

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 19 (2020) 83–93

https://doi.org/10.26493/1855-3974.2161.f55

(Also available at http://amc-journal.eu)

On sign-symmetric signed graphs*

Ebrahim Ghorbani

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16765-3381, Tehran, Iran

Willem H. Haemers 🕩

Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands

Hamid Reza Maimani , Leila Parsaei Majd †

Mathematics Section, Department of Basic Sciences, Shahid Rajaee Teacher Training University, P.O. Box 16785-163, Tehran, Iran

Received 24 October 2019, accepted 27 March 2020, published online 10 November 2020

Abstract

A signed graph is said to be sign-symmetric if it is switching isomorphic to its negation. Bipartite signed graphs are trivially sign-symmetric. We give new constructions of non-bipartite sign-symmetric signed graphs. Sign-symmetric signed graphs have a symmetric spectrum but not the other way around. We present constructions of signed graphs with symmetric spectra which are not sign-symmetric. This, in particular answers a problem posed by Belardo, Cioabă, Koolen, and Wang in 2018.

Keywords: Signed graph, spectrum.

Math. Subj. Class. (2020): 05C22, 05C50

1 Introduction

Let G be a graph with vertex set V and edge set E. All graphs considered in this paper are undirected, finite, and simple (without loops or multiple edges).

A signed graph is a graph in which every edge has been declared positive or negative. In fact, a signed graph Γ is a pair (G, σ) , where G = (V, E) is a graph, called the underlying

^{*}The authors would like to thank the anonymous referees for their helpful comments and suggestions.

[†]Corresponding author.

E-mail addresses: ghorbani@kntu.ac.ir (Ebrahim Ghorbani), haemers@uvt.nl (Willem H. Haemers), maimani@ipm.ir (Hamid Reza Maimani), leila.parsaei84@yahoo.com (Leila Parsaei Majd)

graph, and $\sigma \colon E \to \{-1, +1\}$ is the sign function or signature. Often, we write $\Gamma = (G, \sigma)$ to mean that the underlying graph is G. The signed graph $(G, -\sigma) = -\Gamma$ is called the *negation* of Γ . Note that if we consider a signed graph with all edges positive, we obtain an unsigned graph.

Let v be a vertex of a signed graph Γ . Switching at v is changing the signature of each edge incident with v to the opposite one. Let $X \subseteq V$. Switching a vertex set X means reversing the signs of all edges between X and its complement. Switching a set X has the same effect as switching all the vertices in X, one after another.

Two signed graphs $\Gamma=(G,\sigma)$ and $\Gamma'=(G,\sigma')$ are said to be *switching equivalent* if there is a series of switching that transforms Γ into Γ' . If Γ' is isomorphic to a switching of Γ , we say that Γ and Γ' are *switching isomorphic* and we write $\Gamma\simeq\Gamma'$. The signed graph $-\Gamma$ is obtained from Γ by reversing the sign of all edges. A signed graph $\Gamma=(G,\sigma)$ is said to be *sign-symmetric* if Γ is switching isomorphic to $(G,-\sigma)$, that is: $\Gamma\simeq-\Gamma$.

For a signed graph $\Gamma=(G,\sigma)$, the adjacency matrix $A=A(\Gamma)=(a_{ij})$ is an $n\times n$ matrix in which $a_{ij}=\sigma(v_iv_j)$ if v_i and v_j are adjacent, and 0 if they are not. Thus A is a symmetric matrix with entries $0,\pm 1$ and zero diagonal, and conversely, any such matrix is the adjacency matrix of a signed graph. The spectrum of Γ is the list of eigenvalues of its adjacency matrix with their multiplicities. We say that Γ has a *symmetric spectrum* (with respect to the origin) if for each eigenvalue λ of Γ , $-\lambda$ is also an eigenvalues of Γ with the same multiplicity.

Recall that (see [4]), the Seidel adjacency matrix of a graph G with the adjacency matrix A is the matrix S defined by

$$S_{uv} = \begin{cases} 0 & \text{if } u = v \\ -1 & \text{if } u \sim v \\ 1 & \text{if } u \nsim v \end{cases}$$

so that S=J-I-2A. The Seidel adjacency spectrum of a graph is the spectrum of its Seidel adjacency matrix. If G is a graph of order n, then the Seidel matrix of G is the adjacency matrix of a signed complete graph Γ of order n where the edges of G are precisely the negative edges of Γ .

Proposition 1.1. Suppose S is a Seidel adjacency matrix of order n. If n is even, then S is nonsingular, and if n is odd, $\operatorname{rank}(S) \geq n-1$. In particular, if n is odd, and S has a symmetric spectrum, then S has an eigenvalue 0 of multiplicity 1.

Proof. We have $\det(S) \equiv \det(I-J) \pmod{2}$, and $\det(I-J) = 1-n$. Hence, if n is even, $\det(S)$ is odd. So, S is nonsingular. Now, if n is odd, any principal submatrix of order n-1 is nonsingular. Therefore, $\operatorname{rank}(S) \geq n-1$.

The goal of this paper is to study sign-symmetric signed graphs as well as signed graphs with symmetric spectra. It is known that bipartite signed graphs are sign-symmetric. We give new constructions of non-bipartite sign-symmetric graphs. It is obvious that sign-symmetric graphs have a symmetric spectrum but not the other way around (see Remark 4.1 below). We present constructions of graphs with symmetric spectra which are not sign-symmetric. This, in particular answers a problem posed in [2].

2 Constructions of sign-symmetric graphs

We note that the property that two signed graphs Γ and Γ' are switching isomorphic is equivalent to the existence of a 'signed' permutation matrix P such that $PA(\Gamma)P^{-1} = A(\Gamma')$. If Γ is a bipartite signed graph, then we may write its adjacency matrix as

$$A = \begin{bmatrix} O & B \\ B^\top & O \end{bmatrix}.$$

It follows that $PAP^{-1} = -A$ for

$$P = \begin{bmatrix} -I & O \\ O & I \end{bmatrix},$$

which means that bipartite graphs are 'trivially' sign-symmetric. So it is natural to look for non-bipartite sign-symmetric graphs. The first construction was given in [1] as follows.

Theorem 2.1. Let n be an even positive integer and V_1 and V_2 be two disjoint sets of size n/2. Let G be an arbitrary graph with the vertex set V_1 . Construct the complement of G, that is G^c , with the vertex set V_2 . Assume that $\Gamma = (K_n, \sigma)$ is a signed complete graph in which $E(G) \cup E(G^c)$ is the set of negative edges. Then Γ is sign-symmetric.

2.1 Constructions for general signed graphs

Let $\mathcal{M}_{r,s}$ denote the set of $r \times s$ matrices with entries from $\{-1,0,1\}$. We give another construction generalizing the one given in Theorem 2.1:

Theorem 2.2. Let $B, C \in \mathcal{M}_{k,k}$ be symmetric matrices where B has a zero diagonal. Then the signed graph with the adjacency matrices

$$A = \begin{bmatrix} B & C \\ C & -B \end{bmatrix}$$

is sign-symmetric on 2k vertices.

Proof.

$$\begin{bmatrix} O & -I \\ I & O \end{bmatrix} \begin{bmatrix} B & C \\ C & -B \end{bmatrix} \begin{bmatrix} O & I \\ -I & O \end{bmatrix} = \begin{bmatrix} -B & -C \\ -C & B \end{bmatrix} = -A$$

Note that Theorem 2.2 shows that there exists a sign-symmetric graph for every even order.

We define the family \mathcal{F} of signed graphs as those which have an adjacency matrix satisfying the conditions given in Theorem 2.2. To get an impression on what the role of \mathcal{F} is in the family of sign-symmetric graphs, we investigate small complete signed graphs. All but one complete signed graphs with symmetric spectra of orders 4,6,8 are illustrated in Figure 1 (we show one signed graph in the switching class of the signed complete graphs induced by the negative edges). There is only one sign-symmetric complete signed graph of order 4. There are four complete signed graphs with symmetric spectrum of order 6, all of which are sign-symmetric, and twenty-one complete signed graphs with symmetric spectrum of order 8, all except the last one are sign-symmetric, and together with the negation of the last signed graph, Figure 1 gives all complete signed graphs with symmetric spectrum of order 4, 6 and 8. Interestingly, all of the above sign-symmetric signed graphs belong to \mathcal{F} .

The following proposition shows that \mathcal{F} is closed under switching.

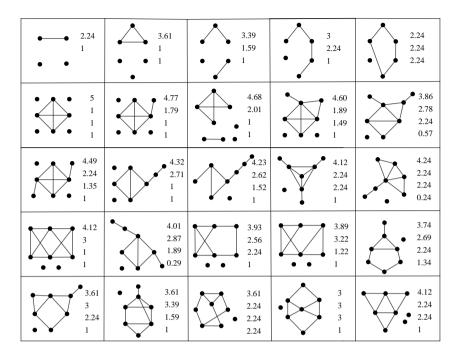


Figure 1: Complete signed graphs (up to switching isomorphism and negation) of order 4, 6, 8 having symmetric spectrum. The numbers next to the graphs are the non-negative eigenvalues. Only the last graph on the right is not sign-symmetric.

Proposition 2.3. *If* $\Gamma \in \mathcal{F}$ *and* Γ' *is obtained from* Γ *by switching, then* $\Gamma' \in \mathcal{F}$.

Proof. Let $\Gamma \in \mathcal{F}$. It is enough to show that if Γ' is obtained from Γ by switching with respect to its first vertex, then $\Gamma' \in \mathcal{F}$. We may write the adjacency matrix of Γ as follows:

A =	0	\mathbf{b}^{\top}	c	$\boxed{ \qquad \mathbf{c}^{\top} \qquad }$
	b	B'	c	C'
	c	\mathbf{c}^{\top}	0	$-\mathbf{b}^{ op}$
	c	C'	$-\mathbf{b}$	-B'

After switching with respect to the first vertex of Γ , the adjacency matrix of the resulting

signed graph is

0	$-\mathbf{b}^{ op}$	-c	$\begin{bmatrix} & -\mathbf{c}^\top & \end{bmatrix}$
-b	B'	c	C'
-c	\mathbf{c}^{\top}	0	$-\mathbf{b}^{\top}$
$-\mathbf{c}$	C'	$-\mathbf{b}$	-B'

Now by interchange the 1st and (k + 1)-th rows and columns we obtain

0	\mathbf{c}^{\top}	-c	$-\mathbf{b}^{\top}$
c	B'	$-\mathbf{b}$	C'
-c	$-\mathbf{b}^{ op}$	0	$-\mathbf{c}^{ op}$
$-\mathbf{b}$	C'	$-\mathbf{c}$	− <i>B</i> ′

which is a matrix of the form given in Theorem 2.2 and thus Γ' is isomorphic with a signed graph in \mathcal{F} .

In the following we present two constructions for complete sign-symmetric signed graphs using self-complementary graphs.

2.2 Constructions for complete signed graphs

In the following, the meaning of a self-complementary graph is the same as defined for unsigned graphs. Let G be a self-complementary graph so that there is a permutation matrix P such that $PA(G)P^{-1}=A(\overline{G})$ and $PA(\overline{G})P^{-1}=A(G)$. It follows that if Γ is a complete signed graph with E(G) being its negative edges, then $A(\Gamma)=A(\overline{G})-A(G)$ (in other words, $A(\Gamma)$ is the Seidel matrix of G). It follows that $PA(\Gamma)P^{-1}=-A(\Gamma)$. So we obtain the following:

Observation 2.4. If Γ is a complete signed graph whose negative edges induce a self-complementary graph, then Γ is sign-symmetric.

We give one more construction of sign-symmetric signed graphs based on self-complementary graphs as a corollary to Observation 2.4. We remark that a self-complementary graph of order n exists whenever $n \equiv 0$ or $1 \pmod 4$.

Proposition 2.5. Let G, H be two self-complementary graphs, and let Γ be a complete signed graph whose negative edges induce the join of G and H (or the disjoint union of G and H). Then Γ is sign symmetric. In particular, if G has n vertices, and if H is a singleton, then the complete signed graph Γ of order n+1 with negative edges equal to E(G) is sign-symmetric.

In the following remark we present a sign-symmetric construction for non-complete signed graphs.

Remark 2.6. Let Γ' , Γ'' be two signed graphs which are isomorphic to $-\Gamma'$, $-\Gamma''$, respectively. Consider the signed graph Γ obtained from joining Γ' and Γ'' whose negative edges are the union of negative edges in Γ' and Γ'' . Then, Γ is sign-symmetric.

Remark 2.7. By Proposition 2.5, we have a construction of sign-symmetric complete signed graphs of order $n \equiv 0, 1$ or $2 \pmod 4$. All complete sign-symmetric signed graphs of order 5 and 9 (depicted in Figure 2) can be obtained in this way. There is just one sign-symmetric signed graph of order 5 which is obtained by joining a vertex to a complete signed graph of order 4 whose negative edges form a path of length 3 (which is self-complementary). Moreover, there exist sixteen complete signed graphs of order 9 with symmetric spectrum of which ten are sign-symmetric; the first three are not sign-symmetric, and when we include their negations we get them all. All of these ten complete sign-symmetric signed graphs can be obtained by joining a vertex to a complete signed graph of order 8 whose negative edges induce a self-complementary graph. Note that there are exactly ten self-complementary graphs of order 8.

Theorem 2.8. There exists a complete sign-symmetric signed graph of order n if and only if $n \equiv 0, 1$ or $2 \pmod{4}$.

Proof. Using the previous results obviously one can construct a sign-symmetric signed graph of order n whenever $n \equiv 0, 1$ or $2 \pmod 4$. Now, suppose that there is a complete sign-symmetric signed graph Γ of order n with $n \equiv 3 \pmod 4$. By [6, Corollary 3.6], the determinant of the Seidel matrix of Γ is congruent to $1 - n \pmod 4$. Since $n \equiv 3 \pmod 4$, the determinant of the Seidel matrix (obtained from the negative edges of Γ) is not zero. Hence, we can conclude that all eigenvalues of Γ are non-zero. Therefore, Γ cannot have a symmetric spectrum, and also it cannot be sign-symmetric.

In [7] all switching classes of Seidel matrices of order at most seven are given. There is a error in the spectrum of one of the graphs on six vertices in [7, Table 4.1] (2.37 should be 2.24), except for that, the results in [7] coincide with ours.

3 Positive and negative cycles

A graph whose connected components are K_2 or cycles is called an *elementary graph*. Like unsigned graphs, the coefficients of the characteristic polynomial of the adjacency matrix of a signed graph Γ can be described in terms of elementary subgraphs of Γ .

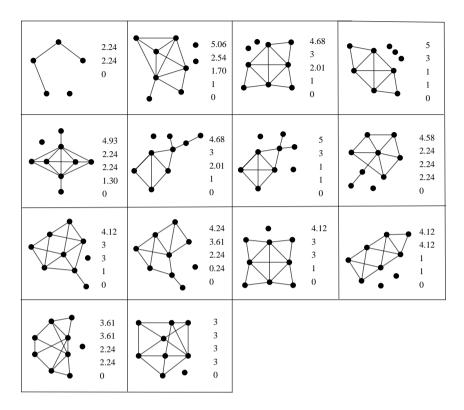


Figure 2: Complete signed graphs (up to switching isomorphism and negation) of order 5,9 having symmetric spectrum. The numbers next to the graphs are the non-negative eigenvalues. The first three signed graphs of order 9 are not sign-symmetric.

Theorem 3.1 ([3, Theorem 2.3]). Let $\Gamma = (G, \sigma)$ be a signed graph and

$$P_{\Gamma}(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n}$$
(3.1)

be the characteristic polynomial of the adjacency matrix of Γ . Then

$$a_i = \sum_{B \in \mathcal{B}_i} (-1)^{p(B)} 2^{|c(B)|} \sigma(B),$$

where \mathcal{B}_i is the set of elementary subgraphs of G on i vertices, p(B) is the number of components of B, c(B) the set of cycles in B, and $\sigma(B) = \prod_{C \in c(B)} \sigma(C)$.

Remark 3.2. It is clear that Γ has a symmetric spectrum if and only if in its characteristic polynomial (3.1), we have $a_{2k+1}=0$, for $k=1,2,\ldots$

In a signed graph, a cycle is called *positive* or *negative* if the product of the signs of its edges is positive or negative, respectively. We denote the number of positive and negative ℓ -cycles by c_{ℓ}^+ and c_{ℓ}^- , respectively.

Observation 3.3. For sign-symmetric signed graph, we have

$$c_{2k+1}^+ = c_{2k+1}^-$$
 for $k = 1, 2, \dots$

Remark 3.4. If in a signed graph Γ , $c_{2k+1}^+ = c_{2k+1}^-$ for all $k=1,2,\ldots$, then it is not necessary that Γ is sign-symmetric. See the complete signed graph given in Figure 5. For this complete signed graph we have $c_{2k+1}^+ = c_{2k+1}^-$ for all $k=1,2,\ldots$, but it is not sign-symmetric. Moreover, one can find other examples among complete and noncomplete signed graphs. For example, the signed graph given in Figure 4 is a non-complete signed graph with the property that $c_{2k+1}^+ = c_{2k+1}^-$ for all $k=1,2,\ldots$, but it is not sign-symmetric.

By Theorem 3.1, we have that $a_3=2(c_3^--c_3^+)$. By Theorem 3.1 and Remark 3.2 for signed graphs having symmetric spectrum, we have $c_3^+=c_3^-$. Further, for each complete signed graph with a symmetric spectrum, it can be seen that $c_5^+=c_5^-$. However, the equality $c_{2k+1}^+=c_{2k+1}^-$ does not necessarily hold for $k\geq 3$. The complete signed graph in Figure 3 has a symmetric spectrum for which $c_7^+\neq c_7^-$.

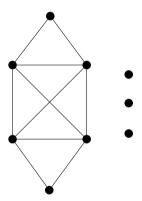


Figure 3: The graph induced by negative edges of a complete signed graph on 9 vertices with a symmetric spectrum but $c_7^+ \neq c_7^-$.

Remark 3.5. There are some examples showing that for a non-complete signed graph we have $c_{2k+1}^+ = c_{2k+1}^-$ for all $k = 1, 2, \ldots$, but their spectra are not symmetric. As an example see Figure 4 (dashed edges are negative; solid edges are positive).

Now, we may ask a weaker version of the result mentioned in Remark 3.4 as follows.

Question 3.6. Is it true that if in a complete signed graph Γ , $c_{2k+1}^+ = c_{2k+1}^-$ for all $k = 1, 2, \ldots$, then Γ has a symmetric spectrum?

4 Sign-symmetric vs. symmetric spectrum

Remark 4.1. Consider the complete signed graph whose negative edges induces the graph of Figure 5. This graph has a symmetric spectrum, but it is not sign-symmetric. Note that this complete signed graph has the minimum order with this property. Moreover, for this complete signed graph we have the equalities $c_{2k+1}^+ = c_{2k+1}^-$ for k = 1, 2, 3.

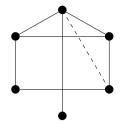


Figure 4: A signed graph with $c_{2k+1}^+ = c_{2k+1}^-$ for k = 1, 2, ..., but its spectrum is not symmetric.

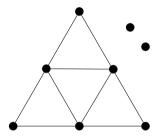


Figure 5: The graph induced by negative edges of a complete signed graph on 8 vertices with a symmetric spectrum but not sign-symmetric.

Remark 4.2. A conference matrix C of order n is an $n \times n$ matrix with zero diagonal and all off-diagonal entries ± 1 , which satisfies $CC^{\top} = (n-1)I$. If C is symmetric, then C has eigenvalues $\pm \sqrt{n-1}$. Hence, its spectrum is symmetric. Conference matrices are well-studied; see for example [4, Section 10.4]. An important example of a symmetric conference matrix is the Seidel matrix of the Paley graph extended with an isolated vertex, where the *Paley graph* is defined on the elements of a finite field \mathbf{F}_q , with $q \equiv 1 \pmod{4}$, where two elements are adjacent whenever the difference is a nonzero square in \mathbf{F}_q . The Paley graph is self-complementary. Therefore, by Proposition 2.5, C is the adjacency matrix of a sign-symmetric complete signed graph. However, there exist many more symmetric conference matrices, including several that are not sign-symmetric (see [5]).

In [2], the authors posed the following problem on the existence of the non-complete signed graphs which are not sign-symmetric but have symmetric spectrum.

Problem 4.3 ([2]). Are there non-complete connected signed graphs whose spectrum is symmetric with respect to the origin but they are not sign-symmetric?

We answer this problem by showing that there exists such a graph for any order $n \ge 6$. For $s \ge 0$, define the signed graph Γ_s to be the graph illustrated in Figure 6.

Theorem 4.4. For $s \geq 0$, the graph Γ_s has a symmetric spectrum, but it is not sign-symmetric.

Proof. Let S be the set of s vertices adjacent to both 1 and 5. The positive 5-cycles of Γ_s are 123461 together with u1645u for any $u \in S$, and the negative 5-cycles are u1465u for

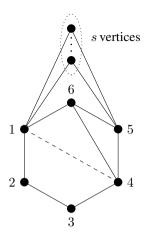


Figure 6: The graph Γ_s .

any $u \in S$. Hence, $c_5^+ = s + 1$ and $c_5^- = s$. In view of Observation 3.3, this shows that Γ_s is not sign-symmetric.

Next, we show that Γ_s has a symmetric spectrum. It suffices to verify that $a_{2k+1}=0$ for $k=1,2,\ldots$

The graph Γ_s contains a unique positive cycle of length 3: 4564 and a unique negative cycle of length 3: 1461. It follows that $a_3 = 0$.

As discussed above, we have $c_5^+ = s+1$ and $c_5^- = s$. We count the number of positive and negative copies of $K_2 \cup C_3$. For the negative triangle 1461, there are s+1 non-incident edges, namely 23 and 5u for any $u \in S$ and for the positive triangle 4564, there are s+2 non-incident edges, namely 12, 23 and 1u for any $u \in S$. It follows that

$$a_5 = -2((s+1) - s) + 2((s+2) - (s+1) = 0.$$

Now, we count the number of positive and negative elementary subgraphs on 7 vertices:

 C_7 : s positive: u123465u for any $u \in S$, and no negative;

 $K_2 \cup C_5$: 2s positive: $u5 \cup 123461$, and $23 \cup u1645u$ for any $u \in S$, and

s negative: $23 \cup u1465u$ for any $u \in S$;

 $2K_2 \cup C_3$: s+1 positive: $u1 \cup 23 \cup 4564$ for any $u \in S$, and

s+1 negative: $u5 \cup 23 \cup 1461$ for any $u \in S$;

 $C_4 \cup C_3$: none.

Therefore,

$$a_7 = -2(s-0) + 2(2s-s) - 2((s+1) - (s+1)) = 0.$$

The graph Γ_s contains no elementary subgraph on 8 vertices or more. The result now follows.

More families of non-complete signed graphs with a symmetric spectrum but not sign-symmetric can be found. Consider the signed graphs $\Gamma_{s,t}$ depicted in Figure 7, in which the number of upper repeated pair of vertices is $s \geq 0$ and the number of upper repeated pair of vertices is $t \geq 1$. In a similar fashion as in the proof of Theorem 4.4 it can be verified that $\Gamma_{s,t}$ has a symmetric spectrum, but it is not sign-symmetric.

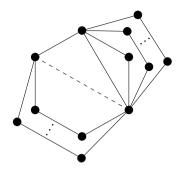


Figure 7: The family of signed graphs $\Gamma_{s,t}$.

ORCID iDs

Willem H. Haemers https://orcid.org/0000-0001-7308-8355 Hamid Reza Maimani https://orcid.org/0000-0001-9020-0871 Leila Parsaei Majd https://orcid.org/0000-0003-0775-3147

References

- [1] S. Akbari, H. R. Maimani and L. Parsaei Majd, On the spectrum of some signed complete and complete bipartite graphs, *Filomat* **32** (2018), 5817–5826, doi:10.2298/fil1817817a.
- [2] F. Belardo, S. M. Cioabă, J. Koolen and J. Wang, Open problems in the spectral theory of signed graphs, Art Discrete Appl. Math. 1 (2018), #P2.10 (23 pages), doi:10.26493/2590-9770.1286. d7b.
- [3] F. Belardo and S. K. Simić, On the Laplacian coefficients of signed graphs, *Linear Algebra Appl.* 475 (2015), 94–113, doi:10.1016/j.laa.2015.02.007.
- [4] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012, doi:10.1007/978-1-4614-1939-6.
- [5] F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs, in: S. B. Rao (ed.), Combinatorics and Graph Theory, Springer, Berlin-New York, volume 885 of Lecture Notes in Mathematics, 1981 pp. 70–112, proceedings of the Second Symposium held at the Indian Statistical Institute, Calcutta, February 25 – 29, 1980.
- [6] G. Greaves, J. H. Koolen, A. Munemasa and F. Szöllősi, Equiangular lines in Euclidean spaces, *J. Comb. Theory Ser. A* **138** (2016), 208–235, doi:10.1016/j.jcta.2015.09.008.
- [7] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, *Nederl. Akad. Wetensch. Proc. Ser. A* **69** (1966), 335–348.