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Chain codes compactly represent raster curves, but there is still a lot of room for improvement by means 

of data compression. Several statistics-based chain code compression techniques assign shorter extra 

codes to frequent pairs of consecutive symbols. Here we systematically extend this concept to patterns of 

up to k > 2 symbols. A curve may be represented by any of the exponentially many overlapped chains of 

codes, and the dynamic programming approach is proposed to determine the optimal chain. We also 

propose utilization of multiple averaged hard coded pseudo-statistical models, since the exact statistical 

models of individual curves are often huge, and they can also significantly differ from each other. A 

competitive compression efficiency is assured in this manner and, as a pleasant side effect, this 

efficiency is less affected by the curve’s shape, rasterization algorithm, noise, and image resolution, 

than in other contemporary methods, which surprisingly do not pay any attention to this problem at all. 

Povzetek: V članku predstavimo novo metodo za statistično stiskanje verižnih kod, ki dodeli posebne 

kode pogostim nizom do k simbolov. Optimalno izmed eksponentno mnogo rešitev izbere z dinamičnim 

programiranjem. Uporablja več povprečenih psevdo-statističnih modelov, ki jih ne shranjuje skupaj s 

krivuljo. V primerjavi z drugimi sodobnimi metodami doseže konkurenčno stopnjo stiskanja, hkrati pa je 

manj občutljiva na obliko krivulje, posebnosti rasterizacijskega algoritma, šum in ločljivost slike. 

 

1 Introduction 
Chain codes compactly represent curves in raster images. 

More than half a century ago, Freeman [3] used symbols 

i  [0 .. 7] to represent each curve pixel pi with the 

azimuth direction (i  45) from its predecessor pi–1 

measured anticlockwise from the positive x-axis (Fig. 

1a). Each symbol is then coded with 3 bits. Alternatively, 

only 2 bits per pixel are required if the representation 

relies on 4-connectivity, i.e. the azimuth pi – pi–1 is (i  

90), where i  [0 .. 3] (Fig. 1b). Several alternative 

chain code representations were later introduced, but the 

concept remains the same as in the pioneering Freeman 

chain codes in eight (F8) or four (F4) directions: 

symbols from a relatively small alphabet are assigned to 

subsequent primitives along a curve. In different 

representations, a primitive may refer to a curve pixel (as 

in F8 or F4), a vertex between the considered curve pixel 

and adjacent pixels (Vertex Chain Code – VCC [2] or 

Three-Orthogonal chain code – 3OT [10]), an edge 

separating the curve pixel from a background pixel 

(Differential Chain Code – DCC [9]), or a rectangular 

cell of pixels (in quasi-lossless representation from [9]). 

Meanwhile, a symbol models some local geometric 

relation e.g. relative position of the observed primitive 

with respect to the previous one. With other words, it 

represents a command how to navigate from one 

primitive to the adjacent one along the curve. All these 

basic chain code representations describe a raster curve 

efficiently, as they use only 2 or 3 bits per primitive 

instead of coding grid coordinates with, for example, 

2  16 bits per pixel. Nevertheless, numerous successful 

methods have been proposed to additionally compress 

raster curves.  

 

Figure 1: Freeman chain codes in 8 and 4 directions. 

Statistical (Huffman or arithmetic) coding is often 

utilized when the symbols’ probability distribution is 

significantly non-uniform. Further advances in statistics-
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based approaches were achieved by introducing extra 

codes for frequent pairs of primitives [7, 8], or by 

utilization of multiple statistical models in so-called 

context-based approaches [1], where the statistical model 

for coding a considered symbol is conditioned on the 

context of M (typically 1 or 2) previous symbols. On 

the other hand, non-statistical approaches perform 

various string transformations [11, 12], e.g. Burrows-

Wheeler Transform (BWT) and/or Move-To-Front 

Transform (MTFT) to increase the number of 0’s and 

prepare the data for efficient run-length encoding (RLE) 

and/or binary arithmetic coding (BAC). BWT rearranges 

the sequence into runs of equal symbols, while MTFT 

utilizes local correlations to replace the data values with 

their indices from typically smaller repertoire. 

In this paper, we introduce a new statistics-based 

approach where extra codes may represent patterns of up 

to k = O(1) symbols. Our aim was to achieve a 

competitive compression efficiency, but an interesting 

pleasant side effect was encountered and brought into 

focus during the method development and testing. 

Namely, impacts of the curve shape, image resolution, 

rasterization algorithm, noise, and geometric 

transformations on the compression ratio are 

significantly reduced in comparison to other 

contemporary methods. This topic has been so far 

addressed indirectly within the context-based approaches 

and, partially, in the non-statistical approaches, while it 

was completely neglected in other related works. Section 

2 illustrates the overall idea of the proposed approach. 

Section 3 describes the preparation and utilization of 

multiple averaged hard coded pseudo-statistical models, 

crucial for the minimization of the mentioned impacts. 

Section 4 experimentally confirms the compression 

efficiency and the reduced dependence on curve’s 

artefacts. Finally, Section 5 summarizes the presented 

work, and discusses future research challenges. 

 

Figure 2: Freeman’s chain difference coding. 

2 New statistics-based method 
Some years after F8 and F4, Freeman also proposed the 

chain-difference coding (CDC) [6]. A pixel pi is encoded 

with the angle difference ∠(pi – pi–1, pi–1 – pi–2). Unlike 

F8 where all 8 symbols have practically the same 

probabilities, the 0° angle difference is usually much 

more frequent than other 7 symbols (Fig. 2). All 8 

symbols in Fig. 1a have probabilities either 6/43  

13.95% or 7/43  16.28%, and the probabilities of four 

symbols in Fig. 1b are either 16/63  25.40% or 15/63  

23.81%. On the other hand, the probability of symbol 0 

in Fig. 2 is 32/42  76.19% while the probabilities of 

other 7 symbols are all below 10%. Such non-uniform 

distribution provides a good basis for statistical coding. 

However, some tens of bits must be spent to store the 

best-fitted statistical model (BFSM) for an individual 

curve, which is, particularly with shorter curves, not 

negligible. Liu and Žalik [6] presented the directional 

difference chain coding (DDCC), where CDC BFSMs of 

over 1000 training curves are averaged into a suboptimal 

hard-coded statistical model (HCSM), which is then used 

for compression in non-training use cases. Some years 

later, the compressed DDCC (C_DDCC) [7] was 

introduced, where three extra codes for usually frequent 

pairs 45°, 45° and for patterns of 12 to 27 zeros were 

added into the HCSM. The two pairs were intuitively 

identified, as they periodically interrupt sequences of 0° 

symbols along oblique line segments (except those with 

slopes 45° or -45°).  

Here we take a step forward by systematically 

extending the DDCC coding scheme with extra codes for 

patterns of up to k = O(1) symbols, k  2. Furthermore, 

we group “similar” training curves into classes and 

derive HCSMs separately for each class. Although this 

concept looks straightforward, several non-trivial issues 

must be considered to achieve a feasible implementation 

and a competitive compression efficiency. These issues 

can be structured into two separate phases.  

1. The training phase is performed by an 

expert/developer in order to calibrate the algorithm 

for future use. A representative repertoire of training 

curves is first provided, and the BFSM for each 

curve is extracted. Features for multicriteria 

classification of training curves are selected 

(intuitively in the current implementation), and the 

training curves are then assigned to the classes. 

HCSMs are derived afterwards by separately 

averaging BFSMs within the classes. The detailed 

description follows in Section 3. 

2. The exploitation phase is run by end-users in order 

to compress non-training curves from concrete use 

cases. An input curve is first analysed to determine 

the feature values needed to heuristically select the 

most appropriate of the stored HCSMs. The chosen 

HCSM is then utilized to compress the curve with 

Huffman coding. The main challenge in designing 

this phase is the strategy for determination of the 

optimal sequence (chain) of codes, which is 

emphasized after the definitions. 
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2.1 Definitions 

Trail Ti, j = vi, ..., vj, i ≤ j, is a sequence of adjacent 

pixels (or corresponding graph vertices) along a raster 

curve. The length of the trail (in pixels) is h(i, j) = j – i + 

1. The trail T1, n = v1, ..., vn corresponds to the entire 

raster curve of length n.  

Trail decomposition splits the trail into one or more 

nested trails, whose concatenation reassembles the 

original trail. A trail Tu, v is nested in Ti, j if i ≤ u ≤ v ≤ j. 

Symbol is a chain-code command aimed to be assigned 

to a single pixel along a raster curve. 

Pattern (of symbols) i, j = i, ..., j, i ≤ j, is a 

sequence of symbols aimed to be assigned to pixels of a 

trail of the same length h(i, j). 

Dynamic programming graph is an edge-weighted 

graph (G, w), where G = (V, E) is a directed graph, V = 

{v1, ..., vn+1} is a vertex set, E = {ei,j} is an edge set, 

given by pairs of vertices ei,j = (vi, vj), i < j, and w : E → 

ℕ is a weight function. Vertices v1, ..., vn correspond to 

pixels along the raster curve, edge ei,j represents a trail 

vi, ..., vj–1, and weight wi,j of an edge ei,j is the bit length 

of the corresponding Huffman code. 

An auxiliary end vertex vn+1 does not represent any 

curve pixel and, thus, there is no need to assign a symbol 

to it. However, this vertex enables introduction of edges 

ei,n+1, i ≤ n, corresponding to trails Ti, n = vi, ..., vn. 

IN(i) is the set of start vertices of all graph edges with 

the end vertex vi. vj  IN(i)  ej,i  E. Vertex vj is a 

predecessor of vj and the latter is a successor of vj. 

OUT(i) is the set of end vertices of all graph edges with 

the start vertex vi. vj  OUT(i)  ei,j  E. 

Extra code is a Huffman code which replaces a pattern 

of two or more symbols in order to save some bits.  

p(i, j) is the probability of a pattern i, j = i, ..., j in a 

considered statistical model. If the latter corresponds to 

the BFSM of a curve described with T1, n = v1, ..., vn, 

then we get equation (1): 

p(i, j) = f(i, j) / (n – h(i, j) + 1),      (1) 

where f(i, j) be the number of appearances of i, j in the 

pattern assigned to v1, ..., vn. However, p(i, j) in some 

HCSM is obtained by averaging the corresponding 

probabilities from all participating BFSMs. 

Note that an edge ei,j, i < j – 1, is added into the 

graph only if an extra code exists for the corresponding 

pattern assigned to Ti, j–1. On the other hand, edges ei, i+1 = 

(vi, vi+1) correspond to single-pixel trails Ti, i = vi and 

they are unconditionally added to the graph. This assures 

that the algorithm of parsing the curve pixels will always 

reach the end vertex vn+1, as any other vertex has at least 

one successor, i.e. i ≤ n  |OUT(i)|  1. 

2.2 Exploitation phase 

The existing chain code techniques construct the chain of 

codes by a greedy algorithm. A raster curve is parsed 

primitive by primitive, and each of them is immediately 

coded either alone or as a member of some longer 

pattern. If different possibilities for coding a primitive 

exist, the predefined priority is decisive. In C_DDCC, for 

example, extra codes for 45°, 45° pairs have higher 

priority than the corresponding single-pixel codes. 

However, such priority-based greedy algorithms cannot 

be simply adjusted to efficiently handle higher number of 

extra codes for longer patterns of symbols. In the 

proposed approach, each pixel can be coded with its own 

code or, theoretically, with one of k codes of longer 

trails. For k = 6 as used in the current implementation 

and tests (the decision for this value will be explained at 

the end of Section 3.2), these trails include two pairs, 

three triplets and so on till six sextets. A longer context 

of patterns before and behind the considered symbol 

determines which of the 1 + 2 + … + k = k (k + 1) / 2 

possibilities (21 for k = 6) shall be used to code the pixel. 

We therefore have a combinatorial optimization problem 

where we look for an optimal chain from a large set of 

multiply overlapped chains. Unlike greedy algorithms, 

we found dynamic programming capable to provide an 

optimal choice. Its utilization also facilitates the so-called 

context dilution problem [1, 7]. Namely, introduction of 

extra codes for longer patterns of symbols usually 

extends codes of several symbols and other patterns. For 

example, introduction of four extra C_DDCC codes for 

patterns 0°, 45° and 45°, 0 prolongs by 1 bit the 

codes for 90°, 180°, RLE of zeros, 135° and/or –135°. 

Furthermore, examples of chains can be found where 

individual extra codes do not save any bits.  

The proposed dynamic programming approach is 

adaptation of the so-called exon chaining algorithm from 

the field of bioinformatics, the simplest of the so-called 

similarity-based gene prediction approaches [5].  

The dynamic programming optimizes the Bellman 

equation (2), where si represents the total bit length of the 

optimal chain from v1 to vi–1, 1 < i ≤ n + 1. Additionally, 

s0 is set to 0 to enable the recursive calculation of s1. 

si = minvj  IN(i)(sj + wj,i)      (2) 

The vertex predi  IN(i), which indeed participates 

to the minimum si, is also memorized for each vi. The 

sn+1 represents the total bit length of the overall solution, 

and the optimal chain itself is then reconstructed by 

following the vertices predi from vn+1 backwards to v1. 

Bold edges in Fig. 3 represent the optimal chain for the 

given example. Trails T1, 2, T3, 5, and T6, 9 are coded with 

4 + 6 + 8 = 18 bits. Note that an equivalent solution with 

sn = 18 exists, where the first trail terminates with v3, as 

demonstrated with a pair of dashed edges in Fig. 3. 

 

Figure 3: Dynamic programming graph. 
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The remarkable performance of the dynamic 

programming-based optimization is highlighted with 

Theorems 1 and 2. Although the growth of the number of 

solution candidates is exponential in curve length, the 

algorithm runs in linear time. 

Theorem 1. The number of possible decompositions of a 

trail grows exponentially with the trail length (in pixels) 

if extra codes for patterns of up to k > 1 symbols are 

used. 

Proof. Let ci(k) be the number of possible 

decompositions of T1, i, where the lengths of nested trails 

obtained by the decomposition do not exceed k. Each of 

these decompositions ends with the trail Ti–l+1, i of l 

vertices, 1 ≤ l ≤ min(i, k), preceded with one of ci–l(k) 

possible decompositions of T1, i–l. Note that for i < k, 

there are less than k symbols available and, thus, the 

upper bound for the length of the ending trail is min(i, k).  

The ending trail Ti–l+1, i can span through the entire 

T1, i (when i = l), resulting in an empty preceding T1, 0. 

Unlike the definition of trail in Section 2.1, we 

exceptionally allow i > j here. This situation is indicated 

by c0(k) = 1. 

Equation (3) defines the calculation of ci(k), i > 0.  

 

(3) 

Obviously, c1(k) = c0(k) = 1 as the first pixel of T1, i 

can be preceded by an empty trail only in a single way. 

Similarly, ci(1) = 1 since T1, i can be decomposed into 

single-pixel trails only in a single way. For k = 2, i > 1, 

equation (4) is obtained. 

ci(2) = ci–1(2) + ci–2(2), i > 1 (4) 

Let Fi represent the i-th Fibonacci number. The 

Fibonacci sequence is defined by F0 = 0, F1 = 1, and Fi = 

Fi–2 + Fi–1 for i > 1. This recursive formula gives F2 = 1 

and we may thus match c0(k) = F1 and c1(k) = F2. The 

equation (4) then gives: c2(2) = F2 + F1 = F3, c3(2) = F3 + 

F2 = F4, and ci(2) = Fi + Fi–1 = Fi+1. As Fi+1 > Fi, i > 1, we 

thus get the inequality (5). 

ci(2) > Fi, i > 1 (5) 

This result can be generalized to k > 2 by using the 

relation (6), which must be proved beforehand. 

ci(k + m) > ci(k), m  1, i > 1 (6) 

The proof is actually trivial. Due to the transitivity of 

“Is greater than”, it suffices to consider m = 1. The key 

observation is that all the decompositions counted by 

ci(k) are also counted by ci(k + 1) which, however, 

additionally counts the decompositions with at least one 

nested trail of length k + 1. The relation (5) may thus be 

generalized to the relation (7). 

ci(k) > Fi, k > 1  i > 1 (7) 

As the Fibonacci sequence Fi has the proven 

exponential growth, we may confirm that the sequence 

ci(k) also grows (at least) exponentially for k > 1. 

Theorem 1 is thus proved.     □ 

Note that we assumed in the theorem, that all the 

trails of up to k pixels are represented by edges of the 

dynamic programming graph, but this is usually not a 

case due to the statistical model reduction (Section 3.2). 

The proved exponential growth therefore represents only 

the theoretical worst case. However, as BFSMs and 

particularly HCSMs typically contain the majority of the 

patterns of length 2 (k = 2 suffices for the exponential 

growth) and also quite a few longer patterns, the 

expected growth may also be considered exponential. 

An interesting finding is that the recursion in 

equation (3) can be solved easily for k  i. Namely, 

substitution ci–2(k) + … + c0(k) = ci–1(k) transforms ci(k) 

= ci–1(k) + … + c0(k) into ci(k) = 2 ci–1(k). We may then 

recursively progress with such substitutions, i.e. 2 ci–1(k) 

= 22 ci–2(k) = … = 2i–1 c1(k), towards the equation (8). 

ci(k) = 2i–1, k  i > 0     (8) 

The result in equation (8) is expected, as any 

decomposition is obtained by breaking apart the trail in 

some interruption points between successive pixels. 

Since k  i, there are no limitations in the length of 

nested trails obtained by the decomposition. All the 

combinations from i single-pixel trails to a single trail 

spanning through entire T1, i are valid. There are i – 1 

interruption points in a trail with i symbols and thus 2i–1 

possible decompositions. 

Theorem 2. Optimal chain detection, based on the 

dynamic programming and utilization of extra codes for 

patterns of up to k = O(1) symbols, runs in  (n) time, 

where n is the curve length in pixels. 

Proof. The cardinality |IN(i)|, 1 < i ≤ n, cannot exceed k, 

as each vi may only represent the end of a trail (edge) of 

length between 1 and k. The upper bound for time 

complexity of calculating si, 1 < i ≤ n, is thus O(k n) = 

O(n) time if k = O(1). The lower bound however is 

achieved if the statistical model contains only single-

pixel symbols. But even in this case, the linear time is 

needed to parse the dynamic programming graph. The 

 (n) time complexity is thus proved.     □ 

3 Training phase 
Linear performance proved in Theorem 2 is not the only 

reason for limiting the length of patterns with attached 

extra codes to k = O(1) symbols. This also reduces the 

size of the statistical model, which has a mitigating effect 

on the context dilution problem. In the proposed study, k 

= 6 have been chosen among different considered values. 

The reasons for this decision shall be explained in 

Section 3.2. Even in this way, the statistical model 

derived from the basic DDCC scheme can theoretically 

contain 8 + 82 + ... + 86 = 299,592 entries. Although 

many of these patterns never appear in practice, and even 
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if we manage to further reduce the size of the statistical 

model (to some tens entries in practice), there is the only 

practical possibility to use an averaged statistical model 

(or more of them). Its derivation requires a careful 

consideration of the following important issues. 

3.1 Training set 

In the reported C_DDCC tests [7], relative compression 

ratio to F8 only slightly varies (between 0.46 and 0.55). 

This may lead to a conclusion that the derived HCSM 

serves well for all use cases. Furthermore, similar 

conclusions can be adopted for practically all existing 

methods, no matter whether they belong to statistics-

based or non-statistical approaches, and whether, in the 

first case, they use a HCSM or BFSMs. However, we 

must be aware that the training sets and testing use cases 

in presentations of these methods usually follow some 

curve creation and rasterization methodology and, thus, 

they share some evident common artefacts. In C_DDCC 

tests, for example, there were a huge probability of 

shorter sequences of 0 symbols, relatively high 

probabilities of 45°, 45° pairs, and rather low 

probabilities of 90 symbols. In our method, we may 

expect even bigger impact of the curve’s shape on the 

compression efficiency, as the distributions of longer 

patterns from a bigger repertoire can vary considerably 

from curve to curve. An averaged statistical model can 

thus deviate significantly from both, the BFSMs of 

individual training curves used to construct it in the 

training phase, and the distributions of patterns used to 

code testing curves in the exploitation phase. Since the 

latter directly affects the compression efficiency, we 

decided to use multiple averaged statistical models and, 

consequently, to classify the training curves and testing 

use cases regarding some chosen measurable artefacts. In 

this manner, the method gains generality, as the 

compression efficiency becomes less dependent on the 

curve creation and rasterization methodology. 

 

Figure 4: Different levels of forcing the 4-connectivity. 

To provide an adequate training set and a relevant 

mixture of testing use cases, we have implemented a tool 

with functionalities of image rotation and scaling, 

manual inversions of binary values of selected pixels, 

and extraction of the boundary chain of a presented 

binary object. In this last operation, the parameter Force-

4-connectivity controls the amount of 90° symbols 

along oblique edges and, thus, simulates different 

rasterization methodologies. Value 0% (Fig. 4a) means 

that the boundary chain consists only of pixels which 

share edges with the object’s exterior. On the other hand, 

value 100% (Fig. 4b) adds into the chain all the pixels 

which are vertex-connected with the object’s exterior. 

Such pixel is 4-connected with both adjacent chain 

pixels. In Fig. 4c, half of possible pixels of this kind 

(coloured grey) are randomly chosen and inserted into 

the chain. Finally, a special scenario is supported (Fig. 

4d) where a 4-connected pixel is only inserted if it 

represents a concave vertex between a horizontal and 

vertical edge (each at least two pixels long). 

 

Figure 5: Examples of training and testing objects. 

 

Basic shapes from the training set and use cases are 

shown in Fig. 5. They were mostly inherited from the 

tests made in [7, 11, 12]. Objects from the first two rows 

were used for testing (see Table 1), while the others 

belong to the training set. All together we used 50 basic 

shapes, i.e., 30 in the training set and 20 test cases. A 

variety of instances of these shapes in different 

orientations and scales, ranging between 150 and 20,000 

boundary curve pixels, and with different levels of 

forcing the 4-connectivity were utilized in the 

experiments. There are 500 shapes in the training set. 

3.2 Statistical model reduction 

The first step towards reducing huge amount of data in 

each BFSM and mitigation of the context dilution effect 

was already made by limiting k to O(1) symbols. We also 

do not have to consider patterns with probability 0. 

Furthermore, we may set even stronger conditions for the 

probability p(i, j) of a pattern to be accepted in a BFSM. 

Namely, a pattern i, j = i, ..., j is inserted in the 

statistical model only if p(i, j) is higher than the product 

of probabilities (weighted with w2) of any sequence of 

shorter patterns whose concatenation forms i, j. To 

prevent insertion of too low probabilities, we use 

additional threshold w1. The following statement 

considers patterns of length l = 3. 
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if (p(1, 3) > max(w1, w2 * max(p(1, 1)p(2, 2)p(3, 3),  

p(1, 1)p(2, 3) , p(1, 2)p(3, 3)))) 

then insert ((1, 3, w3 * 3 * p(1, 3)) into BFSM. 

As the patterns of lengths 2, 4, 5 and 6 must also be 

considered, as well as eventual future extensions, we 

generate all the concatenations algorithmically. A 

concatenation is obtained by breaking apart the pattern in 

some interruption points between successive symbols. 

There are l – 1 possible interruption points in a pattern of 

l symbols and thus 2l–1 – 1 possible concatenations. Here 

the subtracted 1 represents the non-interrupted pattern. 

For patterns of lengths 2 to 6, we thus must test 1 + 3 + 7 

+ 15 + 31 = 57 products. Obviously, the method must 

first evaluate shorter patterns, as their probabilities are 

used in acceptance criteria for longer ones. As we 

mentioned at the end of Section 2.1, single-pixel symbols 

are unconditionally included in a BFSM. 

Note that the weights w1, w2, and w3 offer a lot of 

possibilities for experimentation. They were also crucial 

for decision to use patterns of up to k = 6 symbols in our 

tests. As the probabilities are usually decreasing with the 

pattern length (with possible exceptions), the value of w1 

must be decreased if k = 7 is used instead of k = 6. 

However, this causes that additional shorter patterns of 

lengths 6, 5, 4 etc. are also accepted into a BFSM, 

increasing the size of the BFSM and emphasizing the 

context dilution effect in a negative way. On the other 

hand, this problem appears less evident when comparing 

k = 5 and k = 6. Although we have not performed a 

complete sensitivity analysis yet, the decision for k = 6 

seems a reasonably good choice confirmed by the results 

in Section 4. 

3.3 Statistical vs. pseudo-statistical model 

We do not wish (and neither we are able) to split 

probabilities of symbols and patterns among some longer 

patterns, as this would lead to the priority-based greedy 

approach, which we intentionally try to avoid. Each 

symbol consequently participates to probabilities of all 

the patterns, which include it. Strictly speaking, we use 

weighted probabilities (multiplied with w3 * l) to reward 

longer patterns by assigning shorter codes to them. The 

sum of such weighted probabilities in a model may be as 

high as (1 + 2 + 3 + 4 + 5 + 6) * w3 = 21w3. It is however 

lower because the patterns are added selectively, but it 

still exceeds 1. We apparently do not deal with true 

statistical models but with pseudo-statistical models 

instead. We shall use the acronyms BFPSM and HCPSM 

instead of BFSM and HCSM from this point on. 

Nevertheless, all weighted “pseudo-probabilities” are 

involved in a single Huffman tree construction. 

3.4 Averaging pseudo-statistical models 

Averaging is a two-stage process. During the extraction 

and reduction of the BFPSM of a considered training 

curve, several simply assessed curve artefacts are 

computed. These are then utilized for multicriteria 

classification, which assigns the curve into one of the 

pre-defined classes. From all the assessed features that 

will be used in future to algorithmically select optimal 

classification criteria, we currently use three intuitively 

chosen criteria listed below, each with a single threshold. 

• Average turn per pixel. Each 45° symbol 

participates 1 to this value, 90° symbols 2, 135° 

symbols 3, and 180° symbols 4. The sum is then 

divided with the curve length in pixels. This feature 

separates smooth curves from more winding and 

noisy ones. It is negatively correlated with the 

probabilities of 0° symbols and their longer runs. 

• Probability of 45°, 45° pairs is higher in curves 

with oblique segments than in those with mostly 

axis-aligned and/or ideally diagonal segments. 

• Probability of 90° symbols is usually higher in 

images of man-made objects than in natural objects.  

 

Three single-threshold criteria result in 8 classes 

with binary indices from 000 to 111, where the first bit 

represents the first criterion, and the third bit refers to the 

last criterion. 0’s signify values below the thresholds, and 

1’s those above the thresholds. In the current setting, the 

thresholds were computed by averaging the described 

quantities over the BFPSMs of all training curves.  

It turns out that the classes with indices 010(2) and 

101(2) are nearly twice more populated than others. In our 

training set with 500 shapes, there are 112 shapes in the 

class 101(2) and 99 shapes in the class 010(2), while the 

remaining six classes contain between 37 and 55 shapes. 

The testing use cases are also distributed in a similar 

way. This deviation can be explained by suboptimal 

training set, suboptimal thresholds selection and 

suboptimal classification criteria, which are all among 

the most important challenges for our future work. 

However, we may immediately establish that the 

currently used criteria are all correlated with the Force-4-

connectivity value. Firstly, all additional 4-connected 

pixels are coded with 90° symbols and thus increase the 

third criterion value. Secondly, such pixels are often 

inserted in the middle of 45°, 45° pairs, changing 

them into 90°, 90°, 0° triplets. Finally, a pair 45°, 

45° participates 2 to the first criterion (1 per pixel), 

while a 90°, 90°, 0° triplet participates 4 (1.33 per 

pixel). The first and the last criterion are thus positively 

correlated, and there is a negative correlation between 

them and the second one. The indices 010(2) and 101(2) of 

above-average populated classes also confirm this 

finding, as the second bit is in both cases the inverse of 

the other two. 

In the second stage, after the training curves are 

classified (into 8 classes in the current setting), HCSMs 

are derived by separately averaging BFSMs within each 

class. However, the BFSMs in a particular class may still 

significantly differ from each other, although expectedly 

(and confirmed by the testing results) not as much as the 

BFSMs from different classes. Consequently, the 

HCSMs must also be reduced by using the same 

acceptance criteria as in the BFPSM reduction (Section 

3.2).   
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As we are aware, that the current classification is not 

optimal, we try to mitigate impacts of wrongly classified 

training curves by using soft borders between the classes. 

This means that averaging in an observed class also 

considers weighted probabilities from BFPSMs of all 

"adjacent" classes, distinct in one criterion from the 

considered one. For example, classes 001, 010, 100 are 

adjacent to the class 000, while, e.g., 011 is not. In the 

tests presented in Section 4, the probabilities are 

weighted in a manner that BFPSMs from an observed 

class contribute two thirds to the corresponding HCPSM, 

and those from the three adjacent classes contribute a 

third (a ninth each). 

4 Results 
In this section, we compare some typical results of the 

proposed method and some state-of-the-art (SOTA) 

chain code compression methods. 3OT, VCC, C_DDCC, 

and three variants of MTFT+ARLE (Move-To-Front 

Transform + Adaptive Run-Length Encoding) [11], i.e., 

MTFT+ARLE VCC, MTFT+ARLE 3OT, and 

MTFT+ARLE NAD (four-symbol Normalised Angle-

Difference chain code) [11] were used in the tests. 

The training set and use cases from Section 3.1 were 

used, and the weights w1, w2 and w3 for the pseudo-

statistical models reduction (see Section 3.2) were set to 

0.02, 1.0 and 1.0, respectively. As we already stressed 

and explained, the length of patterns to be considered is 

limited to k = 6. The classification thresholds (Section 

3.4) computed for the utilized training set were initialized  

to 0.92 for the average turn, 0.12 for p(45°, 45°), and 

0.295 for p(90°). 

 

 Object Transform Pixels bpp 

(SOTA) 

bpp (new 

method) 

Basic (“user friendly”) shapes 

 Bird 100, 0, 0 4080 1.11(1) 1.03 

 Butterfly 100, 0, 0 1122 1.45(1) 1.33 

 Car 100, 0, 0 541 1.48(1) 1.25 

 Circle 100, 0, 0 1831 1.13(2) 0.99 

 Horse 100, 0, 0 2143 1.51(3) 1.39 

 Shuttle 100, 0, 0 969 1.19(1) 1.08 

 Spider 100, 0, 0 1770 1.20(2) 1.04 

 Square 100, 0, 0 1088 0.30(2) 0.35 

Sophisticated instances 

 Bird 10, 50, 70 671 1.60(3) 1.31 

 Butterfly 140, 45, 100 2681 1.68(3) 1.21 

 Car 200, 33, 50 1472 1.84(3) 1.49 

 Circle 20, 0, 0 308 1.39(2) 1.06 

 Horse 50, 15, 20 1284 1.93(1) 1.51 

 Shuttle 100, 30, 0 980 1.31(1) 0.94 

 Spider 120, 45, 25 2218 1.31(1) 1.08 

 Square 100, 70, 30 1228 0.75(3) 0.62 

Table 1: Test cases and compression results [bpp]. 

The listed best SOTA results were obtained by 

C_DDCC(1), MTFT+ARLE NAD(2), or MTFT+ARLE 

VCC(3).   

Table 1 shows the results for pairs of different 

instances of eight objects from the top two rows in Fig 5. 

Basic "user friendly" shapes refer to smooth, noiseless 

instances as being usually employed in testing the state-

of-the-art (SOTA) chain code compression methods. The 

“sophisticated” instances were generated by transforming 

the basic ones with the scaling factor, rotation angle, 

and/or amount of additional 4-connectivity pixels 

different from 100%, 0°, 0%, respectively (see column 

Transform). The column bpp (SOTA) shows efficiency in 

bits per pixel (bpp) of the best of the compared SOTA 

methods. Comparison of the last two columns reveals 

that the new method is superior in most cases. The only 

exception is the basic axis-aligned square where all three 

MTFT-ARLE variants and also C_DDCC substantially 

benefit from long runs of 0’s.  

Ratios between the efficiencies of the new and best 

SOTA method are given in columns A and B of Table 2, 

separately for the basic and transformed instances. The 

new algorithm is mostly for 10 to 15% more efficient 

than SOTA in the basic configurations, and for additional 

10% in the sophisticated cases. Columns C and D show 

ratios between the efficiencies for sophisticated and 

adequate basic configurations. SOTA is considered in 

column C, and the new method in column D. The results 

confirm that sophisticated curve artefacts much more 

affect SOTA methods (average ratio 1.22 means lower 

efficiency for 22%, compared to basic shapes) than the 

new method (average ratio 1.06). The latter even 

achieves better compression of some transformed shapes 

(butterfly and shuttle) in comparison to the basic ones. It 

also surpasses SOTA in the transformed square example, 

where all the considered methods achieve significantly 

worse results (omitted in the above average ratios) than 

in the axis-aligned instance. 

 

Object A B C D 

 Bird 0.93 0.82 1.44 1.27 

 Butterfly 0.92 0.72 1.16 0.91 

 Car 0.84 0.81 1.24 1.19 

 Circle 0.88 0.76 1.23 1.07 

 Horse 0.92 0.78 1.28 1.08 

 Shuttle 0.91 0.72 1.10 0.87 

 Spider 0.87 0.82 1.09 1.04 

 Square 1.17 0.83 2.50 1.77 

Table 2: Analysis of the compression results. 

5 Conclusions 
In this paper, we introduce a new statistics-based chain 

code compression methodology by using multiple 

averaged pseudo-statistical models correlated with some 

measurable curve artefacts, and by heuristically selecting 

the most appropriate of these models prior to the 

compression. Furthermore, the introduced models 

contain extra codes for systematically selected patterns of 

up to k symbols (k = 6 in the presented tests), and the 

dynamic programming approach replaces the common 

greedy method in order to determine the optimal chain of 

patterns. The early results are promising, but there is a 

https://sl.pons.com/prevod/angle%C5%A1%C4%8Dina-sloven%C5%A1%C4%8Dina/substantially
https://sl.pons.com/prevod/angle%C5%A1%C4%8Dina-sloven%C5%A1%C4%8Dina/substantially
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plenty of work left to ultimately affirm the proposed 

methodology.  

The methodology incorporates the training phase and 

the exploitation phase. The former obviously associates 

this research with machine learning, but classification of 

the training curves with respect to three intuitively pre-

selected and even mutually correlated criteria is quite far 

from this paradigm. However, one of our future goals is 

to adapt the introduced methodology to other basic chain 

code representations (VCC, 3OT, F4, F8, and NAD), 

which shall certainly require more advanced and 

adjustable feature extraction, learning and selection, 

leading into optimized classification algorithms. This 

goal also requires an extensive sensitivity analysis by 

varying the number and values of classification 

thresholds, weights in the pattern acceptance criteria, etc. 

Other future goals include: 

• comparison to modern non-statistical methods on 

both, "standard" and less "user-friendly" cases, 

• improving the training set and preparation of rich 

repertoire of benchmarks, 

• utilization of arithmetic coding instead of Huffman 

codes, and 

• inclusion of RLE codes for longer patterns of 0’s. 
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