothesis.

In the further simulation (Y2), the results in the matrix were multiplied; (n=144), the

results are as follows:
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Scenario Y2; n = 144

nl = 64 yields X1 =3.41 o1 = 1.003;stdError = 0.125

Y2 2 = 80 t(142)= - 1,362 p= 0175 25 _ 365 62 =1.115; stdError = 0.125

The set is homogeneous; F (142;139,994)=0.256, p=0.614

Effect size; Cohen’s d = - 0.228; CI (95%) = - 0.55810wer to 0.1024pper
Hedges” correction = -0.227; CI (95%) = - 0.55510wer to 0.101 ypper
Glass delta = - 0.219; CI (95%) = - 0.548ower to 0.113 ypper

BF(01) =3.173

There was a decrease in the p-value (0.342 to 0.175), which still does not indicate the
rejection of the null hypothesis, and at the same time, the BFF and the effect size are not
in favor of H1. In the further simulation (Y3), the results in the matrix are multiplied;
(n=288), the results are as follows:

Scenatio Y3, n = 288

nl = 128 vields X1 =3.41 o1 = 1.000;stdError = 0.088

Y302 =160 €(2860) = -1,933;p= 0,054 o9 _ 365 62 = 1.111; stdError = 0.088

The set is homogeneous; F (286;282,067) = 0.515, p=0.474 and t value is used: equal variance assumed.
Effect size; Cohen’s d = -0.229; CI(95%)= - 0.46215wer to 0.004upper

Hedges” correction= -0.229; C1(95%)= -0.4611ower to 0.004 ypper

Glass delta =-0.219; CI1(95%)= -0.4530wer to 0.015 ypper

BF(01) =1.745

In the Y3 simulation, the impact of sample size on statistical significance is evident. At
the p < 0.05 level, the null hypothesis (HO) can be rejected since it is at the threshold
value. However, it is not rejected at the p < 0.01 level. The arithmetic means, Cohen's
d (effect size), Hedges’ g correction, and Glass delta all remain unchanged (very small
differences) and indicate a small effect. Additionally, the Bayes Factor BF(01) does not
support the alternative hypothesis.

And finally, we have the Y4 simulation (n=570)
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Scenario Y4, n=576

nl = 256 yields x1 =3.41 o1l = 0.998;stdError = 0.062

Y42 = 320 tOTH=-2739%p = 0006 09 _ 365 62 =1.110; stdError = 0.062

Effect size; Cohen’s d = - 0.230; CI (95%) = - 0.3%4ower to - 0.005upper
Hedges” correction = - 0.229; CI (95%)= - 0.39%41ower to -0.065 upper
Glass delta = - 0.220; CI (95%) = - 0.3850wer to - 0.054 ypper

BF(01) = 0.378, or BF(10) =1/BF(01) =2.64. The postetior disttibution in the intervals is shown in Figure
2 (prior is flat; noninformative)
Cl(95%)Lower=0,07; Upper=0,42
posterior mean diff=0,24

Posterior Distribution mean: V2.1. The online classes were well organized Difference
 EEREEREENEREERREERNN)

Likelihood
O = N WaWOm

00 01 02 03 04 05

Mean: V2.1. The online classes were well organized

Figure 2- posterior mean difference (Meanaig Posterior)

In this case, the null hypothesis is rejected at a significance level of p < 0.01 since p =
0.006. However, there is still no evidence to support the alternative hypothesis. Cohen’s
d is -0.230, indicating a low effect size, and the Bayes Factor (BF01) is 0.378, which
means that BF10 is 1/BF01, resulting in BF10 = 2.64. Although the value of BF10
(favouring the alternative hypothesis) increased with the sample size, moderate evidence
for the alternative hypothesis (Hn) was still not achieved.

In the simulations involving scenarios X1, X2, X3, X4, and Y1, Y2, Y3, Y4, Y5, the
influence of the sample size of the respondents is evident. Additionally, the
effectiveness of the Polystochastic Statistical Inference in the Social Sciences approach
is highlighted, as it controls for type 1 errors (n > 120, p < 0.01) and the probabilities
of confirming the alternative (affirmative) hypothesis (Hn).

Conclusion

Even after 100 years since the significant contributions of Sir Ronald Aylmer Fisher to
the field of statistical inference, many papers published today continue to demonstrate
that this approach has major flaws. It often leads to misconceptions, incorrect

interpretations, wrong conclusions, and generalizations.
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Furthermore, it is estimated that a substantial percentage of papers—approximately
80%—in the social sciences arrive at erroneous conclusions based on the null
hypothesis significance testing (NHST) approach. This increasingly resembles Gidel’s
Incompleteness Theorem, which, when interpreted, relates to the idea of proving something
that cannot be proven. However, as early as 1925, Fisher acknowledged that this
approach was not the best solution. Today, numerous papers highlight the
shortcomings of the existing NHST system and the limitations of other methodologies.
Polystochastic statistical inference in the social sciences introduces a new approach that
clearly defines the boundaries of statistical inference. By lowering the p-value threshold
from 0.05 to 0.01 (or smaller) for large samples (n > 120), we can better control the
influence of sample size on statistical significance, effectively reducing the risk of a Type
I error. While some research suggests that an even stricter criterion may be necessary,
this can lead to an increased risk of a Type II error. There is no universally ideal
threshold. However, the significant advantage of the polystochastic statistical inference
approach in the social sciences lies in its ability to support an alternative (affirmative)
hypothesis when the null hypothesis is rejected.

To confirm the alternative hypothesis, 2 of 3 conditions must be met; the compulsory
condition is that the null hypothesis is rejected, then the Effect size is at least medium,
and BF (10) > 3. We could see this as the need to introduce a stricter criterion (e.g., BF
(10) >10 or more, indicate the limitations of Bayesian inference for complex models
(which is correct), or indicate the operation of the Jeffreys-Lindley paradox, the
problematic nature of the non-informative prior. However, Polystochastic Statistical
Inference in the Social Sciences offers a framework that provides clear rules (thresholds)
for statistical inference in the social sciences. The approach is set to allow the author to
control the influence of sample size on the probability of rejection of the null
hypothesis, but what is more important is that it has a framework for confirming the
alternative hypothesis. The author has the option of choosing conditions (2/3) because
it is assumed that for certain multivariate tests, statistical programs still do not offer
Bayesian, or, for example, with certain non-parametric tests, Bayesian is not yet often
being used (or is controversial).

The new approach, Polystochastic Statistical Inference in the Social Sciences, represents
a significant advance in statistical inference within this field, providing clear rules and
thresholds. It maintains flexibility in its application, avoiding a substantial increase in
Type 11 error, even if we were to pursue a further reduction in p-values. Additionally, it
offers a balanced method for confirming alternative hypotheses.
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Authors are encouraged to specify which approach they have chosen in their work,
whether it be NHST or Polystochastic Statistical Inference (PSSI). Beyond this, the
approach provides valuable statistical insights, such as confidence intervals and credible
intervals, aimed at enhancing our understanding of the data. Ultimately, PSSI establishes
a clear framework and threshold for statistical inference in the social sciences.
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Original quote: an erratum (page 110);

Similarly, de Ruiter (2019), while critiquing the proposal to lower the significance level to 0.005,
argues that setting an alpha level of p < 0.005 does not enhance replicability. He believes that the
rationale for adopting a new alpha level of 0.005 is weak and that such a change could potentially
harm scientific practice
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