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Abstract

A matching M in a graph G is maximal if it cannot be extended to a larger matching in
G. In this paper we show how several chemical and technical problems can be successfully
modeled in terms of maximal matchings. We introduce the maximal matching polynomial
and study its basic properties. Then we enumerate maximal matchings in several classes
of graphs made by a linear or cyclic concatenation of basic building blocs. We also count
maximal matchings in joins and corona products of some classes of graphs.
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1 Introduction
Many problems in natural, technical and social sciences can be successfully formulated in
terms of matchings in graphs. Today the matching theory is a well developed branch of
graph theory, studying both structural and enumerative aspects of matchings. Its devel-
opment has been strongly stimulated by chemical applications, in particular by the study
of perfect matchings in benzenoid graphs. Additional impetus came with discovery of
fullerenes, again mostly dealing with perfect matchings [5, 6, 22, 30], but including also
some structural results [1, 7].

For a general background on matching theory and terminology we refer the reader to
the classical monograph by Lovász and Plummer [24]. For graph theory terms not defined
here we also recommend [29].
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A matching M in a graph G is a collection of edges of G such that no two edges from
M share a vertex. The cardinality ofM is called the size of the matching. As the matchings
of small size are not interesting (each edge is a matching of size one, and the empty set is
the unique matching of size 0), we will be mostly interested in matchings that are, in a
sense, “large”. Most often, we are interested in matchings that are as large as possible.

A matching M is maximum if there is no matching in G with more edges than M .
The cardinality of any maximum matching in G is called the matching number of G and
denoted by ν(G). Since each vertex can be incident to at most one edge of a matching, it
follows that the matching number of a graph on n vertices cannot exceed bn/2c. If each
vertex of G is incident with an edge of M , the matching M is called perfect. Perfect
matchings are obviously also maximum matchings. The perfect matchings, also known
as Kekulé structures in chemical literature, have played a central role in the study of
matchings for several decades.

There is, however, an alternative way to quantify the idea of “large” matchings. A
matching M in G is maximal if no other matching in G contains it as a proper subset.
Obviously, every maximum matching is also maximal, but the opposite is generally not
true.

Maximal matchings are much less researched that their maximum counterparts. That
goes both for their structural and their enumerative aspects. While there is vast literature on
perfect and maximum matchings (see, for example, monographs [24] and [4]), the results
about maximal matchings are few and scattered through the literature. We mention here two
papers that treat, among other topics, maximal matchings in trees [23, 28], one concerned
with the structure of equimatchable graphs [17], and a recent paper by the present authors
about saturation numbers of benzenoid graphs [11].

Maximal matchings can serve as models of several physical and technical problems
such as the block-allocation of a sequential resource or adsorption of dimers on a structured
substrate or a molecule. When that process is random, it is clear that the substrate can
become saturated by a number of dimers much smaller than the theoretical maximum. The
cardinality of any smallest maximal matching in G is the saturation number of G. The
saturation number of a graph G we denote by s(G). (The same term, saturation number,
is also used in the literature with a different meaning; we refer the reader to [14] for more
information.)

It is easy to see that the saturation number of a graph G is at least one half of the
matching number of G, i.e., s(G) ≥ ν(G)/2. Hence, the saturation number provides an
information on the worst possible case of clogging; it is a measure of how inefficient the
adsorption process can be. However, to fully assess its efficiency, we also need to know
how likely it is that the substrate gets saturated by a given number of dimers. In order to
answer that question, one must study the enumerative aspects of the problem.

The main goal of this paper is to increase the corpus of knowledge about the enu-
merative aspects of maximal matchings. Specifically, we compute the efficiency of dimer
adsorption for several types of one-dimensional substrates by enumerating maximal match-
ings of various cardinality in the corresponding graphs. We start with structures of low
connectivity and explore how the efficiency depends on the structural properties of their
basic building blocks. It turns out that already the structures of the lowest connectivity
display interesting patterns of behavior. In some cases we provide explicit formulas for the
number of maximal matchings of a given cardinality, while in other cases we establish the
recurrences for the enumerating sequences and then use their uni- and bivariate generating
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functions to determine their asymptotic behavior. Along the way we make several digres-
sions and consider also some graphs that do not fit the above pattern but are amenable to
the same approach. We also explore the connections with other combinatorial structures
counted by the same enumerating sequences and provide bijective correspondences when
possible.

The paper is organized as follows. In the next section we introduce the maximal match-
ing polynomial and list its basic properties. Section 3 is concerned with enumeration of
maximal matchings in the simplest linear polymers, the paths and cycles. Section 4 con-
siders the case when basic building blocs are the cycles of length 3 and 4, enumerating
maximal matchings in uniform chain cacti. Section 5 moves on to some linear chains of
connectivity 2, such as the ladder graphs. (The graphs of sections 4 and 5 belong to the
class of fasciagraphs [21].) In section 6 we use the theory of maximal matching polyno-
mials to obtain general results for some classes of thorny graphs, while in section 7 we
consider some composite graphs that arise from simpler components via two binary oper-
ations, the join and the corona product. Finally, in the concluding section we discuss some
open problems and indicate some directions of possible future research.

2 Maximal matching polynomial
Matching polynomials are generating functions for the sequences enumerating matchings
in a graph G by their size. There are several forms, the two most common being the
matching defect polynomial and the matching generating polynomials. Both forms appear
as special cases of general matching polynomials introduced by Farrell in [13]. Fortunately,
the two forms are closely related and can be used interchangeably. Throughout this paper
we prefer the second form.

Let Φk(G) denote the number of matchings in G of size k. The matching generating
polynomial (or simply the matching polynomial) of G is then defined as

g(G;x) =

ν(G)∑
k=0

Φk(G)xk.

Clearly, g(G; 1) is equal to the total number of matchings in G; this quantity is also known
as Hosoya index ofG and denoted by Z(G). For bipartite graphs, g(G;x) is also known as
the rook polynomial [25]. We refer the reader to Section 8.5 of [24] for more information
on matching polynomials and relationships among them.

The following two properties, together with the fact g(K1;x) = 1, allow us to compute
the matching polynomial of any graph by recursively reducing it to trivial components.
Here G − e denotes the result of deleting an edge from G but keeping its end-vertices,
while G\e denotes the graph obtained from G by deleting both end-vertices of e and all
edges incident with them.

Proposition 2.1. Let G be a graph and e an edge of G. Then

g(G;x) = g(G− e;x) + x · g(G\e;x).

Proposition 2.2. Let G be a graph with components G1, . . . , Gk. Then

g(G;x) = g(G1;x) · . . . · g(Gk;x).
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By repeated applications of these results one can obtain a recurrence in terms of vertices
and their neighborhoods [24].

Proposition 2.3. Let N(u) = {v1, . . . , vk} be the neighborhood of a vertex u of G. Then

g(G;x) = g(G− u;x) + x

k∑
i=1

g(G− u− vi;x).

Here the first term accounts for the matching that do not cover u, while the sum counts
those covering it.

Let Pn and Cn denote the path and the cycle of length n, respectively. Their matching
polynomials are given by following formulas:

g(Pn;x) =

dn/2e∑
k=0

(
n+ 1− k

k

)
xk;

g(Cn;x) =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
xk.

From them it follows that the total numbers of matchings in Pn and Cn are given by the
Fibonacci and Lucas numbers Fn+2 and Ln, respectively. Matching polynomials of paths
and cycles are closely related to Fibonacci and Lucas polynomials, respectively. The Fi-
bonacci polynomials are defined recursively by f0(x) = 0, f1(x) = 1, f2(x) = x and

fn(x) = xfn−1(x) + fn−2(x)

for n ≥ 3. The Lucas polynomials `n(x) satisfy the same recurrence, but with the initial
conditions `0(x) = 2, `1(x) = x. Evaluated at x = 1 they give the Fibonacci and Lucas
numbers, respectively. The following result can be easily verified by direct computation.

Proposition 2.4.

fn+2(x) = xn+1g(Pn;x−2) and `n(x) = xng(Cn;x−2).

Motivated by wide applicability of matching polynomials, we consider the generating
function for the sequence counting maximal matchings in a graph G. Let Ψk(G) denote
the number of maximal matchings of size k in G. The maximal matching polynomial of
G is defined as

m(G;x) =

ν(G)∑
k=s(G)

Ψk(G)xk.

For example, m(P3;x) = x+x2, since P3 contains one maximal matching of size one
(the middle edge) and one of size two (covering the vertices of degree one). From the next
two examples, m(C3;x) = 3x and m(S3;x) = 3x (where S3 denotes the star K1,3), one
can see that graphs are not, in general, determined by their maximal matching polynomials.
Some further examples are collected in the following proposition.
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Proposition 2.5. m(Kn;x) = 1;
m(Sn;x) = nx;
m(K2n;x) = (2n)!

n!2n x
n;

m(Kn,n;x) = n!xn;
m(Km,n;x) = nmxm for m ≤ n.

Proof. The first claim is obvious, since there is only one possible matching (the empty
one) in a graph without edges. The second claim is also obvious. The next two follow by
noticing that in K2n and Kn,n every matching can be extended to a perfect matching [24]
and plugging in the expressions for the number of perfect matchings in each case. Finally,
the fifth claim follows from the fact that the first edge of any matching in Km,n can be
chosen in n ways, the second one in n − 1 ways and so on. The process ends when there
are no more unsaturated vertices in the smaller class of bipartition. (Here nm denotes the
falling factorial.)

Let us look at the information encoded in maximal matching polynomials. Its degree
is equal to the matching number ν(G). The lowest degree of x is equal to the saturation
number. From there it follows that zero is a root of the maximal matching polynomial of
every non-empty graph, and its multiplicity is equal to the saturation number. The set of
all powers that appear in m(G;x) is called the maximal matching spectrum of G. We
denote it by σm(G). A graph G is equimatchable if each maximal matching in G is also
a maximum matching [24]. Clearly, a graph G is equimatchable if and only if its maximal
matching spectrum is a singleton.

Proposition 2.6. Maximal matching spectrum of any graph G is a set of consecutive non-
negative integers.

Proof. If G is an equimatchable graph, the claim is obviously valid. If G is not an
equimatchable graph, then s(G) < ν(G). We show that for each nonnegative integer
s(G) ≤ k ≤ ν(G) there exist a maximal matching in G of size k. If k = s(G) or
k = ν(G) the claim is trivially valid. Let now k < ν(G) and let M be a maximal matching
in G of size k. (Such a matching surely exists; at least there is a maximal matching whose
size is equal to s(G).) As M is not a maximum matching, there is an M -augmenting path
P connecting two vertices not covered by M whose terminal edges are not in M (Theorem
1.2.1 of [24]). The edges of P alternate with respect to M . By switching the edges along
this path one obtains matching M ′ of size k + 1, and M ′ is also maximal. Hence, for any
k between s(G) and ν(G) there is a maximal matching in G of size k.

Corollary 2.7. Let G be a nontrivial graph. Then

σm(G) = N ∩ [s(G), ν(G)].

Corollary 2.8. The sequence of coefficients of the maximal matching polynomial of a graph
G contains no internal zeros.

The maximal matching polynomials share a number of properties with the matching
polynomials. For example, Proposition 2.2 is valid also for maximal matching polynomials.
However, there is a crucial difference. While the recurrences for matching polynomials are



260 Ars Math. Contemp. 11 (2016) 255–276

local, those for the maximal matching polynomials are not. The non-locality means that
there is no result for maximal matching polynomials analogous to Proposition 2.1, since
we cannot split the set of all maximal matchings into those containing an edge e and those
not containing it, without taking into account the edge-neighborhood of e. Similarly, no
result analogous to Proposition 2.3 can be stated for maximal matching polynomials of
general graphs. This non-locality is the main source of the difficulties while trying to count
maximal matchings.

There are, however, classes of graphs in which the edge- and vertex-neighborhoods
lead to recurrent relations only a bit more complicated than those for ordinary matching
polynomials. As a rule, such graphs are of low connectivity and/or contain vertices of
degree one. The fact that (the unique) neighbor of a pendent vertex must be covered by
an edge of every maximal matching gives us an analogue of Proposition 2.3. For a given
vertex u ∈ V (G) we denote by N1(u) the set of all its neighbors of degree one.

Proposition 2.9. Let G be a simple connected graph and u ∈ V (G) its vertex such that
|N1(u)| = t > 0. Then

m(G;x) = tx ·m(G− u;x) + x
∑

v∈N(u)\N1(u)

m(G− u− v;x).

Proof. Vertex u must be covered by an edge in each maximal matching of G. It can be one
of t pendent edges, in which case the remaining edges must form a valid maximal matching
in G − u, or it can be one of the remaining edges incident to u, say uv, in which case the
remaining edges must form a maximal matching in G − u − v. In both cases, the size of
the maximal matching formed by the remaining edges is one less than the size of matching
that covers u, hence the factor x in both terms.

We know that the generating matching polynomials are log-concave [18, 19]. It would
be interesting to know if this property is also valid for maximal matching polynomials.

We will make frequent use of the above results in the following sections.

3 Paths and cycles
We remind the reader that throughout this paper Pn denotes the path of length n, hence on
n+ 1 vertices. As a motivating example, we consider a parking lot made of n+ 1 parallel
concrete strips such that a car can be parked on any two neighboring strips, as shown in
Fig. 1. In ideal situation, when all drivers park responsibly, the lot can accommodate

Figure 1: A parking lot with two parked cars.

dn/2e cars. However, if the drivers are careless and park randomly, the lot can become
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saturated by a smaller number of cars, as shown in Fig. 2. In the worst possible case, it can
become saturated by dn/3e cars. The problem can be naturally interpreted as a problem of

Figure 2: A saturated parking lot and the corresponding maximal matching.

maximal matching in Pn, as shown in Fig 2. In order to determine the expected number
of cars under the random regime of parking, we need to count the number of maximal
matching of different sizes in Pn.

We start by counting all maximal matchings in Pn. Let ψn denote the total number of
maximal matchings in Pn.

Proposition 3.1. The sequence ψn is given by the recurrence

ψn = ψn−2 + ψn−3

for n ≥ 3. The initial conditions are ψ0 = ψ1 = 1, ψ2 = 2.

Proof. Let us label the vertices of Pn by v0, v1, . . . , vn. Then any maximal matching in
Pn must cover vn−1. Those covering it by the edge vn−1vn are counted by ψn−2; those
covering it by vn−2vn−1 are counted by ψn−3. The initial conditions are verified by direct
computation.

The sequence (ψn) is known as the Padovan sequence. It appears (shifted by 6) as
A000931 in the On-line Encyclopedia of Integer Sequences [26] (in the rest of this paper
simply the OEIS). The number of maximal matchings in paths is not mentioned among
some seventeen combinatorial interpretations listed there. Hence, we have provided a new
combinatorial representation of the Padovan sequence. It would be interesting to provide
explicit bijections between maximal matchings in paths and some combinatorial structures
listed in the OEIS entry.

Let ψn,k denote the number of maximal matchings in Pn of size k. It is clear that
ψn,k = 0 for too small or too large k. By the same reasoning as in Proposition 3.1 we can
prove the recurrence for ψn,k.

Proposition 3.2.
ψn,k = ψn−2,k−1 + ψn−3,k−1

for n ≥ 3, with the initial conditions ψ0,0 = 1, ψ1,0 = 0, ψ1,1 = 1, ψ2,0 = 0, ψ2,1 =
2.
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Now we can proceed and obtain the bivariate generating function Ψ(x, y) for ψn,k. We
omit the computational details.

Proposition 3.3.

Ψ(x, y) =
∑
n≥0

∑
k≥0

ψn,kx
nyk =

1 + xy + x2y

1− x2y − x3y
.

The ordinary generating function Ψ(x) =
∑
n≥0 ψnx

n is now obtained as

Ψ(x) = Ψ(x, 1) =
1 + x+ x2

1− x2 − x3
.

Now we employ a variant of Darboux theorem to extract the information about the
asymptotic behavior of ψn [2]: If the generating function f(x) =

∑
n≥0 anx

n of a se-
quence (an) can be written in the form f(x) =

(
1− x

w

)α
h(x), where w is the smallest

modulus singularity of f and h is analytic in w, then an ∼ h(w)n−α−1

Γ(−α)wn , where Γ denotes
the gamma function.

By a straightforward computation we find the smallest modulus singularity of Ψ(x) as
the only real solution of 1− x2 − x3 = 0:

w =
1

6

(
−2 + (100− 12

√
69)1/3 + (100 + 12

√
69)1/3

)
≈ 0.754878.

Its reciprocal value, 1/w ≈ 1.324718, is known as the plastic constant [15]. From there
we obtain the asymptotics for ψn.

Proposition 3.4.
ψn ∼ g(w)w−n = 0.956611 · 1.324718n.

Using the same apparatus we can also compute the expected size of a maximal matching
in Pn. Let us denote it by π(Pn). It can be computed as

π(Pn) =
[xn]∂Ψ(x,y)

∂y |y=1

[xn]Ψ(x, y) |y=1
,

where [xn]F (x) denotes the coefficient of xn in the expansion of F (x). We omit the
computational details and present only the final result.

Proposition 3.5. The expected size of a maximal matching in Pn is given by π(Pn) ≈
0.41149559n.

Now we define the efficiency ε(G) of random parking on a graph G as the ratio of the
expected size of a maximal matching inG and its matching number (the ideal case). Hence,
ε(G) = π(G)

ν(G) . In our case,

ε(Pn) =
π(Pn)⌈
n
2

⌉ .
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For large values of n this quantity behaves as 2π(Pn) ≈ 0.823. Hence, one can expect that
random (or careless) parking will result in using about 82.3% of the full capacity of a linear
parking lot.

We could now use the bivariate generating function Ψ(x, y) to obtain closed formulas
for the numbers ψn,k. Instead, we provide a combinatorial proof.

Proposition 3.6.

ψn,k =

(
k + 1

3k − n

)
.

Proof. We use the formula for balls and boxes in the table of the Twelvefold Way at p. 33
in [27]. The balls are the edges participating in a maximal matching, the boxes are defined
by the unmatched vertices. There are k edges and n + 1 − 2k unmatched vertices. They
define n − 2k + 2 boxes, n − 2k between two vertices and additional 2, one to the left of
the leftmost unmatched vertex, the other one to the right of the rightmost one. Into each of
n− 2k internal boxes we place one ball (since the unmatched vertices cannot be adjacent).
The remaining 3k − n balls can be distributed at will among all n − 2k + 2 boxes. As
the number of ways to place a identical balls into b distinct boxes is equal to

(
a+b−1
a

)
, the

claim follows by using the symmetry property of binomial coefficients.

As usual, we assume that a binomial coefficient is equal to zero if its lower index
exceeds the upper one or becomes negative.

Corollary 3.7. The maximal matching polynomial of Pn is given by

m(Pn;x) =

dn/2e∑
dn/3e

(
k + 1

3k − n

)
xn.

Corollary 3.8.

ψn =

dn/2e∑
dn/3e

(
k + 1

3k − n

)
.

The last result gives us the decomposition of Padovan numbers similar to the familiar
expression for the Fibonacci numbers, Fn =

∑
k≥0

(
n−k
k

)
. The maximal matching polyno-

mials of Pn satisfy the recurrence m(Pn;x) = x(m(Pn−2;x) + m(Pn−3;x)). Evaluated
at x = 1, they give the Padovan numbers. Hence, one could be tempted to call them
Padovan polynomials. However, the name is already used for another family of poly-
nomials satisfying the recurrence pn(x) = xpn−2(x) + pn−3(x) with initial conditions
p1(x) = 1, p2(x) = 0 and p3(x) = x. It would be interesting to explore our version of
Padovan polynomials in more detail and develop a theory analogous to the theory of Fi-
bonacci polynomials. We do not know if the expression of Corollary 3.8 is new, but it does
not appear in the OEIS.

Before we move to the cycles, we mention that a similar problem was considered in
the context of polymerization of organic molecules. Jackson and Montroll [20] used prob-
abilistic reasoning and obtained the value of 0.177 for the average fraction of free radicals
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in a polymer chain, the same value as the expected fraction of wasted space in our parking
lot model. The dynamic aspect of the process was studied by Flory [16], who obtained a
slightly larger value of 86.47% (the exact value is 1 − e−2) for a quantity that we call the
efficiency. The difference indicates that some of the most unfavorable configurations are
quite unlikely to arise during the process. More information on various models of random
and cooperative sequential adsorption can be found in a survey by Evans [12].

Let us now consider the number of maximal matchings in a cycle Cn of length n ≥ 3.
We denote it by ϕn, and the number of maximal matchings in Cn of size k by ϕn,k.

Proposition 3.9. The numbers ϕn,k are given by the recurrence

ϕn,k = ϕn−2,k−1 + ϕn−3,k−1

for n ≥ 3, k ≥ 2, with the initial conditions ϕ0,0 = 3, ϕ1,0 = ϕ1,1 = ϕ2,0 = 0, ϕ2,1 = 2.
The closed form expression is

ϕn,k =
n

k

(
k

n− 2k

)
.

Proof. Let us first consider a cycle Cn for n ≥ 6. A vertex, say n, can be covered by an
edge of a maximal matching of size k in two ways; in each case, the rest of the considered
maximal matching must be a maximal matching of size k − 1 in Pn−3. If a vertex is not
covered by an edge, then both of its neighbors must be covered, and the rest must be a
maximal matching of size k − 2 in Pn−6. Hence, ϕn,k = 2ψn−3,k−1 + ψn−6,k−2. The
recurrence now follows by plugging in expressions for ψn,k. It can be checked by direct
computation that the recurrence remains valid also for n = 3, 4, 5, and the initial conditions
are then computed by extending the recurrence backwards to n = 0. The formula follows
by taking into account the formula for ψn,k.

The sequence ϕn =
∑
k ϕn,k satisfies the same recurrence as ψn, but with different

initial conditions, ϕ0 = 3, ϕ1 = 0 and ϕ2 = 2. It is known as the sequence of Perrin
numbers, and it appears as A001608 in the OEIS. It has the same asymptotics as the
Padovan sequence and it can be shown by the same methods we used for paths that the
expected size of a maximal matching (and hence the efficiency) in Cn is the same as for
the path of the same length. We omit the details.

From Proposition 3.9 we can derive an expression for Perrin numbers in terms of bino-
mial coefficients similar to the expression for Lucas numbers. Again, it is not listed in the
OEIS entry.

Corollary 3.10.

ϕn =
∑
k≥0

n

k

(
k

n− 2k

)
.

4 3- and 4- uniform chain cacti
A cactus is a connected graph in which any block is an edge or a cycle. If all blocks of
a cactus G are cycles of the same size, say k, we say that G is a k-uniform cactus. In
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this section we consider 3- and 4-uniform cacti in which each block has at most two cut-
vertices, and each cut-vertex is shared by exactly two blocks. Such cacti are called cactus
chains or chain cacti. The number of blocks is the length of the chain. Obviously, trees
are uniform cacti, all their blocks being copies of K2, and paths fit our definitions as the
simplest possible cactus chains. This fact lies behind our decision to denote by n the length
of Pn and not the number of vertices.

All cactus chains of length n have n−1 cut-vertices. Also, every cactus chain of length
n has exactly two blocks with only one cut-vertex. Such blocks are called terminal; the
remaining (if any) blocks are internal. We consider here the cactus chains whose blocks
are either triangles or squares. Our goal is to investigate how the richer block structure
imposed on the same connectivity pattern affects the number of maximal matchings in
such graphs. For both classes we determine the recurrences satisfied by the sequences
enumerating maximal matchings of a given size and by the sequence enumerating the total
number of maximal matchings. From there we proceed to determine the asymptotics, the
expected size and the efficiency using the generating functions in much the same way as in
the previous section. We omit most computational details.

4.1 3-uniform cactus chains

It is easy to see that all 3-uniform cactus chains of the same length are isomorphic. Hence
we denote such a chain of length n by Tn; an example is shown in Fig. 3. We will also need
auxiliary graphs T ′n such as shown in Fig. 4. The number of maximal matchings in them

1 2 ... n

Figure 3: A 3-uniform cactus chain.

1 2 ... n

Figure 4: Auxiliary chain for 3-uniform cactus chains.

we denote by tn and t′n, respectively; where tn,k and t′n,k appear, they denote the number
of maximal matchings of size k in Tn and T ′n, respectively.

Graph Tn has an odd number of vertices. Hence, it cannot have a perfect matching. It
has, however, near-perfect matchings, i.e., matchings that saturate all vertices except one.
In fact, Tn − v has a perfect matching for each v ∈ V (Tn). Graphs with this property are
called factor-critical graphs. Hence, ν(Tn) = n. The saturation number of Tn is given by
s(Tn) =

⌈
n+1

2

⌉
. The claim follows by noticing that any matching of smaller size leaves at

least n+ 1 vertices uncovered, and at least two of them must belong to the same triangle.
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Let us look at the rightmost downward edge in Tn. Each maximal matching of size
k must cover at least one of its end-vertices. Those that cover both its end-vertices are
counted by tn−1,k−1; those that cover only one are counted by 2t′n−2,k−1. Hence, tn,k =
tn−1,k−1 + 2t′n−2,k−1. Now look at the pending edge of T ′n. Every maximal matching
of size k must cover at least one if its end-vertices. Those that cover both are counted by
t′n−1,k−1; those that cover the cut-vertex by the horizontal edge are counted by t′n−2,k−1,
and those that cover the cut-vertex by the downward edge are counted by tn−1,k−1. Hence,
t′n,k = t′n−1,k−1 + t′n−2,k−1 + tn−1,k−1. From there, we can express tn,k as tn,k =
t′n+1,k+1 − t′n,k − t′n−1,k and obtain a recurrence for t′n,k. Once we have the recurrence,
we compute the bivariate generating function for t′n,k, and then finally the recurrence and
the bivariate generating function T (x, y) for tn,k. We leave out the details and state only
the final result.

Proposition 4.1.

T (x, y) =
∑
n≥0

∑
k≥0

tn,kx
nyk =

1 + xy − x2y

1− 2xy + x2y(y − 1)− x3y2
.

Corollary 4.2.

T (x) =
∑
x≥0

tnx
n =

1 + x− x2

1− 2x− x3
.

Corollary 4.3. The sequence tn satisfies the recurrence

tn = 2tn−1 + tn−3

with the initial conditions t0 = 1, t1 = 3 and t2 = 5.

Corollary 4.4. The asymptotic behavior of tn is given by tn ∼ 2.205569n.

Sequence tn does not appear in the OEIS. However, the closely related sequence t′n
that satisfies the same recurrence and initial conditions except for t′2 = 7 instead of t2 = 5,
is there as the entry A193641. It counts the words of length n over the alphabet {0, 1,−1}
such that each letter appears in a subsequence of length 2 with the sum zero. We were
unable to find a neat bijective correspondence between such words and maximal matchings
in T ′n.

When one tabulates tn,k as a triangular array, on its main diagonal appear the numbers
of maximum matchings in Tn. The following result can be derived from the fact that Tn
is factor-critical and that all its blocks are odd cycles. It has been established in a recent
paper [9] that such graphs have the minimum possible number of maximum matchings and
that this number is equal to the number of vertices.

Proposition 4.5.
tn,n = 2n+ 1.
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We close the subsection by stating the result about the efficiency on 3-uniform cactus
chains.

Corollary 4.6.
ε(Tn) ≈ 0.74817n.

From the above results we can conclude that the additional structure present in the
blocks of Tn does not complicate the recurrences - they remain of length 3. The struc-
tural enrichment is reflected, though, in the asymptotic behavior of the number of maximal
matchings, a consequence of the increased difference between the matching number and
the saturation number. Even when the asymptotic behavior is adjusted and expressed in
terms of the number of vertices p, tn = t(p−1)/2 ∼ 2.20557(p−1)/2 ∼ 1.48512p, the re-
sulting constant 1.48512 is larger than for Pn. Another consequence is a smaller efficiency,
reflecting the fact that in a graph with richer structure of blocks and the same connectivity
pattern there are more ways for things to go wrong, i.e., to achieve saturation by a smaller
number of dimers.

4.2 4-uniform cactus chains

Unlike their 3-uniform counterparts, the 4-uniform chains of a given length are not all
isomorphic. In order to distinguish between various cases, we introduce some terminology
borrowed from the benzenoid graphs and 6-uniform cactus chains [8].

Let us look at an internal cycle of a 4-uniform chain. If its two cut-vertices are adjacent,
we say that this cycle is an ortho-cycle; if the cut-vertices are not adjacent, the cycle is a
para-cycle. If all internal cycles are of the same type, say, ortho, we call such chain an
ortho-chain and denote it by On; if all internal cycles are para-cycles, we call the chain
a para-chain and denote it by Qn. As in the previous subsection, we leave out routine
computations and present only the results. The case of para-chains is simpler and we
consider it first.

4.2.1 Para-chains

Let qn,k denote the number of all maximal matchings of size k in Qn, and qn the total
number of maximal matchings in Qn. An example is shown in Fig 5. It turns out that those

1 2 n...

Figure 5: A para chain of length n.

sequences satisfy simpler, i.e., shorter recurrences than sequences tn and ψn. In order to
find the recurrences one needs to consider also the auxiliary chains shown in Fig. 6. As
before, we omit the details.
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1 2 n...

Figure 6: Auxiliary graph for para chains.

Proposition 4.7. The bivariate generating function Q(x, y) for the sequence qn,k is given
by

Q(x, y) =
2xy2

1− 4xy + 2(xy)2
.

Several results now follow as corollaries.

Corollary 4.8. The sequence qn satisfies the recurrence qn = 4qn−1 − 2qn−2 with the
initial conditions q0 = 0, q1 = 2. Its generating function Q(x) is given by Q(x) =

2x
1−4x+2x2 .

Corollary 4.9.

qn =

(
2 +
√

2
)n

√
2

−
(
2−
√

2
)n

√
2

.

The sequence qn provides a new combinatorial interpretation of sequence A060995
from the OEIS. It counts, among other things, a number of routes of length 2n on the sides
of an octagon from a point to opposite point. It would be interesting to provide explicit
bijection between such routes and our maximal matchings. It could be also worthwhile to
explore its connections with the closely related sequence A007070.

Corollary 4.10. Graph Qn is equimatchable. Its matching number is equal to n+ 1, and
its maximal matching polynomial is given by m(Qn;x) = qnx

n+1.

The above result follows from the bivariate generating function,

Q(x, y) = 2xy2
(
1 + 4(xy) + 14(xy)2 + 48(xy)3 + . . .

)
.

Another way to derive it is to observe that each cut-vertex must be saturated by an edge of
a maximal matching, and that no edge can saturate more that one cut-vertex. That gives us
n− 1 edges in a maximal matching and the remaining two can be chosen one from each of
the two terminal cycles. This fact is also responsible for the small length of the recurrence.

4.2.2 Ortho-chains

An example of an ortho-chain is shown in Fig. 7. A moments reflection should suffice
to convince the reader that the property of para-chains regarding the saturation of all cut-
vertices by all maximal matchings is not preserved for ortho-chains. Hence, it is no wonder
that the numbers of maximal matchings in them satisfy again a recurrence of length 3.
We state here without proof the basic results for the sequence on counting all maximal
matchings in On
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1

2 ...

n

Figure 7: An ortho-chain of length n.

Proposition 4.11. The sequence on satisfies the recurrence on = 2on−1 + 2on−2− 2on−3

for n ≥ 3 with the initial conditions o0 = 0, o1 = 2 and o2 = 8. Its generating function is
given by O(x) = 2x+4x2

1−2x−2x2+2x3 . Asymptotically, on ∼ 0.36779 · 2.48119n.

The sequence does not seem to be in the OEIS.
It would be interesting to examine whether the two considered types of chains are ex-

tremal among all chains of a given length. Such behavior is confirmed for matchings and
independent sets in hexagonal chains [8].

The methods of this section could be successfully applied also to other types of cactus
chains, such as the spiro-chains made of hexagons.

5 Linear polymers of connectivity 2
In this section we move to linear polymers of larger connectivity. As expected, the increase
in connectivity will result in longer recurrences; in the two considered cases the lengths will
be 8 and 5, respectively. Less clear, however, is the connection between the connectivity
and efficiency.

The two polymers considered in this section are shown in Fig. 8 and 9, respectively. The
first one, Rn, could be also interpreted as the second power of P2n+1. (The second power,

1 ... n2 3

Figure 8: A 2-connected linear polymer with triangular faces.

1 2 3 n

Figure 9: The ladder graph.

G2, of a graph G is obtained by connecting by an edge each pair of vertices at distance 2
in G.) The second one is the ladder graph Ln, also known as the linear polyomino.
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The results of this section were obtained by the same methods as in the previous cases.
We state them in the most condensed form, giving only the generating functions and asymp-
totic behavior. As before, we omit the computational details.

We denote by rn and ln the number of maximal matchings in Rn and Ln, respectively.

Proposition 5.1. The generating function R(x) for the sequence rn is given by

R(x) =
1 + 3x+ 2x2 + 2x3 − x5 − x6 − x7

1− x2 − 2x3 − x4 − x5 + x6 + x8
.

Asymptotically, rn ∼ 1.454145 · 1.625957n. The efficiency of Rn is given by ε(Rn) ≈
0.849.

Proposition 5.2. The generating function L(x) for the number of maximal matchings in
the ladder graph Ln is given by

L(x) =
1 + x2 + x3 + x4

1− 2x− x4 − x5
.

Its asymptotic behavior is given by ln ∼ 1.110879 · 2.147899n. The efficiency of Ln is
ε(Ln) ≈ 0.861799.

One can see that the recurrence length seems to be influenced more by the highest
degree than by the cycle length. This is in line with the intuitive feeling that the recurrence
length is mostly dependent on the local complexity. It would be interesting to test this
assumption by computing the number of maximal matchings in other chains of connectivity
two. According to results reported in [10], the number of maximal matchings in linear
polyacenes satisfies a recurrence of legth 5, while for fibonacenes and helicenes the length
of recurrence is 7.

Results of the above type could be also obtained by using the method of transfer matri-
ces.

6 Thorny graphs
Let G be a graph on n vertices and m edges. For an ordered n-tuple (p1, . . . , pn) of non-
negative integers we construct a thorny graph T ∗(G) by attaching pi pendent vertices to
vertex vi of G. When pi = p for all i we call such graph a p-bristle graph and denote
it by Tp(G). When pi = p − deg(vi), the resulting graph is called p-thorny graph. If
G is imagined to be the H-deleted graph of an alkane, then the 4-thorny graph T ∗(G) is
the H-included graph. Thorny graphs were defined by Cayley [3] and later appeared in the
chemical literature as plerographs.

One of the simplest cases arises when G = Pn. In that case its p-bristle graph Tp(Pn)
is called a p-caterpillar. An example is shown in Fig 10 below.

Proposition 6.1. The number of maximal matchings in Tp(Pn) is equal to the value of the
(n+ 2)-nd Fibonacci polynomial evaluated at p, i.e., Ψ(Tp(Pn)) = Fn+2(p).

Proof. For p > 0 it is clear that every vertex of the original Pn must be covered by an edge
of a maximal matching. If the vertex n is covered by the edge vn−1vn, the remaining edges
of a maximal matching must form a valid maximal matching in Tp(Pn−2), and hence are
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v v v v...
0 1 2 n

Figure 10: A 3-caterpillar of length n.

counted by Ψ(Tp(Pn−2)). If vn is covered by one of p pending edges, the remaining max-
imal matchings are counted by pΨ(Tp(Pn−1)). Hence the number of maximal matchings
in Tp(Pn) satisfies the recurrence

Ψ(Tp(Pn)) = pΨ(Tp(Pn−1)) + Ψ(Tp(Pn−2))

with initial conditions Ψ(Tp(P0)) = p, Ψ(Tp(P1)) = p2 + 1. This is the same recurrence
with the same initial conditions as the one satisfied by the Fibonacci polynomials, and the
claim follows.

We remind the reader that the Fibonacci polynomials are related to matching polynomi-
als of paths. It can be shown that their appearance here as maximal matching polynomials
of caterpillars is not a coincidence. Our next result establishes the relationship between
maximal matching polynomials of p-bristle graphs and matching polynomials of their un-
derlying graphs.

Theorem 6.2. Let p > 0. Then the maximal matching polynomial of a p-bristle graph
Tp(G) is given as

m(Tp(G);x) = (px)ng(G; (p2x)−1),

where g(G;x) is the matching (generating) polynomial of G.

Proof. Each vertex of G must be covered by an edge of a maximal matching in Tp(G),
either by an edge of G, or by any of p new edges. Obviously, ν(Tp(G)) = n, and it
is achieved when no edge of G participates in a matching of Tp(G). Let M be a maxi-
mal matching in Tp(G) of size l, and let k out of those l edges belong to E(G). These
k edges form a matching of size k in G, and each such matching can be extended to a
maximal matching in Tp(G) in pn−2k different ways. Then l = k + n − 2k = n − k
and Ψn−k(Tp(G)) = pn−2kΦk(G). The maximal matching polynomial of Tp(G) is now
given as m(Tp(G);x) =

∑n
l=s(Tp(G)) Ψl(Tp(G))xl. By switching to summation over k

(the number of edges belonging to E(G)) we obtain

m(Tp(G);x) =

ν(G)∑
k=0

Ψn−k(Tp(G))xn−k =

ν(G)∑
k=0

pn−2kΦk(G)xn−k

= (px)n
ν(G)∑
k=0

Φk(G)(xp2)−k = (px)ng(G; (p2x)−1).

Now the results on the number of maximal matchings in p-thorny graphs of cycles and
stars follow as corollaries of the above theorem.
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Corollary 6.3. Let p > 0. Then the number of maximal matchings in Tp(Cn) is given as the
value of the n-th Lucas polynomial evaluated at x = p. Hence, Ψ(Tp(Cn)) = `n(p).

Corollary 6.4. Let Sn denote the star K1,n and p > 0. Then Ψ(Tp(Sn)) = (n+ p2)pn−1.

We close the section by another direct consequence of Theorem 6.2.

Corollary 6.5. Let p > 0. Then Tp(G) is equimatchable if and only if G contains no
edges.

7 Composite graphs
Many interesting graphs arise from simpler building blocks via some binary operations
known as graph products. We consider here two such operations, the sum (also known as
join) and the corona product, and apply some of the results obtained in previous sections to
enumerate maximal matchings in resulting graphs.

7.1 Sum

Let G1 and G2 be two graphs with vertex sets V (Gi) and edge sets E(Gi) for i = 1, 2.
Their sum is the graphG1 +G2 on the vertex set V (G1)∪V (G2) and the edge setE(G1 +
G2) = E(G1) ∪ E(G2) ∪ {{u, v};u ∈ V (G1), v ∈ V (G2)}. In other words, we retain
all edges of the component graphs and also join every vertex of G1 to every vertex of G2.
The sum of two graphs is sometimes called their join. We consider here two special cases
when one of the graphs is a single vertex and the other one is a path or a cycle. In the first
case we obtain the fan graph Jn = K1 + Pn, in the second case the well known wheel
graph on n spokes Wn = K1 + Cn. Examples are shown in Fig. 11.

J W66

Figure 11: A fan and a wheel of length 6.

Proposition 7.1.

Ψ(Jn) =

n∑
k=0

ψk−1ψn−k−1 +
1− (−1)n

2
,

where ψk is the number of maximal matchings in a path of length k for k ≥ 0 and ψ−1 = 1.

Proof. Let n ≥ 1 be odd. Then a maximal matching in Jn is either a perfect matching in
Pn, or it contains an edge covering the vertex of K1. The first case is counted by the term
1−(−1)n

2 . In the second case, if the edge connects K1 to vertex k in Pn, it splits the base
path into two paths of lengths k − 1 and n− k − 1. The result follows by summing over k
and taking care of border cases. The case of even n follows in the same way.
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The above result provides a combinatorial interpretation for the convolution of the
Padovan sequence with itself.

Proposition 7.2.
Ψ(Wn) = nψn−2 + (1 + (−1)n),

where ψk is the number of maximal matchings in a path of length k.

Proof. As in the previous proposition, for even n a maximal matching in Wn is either one
of the two perfect matchings in Cn (counted by the term (1 + (−1)n), or it contains a
spoke. In the second case, the rest must be a valid maximal matching in Pn−2, counted by
ψn−2. The case of odd n is simpler, as any of n spokes can cover the central vertex leaving
a maximal matching in Pn−2.

Neither of the above sequences appears in the OEIS.
It would be interesting to count maximal matchings in sums of two identical graphs,

G+G.

7.2 Corona product

For two graphs G1 and G2 we define their corona product G1 ◦G2 as the graph obtained
by taking |V (G1)| copies of G2 and joining each vertex of the i-th copy with vertex vi ∈
V (G1). Unlike in the sum, the components enter the corona product in an asymmetric way.
For our purpose it is important that no matter what are connectivities of the components,
the corona product has the connectivity one. That will allow us to apply the decompositions
that worked in previous sections and count maximal matchings in some simple cases. The
p-bristle graph of the previous section is a corona product ofG andKp, while Jn = K1◦Pn
and Wn = K1 ◦ Cn. We consider first the case Pn ◦ P1 = Pn ◦K2.

Proposition 7.3. The sequence pn = Ψ(Pn ◦ P1) satisfies the recurrence pn = 2pn−1 +
3pn−2 + pn−3 with the initial conditions p0 = 3, p1 = 9, p2 = 28.

Proof. An example of Pn ◦ P1 is shown in Fig. 12 below. Each maximal matching in
Pn ◦ P1 either covers vertex labeled vn in Pn or does not cover it. In the first case, the
remaining edges must form either a valid matching in Pn−1 ◦ P1 (if vn is covered by one

... n210

Figure 12: Pn ◦ P1.

of two edges toward its copy of P1) or a valid maximal matching in Pn−2 ◦ P1 (if vn is
covered by vn−1vn). There are altogether 2pn−1 + pn−2 maximal matchings covering vn.
Maximal matchings that do not cover vn must cover vn−1 and are counted by the expression
of the same type, with indices decreased by one. The claim now follows by adding the two
contributions.

The sequence (pn) appears as A084084 in the OEIS without combinatorial interpreta-
tions.
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Our last example in this section demonstrates interesting connections between maximal
matchings and tilings.

Proposition 7.4.
Ψ(Pn ◦K3) = 3n+1Fn+2.

Proof. The result follows by the same reasoning as in the previous proposition, but the
resulting recurrence is shorter, since each vertex of the backbone Pn must be covered by
an edge of any maximal matching. The situation is shown in Fig. 13. Taking into account

Figure 13: Maximal matchings covering vn in Pn ◦K3.

that there are 3 (maximal) matchings in K3 we obtain a recurrence of length 2,

Ψ(Pn ◦K3) = 3Ψ(Pn−1 ◦K3) + 9Ψ(Pn−2 ◦K3).

The same recurrence with the same initial conditions is satisfied by the sequence
3n+1Fn+2, hence the claim.

We leave to the reader to show that the sequence 3n+1Fn+2 also counts tilings of a
row of n unit squares by unit squares and dominoes such that the squares come in any of 3
colors and the dominoes in any of 9 colors.

The recurrence for the number of maximal matchings in Pn ◦ K3 is shorter than the
recurrence for a simpler graph Pn ◦K2. That is a consequence of factor-criticality of K3.
It could be shown that the number of maximal matchings of Pn ◦ G satisfies a recurrence
of length 2 whenever G is factor-critical.

8 Concluding remarks
The present manuscript is, to the best of our knowledge, the first systematic attempt to ad-
dress enumerative aspects of maximal matchings. We have counted maximal matchings in
several classes of graphs of low connectivity. In most cases, we have obtained complete
information, including the generating functions and asymptotic behavior of the enumerat-
ing sequences; in some particular cases we were even able to obtain closed formulas. The
obtained results are, however, far from comprehensive. In this section we list some open
problems and possible directions for future research.
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One obvious direction is to continue our work on cactus chains. It could be done by
considering uniform cacti whose blocks are larger cycles, such as hexagons. With larger
cycles comes also greater variability in the connectivity patterns, leading to the problem
of finding the extremal chains among all uniform chains of the same length. We left the
problem open even for 4-uniform chains.

Another possibility is to look at non-uniform chains. Examples of such chains can be
obtained from uniform chains by expanding each cut-vertex into an edge. We have done
some preliminary work on this type of chains and noticed that the enumerating sequences
also appear in some other combinatorial contexts. Providing explicit bijections among the
corresponding families is the goal of our paper currently under preparation.

Among the linear polymers of connectivity 2 the most interesting ones are, without
doubt, the benzenoid chains. Some recent findings are reported in [10]. There are indi-
cations that the extremality patterns valid for perfect matchings and all matchings do not
persist for maximal matchings.

We have addressed here only the composite graphs of low connectivity. However, many
interesting operations such as, e.g., the Cartesian product, actually increase the connectiv-
ity. It would be probably too ambitious to hope for general enumerative results for Carte-
sian products, but the cases when one factor is a path or a cycle should not be out of reach.
Another interesting thing in such graphs would be their saturation number; at the present,
there are only few known results of this type.

Finally, it would be worthwhile to try to develop a general theory of maximal matching
polynomials and to see if they could play as important role in the study of maximal match-
ings as the matching polynomials have played so far in the general context of matchings. In
particular, it would be interesting to see if their coefficients form log-concave or unimodal
sequences for all graphs.
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[1] V. Andova, F. Kardoš and R. Škrekovski, Sandwiching saturation number of fullerene graphs,

MATCH Commun. Math. Comput. Chem. 73 (2015), 501–518.

[2] E. A. Bender and S. G. Williamson, Foundations of Combinatorics with Applications, Dover
Publications, 2006.

[3] A. Cayley, On the mathematical theory of isomers, Philos. Mag. 47 (1874), 444–447.
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[5] T. Došlić, On lower bounds of number of perfect matchings in fullerene graphs, J. Math. Chem.
24 (1998), 359–364, doi:10.1023/A:1019195324778.
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