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ABSTRACT

Many real phenomena may be modelled as random closed sets in Rd , of different Hausdorff dimensions. The
problem of the estimation of pointwise mean densities of absolutely continuous, and spatially inhomogeneous,
random sets with Hausdorff dimension n < d, has been the subject of extended mathematical analysis by the
authors. In particular, two different kinds of estimators have been recently proposed, the first one is based
on the notion of Minkowski content, the second one is a kernel-type estimator generalizing the well-known
kernel density estimator for random variables. The specific aim of the present paper is to validate the theoretical
results on statistical properties of those estimators by numerical experiments. We provide a set of simulations
which illustrates their valuable properties via typical examples of lower dimensional random sets.

Keywords: density estimator, Hausdorff dimension, Hausdorff measure, kernel estimate, Minkowski content,
random closed set, stochastic geometry.

INTRODUCTION

Given an Euclidean space Rd , the problem of the
evaluation and estimation of the mean density of lower
dimensional random closed sets (i.e., with Hausdorff
dimension less than d), such as fiber processes,
boundaries of germ-grain models, n-facets of random
tessellations, and surfaces of full dimensional random
sets, has been of great interest in many different
scientific and technological fields over the last decades
(see Camerlenghi et al., 2014 and references therein).
Recently, in Villa (2014), and Camerlenghi et al.
(2014), two different kinds of estimators have been
proposed by the authors, the first one is based on
the notion of Minkowski content, the second one is
a kernel-type estimator generalizing the well-known
kernel density estimator for random variables.

The specific aim of the present paper is to validate
the theoretical results on statistical properties of those
estimators by numerical experiments. We provide a
set of simulations which illustrates their valuable
properties via typical examples of lower dimensional
random sets. To complete the picture, we have
included an additional estimator that naturally derives
from the Besicovitch derivation theorem (Ambrosio et
al., 2000).

The required background regarding the global and
local approximation of mean densities of random
closed sets has been presented in a series of papers
by Capasso and Villa (Capasso and Villa, 2006; 2007;

2008; Ambrosio et al., 2009; Villa, 2014); we will
report here the basic definitions, while for a detailed
mathematical analysis of the proposed estimators we
refer to the paper by Camerlenghi et al. (2014).

In Section Basics and notation we introduce basic
notations and definitions; in Section Estimation of
λΘn(x) and Section Optimal bandwidth we recall our
proposed estimators as mentioned above, together with
their statistical properties; in Section Particular cases
we discuss the problem of the optimal bandwidth for
the three cases and provide a set of simulations in
several cases of interest; finally, in the concluding
remarks we offer some comments based on the
compared results of the numerical simulations.

BASICS AND NOTATION

We remind that, given a probability space
(Ω,F,P), a random closed set Θ in Rd is a measurable
map Θ : (Ω,F)→ (F,σF), where F denotes the class
of the closed subsets in Rd , and σF is the σ -algebra
generated by the so called Fell topology, or hit-or-
miss topology (Matheron, 1975). We say that a random
closed set Θ : (Ω,F) → (F,σF) satisfies a certain
property (e.g., Θ has Hausdorff dimension n) if Θ

satisfies that property P-a.s.

Here H n is the n-dimensional Hausdorff measure,
dx stands for H d(dx), and BX is the Borel σ -algebra
of any topological space X . Br(x) and bn will denote
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the closed ball with centre x and radius r > 0 and the
volume of the unit ball in Rn, respectively. For any
function f , disc f will denote the set of its discontinuity
points. We remind that a compact set A⊂ Rd is called
countably H n-rectifiable if there exist countably
many n-dimensional Lipschitz graphs Γi ⊂ Rd such
that A \∪iΓi is H n-negligible. Throughout the paper
we shall deal with countably H n-rectifiable random
closed sets Θn. For definitions and basic properties of
Hausdorff measure and rectifiable sets (Federer, 1969;
Falconer, 1985; Ambrosio et al., 2000).

We briefly recall here that, by means of marked
point processes in Rd with marks in the class of
compact subset of Rd , every random closed set in Rd

can be represented as a germ-grain model (Hug et al.,
2002; Baddeley et al., 2007, p. 192 and references
therein). Therefore, throughout the paper we shall
consider random sets Θ described by marked point
processes Φ = {(ξi,Si)}i∈N in Rd with marks in a
suitable mark space K so that Zi = Z(Si), i ∈ N is a
random set containing the origin (i.e., Z : K→ F):

Θ(ω) =
⋃

(xi,si)∈Φ(ω)

xi +Z(si) , ω ∈Ω . (1)

We assume that Φ has intensity measure Λ(d(x,s)) =
f (x,s)dxQ(ds) and second factorial moment measure
ν[2](d(x,s,y, t)) = g(x,s,y, t)dxdyQ[2](d(s, t)) (Karr,
1986; Daley et al., 1988; Stoyan et al., 1995, for
general theory of point processes).

For the reader’s convenience we have put in the
Appendix basic notation and assumptions on Φ, which
will appear throughout the paper (see also Villa, 2010;
2014; Camerlenghi et al., 2014 for further details).

Given a RACS Θn of integer Hausdorff dimension
n ≤ d, whenever E[H n(Θn ∩ ·)] is absolutely
continuous with respect to the measure H d on Rd ,
its density (i.e., its Radon-Nikodym derivative) with
respect to H d has been called mean density of Θn, and
it is denoted by λΘn (for an exhaustive discussion about
the existence of λΘn , see Capasso and Villa, 2007;
2008). In the representation via point processes, as in
Section Basics and notation, we may write (see Villa,
2014)

λΘn(x) =
∫

K

∫

x−Z(s)
f (y,s)H n(dy)Q(ds), (2)

where −Z(s) is the reflection of Z(s) at the origin. It is
easy to see that if n = 0 and Θ0 = X is a random vector
with pdf fX , then λX(x) = fX(x).

ESTIMATION OF λΘn(x)

In the sequel we will assume that an i.i.d. random
sample Θ1

n, . . . ,Θ
N
n is available for the random closed

set Θn, with mean density λΘn .

We list here three different kinds of estimators for
λΘn(x). (See also Camerlenghi et al., 2014).

A natural estimator

By the Besicovitch derivation theorem (Ambrosio
et al., 2000, Theorem 2.22), we know that

λΘn(x) = lim
r↓0

E[H n(Θn∩Br(x))]
bdrd H d-a.e. x ∈ Rd ;

such approximation suggests the following natural
estimator for the mean density λΘn(x) of Θn, at a point
x ∈ Rd ,

λ̂
ν ,N
Θn

(x) :=
1

Nbdrd
N

N

∑
i=1

H n(Θi
n∩BrN (x)) . (3)

Here and later the scaling parameter rN will be
called the bandwidth associated with the sample size
N, as usual in literature.

Kernel estimator

Kernel density estimation was firstly introduced by
Parzen (1962) and Rosenblatt (1956) (see also Wertz,
1978, Deheuvels and Mason, 2004 for a survey of
additional foundational papers).

We recall here that a measurable function k : Rd→
R is said to be a multivariate kernel if it satisfies the
following conditions:

1. 0≤ k(z)≤M for all z ∈ Rd , for some M > 0 ;

2. k is radially symmetric;

3.
∫
Rd k(z)dz = 1.

As a natural extension of the kernel density estimation
theory for random vectors, the following kernel
estimator for the mean density of Θn has been
introduced in Camerlenghi et al. (2014)

λ̂
κ,N
Θn

(x) :=
1
N

N

∑
i=1

krN ∗H
n
xΘi

n
(x)

=
1

Nrd
N

N

∑
i=1

∫

Θi
n

k
(x− y

rN

)
H n(dy) , (4)

where ∗ stands for the usual convolution product.
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Remark 1 By choosing the kernel function

k(z) =
1
bd

1B1(0)(z) ,

it is easy to see that we may reobtain the natural
density estimator as a particular case of the kernel
estimator, i.e., λ̂

κ,N
Θn

(x) = λ̂
ν ,N
Θn

(x).

“Minkowski content”-based estimator
Within the mathematical framework provided in

Ambrosio et al. (2009) and in Villa (2014, Theorem 7),
based on a stochastic version of the Minkowski content
notion, it is proved that if Θn satisfies (A1), (A2) and
(A3), given in the Appendix, then

λΘn(x) = lim
r↓0

P(x ∈Θn⊕r)

bd−nrd−n , H d-a.e. x ∈ Rd . (5)

As a natural byproduct, the following “Minkowski
content”-based estimator of λΘn(x) has been proposed
in Villa (2014):

λ̂
µ,N
Θn

(x) :=
∑

N
i=1 1Θi

n∩BrN (x) 6= /0

Nbd−nrd−n
N

. (6)

The statistical properties of the “Minkowski
content”-based estimator λ̂

µ,N
Θn

(x), and of the kernel

estimator λ̂
κ,N
Θn

(x) (and so of λ̂
ν ,N
Θn

(x) as well, by
Remark 1), can be summarized as follows (we refer
to Camerlenghi et al., 2014 for a) and b), and to Villa,
2014, Corollary 13 for c)) :

Theorem 2 Assume that Θn satisfies assumptions (A1)
and (A2), that rN→ 0, as N→∞, and that k is a kernel
with compact support. Then, for almost every x ∈ Rd ,

a) λ̂
κ,N
Θn

(x) is asymptotically unbiased,

b) λ̂
κ,N
Θn

(x) is weakly consistent if (A1) and (A3), and

lim
N→∞

Nrd−n
N = ∞ (7)

hold,

c) λ̂
µ,N
Θn

(x) is asymptotically unbiased and weakly
consistent if (A3) and Eq. 7 hold.

OPTIMAL BANDWIDTH

A problem of statistical interest is to find an
optimal bandwidth rN . By proceeding along the same
lines as what is commonly done for the kernel density

estimator f̂ N
X (x) of the pdf fX(x) of a random variable

X (where rN is defined as the quantity which minimizes
the asymptotic mean square error (AMSE) of f̂ N

X (x)),
in Camerlenghi et al. (2014) optimal bandwidths for
the proposed estimators have been provided. In order
to do this, asymptotic approximations of bias and
variance are needed.

OPTIMAL BANDWIDTH FOR λ̂
κ,N
Θn

The next theorem provides asymptotic
approximations for the bias and the variance of the
kernel estimator.

Theorem 3 (Camerlenghi et al., 2014) In addition to
the hypotheses in b ) of Theorem 2, we assume that the
kernel k is continuous and (A2bis) holds for |α|= 2.
Then, for H d-a.e. x ∈ Rd ,

Bias(λ̂ κ,N
Θn

(x)) = CBias(x)r2
N +o(r2

N)

Var(λ̂ κ,N
Θn

(x)) =
CVar(x)
Nrd−n

N
+o(

1
Nrd−n

N
),

with

CBias(x) := ∑
|α|=2

1
α!

∫

Rd
k(z)zα dz

·
∫

K

∫

x−Z(s)
Dα

y f (y,s)H n(dy)Q(ds) ,

and

CVar(x) :=
∫

K

∫

Rd

∫

x−Z(s)

∫

π
x,s
y

k(z)k(z+w) f (y,s)H n(dw)H n(dy)dzQ(ds) ,

where π
x,s
y ∈ Gn is the approximate tangent space to

x−Z(s) at y ∈ x−Z(s).

For the notion of approximate tangent space to a
H n-rectifiable compact set A of Rd at a point x ∈ A
we refer to Ambrosio et al. (2000, Definition 2.79).

By remembering that

MSE(λ̂ κ,N
Θn

(x)) =
[
Bias(λ̂ κ,N

Θn
(x))]2 +Var(λ̂ κ,N

Θn
(x)) ,

it follows that the asymptotic approximation of the
mean square error of λ̂

κ,N
Θn

(x) is given by

AMSE(λ̂ κ,N
Θn

(x)) =C2
Bias(x)r

4
N +

1
Nrd−n

N
CVar(x) ,
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so that, for any sufficiently large sample size N,

ro,AMSE
N (x) := argmin

rN

AMSE(rN)

= 4+d−n

√
(d−n)CVar(x)

4NC2
Bias(x)

, H d-a.e.x ∈ Rd . (8)

We also remind that a criterion for obtaining a
uniform choice of the optimal bandwidth is based
on the integrated mean square error (MISE) (Hardle,
1991), so defined:

MISE[λ̂ κ,N
Θn

(W )] :=
∫

W
MSE[λ̂ κ,N

Θn
(x)]dx ,

for any compact W ⊂ Rd . Under the same
assumptions, by the asymptotic approximation of the
integrated mean square error (AMISE) of λ̂

κ,N
Θn

(W ),
as N → +∞, for any compact W ⊂ Rd and any given
sufficiently large sample size N, we obtain

ro,AMISE
N,W := argmin

rN

AMISE
(

λ̂
κ,N
Θn

(W )
)

= 4+d−n

√
(d−n)

∫
W CVar(x)dx

4N
∫

W C2
Bias(x)dx

. (9)

We observe that the cases in which CBias(x) =
0, might complicate the identification of an optimal
bandwidth (we refer to Camerlenghi et al. (2014), and
to Schucany (1989) for a more detailed discussion). A
case of particular interest where CBias(x) = 0, is given
by assuming that Θn is stationary (see Section The case
of stationary Θn).

OPTIMAL BANDWIDTH FOR λ̂
ν ,N
Θn

By Remark 1 we know that λ̂
ν ,N
Θn

(x) = λ̂
κ,N
Θn

(x)
with the kernel k(z) = 1

bd
1B1(0)(z). The hypothesis

of continuity of k in Theorem 3 can be weakened
(Camerlenghi et al., 2014), provided that

H n
xπ

x,s
y
(disc(k(z+ ·)) = 0 , (10)

for any s ∈K, z ∈ supp(k), and H n-a.e. y ∈ x−Z(s).
Such a condition is trivially fulfilled in several cases of
interest in applications. Therefore the general formulas
for the pointwise and global optimal bandwidth rN
given in Eq. 8 and Eq. 9, respectively, apply for
λ̂

ν ,N
Θn

(x) too, provided that H n
xπ

x,s
y
(disc( 1

bd
1B1(0)(z +

·)) = 0, for any s ∈ K, z ∈ B1(0), and H n-a.e. y ∈
x−Z(s).

As an example we consider an inhomogeneous
Boolean model of segments of the type [0, l]× {0}
in R2, with random length l ∼ U(0,L) (we have
chosen L = 0.2 for numerical studies) in the compact
window W = [0,1]2, where the underlying Poisson
point process has intensity f (x1,x2) = cx2

1. From Eq.
2 it follows that

λΘ1(x1,x2) =
1

12
L3c− 1

3
L2cx1 +

1
2

Lcx2
1 ,

and by Eq. 8

ro,AMSE
N (x1,x2) =

5

√√√√256
[

1
12 L3− 1

3 L2x1 +
1
2 Lx2

1

]

3NcL2π2 .

Fig. 1 shows, for c = 700, the natural estimator
for this type of random closed set as a function of the
bandwidth, expressed in pixel (1 pixel = 0.0029). To
carry out the numerical experiments, we have studied
the estimator at a fixed point (0.5, 0.5) of the compact
window W = [0,1]2.

For N = 10, Fig. 1a shows that the choice r =

ro,AMSE
N provides a good estimation of the theoretical

mean density; in fact, for this value of the bandwidth,
|λ̂ ν ,N

Θ1
(0.5,0.5) − λΘ1(0.5,0.5)| = 0.2973. For N =

100, Fig. 1b shows that the theoretical optimal value
of r is still one of the best choices for the estimation of
the mean density. One may notice that the estimation
improves with respect to the case N = 10; in fact for
r = ro,AMSE

100 we have |λ̂ ν ,N
Θ1

(0.5,0.5)−λΘ1(0.5,0.5)|=
0.0614. We conclude that the optimal bandwidth is
one of the best choices for the estimation of the mean
density, and as N→∞ the estimation improves. Finally
we may observe that the natural estimator has good
stability properties with respect to the choice of the
bandwidth.

OPTIMAL BANDWIDTH FOR λ̂
µ,N
Θn

It is not difficult to see that

Bias(λ̂ µ,N
Θn

(x)) =
P(x ∈Θn⊕rN

)

bd−nrd−n −λΘn(x) , (11)

Var(λ̂ µ,N
Θn

(x)) =
λΘn(x)

Nrd−n
N bd−n

+o
( 1

Nrd−n
N

)
. (12)

Therefore, it would be necessary to provide a Taylor
series expansion of Bias(λ̂ µ,N

Θn
(x)), or equivalently of

P(x ∈Θn⊕rN
).
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Fig. 1. Comparison of the natural estimator and
the theoretical value (λΘ1(0.5,0.5) = 13.30) at
point (0.5,0.5) for an inhomogeneous Boolean
model of segments with intensity f (x1,x2) = 700x2

1.
In (a) N = 10; for ro,AMSE

10 ≈ 77pixel(0.2973)
λ̂

ν ,N
Θ1

(0.5,0.5) = 13.5973. In (b) N = 100; for

ro,AMSE
100 ≈ 49pixel(0.1425) λ̂

ν ,N
Θ1

(0.5,0.5) = 13.2386.

A particular class of germ-grain models Θn for
which an explicit expression of P(x ∈ Θn⊕rN

) is
available, is the class of Boolean models; in that case
we get:

P(x ∈Θn⊕rN
) =

1− exp
{
−
∫

K

∫

x−Z(s)⊕rN

f (y,s)dyQ(ds)
}
. (13)

For numerical experiments of λ̂
µ,N
Θn

consider the
Boolean model of segments analyzed in Section

Optimal bandwidth for λ̂
ν ,N
Θn

.
Since a general formula for the optimal bandwidth is
not yet available in the literature, we will minimize
the asymptotic approximation of the mean square error
directly in this particular example. To this aim, a
standard calculation of the integral in Eq. 13 leads to:

P(x ∈Θ2⊕rN
) = 1− exp

{
− cLrN

(1
6

L2− 2
3

Lx1

+ x2
1−

1
6

LπrN +
1
2

(4
3

r2
N + rNπx1

))}
; (14)

then, by a Taylor series expansion of the exponential
term in Eq. 14, we get that Bias(λ̂ µ,N

Θ2
(x)) = CBrN +

o(rN), where

CB(x1,x2) :=− 1
12

L2
πc+

1
4

πx1cL

− 1
4

c2L2
(1

6
L2− 2

3
Lx1 + x2

1

)2
,

and so AMSE(λ̂ µ,N
Θ2

(x)) = C2
Br2

N + λΘ1(x1,x2)/2NrN ;
thus it follows

ro,AMSE
N (x1,x2) =

3

√
λΘ1(x1,x2)

4NC2
B(x1,x2)

.

Fig. 2 shows the estimator λ̂
µ,N
Θn

at point (0.5,0.5), as a
function of the bandwidth r (in pixel) for two different
sample sizes (N = 10, and N = 100). In Fig. 2a, where
the sample size N is equal to 10, we can observe that,
near the optimal bandwidth, λ̂

µ,N
Θ1

provides a very good
estimation of the mean density; in fact for the optimal
value of r we have |λ̂ µ,N

Θ1
(0.5,0.5)− λΘ1(0.5,0.5)| =

1.8556. In Fig. 2b, where N = 100, the estimation
improves; indeed |λ̂ µ,N

Θ1
(0.5,0.5) − λΘ1(0.5,0.5)| =

0.70, for r equal to the asymptotic optimal bandwidth.
We can conclude that the optimal bandwidth leads to a
good estimation of the mean density, which improves
as N increases.

Finally observe that as r → +∞ the estimator
decreases as the function 1

2r (Fig. 3), in accordance
with the definition of the estimator.

We wish to mention that general results for
the optimal bandwidth for inhomogeneous (and not-
necessarily Boolean) models of random closed sets are
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not yet available in literature.
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Fig. 2. Comparison of the “Minkowski content”- based
estimator and the theoretical value (λΘ1(0.5,0.5) =
13.3) at point (0.5,0.5) for an inhomogeneous
Boolean model of segments with intensity f (x1,x2) =

700x2
1. In (a) N = 10; for ro,AMSE

10 ≈ 9pixel(0.0271)
λ̂

µ,N
Θ1

(0.5,0.5) = 15.1556. In (b) N = 100; for

ro,AMSE
100 ≈ 4pixel(0.0126) λ̂

µ,N
Θ1

(0.5,0.5) = 14.

PARTICULAR CASES

As a confirmation of the validity of our results, in
this section we wish to present particular cases (for
n = 0, and for stationary Θn) which have already been
treated in literature.
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Fig. 3. The “Minkowski content”-based estimator (for
N = 10) at point (0.5,0.5) for an inhomogeneous
Boolean model of segments with intensity f (x1,x2) =
700x2

1, compared with the function 1
2r (in green).

RANDOM VARIABLES AND POINT
PROCESSES (n=0)
Let Θ0 ≡ X be a continuous random variable

with pdf fX (equivalently, with mean density λX =
fX ). In order to apply the above results, X may be
considered as the trivial germ-grain process driven by
the marked point process Φ = {(X ,s)} in R with mark
space K = Rd , consisting of one point (X) only, with
grain Z(s) := s, and intensity measure Λ(d(y,s)) =
f (y)dyδ0(s)ds, being δ0 the usual Dirac delta function
in 0. In this case the kernel estimator λ̂

κ,N
X (x) defined

in Eq. 4 reduces, as expected, to usual kernel density
estimator for random variable well known in classical
literature. Known results on the optimal bandwidth
(Parzen, 1962; Silverman, 1986; Hardle, 1991, p. 59)
follows now as particular case by Eq. 8 and Eq. 9. For a
more detaild discussion, see Camerlenghi et al. (2014,
Section 3.3.1). With regard to the natural estimator
λ̂

ν ,N
X (x) and the “Minkowski content”-based estimator

λ̂
µ,N
X (x), we notice that both estimators reduce, in this

case, to the usual histogram density estimator, also
known in literature as naive estimator,

λ̂
ν ,N
X (x) = λ̂

µ,N
X (x) =

1
N2rN

N

∑
i=1

1[x−rN ,x+rN ](Xi) ,

where X1, . . . ,XN is an i.i.d. random sample for X .

As a more significant example of a random set Θ0
with dimension n = 0, let us consider a point process
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Ψ in Rd with intensity function fΨ. In Camerlenghi et
al. (2014) the following statement has been proven:

Proposition 4 Let {Ψi}i∈N be a sequence of point
processes in Rd , i.i.d. as Ψ, with intensity function
λΨ ∈C2, and locally bounded second moment density
g, and let k be a kernel with compact support,
continuous at 0. Then the kernel density estimator

λ̂
κ,N
Ψ

(x) =
1

Nrd
N

N

∑
i=1

∑
x j∈Ψi

k
(x− x j

rN

)
(15)

of λΨ(x) is asymptotically unbiased and weakly
consistent for H d-a.e. x ∈ Rd if rN is such that

lim
N→∞

rN = 0 and lim
N→∞

Nrd
N = ∞ .

Moreover, the pointwise optimal bandwidth ro,AMSE
N (x)

is given, for H d-a.e. x ∈ Rd , by

ro,AMSE
N (x) =

4+d

√√√√√√√

dλΨ(x)
∫

Rd
k2(z)dz

4N
(

∑
|α|=2

1
α!

Dα
x λΨ(x)

∫

Rd
k(z)zα dz

)2 ,

while the global optimal bandwidth ro,AMISE
N,W is given,

for any compact window W ⊂ Rd , by

ro,AMISE
N,W =

4+d

√√√√√√√

dE[Ψ(W )]
∫

Rd
k2(z)dz

4N
∫

W

(
∑
|α|=2

1
α!

Dα
y λΨ(x)

∫

Rd
k(z)zα dz

)2
dx

.

Note that by choosing k(z) := 1
bd

1B1(0)(z) in Eq. 15,
with N = 1, we reobtain the well known classic and
widely used Berman-Diggle estimator (Diggle, 1985;
Berman and Diggle, 1989; van Lieshout, 2012)

λ̂
κ,N
Ψ

(x) =
Ψ(Br(x))

bdrd .

In order to show numerical results, let Ψ be a
Poisson point process in R2 with intensity function
λΨ(x1,x2) = x2

1 +x2
2. We want to estimate the intensity

function of Ψ in the compact window W := [−2,2]2,
by means of λ̂

κ,N
Ψ

(x) and λ̂
ν ,N
Ψ

(x), for a sample size
N = 1000.

Fig. 4a shows the first estimator, where we have
adopted the kernel of Epanechnikov:

k(t) =
{

2
π
(1− x2

1− x2
2) , if (x1,x2) ∈ B1(0)

0 , otherwise

and the optimal bandwidth at each point of estimation,
that is

ro,AMSE
N (x1,x2) =

6

√
6(x2

1 + x2
2)

Nπ
;

on the other hand, by Proposition 4, it is easy to see
that the uniform optimal bandwidth at all points in W
is

ro,AMISE
N,W =

6

√
64
Nπ

.

We would like to compare the kernel estimation
at (1.8,1.8), obtained by employing the optimal
bandwidth at this point (λ̂ κ,N

Ψ,o (1.8,1.8)), and the
corresponding estimation generated by using the
uniform optimal bandwidth in W (λ̂ κ,N

Ψ,u (1.8,1.8)).
At point (1.8,1.8) the theoretical value of the
intensity function is λΨ(1.8,1.8) = 6.48, the optimal
bandwidth is ro,AMSE

1000 = 0.4809 and the corresponding
kernel estimation is λ̂

κ,N
Ψ,o (1.8,1.8) = 6.4636

(|λ̂ κ,N
Ψ,o (1.8,1.8)− λ (1.8,1.8)| = 0.0164); instead the

uniform optimal bandwidth is ro,AMISE
1000,W = 0.5226,

and the corresponding estimation λ̂
κ,N
Ψ,u (1.8,1.8) =

6.4350 (|λ̂ κ,N
Ψ,u (1.8,1.8)− λ (1.8,1.8)| = 0.045). Both

estimations are accurate, but the first one is better,
since it employs the optimal bandwidth at the fixed
point (1.8,1.8).

Fig. 4b shows the natural estimator in the compact
window W , generated by employing the theoretical
optimal bandwidth at each point in the compact
window:

ro,AMSE
N (x1,x2) =

6

√
2(x2

1 + x2
2)

Nπ
;

as in the previous case, it is easy to obtain the uniform
optimal bandwidth:

ro,AMISE
N,W =

6

√
16

3Nπ
.

As before, we will analyze the behavior of
λ̂

ν ,N
Ψ

(1.8,1.8), obtained by employing the optimal
bandwidth in the point (1.8,1.8), and the same
estimation generated by using the uniform optimal
bandwidth in W . At the chosen point (1.8,1.8),
the optimal bandwidth is ro,AMSE

1000 = 0.4005 and the
corresponding natural estimation λ̂

ν ,N
Ψ,o (1.8,1.8) =
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6.4821 (|λ̂ ν ,N
Ψ,o (1.8,1.8)− λ (1.8,1.8)| = 0.0021); the

uniform optimal bandwidth is ro,AMISE
1000,W = 0.3454, and

the corresponding estimation λ̂
ν ,N
Ψ,u (1.8,1.8) = 6.5133

(|λ̂ ν ,N
Ψ,u (1.8,1.8)− λ (1.8,1.8)| = 0.0333). As before,

the first estimation is more accurate, since it employs
the optimal bandwidth at the relevant point.
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Fig. 4. Estimators for the intensity function of a
Poisson point process, for N = 1000, for two different
kernels. (a) shows λ̂

κ,N
Ψ

(x1,x2), where k is the kernel
of Epanechnikov and we have used the optimal
bandwidth ro,AMSE

N (x1,x2) at each point. (b) shows the
natural estimator λ̂

ν ,N
Ψ

(x1,x2); here we have used the
optimal bandwidth ro,AMSE

N (x) at each point.

THE CASE OF STATIONARY Θn

Let Θn be stationary; we assume here that, in
the point process representation, Φ = {(xi,si)}i∈N
is an independent marking of the marginal process
{xi}i∈N, which is itself stationary, so that Λ(d(x,s)) =
cdxQ(ds), i.e., f (x,s) ≡ c, for any (x,s) ∈ Rd ×K.
Thus, λΘn(x) ≡ cE[H n(Z)] for H d-a.e. x ∈ Rd , and
the optimal bandwidth rN associated with the proposed
estimators will be independent of x as well.

Optimal bandwidth for λ̂
κ,N
Θn

and λ̂
ν ,N
Θn

We point out that in the stationary case a kernel
type estimation would be irrelevant, since the intensity
of the point process is constant; though we treat this
case too in order to show the full compatibility of our
approach with the standard one, in which we may just
take global “means” in the observation window (see,
e.g., Beneš and Rataj (2004) and the next paragraphs
for further details).

In (Camerlenghi et al., 2014) the following
implications have been shown:

– (A1)⇒ Bias(λ̂ κ,N
Θn

(x)) = 0 for any bandwidth r >
0, and any sample size N;

– (A1) and (A3) ⇒ λ̂
κ,N
Θn

is strongly consistent for
H d-a.e. x ∈ Rd , as N→ ∞.

It is worth noting that whenever Θn is a Boolean
model such that E[(H n(Z))2]< ∞, and the kernel k is
assumed to be continuous in the interior of its support,
then ro,MSE =+∞ (Camerlenghi et al., 2014).

The same conclusions hold for λ̂
ν ,N
Θn

too, by
choosing k(z) := 1

bd
1B1(0)(z). This is in accordance

with both intuition and known results in literature
for the optimal bandwidth of the kernel estimators of
the intensity of homogeneous Poisson point processes.
In particular, if W is the observation window of any
realization of a homogeneous Poisson point process
Ψ in Rd (and so N = 1), and |W | its volume, being

λ̂
ν ,1
Ψ

(x)
(3)
= 1

bdrd Ψ(Br(0)) for any x ∈ Rd , we reobtain
that the best unbiased estimator of the intensity λΨ of
Ψ is given by (taking ro,MSE =+∞) λ̂Ψ = Ψ(W )/|W |,
with |W | → ∞.

In order to carry out numerical experiments for
λ̂

ν ,N
Θn

in the stationary case, we have considered a
Boolean model of segments of the type [0, l]× {0}
with random length l ∼ U(0,L), where L = 0.2,
in the compact window W = [0,1]2. Furthermore,
assume that the underlying Poisson point process has
constant intensity f (x1,x2) = c > 0. It is obvious that
λΘ1 = cL/2.
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Fig. 5 shows the natural estimator at the fixed point
(0.5,0.5), for different values of the bandwidth r (in
pixel). Since the optimal bandwidth is +∞, we expect
that, as r grows to infinity, the estimation improves,
which is confirmed: the estimator seems to stabilize
after a certain value of r. By comparing Fig. 5a, where
N = 10, and b, where N = 100, the estimation improves
as the sample size grows to infinity; in fact for N = 100
the value after which the estimator stabilizes is less
than the corresponding value for N = 10.
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Fig. 5. Comparison between the natural estimation
and the theoretical value at the point (0.5,0.5) for
a homogeneous Boolean model of segments with
intensity f (x1,x2) = 300. In (a) N = 10; in (b) N =
100. The optimal bandwidth is +∞.

5.2.2 Optimal bandwidth for λ̂
µ,N
Θn

We denote by Φi(A) the i-th total curvature
measure of any compact set A ⊂ Rd with positive
reach, as introduced in Federer (1959), for i =
0, . . . ,d−1.

Proposition 5 (Camerlenghi et al., 2014) Let Θn be
a Boolean model with intensity measure Λ(d(y,s)) =
cdyQ(ds), satisfying Assumption (A1), and such that,
for any s ∈ K, reachZ(s) > R, for some R > 0. Let us
assume also that E[Φi(Z)]< ∞ for all i = 0, . . . ,n−1.
Then, the optimal bandwidth associated with λ̂

µ,N
Θn

is
given by

ro,AMSE
N :=





3

√
cE[H n(Z)]

N
(
πcE[Φn−1(Z)]−2(cE[H n(Z)])2

)2

if d−n = 1,

d−n+2

√
(d−n)bd−ncE[H n(Z)]

2N
(
cbd−n+1E[Φn−1(Z)]

)2

if d−n > 1,
(16)

independent of x ∈ Rd .

To understand further the behavior of λ̂
µ,N
Θn

in the
stationary case, consider the Boolean model of
segments of the previous section. It is easy to calculate
the optimal bandwidth, that is:

ro,AMSE
N = 3

√
cEL

N(cπ−2c2(EL)2))2 . (17)

Fig. 6 shows λ̂
µ,N
Θn

(0.5,0.5) as a function of the
bandwidth r (in pixel). In Fig. 6a (N = 10) observe
that for r = ro,AMSE

N the estimation approaches very
well the theoretical value of the mean density,
even if N is low (|λ̂ µ,10

Θ1
(0.5,0.5)− λΘ1(0.5,0.5)| =

2.72). In Fig. 6b (N = 100) the best value of
the estimation is achieved when r is equal to the
theoretical optimal bandwidth, furthermore as N grows
the estimation improves; in fact, for r = ro,AMSE

100 ,

|λ̂ µ,100
Θ1

(0.5,0.5) − λΘ1(0.5,0.5)| = 1.5833. We can
conclude that the estimator is optimal for the choice
r = ro,AMSE

N and the estimation improves as the
dimension of the sample size diverges to infinity.
Finally, observe that as r → +∞, the estimator
decreases as 1

2r , which is the same conclusion
we have reached for the inhomogeneous case.
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Fig. 6. Comparison of the “Minkowski content”-based
estimator and the theoretical value (λΘ1(0.5,0.5) =
30) at the point (0.5,0.5) for a homogeneous Boolean
model of segments with intensity f (x1,x2) = 300. In (a)
we have chosen N = 10; for ro,AMSE

10 ≈ 5pixel(0.016),
we have λ̂

µ,N
Θ1

(0.5,0.5) = 27.28. In (b) we have chosen

N = 100, for ro,AMSE
100 ≈ 3pixel(0.0074), we have

λ̂
µ,N
Θ1

(0.5,0.5) = 28.4167.

CONCLUDING REMARKS

Based on the numerical simulations we may now
offer here some comparison about the computational
advantages / disadvantages of the estimators proposed
by the authors in Villa (2014), and Camerlenghi et al.
(2014).

From a purely computationally point of view,
it emerges the “Minkowski content”-estimator as

the most treatable, as one may easily realize by
considering that for this estimator we just need to
count relevant pixels of the random object (Eq. 6),
while for the kernel estimator a, generally nontrivial,
computation of integrals is required (Eq. 4). This is
the main reason why we have reduced our numerical
simulation to the sole point process case.

The natural estimator, which is a particular case
of the kernel estimator, seems to be computationally
easier to handle; further for point processes the choice
of the kernel does not seem to be of much influence.
The stationary case has been extensively studied in
the literature. It is worth noticing that the optimal
bandwidth for a generic kernel estimator is infinity,
whenever Θn is a stationary Boolean model, in
accordance to well known results in the literature.
In applied problems, an infinite optimal bandwidth is
equivalent to the choice of an observation window as
large as possible.

As far as the behaviour of the proposed estimators
with respect to the choice of the bandwidth is
concerned, we have in particular realized that the
natural estimator results to be more stable; i.e.,
the “Minkowski content”-based estimators are quite
sensitive to the choice of the bandwidth, while
for kernel estimators it is only important that the
bandwidth has the correct order of magnitude (Fig. 1-
2).

For the time being we have not yet taken into
account possible edge effects, which require further
analysis.
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APPENDIX

To fix the notation, α := (α1, ...,αd) will be a
multi-index of Nd

0 ; we will denote

|α| := α1 + · · ·+αd

α! := α1! · · ·αd!

yα := yα1
1 · · ·y

αd
d

Dα
y f (y,s) :=

∂ |α| f (y,s)
∂yα1

1 · · ·∂yαd
d

;

furthermore, for all s ∈K, we will denote

D (α)(s) := disc(Dα
y f (y,s)) , D(s) := disc( f (·,s)) .

Furthermore, we list here the assumptions on Φ which
have been adopted in the text.

(A1) for any (y,s) ∈ Rd ×K, y+ Z(s) is a countably
H n-rectifiable and compact subset of Rd , such
that there exists a closed set Ξ(s)⊇ Z(s) such that
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∫
K H n(Ξ(s))Q(ds)< ∞ and

H n(Ξ(s)∩Br(x))≥ γrn ∀x ∈ Z(s), ∀r ∈ (0,1)
(18)

for some γ > 0 independent of s;

(A1) as (A1), replacing (18) with

γrn≤H n(Ξ(s)∩Br(x))≤ γ̃rn ∀x∈Z(s), r∈ (0,1)

for some γ, γ̃ > 0 independent of s;

(A2) for any s∈K, H n(disc( f (·,s))) = 0 and f (·,s) is
locally bounded such that for any compact K ⊂Rd

sup
x∈K⊕diam(Z(s))

f (x,s)≤ ξ̃K(s)

for some ξ̃K(s) with
∫

K
H n(Ξ(s))ξ̃K(s)Q(ds)< ∞ ;

(A2bis) for any s ∈ K, H n(D (α)(s)) = 0 and
Dα

y f (y,s) is locally bounded such that, for any
compact C ⊂ Rd ,

sup
y∈C⊕diamZ(s)

|Dα
y f (y,s)| ≤ ξ̃

(α)
C (s)

for some ξ̃
(α)
C (s) with

∫

K
H n(Ξ(s))ξ̃ (α)

C (s)Q(ds)< ∞ ;

(A3) for any (s,y, t)∈K×Rd×K, H n(disc(g(·,s,y, t)))=
0 and g(·,s,y, t) is locally bounded such that for
any compact K ⊂ Rd and a ∈ Rd ,

1(a−Z(t))⊕1(y) sup
x∈K⊕diam(Z(s))

g(x,s,y, t)≤ ξa,K(s,y, t)

for some ξa,K(s,y, t) with

∫

Rd×K2
H n(Ξ(s))ξa,K(s,y, t)dyQ[2](ds,dt)< ∞ .

(19)

(A3) for any s, t ∈K , g(·,s, ·, t) is locally bounded such
that, for any C,C ⊂ Rd compact sets:

sup
y∈C⊕diamZ(t)

sup
x∈C⊕diamZ(s)

g(x,s,y, t)≤ ξC,C(s, t)

for some ξC,C(s, t) with

∫

K2
H n(Ξ(s))H n(Ξ(t))ξC,C(s, t)Q[2](ds,dt)<∞ .

(20)

For a discussion on the above assumptions and on
how they simplify in certain particular cases, for
instance whenever Θn is a Boolean model (i.e., Φ is
an independently marked Poisson point process), see
Villa (2014, Sec. 3.1) and Camerlenghi et al. (2014).
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