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Mallows’ L2 Distance in Some Multivariate
Methods and its Application to Histogram-Type
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Abstract

Mallows’ L2 distance allows for decomposition of total inertia into within and
between inertia according to Huygens theorem. It can be decomposed into three
terms: the location term, the spread term and the shape term; a simple and straight-
forward proof of this theorem is presented. These characteristics are very helpful
in the interpretation of the results for some distance-based methods, such as clus-
tering by k-means and classical multidimensional scaling. For histogram-type data,
Mallows’ L2 distance is preferable because its calculation is simple, even when the
number and length of the histograms’ subintervals differ. An illustration of its use
on population pyramids for 14 East European countries in the period 1995-2015 is
presented. The results provide an insight into the information that this distance can
extract from a complex dataset.

1 Introduction

1.1 Previous work
An important class of metrics was invented several times in different fields, such as proba-
bility, statistics and computer science, and can be found under different names. According
to Rüschendorf (2001), from the historic point of view, the name Gini–Dall’Aglio –Kan-
torovich–Vasershtein–Mallows metric would be correct for this class of metrics. In statis-
tics, Mallows’ distance between two distributions is defined as the minimum expected
distance among all pairs of random variables having those two distributions as marginal
distributions (Mallows, 1972; Zhou and Shi, 2011). In computer science, the term Earth
Movers’ Distance (EMD) is very often used. In Levina and Bickel (2002), it is shown
that Mallows’ distance is exactly the same as the EMD when it is used to measure the
difference between two probability distributions.

In the literature, several distances for histogram-type data can be found. Irpino and
Verde (2006) proposed a ”new Wasserstein based” distance, which is identical to Mal-
lows’ L2 distance. The paper presents several useful properties of this distance under
the assumption that the distribution within each histogram subinterval is uniform. They
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show, that in the histogram setting, this distance is easily calculable, even when the num-
ber and the length of the histograms’ subintervals differ. Moreover, this distance allows
for identification of the barycentric (centroid) histogram. A measure of total inertia can
be defined and can be decomposed into the within and between inertia according to the
Huygens theorem.

Verde and Irpino (2007) analyzed different metrics in the dynamic clustering of his-
togram data. Korenjak-Černe et al. (2008) used Euclidean distance to cluster population
pyramids. In the symbolic data setting (Billard and Diday, 2006), several distances for
histograms are presented by Kim and Billard (2011).

1.2 Motivation for the present work
Košmelj and Billard (2011) applied Mallows’ L2 distance in a clustering procedure on
14 East European described by the population pyramids. The data were for the years
1995, 2000, 2005, 2010, and the ”predicted” data for 2015; the data were obtained from
http://www.census.gov/ipc/www/idb/informationGateway.php. The objective was to par-
tition these 14 countries into homogenous groups in each particular year, and to observe
time-trends from the obtained results. As in Irpino and Verde (2006), Ward’s agglomera-
tive clustering method was used; the results for each year under study are presented.

The present paper expands the application of Mallows’ L2 distance to some other
multivariate distance-based methods, using the same dataset. Given the Huygens theorem
for the Mallows’ L2 distance, a natural choice for the clustering method is the k-means
method which minimizes the within cluster inertia for a given number of clusters in a par-
tition. A nice overview of the history of k-means in given by Bock (2007); this method
is in some settings called dynamic clusters method or dynamic clustering (Irpino et al.,
2006; Verde and Irpino, 2007). We want to implement clustering by k-means using Mal-
lows’ L2 distance; for each year under study the best partition of countries according to
this criterion will be sought. A comparison with previous results based on Ward’s ag-
glomerative clustering method is of interest as well.

A set of distance-based multivariate methods is multidimensional scaling, which is
often used in data visualization. These methods were introduced in the field of psycho-
metrics (see Shepard, 1962; Kruskal, 1964), a relevant book on this topic is Cox and Cox
(2001). Gower (1966) described a method to obtain a Euclidean representation of a set
of objects whose relationships are measured by any dissimilarity or distance chosen by
the user. This algebraic method, known as principal coordinate analysis, metric multi-
dimensional scaling (in contrast to the nonmetric method), or classical multidimensional
scaling, allows us to position objects in a space of reduced dimensionality while preserv-
ing their distance relationships as well as possible. These methods are also often used in
ecology. In Legendre and Legendre (1998) the computational procedure is presented.

An additional motivation for the use of classical multidimensional scaling (CMDS) is
given in an interesting paper on distances between empirical distributions by Zhou and
Shi (2011). These authors consider several dissimilarity measures including Mallows’ L2

distance. They present a nice overview of its important properties. In a simulation study,
they apply CMDS to datasets drawn from a family of univariate two-component mixture
Gaussian distributions that are described by its mixing proportion, mean and standard de-
viation. For Mallows’L2 distance, they found that the first dimension of CMDS perfectly
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corresponds to the mean parameter, the other two leading dimensions together represent
the standard deviation and shape of the distributions in a nonlinear fashion. They sum-
marize that Mallows’ L2 distance is preferred in applications where support dependent
features of a distribution, such as mean and variance, are important, especially when the
distributions have potentially different supports. It also has an advantage of a well defined
metric which will be convenient when rigorous modeling is needed.

An other important feature for Mallows’ L2 distance is the decomposition theorem,
first presented by Irpino and Romano (2007). In their paper, the proof of the decomposi-
tion theorem is presented; however, it is rather complex and long.

To sum up, the motivation for our work is as follows. First, we try to find a simpler al-
ternative for the decomposition theorem proof. Second, other distance-based multivariate
methods such as clustering by k-means and CMDS are applied using Mallows’ L2 dis-
tance to give a deeper insight into the population pyramids under study. We are interested
in how the location, spread and shape of the population pyramids are reflected in k-means
and CMDS results, i.e., what information can be extracted from the dataset.

This paper is organized as follows: in the methodology section, we present the defini-
tion for Mallows’ Lq distance, and in particular Mallows’ L2 distance with its decompo-
sition theorem. Section 3 gives k-means clustering and CMDS results and its analysis. In
the last section, some conclusions are presented.

2 Methodology
Here we present the formula for Mallows’ Lq distance, q ∈ [1,∞) . Let us denote the uni-
variate variable Y for the object u by Yu, and for the object v by Yv. Mallows’ Lq distance
for the variable Y between objects u and v is expressed in the form of the corresponding
inverse distribution functions F−1u and F−1u :

dqM(u, v) = dqM(Fu, Fv) =

∫ 1

0

|F−1u (t)− F−1v (t)|qdt. (2.1)

The inverse distribution function is called the quantile function. Some of its charac-
teristics are presented in the Appendix.

An interesting review of the Mallows’ distance properies is given in Levina and Bickel
(2002).

2.1 Mallows’ L2 distance and its decomposition
Mallows’distance for q = 2, i.e., Mallows’ L2 distance is commonly used:

d2M(u, v) = d2M(Fu, Fv) =

∫ 1

0

(F−1u (t)− F−1v (t))2dt. (2.2)

It can be considered as a natural extension of the Euclidean distance from point data
to distribution data. For this case, the decomposition theorem first presented in Irpino and
Romano (2007), holds, as:
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d2M(Fu, Fv) = (µu − µv)
2 + (σu − σv)2 + 2σuσv − 2CovQQ(u, v), (2.3)

or equivalently,

d2M(Fu, Fv) = (µu − µv)
2 + (σu − σv)2 + 2σuσv(1− CorrQQ(u, v)), (2.4)

where

CorrQQ(u, v) =

∫ 1

0
(F−1u (t)− µu)(F

−1
v (t)− µv)dt

σuσv
(2.5)

is the correlation of the quantiles as represented in a classical QQ plot.
In (2.4), the first term is the squared difference of the mean values and describes the

location component; the second term is the squared difference of the standard deviations
and describes the spread component; the last term is the residual term and presents the
shape component. It should be pointed out that the means are in one term of (2.4) only;
however the standard deviations are in both the second and in the third term of (2.4).
Hence, the means present an independent component of the distance; however the stan-
dard deviations are interrelated with the correlation.

Irpino and Romano (2007) presented the proof for the decomposition theorem in their
Appendix, however it is rather complicated. Here we present a simple and straightforward
alternative for the proof. Mallows’ distance between two distributions is the minimum
expected distance among all pairs of random variables having those two distributions as
marginal distributions (Zhou and Shi, 2011:3-4):

d2M(u, v) =

∫ 1

0

(F−1u (t)− F−1v (t))2dt = inf E[(Yu − Yv)2]. (2.6)

The infimum is over all joint distributions having Fu and Fv as marginals. Let us de-
velop E[(Yu−Yv)2] further. Using a standard approach often used in analysis of variance,
we can write:

E[(Yu − Yv)2] = E[((Yu − µu)− (Yv − µv) + (µu − µv))
2]

= E[(Yu − µu)
2 + (Yv − µv)

2 + (µu − µv)
2 −

−2(Yu − µu)(Yv − µv) + 2(Yu − µu)(µu − µv)− 2(Yv − µv)(µu − µv)]

= E[(Yu − µu)
2] + E[(Yv − µv)

2] + (µu − µv)
2 −

−2E[(Yu − µu)(Yv − µv)] + 2(µu − µv)E[(Yu − µu − Yv + µv)].

(2.7)

The last term is zero; therefore, upon taking the infimum over all joint distributions
with marginals Fu and Fv, and considering that marginal quantites µu, µv, σu, σv are not
affected by the infimum, the decomposition theorem (2.3) is obtained:
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d2M(u, v) = (µu − µv)
2 + inf E[((Yu − µu)− (Yv − µv))

2]

= (µu − µv)
2 + σ2

u + σ2
v − 2 supE[(Yu − µu)(Yv − µv)]

= (µu − µv)
2 + (σu − σv)2 + 2σuσv − 2CovQQ(u, v).

3 Results
In our dataset, there are 14 East European countries (Albania (AL), Bosnia and Herze-
govina (BA), Bulgaria (BG), Czeck Republic (CZ), Croatia (HR), Hungary (HU), Kosovo
(KO), Montenegro (ME), Macedonia (MK), Poland (PL), Romania (RO), Serbia (RS),
Slovenia (SI), Slovakia (SK)). Each country is described by the population pyramids for
the years 1995, 2000, 2005, 2010 and the ”predicted data” for the year 2015. The pop-
ulation pyramid is a double histogram, two gender histograms are plotted horizontally
back-to-back, on the left for males and on the right for females. On the y-axis are age
groups: the subintervals are five-year age groups; on the x-axis are the corresponding
proportions.

For each year under study, we calculated the distance matrix using Mallows’ L2 dis-
tance, the formula is given in Irpino and Verde (2006) and in (2.10) in Košmelj and Billard
(2011); this distance matrix is the input for clustering by k-means and for CMDS.

3.1 Clustering by k-means
We adapted the kmeans procedure in R (R Development Core Team, 2012) for the his-
togram setting. The adaptation was made taking into account Mallows’L2 distance for the
histogram setting; for each cluster the barycentric histogram was calculated, as described
Irpino and Verde (2006) and Košmelj and Billard (2011). This clustering approach is
equivalent to dynamic clustering of histograms, as presented in Irpino et al.(2006) and
Verde and Irpino (2007).

The clustering procedure was as follows: for each particular year under study, we
started with the partition into k = 2 clusters. The initial partition was random, the cluster-
ing procedure was repeated hundred times. Then the procedure was repeated for k = 3, 4,
and 5 clusters. The best partition into k clusters was assessed in term of the Calinski-
Harabanz pseudo F -statistics (Calinski and Harabanz, 1974):

CH(k) =
BI(k)/(k − 1)

WI(k)/(n− k)
, (3.1)

whereBI(k) andWI(k) denote the between and within inertia for the number of clusters
k, respectively, and n the number of objects. In Table 1, we present these values; higher
values of CH(k) are preferred. From Table 1, it is evident that in 1995, 2000 and 2005,
the partition into three clusters turned out to be the best. In 2010 a major change occurred,
the best partition has 5 clusters. In 2015, the best partition has 4 clusters.

Table 2 presents the best partitions. In 1995, 2000 and 2005 the best partitions were
the same, specifically: Cluster 1: [AL, KO]; Cluster 2: [BA, ME, MK, PL, RO, SK];
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Table 1: Calinski-Harabanz pseudo F -statistics for the partitions into 2, 3, 4, and 5 clusters,
for each year under study; the preferred value is the maximal value (presented in bold).

Number of clusters
Year 2 3 4 5
1995 33.40 63.62 53.77 45.16
2000 33.51 61.86 53.41 44.71
2005 37.38 51.18 44.55 37.52
2010 36.38 39.09 47.48 53.67
2015 34.96 32.99 50.92 40.82

Table 2: Left: the obtained optimal partition for each year according to k-means clustering
and Calinski-Harabanz criterion (see Table 1). Right: total inertia (TI), within (WI) and

between inertia (BI) for the best partition in each year.

Year Cluster 1 Cluster 1a Cluster 2 Cluster 2a Cluster 3 TI WI BI
1995 AL, KO BA, ME, MK, PL, RO, SK BG, CZ, HR, HU, RS, SI 448.8 35.7 413.1
2000 AL, KO BA, ME, MK, PL, RO, SK BG, CZ, HR, HU, RS, SI 422.3 34.5 387.8
2005 AL, KO BA, ME, MK, PL, RO, SK BG, CZ, HR, HU, RS, SI 394.6 38.3 356.3
2010 KO AL MK, SK BA,ME, PL, RO BG, CZ, HR, HU, RS, SI 362.2 14.6 347.6
2015 KO AL, MK ME, PL, RO, SK BA, BG, CZ, HR, HU, RS, SI 342.2 21.0 321.2

Cluster 3: [BG, CZ, HR, HU, RS, SI]. In 2010, changes started: Cluster 1 and Cluster 2
split into two subclusters: [AL, KO] split into singletons [KO] and [AL], Cluster 2 split
into subcluster [MK, SK] and subcluster [BA, ME, PL, RO]; however Cluster 3 did not
change. In 2015, the changes continued: MK joined [AL], SK joined [ME, PL, RO], and
BA joined Cluster 3.

Table 2 gives additional information on the total inertia (TI), and on the within (WI)
and between inertia (BI) for the best partition in each year. An important feature of the
obtained partitions is the decreasing value of TI in time: in 1995 its value is 448.8, in
2005 it is 394.6, and in 2015 it is 342.2. The entity TI could be regarded as a measure
of total variability, therefore these results suggest that countries become more and more
similar in time.

Analysis of the WI allows comparison with the Ward’s results presented in Košmelj
and Billard (2011). For the year 1995, k-means results present a slight improvement
(Ward positions RO in Cluster 3, the corresponding WI equal to 37.6). The results ob-
tained by Ward’s method and k-means for 2000, 2005 and 2015 are the same. However,
for 2010 the difference between k-means and Ward’s results is substantial: Ward’s parti-
tion has 4 clusters with WI equal to 24.6, while k-means best partition has 5 clusters with
WI equal to 14.6.

3.2 Multidimensional scaling

Multidimensional scaling takes a set of distances and returns a set of points in a low-
dimensional Euclidean space such that the distances between the points are approximately
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equal to the original distances. For our purposes, we used the classical multidimensional
scaling procedure cmdscale in R (R Development Core Team, 2012).

The CMDS results for each particular year under study are conceptually similar. From
14 eigenvalues, five or six are positive; their order of magnitude decreases from 105 to 102,
101, etc. What is the maximum dimension of the output space? The original data matrix
has 14 rows (countries), and the number of variables equals two (age for females, age for
males). With the Euclidean-type distance, when there are more objects than variables,
the maximum dimension of the output space equals the number of variables (Legendre
and Legendre, 1998:426). Therefore, for each year, the countries may be represented in
a two-dimensional Euclidean space. The order of magnitude of the first two eigenvalues
suggests that the first CMDS axis is by far the most important.

Graphical visualization of the CMDS results is given in Figure 1. It is known that
the representation is determined up to location, rotation and reflection. For 1995 and
2000, the first CMDS axis, denoted by MSD1 (see Figure 1), was reversed to obtain
comparable results in the observed time-period. The years 1995, 2005, 2010 and 2015
are chosen for the presentation; the year 2000 is omitted, because the results are very
similar to the neighboring two years 1995 and 2005.

Figure 1 highlights the proximity among countries which are described by population
pyramids, for each particular year. Each country is represented by a point, as in classical
multidimensional scaling approach. Additionally, the k-means results (Table 2) are added
onto the plots; clusters are schematically represented by rectangles. Hence, on Figure 1
we can see the position of the countries in two-dimensions obtained by classical multidi-
mensional scaling and the k-means results, simultaneously. The series of panels reveals
the changes in time.

Let us try to interpret the results along the classical multidimensional axes MSD1
and MSD2. For each year under study, Mallows’ distance is calculated as the sum of
Mallows’ distance for males and for females. Therefore the decomposition theorem gives
two location components, two spread components and two shape components. For each
year under study, we calculated the correlation coefficient between MDS1 and the aver-
age age over gender. The results show nearly perfect correlation: absolute value of the
correlation coefficient was over 0.99, for each year under study. Therefore, we can con-
clude thatMSD1 reflects the average age. In Figure 1, the average age is decreasing with
increasing value of MSD1; the average age for AL and for KO are the lowest, however
they are increasing in time (e.g., the average age for males and females in AL in 1995 is
27.8 years and 28.8 years, respectively; in 2015 these values increased to 34.9 years and
36.6 years). However, the age-trend is not revealed in panels of Figure 1.

Given two output dimensions only, MSD2 reflects the spread and shape components,
for males and females simultaneously; these components can not be disentangled. How-
ever, the countries with biggest differences in spread/shape can be identified. As an illus-
tration, let us consider AL and SI in 2015; their difference in MSD2 is considerable (see
Figure 1). In Figure 2, their population pyramids are presented. The different shapes of
the pyramids are evident; however, the spread of the histograms is relatively similar (the
age standard deviation for AL is 21.6 years for males and 21.7 years for females, and for
SI the corresponding values are 21.6 years and 23.0 years.

Figure 1 shows as well the position of cluster-rectangles in the space of MDS1 and
MDS2. Clusters are separated in the MDS1 dimension, which presents the average
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Figure 1: Results of classical multidimensional scaling in two-dimensional space of MDS1
and MDS2. The k-means results are added onto the plots (see Table 2); clusters are

schematically represented by rectangles. Year 2000 is omitted.



Mallows’ L2 Distance in Some Multivariate Methods. . . 115

Figure 2: Population pyramid for Albania 2015 (left) and Slovenia 2015 (right). The scales
on the horizontal axes are different.

age. Thus, we may conclude that clusters incorporate countries with similar average
age. As already mentioned, the eigenvalues obtained in the CMDS analysis show that the
information in MDS1 is by far the most important.

4 Conclusion
We used Mallows’ L2 distance with two distance-based multivariate methods, k-means
and classical multidimensional scaling, in order to obtain a deeper insight into the 14
population pyramids in the time period 1995-2015. The main interest of our analysis was
to find out what information this distance can extract from our dataset. The results ob-
tained uncover a lot of information. This may be explained by the fact that Mallows’L2

distance is a Euclidean-type of distance, fulfilling the Huygens theorem and the decom-
position theorem.

Huygens theorem allows for the total inertia to be decomposed into the within and be-
tween cluster inertia. The k-means clustering method, which minimizes the within cluster
inertia for a given number of clusters in a partition, is a natural choice for the clustering
procedure when Mallows’ L2 distance is used. The k-means results in connection with
Calinski-Harabanz pseudo F -statistics reveal the best partitions for each year under study
and the corresponding time dynamics. For 1995, 2000 and 2005, the best partition has
three clusters and is stationary. In 2010 changes started. Analysis of total inertia show
that countries become more and more similar in time.

Multidimensional scaling is a data visualization technique.In our context, it is used as
in classical data analysis. In general, it is not possible to find a simple interpretation of
the corresponding axes, as for example in principal component analysis (PCA). We used
CMDS with Mallows’ L2 distance: the results reveal the location component in the first
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axis and the spread/shape component in the second axis. Given the fact that the spread of
the observed population pyramids is relatively similar, the second axis extracts the shape
components. Graphical presentation of CMDS results (Figure 1) incorporates also the
clustering results; it is very powerful, time-dynamics can also be observed. Our results
are consistent with the findings presented in Zhou and Shi (2011).
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[11] Košmelj, K. and Billard, L. (2011): Clustering of population pyramids using Mal-
lows’ L2 distance. Metodološki zvezki, 8, 1-15.
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A Appendix
Let Y be a random variable with finite moments of the first and the second order, and let
F (y) be its distribution function, F (y) = P (Y ≤ y). The inverse distribution function
is called the quantile function. Let us present how the mean and the variance of Y are
expressed in terms of the quantile function, given it exists.

The mean of the variable Y is given as follows:

µ = E(Y ) =

∫ ∞
−∞

ydF (y) =

∫ 1

0

F−1(t)dt. (A.1)

Equation (A.1) can be proved using the substitution t = F (y). Then, F−1(t) =
F−1(F (y)) = y, and dt = dF (y).

Similarly,

E(Y 2) =

∫ ∞
−∞

y2dF (y) =

∫ 1

0

(F−1(t))2dt. (A.2)

Consequently, the variance of the variable Y is:

σ2 =

∫ 1

0

(F−1(t))2dt− (

∫ 1

0

F−1(t)dt)2. (A.3)


