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Abstract

Cayley maps are combinatorial structures built upon Cayley graphs on a group. As
such the original group embeds in their group of automorphisms, and one can ask in which
situation the two coincide (one then calls the Cayley map a mapical regular representation
or MRR) and with what probability. The first question was answered by Jajcay. In this
paper we tackle the probabilistic version, and prove that as groups get larger the proportion
of MRRs among all Cayley Maps approaches 1.
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1 Introduction
In this first section we define Cayley graphs and maps, give some context and state our
main theorem. In the second section we prove the theorem. In the third one we prove a
slight variation of the result in which Cayley maps are considered up to isomorphism.
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1.1 Cayley graphs

We consider only finite groups and finite graphs in this paper. As usual a graph Γ is an
ordered pair (V, E) with V a finite non-empty set and with E a collection of 2-subsets of
V . An automorphism of a graph is a permutation on V that preserves the set E, and a path
on a graph is a sequence v1, v2, . . . , vn of adjacent vertices, i.e. {vi, vi+1} ∈ E for all i.
The neighbourhood of a vertex v is the set Γ(v) = {w ∈ V |{v, w} ∈ E} of all vertices
connected to it by an edge.

Let R be a group and let S be an inverse-closed subset of R, that is, S = {s−1 | s ∈ S}.
The Cayley graph Cay(R,S) is the graph with V = R and with {r, t} ∈ E if and only
if tr−1 ∈ S, i.e. E = {{r, sr}|s ∈ S, r ∈ R}. The condition S = S−1 is imposed to
guarantee that tr−1 ∈ S if and only if rt−1 ∈ S. A path r0, r1, . . . , rn in a Cayley graph
can be specified equivalently by its starting vertex r0 together with the unique sequence
of elements s1, s2, . . . , sn from S such that ri+1 = si+1ri. Usually one is interested in
connected Cayley graphs, where for any two vertices there is at least one path connecting
them. This is equivalent to the requirement that S is a set of generators for the group. We
shall assume so throughout this paper.

A graphical regular representation (GRR) for a group R is a graph whose automor-
phism group is the group R acting regularly on the vertices of the graph. (A permutation
group R is regular if it is transitive and if the identity element of R is the only element
fixing some point of the domain.) It is an easy observation that the right regular action of R
on itself preserves the edges, so R embeds in Aut(Cay(R,S)).1 A GRR for R is therefore
a Cayley graph on R that admits no other automorphisms.

The main thrust of much of the work through the 1970s was to determine which groups
admit GRRs. This question was ultimately answered by Godsil in [2]. It was conjectured
by Babai and Godsil that, except for two natural families of groups, GRRs not only exist,
but they are abundant, that is, with probability tending to 1 as |R| → ∞, a Cayley graph on
R is a GRR. The first author reported the recent progress in [7, 8, 9, 10] on the Babai-Godsil
conjecture at the SIGMAP 2022 conference at the University of Alaska Fairbanks. During
this conference, Robert Jajcay has suggested a similar investigation for Cayley maps.2 We
now give some background on Cayley maps, state Jajcay’s question and state our main
result.

1.2 Graph maps and Cayley maps

Let Γ := (V,E) be a graph. Given v ∈ V, we let Γ(v) denote the neighbourhood of v in Γ.
A rotation on Γ is a set ρ := (ρv)v∈V , where each ρv : Γ(v) → Γ(v) is a cyclic ordering 3

of Γ(v). A map is a pair (Γ, ρ), where Γ is a connected graph and ρ is a rotation of Γ.
The idea behind maps is that they represent a CW complex structure on an orientable

surface whose 1-skeleton is the given graph, essentially an embedding of the graph in an
orientable surface disconnecting it into disks. See for instance [3] for details. The ρv are
the cyclic orderings of the edges incident to v in the embedding.

1We let automorphisms act on the right, so we will write xφ to denote the image of the vertex x under the
automorphism φ, and we shall take xφψ to mean (xφ)ψ .

2During the preparation of this paper, Xia and Zheng have announced a solution to the Babai-Godsil conjec-
ture, see [11].

3A cyclic ordering on a (finite) set is a permutation with no fixed points and a single cycle in its cycle decom-
position.
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Intuitively, an automorphism of a map (Γ, ρ) is a pair: an automorphism of the graph
and an oriented homeomorphism of the surface that are compatible through the embedding.
Combinatorially this translates to an automorphism of Γ (a permutation of the vertices
preserving the edges) which also preserves the rotation ρ. In order to make this idea precise,
we make a slight detour. Let Aut(Γ) be the automorphism group of Γ and let R(Γ) be the
collection of all rotations of Γ. Now, Aut(Γ) has a natural action on R(Γ):

R(Γ)×Aut(Γ) −→R(Γ)

(ρ, φ) 7−→ ρ(φ),

where ρ
(φ)
vφ = φ−1ρvφ, for all v ∈ V . In other words, the rotation ρ(φ) at the vertex vφ

takes uφ to wφ when ρv takes u to w. Now, an automorphism of a map M = (Γ, ρ) is an
automorphism φ of the graph Γ such that ρ(φ) = ρ, that is,

ρvφ = φ−1ρvφ, for each vertex v of Γ. (1.1)

It is well known [1] that, if the underlying graph is connected, a map automorphism is
determined uniquely by its value on an oriented edge (i.e. an ordered pair of adjacent
vertices). We recall briefly the reason: suppose φ is a map automorphism, w0, w1 are
adjacent vertices mapped to wφ

0 and wφ
1 respectively and w0, w1, . . . , wt is a path in the

graph. We can describe the path as a sequence of left and right turns, or with a closer
analogy as the exits to take at consecutive roundabouts. There must be natural numbers ni

for i ∈ {1, . . . , t− 1} such that wi+1 = w
ρ
ni
wi

i−1. Thus the path φ(w0), φ(w1), . . . , φ(wt) is
uniquely determined by the relations

wφ
i+1 = w

φρ
ni
w

φ
i

i−1 for i ∈ {1, . . . , t− 1}.

In other words the automorphism group of a map on a connected graph acts semiregularly
on the set of oriented edges.

Let now R be a group and S as above an inverse-closed set of generators excluding the
identity. For every cyclic ordering r : S → S, we define the Cayley map CM(R,S, r) =
(Γ, ρ) as follows: Γ is the Cayley graph Cay(R,S) and, for every g ∈ R and for every x
lying in the neighbourhood Γ(g) of the vertex g,

ρg : Γ(g)−→Γ(g)

x 7−→ρg(x) := gr(g−1x).

This is the unique map with the prescribed rotation r around the identity vertex e ∈ R such
that the right regular action of the group on the Cayley graph preserves the rotation.

Combinatorially, we may think of a Cayley map as just a triple (R,S, r), where

• R is a finite group,

• S ⊆ R \ {e} is a generating set with S = S−1, and

• r : S → S is a cyclic ordering.
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1.3 Mapical regular representations and the question of Jajcay

Given a Cayley map CM(R,S, r), the right regular representation of R is contained in the
automorphism group of CM(R,S, r). Analogously to GRRs, we say that CM(R,S, r) is
a mapical regular representation (or MRR for short) if

Aut(CM(R,S, r)) ∼= R.

As far as we are aware, this definition was coined by Robert Jajcay in [5]. Theorem 7
in [5] shows that each finite group not isomorphic to Z3 or Z2

2 possesses an MRR. Observe
that CM(R,S, r) is a MRR if and only if the only automorphism of CM(R,S, r) fixing a
vertex is the identity.

Once that the existence of MRRs is established it is fairly natural to investigate the
abundance of MRRs among Cayley maps. Indeed, Robert Jajcay has asked whether, as
|R| → ∞, the proportion of MRRs among Cayley maps on R tends to 1.

One could argue for different approaches in counting Cayley maps. In the present
paper we mainly first takle labelled Cayley maps, where two Cayley maps CM(R,S, r)
and CM(R,S′, r′) over the same group are considered to be the same if and only if S = S′

and r = r′. In the last section we show that our methods are trivially adapted to unlabelled
Cayley maps, which are reasonable isomorphism classes one might be interested in. In
both cases we manage to answer Jajcay’s question in the affirmative.

Theorem 1.1. As |R| → ∞, the proportion of MRRs among labelled Cayley maps on R
tends to 1.

Theorem 1.2. As |R| → ∞ the proportion of (equivalence classes of) MRRs among unla-
belled Cayley maps on R tends to 1.

Xia and Zheng [11] have recently announced a positive solution of the Babai-Godsil
conjecture. This means that, except for abelian groups of exponent greater than 2 and for
generalized dicyclic groups, with probability tending to 1 as |R| → ∞, a Cayley graph on
R is a GRR. There are some relations between our work and the work in [11]; for instance,
both results depend upon a theorem on group generation due to Lubotzky [6]. However,
there is no direct implication between our Theorem 1.1 and the main result in [11]; for
instance, a positive solution of the Babai-Godsil conjecture does not imply the veracity
of Theorem 1.1. Indeed, the number of Cayley maps on a fixed Cayley graph Cay(R,S)
is (|S| − 1)!, thus most Cayley maps have almost all the group as connection set of the
underlying Cayley graph, while a random Cayley graph has roughly |R|/2 elements in its
connection set. More precisely: the two questions consider different marginal probability
distributions on the space of Cayley graphs.

2 Proof of main theorem
In this section, we let R be a finite group and we let r denote its order.

We explore the inclusions R ≤ Aut(CM(R,S, r)) ≤ Sym(R). Our strategy is proving
a necessary condition for intermediate subgroups between R and Sym(R) to be automor-
phism groups of Cayley maps, bound the number of subgroups satisfying this condition
and then bound the number of pairs (S, r) compatible with at least one of them.

The following lemma is essentially a restatement of insights in [4].
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Lemma 2.1. For any Cayley map CM(R,S, r), the stabilizer Aut(CM(R,S, r))e of the
identity vertex e is cyclic of order less than |R|. If Aut(CM(R,S, r))e = ⟨γ⟩, then Sγ = S
and the restriction γ|S has the same order as γ and it is a power of r.

Proof. An automorphism fixing e sends its neighbourhood Γ(e) = S to itself.
Since the action on oriented edges is semiregular, an element of the stabilizer is uniquely

determined by its action on S, i.e. the restriction mapping

Aut(CM(R,S, r))e −→Sym(S)

φ 7−→ φ|S

is injective.
Moreover, if φ ∈ Aut(CM(R,S, r))e, then from (1.1) we have r = φ−1rφ, i.e., φ|S ∈

CSym(S)(r). From standard computations in permutation groups, we have CSym(S)(r) =
⟨r⟩. Thus Aut(CM(R,S, r))e is isomorphic to a subgroup of a cyclic group, hence
Aut(CM(R,S, r))e is cyclic and all its elements restricted to S are powers of r.

Until now, we have adopted the view that a group R with r elements can be embedded
into Sym(r) using the usual right regular representation. It is convenient for our exposition
to consider the equivalent formulation “R is a regular subgroup of Sym(r)”, here regular
means that for any two points in {1, . . . , r} there exists a unique permutation in R sending
the first to the second.

Lemma 2.2. For every regular subgroup R of Sym(r), the number of subgroups G of
Sym(r) with

• R < G and

• G1 cyclic and |G1| ≤ r − 1 (where G1 is the stabiliser of 1 in G)

is at most 27(log2 r)2+12 log2 r.

Proof. Given G0 and G1 two abstract groups and H0 ≤ G0, H1 ≤ G1, we write
(G0, H0) ∼ (G1, H1) if there exists a group isomorphism ϕ : G0 → G1 with Hϕ

0 = H1.
Clearly, ∼ defines an equivalence relation. We denote by [(G,H)] the ∼-equivalence class
containing (G,H). Now consider

M = {[(G,H)] | G is (log2 r + 1)-generated, H ≤ G, |G| ≤ r(r − 1), and H is cyclic}.

CLAIM 1: We have
|M| ≤ 24(log2(r))

2+12 log2 r. (2.1)

Proof of Claim 1. From [6, Theorem 1] together with [6, Remark 3(1)] we get that the
number of isomorphism classes of groups of order N that are d-generated is at most
N2(d+1) log2(N) = 22(d+1)(log2(|N |))2 . In particular, applying this theorem with d :=
log2(r) + 1 and with N ≤ r(r − 1), we get that the number of groups G that are
(log2(r) + 1)-generated and of order at most r(r − 1) is at most 24(log2(r)+2) log2 r · r2
(observe that the second factor counts the number of choices for N : the cardinality of G).
Now, let G be a group of order at most r(r − 1). Since G has at most |G| < r2 cyclic
subgroups H , our claim is proved.
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Now, let R be a regular subgroup of Sym(r) and let SR be the set of subgroups G of
Sym(r) with R < G, with G1 cyclic and with |G1| ≤ r− 1. Since G = RG1 and since R,
as any group of order r, needs at most log2 r generators, we deduce that G needs at most
log2(r) + 1 generators.
CLAIM 2: We have

|SR| ≤ 23(log2 r)2 |M|. (2.2)

Proof of Claim 2. Every G ∈ SR determines an element of M via the mapping φ : G 7→
[G,G1].

We show that there are at most 23(log2 r)2 elements of SR having the same image
via φ, from which (2.2) immediately follows. We argue by contradiction and we let
G1, . . . , Gℓ ∈ SR with φ(Gi) = φ(G1), for every i ∈ {1, . . . , ℓ}, where ℓ > 23(log2 r)2 .
Thus there exists a group isomorphism ϕi : G

1 → Gi with (Gi)1 = ((G1)1)
ϕi . Therefore

the permutation representation of G1 on the coset space G1/(G1)1 is permutation isomor-
phic to the permutation representation of Gi on the coset space Gi/(Gi)1. Thus G1 and
Gi are conjugate via an element of Sym(r), that is, G1 = (Gi)σi for some σi ∈ Sym(r).
Now, as G1 acts transitively on {1, . . . , r}, replacing σi by an element of the form giσi (for
some gi ∈ G1), we may assume that σi fixes 1, that is, 1σi = 1.

As R ≤ Gi for every i, we get that Rσ1 , . . . , Rσℓ are ℓ regular subgroups of G1.
Since R is log2(r)-generated, we see that G1 contains at most |G1|log2(r) ≤ r2 log2 r =

22(log2 r)2 distinct subgroups of order r. In particular, since ℓ > 23(log2 r)2 , we see that
Rσi1 = · · · = Rσit for some t > 2(log2(r))

2

and some subset {i1, . . . , it} of size t of

{1, . . . , ℓ}. Therefore σi1σ
−1
ij

normalises R. As 1σi1σ
−1
ij = 1, σi1σ

−1
ij

is an automorphism

of R, for every j ∈ {1, . . . , t}. Since R has at most |R|log2(r) = 2(log2(r))
2

automorphisms,
we get σi1σ

−1
ij

= σi1σ
−1
ij′

for two distinct indices j and j′. Thus σij = σij′ and Gij =

(G1)
σ−1
ij = (G1)

σ−1
i
j′ = Gij′ , which is a contradiction.

From (2.1) and (2.2), we have

|SR| ≤ 27(log2 r)2+12 log2 r,

and the proof of this lemma immediately follows.

It remains to estimate the number of Cayley maps on a group R compatible with a fixed
intermediate subgroup G with cyclic point stabilizer H .

Lemma 2.3. For every pair of subgroups R and H of Sym(r) such that R is regular and
H = ⟨γ⟩ is non-identity, cyclic of order less than r and fixing the point 1, let

Rγ = {(S, r)|S ⊆ {2, . . . , r}, r cyclic ordering on S, γ ∈ Aut(CM(R,S, r))}

be the set of all Cayley maps on R admitting γ as an automorphism. Then |Rγ | ≤ (r −
1) r2 ⌊r/2⌋!2

r.

Proof. Let l be the order of γ. From Lemma 2.1, if (S, r) ∈ Rγ , then Sγ = S; thus S is
a union of H-orbits. Moreover, γ|S is a power of r; hence γ|S is a product of k disjoint
cycles all of the same length l fixing no point in S. Clearly kl = |S| < r. For a fixed
S (and hence k and l), r ∈ CSym(S)(γ|S). From routine computations, CSym(S)(γ|S) is
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isomorphic to the wreath product Cl ≀Sym(k). Thus, given S, there are at most lkk! choices
for r.

If nl is the number of cycles of length l in the cycle decomposition of γ, then there are(
nl

l

)
choices for S such that γ|S decomposes in k cycles of length l.

Putting everything together, we have

|Rγ | ≤
r−1∑
l=2

nl∑
k=1

(
nl

k

)
k!lk. (2.3)

Of course lnl ≤ |S| < r and hence nl < r/l.
In what follows, we use the generalized binomial coefficient

(
x
k

)
= 1

k!

∏k−1
i=0 (x − i).

Observe that
(
x
k

)
is increasing in the real variable x ≥ k. Elementary computations show

the inequality ( r
l+1

k

)
k!(l + 1)k( r
l
k

)
k!lk

=

k−1∏
i=0

r − i(l + 1)

r − il
≤ 1.

This gives that the summands appearing in (2.3) are non-increasing in l and hence they can
be estimated with l = 2. We deduce

|Rγ | ≤
r−1∑
l=2

⌊ r
l ⌋∑

k=1

(
⌊ r
l ⌋
k

)
k!lk ≤

r−1∑
l=2

⌊ r
l ⌋∑

k=1

( r
l

k

)
k!lk ≤

r−1∑
l=2

⌊ r
l ⌋∑

k=1

( r
2

k

)
k!2k.

Furthermore, an easy computation shows that (for 0 ≤ k ≤ x)
(

x
k+1

)
−
(
x
k

)
≥ 0 if and only

if k < x
2 . Thus we can estimate generalized binomial coefficients with an “almost central

binomial coefficient”:
( r

2
k

)
≤

( r
2

⌊ r
4 ⌋

)
. Thus

|Rγ | ≤
r−1∑
l=2

⌊ r
2 ⌋∑

k=1

( r
2

⌊ r
4⌋

)
k!2k ≤

r−1∑
l=2

⌊ r
2 ⌋∑

k=1

( r
2

⌊ r
4⌋

)⌊r
2

⌋
!2⌊

r
2 ⌋

≤ (r − 1)
⌊r
2

⌋
2

r
2

⌊r
2

⌋
!2⌊

r
2 ⌋ ≤ (r − 1)

⌊r
2

⌋ ⌊r
2

⌋
!2r.

Proof of Theorem 1.1. Notice that there are (r − 2)! Cayley maps with S = R \ {e} (this
is just the number of cyclic orderings r), the total number of Cayley maps must be greater
than that, so combining Lemmas 2.2 and 2.3, we deduce that the fraction of Cayley maps
on R admitting a group of automorphisms larger than R is less than

((r − 1) r2 ⌊r/2⌋!2
r)(27(log2 r)2+12 log2 r)

(r − 2)!
,

which goes to 0 when r → ∞.

3 Unlabelled version
We have so far implicitly considered a probability distribution which is uniform on labelled
Cayley graphs on a fixed group R. But of course it can also make sense to not distinguish
between maps on the same group that are mapped to one another by a group automorphism.
We can show quite easily that Theorem 1.2 still holds. To be precise we consider two
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Cayley maps CM(R,S0, r0) and CM(R,Sα
1 , r1) on the same group R and we say that they

are equivalent if there exists a group automorphism α of R such that CM(R,S0, r0) =
CM(R,S1, α ◦ r1 ◦ α−1). We will call these equivalence classes unlabelled Cayley maps.

Proof of Theorem 1.2. This is a minor adaptation of the proof of Theorem 1.1. Of course
unlabelled Cayley maps are at most in the same number as their labelled counterparts, so
we can still apply Lemmas 2.2 and 2.3 to deduce that those admitting automorphisms other
than those given by the action of R are fewer than ((r−1) r2 ⌊r/2⌋!2

r)(27(log2 r)2+12 log2 r),
where r = |R|. Moreover each equivalence class of labelled Cayley maps can contain at
most |Aut(R)| elements. Using nothing more than the classic estimate |Aut(R)| ≤ rlog2 r

we can deduce there are at least (r−2)!
rlog2 r unlabelled Cayley maps with S = R \ {e}. Then

the fraction of non MRRs among unlabelled Cayley maps is bounded by

((r − 1) r2 ⌊r/2⌋!2
r)(27(log2 r)2+12 log2 r)rlog2 r

(r − 2)!
,

which again goes to 0 when r → ∞.
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