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ABSTRACT

A Boolean model is a union of independent objects (compact random subsets) located at Poisson points. Two
algorithms are proposed for simulating a Boolean model with non uniformly bounded objects in a bounded
domain. The first one applies only to stationary models. It generates the objects prior to their Poisson locations.
Two examples illustrate its applicability. The second algorithm applies to stationary and non-stationary
models. It generates the Poisson points prior to the objects. Its practical difficulties of implementation are
discussed. Both algorithms are based on importance sampling techniques, and the generated objects are
weighted.
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INTRODUCTION

The Boolean model is certainly one of the most
currently used random set models in mathematical
morphology, stochastic geometry and spatial statistics.
It is defined as the union of a family of independent
random compact subsets (denoted for short as
“objects”) located at the points of a locally finite
Poisson process. It is stationary if the objects are
identically distributed (up to their location) and the
Poisson process is homogeneous, and non-stationary
otherwise.

Despite its widespread use, it seems that little
attention has been paid to the following problem: How
to perform exact simulations of a Boolean model in a
bounded domain?

The solution to that problem is not straightforward,
unless the objects are uniformly bounded. The
difficulty lies in that the intersection of a Boolean
model and a bounded domain is also a Boolean model,
but its parameters are different. The more remote the
object to the domain, the less chance they have to hit
it. On the other hand, the larger the objects, the more
chance they have to hit the domain.

After a brief reminder on the Boolean model,
this problem is investigated. Although most emphasis
is placed on the stationary case because of its
possible connections with stereology, the general case
is also treated in a second part of the paper. Two
examples serve to illustrate the algorithms and their
implementations.

Here is the set of notation that will be used
throughout the paper. Unless specified, the workspace
is the d-dimensional Euclidean space Rd with

Lebesgue measure vd . The origin of Rd is denoted by
o. More generally, points are denoted by lower case
letters, subsets by capital letters and family of subsets
by calligraphic letters. If x ∈ Rd and A ⊂ Rd , τxA
stands for the translation of A w.r.t. vector ~ox. The
dilation of A by another subset B is defined as

δBA = {x ∈ Rd : τxB∩A 6=∅} .

DEFINITION AND MAIN
PROPERTIES

The basic ingredients of a Boolean model are

(i) a Poisson point process P with an intensity
function θ = (θx,x ∈ Rd) that is assumed to be
locally integrable.

(ii) a family of nonempty and mutually independent
compact random subsets (Ax,x ∈ Rd). Ax is called
the object located at x. If it takes simple shapes,
then its statistical properties can be specified by
elementary descriptors (e.g., distribution of its
radius for a disk). For more intricate shapes,
the hitting functional of Ax can be considered
(Matheron, 1975). It assigns each compact subset
K of Rd (in short K ∈ K ) the probability that it
intersects with Ax,

Tx(K) = P{Ax∩K 6=∅} , K ∈K . (1)

Definition 1 A Boolean model is a union of objects
located at Poisson points,

X =
⋃

x∈P
Ax .
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Our objective is to simulate the Boolean model
in a compact domain, say Z. Insofar as this mainly
consists of simulating the objects of X that intersect
with Z, it is crucial to assume their number to be almost
surely finite. Under this assumption, it can be shown
(Lantuéjoul, 2002) that the number of objects hitting
any compact subset K of Z is Poisson distributed with
mean

ϑ(K) =
∫
Rd

θx Tx(K) dx , K ∈K (Z) . (2)

In particular, the avoiding functional of X ∩Z, defined
for each K ∈K (Z) as

QX∩Z(K) = P{(X ∩Z)∩K =∅}= P{X ∩K =∅}

is equal to

QX∩Z(K) = exp
(
−ϑ(K)

)
K ∈K (Z) . (3)

STATIONARY CASE

ALGORITHM
In this case, the intensity function is constant, say

θ , and all objects have the same hitting functional, up
to a translation

Tx(K) = To(τ−xK) . (4)

In what follows, it is convenient to write

To(K) =
∫

K
dF(A)1A∩K 6=∅ ,

where F (symbolically) denotes the distribution of the
parameters of Ao. Then we have

Tx(K) =
∫

K
dF(A)1τxA∩K 6=∅ .

Applying this formula to Eq. 2 and permuting
integrals, the mean number of objects hitting Z
becomes

ϑ(Z) = θ

∫
K

dF(A)vd
(
δAZ

)
= θE

{
vd
(
δAZ

)}
, (5)

which gives the following expression for the avoiding
functional of X ∩Z.

QX∩Z(K) = exp
(
−θ

∫
K

dF(A)vd
(
δAK

))
.

Let us write it slightly differently

QX∩Z(K) = exp
(
−ϑ(Z)

∫
K

dFZ(A)
vd(δAK)

vd(δAZ)

)
,

(6)

which involves a weighted version FZ of F

dFZ(A) =
dF(A)vd(δAZ)
E{vd(δAZ)}

. (7)

An interpretation of Eq. (6) is as follows: X ∩ Z
is the union of a Poisson number (mean ϑ(Z)) of
independent objects of the form τẋA where A is
distributed like FZ and ẋ is a uniform point over δAZ.
Hence the simulation algorithm:

Algorithm 1
(i) set X =∅;

(ii) generate n∼P
(
ϑ(Z)

)
;

(iii) if n = 0, return X ∩Z and stop;

(iv) generate A∼ dFZ;

(v) generate x∼U (δAZ);

(vi) put X = X ∪ τxA, n = n−1 and goto (iii).

The main difficulty with this algorithm is step (iv):
How to simulate the weighted distribution dFZ? The
next section shows that interesting simplifications arise
when the objects are convex.

CONVEX OBJECTS
Such algorithmic simplifications actually arise

only when the simulations are performed within a
ball-shaped domain. Accordingly, it is advantageous
to firstly extend the simulation field to a ball, then
perform the simulations in the extended domain, and
finally restrict the simulations produced to the actual
simulation field. The choice of the ball is unimportant,
as long as it encloses the simulation field. One
possibility is the ball circumscribed to the simulation
field.

In what follows, the simulation field Z is assumed
to be a ball, say B(o,ρ). Then Steiner formula applies
and shows that the mean number of objects hitting Z
depends only on the expected Minkowski functionals
of the objects:

ϑ(Z) = θ

d

∑
k=0

(
d
k

)
E{Wk(A)}ρk. (8)

Moreover, dFZ can be simulated as a mixture of
distributions of objects weighted by their Minkowski
functionals:

dFZ(A) = dF(A)
∑

d
k=0
(d

k

)
Wk(A)ρk

∑
d
k=0
(d

k

)
E{Wk(A)}ρk

=
d

∑
k=0

pk dFk(A) ,

102



Image Anal Stereol 2013;32:101-105

with

dFk(A) =
dF(A)Wk(A)
E{Wk(A)}

k = 0, ...,d, (9)

and

pk =

(d
k

)
E{Wk(A)}ρk

∑
d
l=0
(d

l

)
E{Wl(A)}ρ l

k = 0, ...,d. (10)

Using this mixture of weighted distributions, the
algorithm for simulating dFZ becomes

Algorithm 2

(i) generate k ∼ p;

(ii) generate A∼ dFk(A);

(iii) return A and stop.

The following two examples show how this algorithm
can be implemented.

Example 1

The objects are balls and their radii follow
independent exponential distributions with mean 1/a

P{R > r}= exp(−ar) .

Starting from Eq. 5, the mean number of objects hitting
Z is

ϑ(Z) = θE
{

ωd(ρ +R)d}= θd!ωd

ad

d

∑
k=0

(aρ)k

k!
,

where ωd = πd/2/Γ(d/2+ 1) is the d-volume of the
unit ball.

The next step is the simulation of dFk(A). Actually,
it can also be written dFk(r) because the only random
element of A is its radius. If A = B(o,r), then Wk(A) =
ωdrd−k and E{Wk(A)} = ωd(d − k)!/ad−k. Plugging
these values into Eq. 9, we obtain

dFk(r) =
aexp(−ar)(ar)d−k

(d− k)!
.

This is a gamma distribution with parameter d− k+1
and scale factor a. A simple way to simulate it is to
consider− ln(u1 · · ·ud−k+1)/a where u1, ...,ud−k+1 are
independent uniform values on ]0,1[.

As an illustration, Fig. 1 shows a simulation of a
Boolean model of discs with exponential radii. The
displayed simulation field is a 7× 5 rectangle. The
Poisson intensity is θ = 10 and the parameter a of the

exponential distribution has been chosen equal to 7.22
so as to provide a background proportion of 30%.

Fig. 1. Simulation of a Boolean model of discs with
exponential radii.

Example 2
Here is a somewhat more elaborate example,

even if the Boolean model considered is only two-
dimensional. The objects are typical Poisson polygons
derived from a network of Poisson lines with intensity
λ , see Fig. 2.

Fig. 2. Realization of a Poisson line process. The
polygons delimited by the lines are Poisson polygons.

These polygons have been extensively studied in
Miles (1969) and Matheron (1975). In particular their
expected Minkowski functionals are

E{W0(A)}=
1

πλ 2 E{W1(A)}=
1
λ

E{W2(A)}= π .

Using these expected values, Eq. (8) gives

ϑ(Z) =
θ

πλ 2 (1+πλρ)2 .

Not so simple is the simulation of dFZ(A)= p0F0(A)+
p1F1(A)+ p2F2(A). The explicit values for the weights
are

p0 =
1

(1+πλρ)2 , p1 =
2πλρ

(1+πλρ)2 ,

p2 =
π2λ 2ρ2

(1+πλρ)2 .

With probability p0, a polygon must be simulated
from F0. The standard procedure to do this consists
of generating Poisson lines sequentially by increasing
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distance from the origin. The procedure is continued
until the generation of additional lines no longer affects
the polygon containing the origin.

With probability p1 a polygon must be simulated
from F1. To do this, a polygon is first generated from
F0, and then split by a uniformly oriented line through
the origin. It remains to select at random one of the two
polygons thus delimited (see Fig. 3).

With probability p2 a polygon must be simulated
from F2. The algorithm proposed by Miles (1974)
consists of taking the intersection between a polygon
generated from F0 and a cone delimited by two random
rays emanating from the origin (see Fig. 3). Both rays
are uniformly oriented and separated by an angle with
p.d.f. f (ϕ) = ϕ sinϕ/π .

o o o

Fig. 3. Weighted polygons generated from distributions
F0 (left), F1 (middle) and F2 (right).

To illustrate the construction, a simulation of a
Boolean model of Poisson polygons is depicted in
Fig. 4. With a Poisson intensity θ and a Poisson
line intensity λ respectively set to 10 and 1.625, the
background proportion is close to 30%.

Fig. 4. Simulation of a Boolean model of Poisson
polygons.

NON STATIONARY CASE

ALGORITHM

Let us start again with Eq. 3 that provides the
avoiding functional of X ∩Z, and let us write it like

QX∩Z(K) = exp
(
−ϑ(Z)

ϑ(K)

ϑ(Z)

)
,

provided that ϑ(Z) > 0 (if ϑ(Z) = 0, then X ∩Z = ∅
a.s.). On the other hand, Eq. 2 can be used to derive the
following expansion

ϑ(K)

ϑ(Z)
=
∫
Rd

θxTx(Z)
ϑ(Z)

Tx(K)

Tx(Z)
dx ,

which shows that ϑ(K)/ϑ(Z) is the hitting functional
of some object of Z, say AZ . More precisely, AZ is
located according to the pdf

f (x) =
θxTx(Z)

ϑ(Z)
, x ∈ Rd . (11)

Moreover, the conditional hitting functional of AZ

given its location x is equal to

Tx(K)

Tx(Z)
= P{(Ax∩Z)∩K 6=∅ | Ax∩Z 6=∅} . (12)

AZ is called a typical object hitting Z.

The interest of typical objects lies in the following
property (Lantuéjoul, 2002):

Proposition 1 X ∩Z is the union of a Poisson number
(mean ϑ(Z)) of typical objects hitting Z.

Indeed, we can readily check that the avoiding
functional of such a union of typical objects coincides
with that of X ∩Z:

∞

∑
n=0

exp
(
−ϑ(Z)

)ϑ n(Z)
n!

(
1− ϑ(K)

ϑ(Z)

)n

= exp
(
−ϑ(K)

)
.

From this proposition, the following algorithm is
derived for simulating a Boolean model, even non
stationary, in the domain Z.

Algorithm 3

(i) set X =∅;

(ii) generate n∼P
(
ϑ(Z)

)
;

(iii) if n = 0, return X and stop;

(iv) generate a typical object AZ hitting Z;

(v) put X = X ∪AZ , n = n−1 and goto (iii).
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PRACTICAL IMPLEMENTATION

Algorithm 3 calls for several remarks. Step (ii)
assumes that ϑ(Z) is explicitly known, but this is
not always the case because the integral of θxTx(Z)
may not be mathematically tractable. Moreover, step
(iv) requires simulating the pdf (Eq. 11) that specifies
the location of the typical objects hitting Z. This
distribution may have a complicated expression. Step
(iv) also involves generating conditionally typical
objects given their locations. It is possible to generate
objects Ax sequentially till one is produced that hits
Z. This algorithm can be easily implemented but lacks
efficiency.

In order to alleviate these difficulties, rejection
and coupling methods can be resorted to. A typical
approach is to consider another Boolean model X ′ that
dominates X , in the sense that its ingredients satisfy
the following three properties:

(i) its Poisson intensity function θ ′ satisfies θ ′x ≥ θx
(at each point x)

(ii) its population of objects (A′x) satisfies A′x ⊃ Ax

(iii) there exists an algorithm to conditionally simulate
Ax given A′x.

Then the idea is firstly to generate the objects
of X ′ hitting Z. Then each generated object A′x is
saved with probability θx/θ ′x and discarded with the
complementary probability 1− θx/θ ′x. Finally, each

remaining object A′x is replaced by a new object Ax
generated using the conditional algorithm mentioned
in (iii). A simulation of X in Z is given by the union of
these new objects in Z.

Hence, a Boolean model can effectively be
generated whenever it is dominated by another
Boolean model that is numerically tractable and can
be simulated. There is no general rule for building such
a dominating model. This must be done on a case by
case basis.
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