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Abstract

A map, as a 2-cell embedding of a graph on a closed surface, is called a k-orbit map
if the group of automorphisms (or symmetries) of the map partitions its set of flags into
k orbits. Orbanić, Pellicer and Weiss studied the effects of operations as medial and trun-
cation on k-orbit maps. In this paper we study the possible symmetry types of maps that
result from other maps after applying the chamfering operation and we give the number of
possible flag-orbits that has the chamfering map of a k-orbit map, even if we repeat this
operation t times.
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1 Introduction
Topologically, a mapM is a cellular embedding of a connected graph on a closed surface,
with no boundary. While combinatorially, we define a map by an edge coloured cubic
graph GM, to which we refer as the flag graph of the mapM, as Lins and Vince (1982-83)
define it in [18] and [25], respectively. The vertex set of GM is the set of flags of the map,
and the edges define the connectivity between pairs of flags. Flags are a very important
tool in describing combinatorially the structure of a map. They have been used not only
for maps but also for hypermaps [9, 23], maps on the surfaces with boundary [1], abstract
polytopes [22] or maniplexes [28].

A mapM is called a k-orbit map if its group of automorphisms, or symmetries, par-
titions the set of flags into exactly k orbits. The most symmetric maps are well known as
regular (or reflexible) maps, those for which its automorphism group acts transitively on
their set of flags, i.e. they have exactly one flag-orbit. Other highly symmetric type of maps
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are the so called chiral maps, which flags are partitioned into two orbits in such way that
any two adjacent flags belong to different orbits, [12, 13, 22]. In other words, the flag graph
of a chiral map is a bipartite graph and each part is an orbit.

In [19] the question of possible symmetry types of maps resulting from other maps after
applying various operations was raised. In particular, the medial and truncation operations
on k-orbit maps were considered, for k ≤ 4. In this paper we use the chamfering operation
on k-orbit maps and determine, in terms of k, the number of possible flag-orbits that has
the chamfering map of a k-orbit map. Table 1 depicts all possible cases.

The operation of chamfering an object is related to the idea of beveling (“to file down”)
the edges of a solid object. Given a mapM, the chamfering operation replaces the edges
ofM with hexagonal faces while keeping the faces ofM. This operation divides each flag
of the mapM into four different flags in the chamfering map. This operation is also used
on the study of fullerenes (see [6]), for instance, which also leads to chemical applications
as in [17]. Theorem 5.3 summarizes all the results presented in this paper.

To solve our problem, we define another graph to which we refer as the symmetry type
graph of a map, this is, the quotient graph of the flag graph of a map under the action of
its automorphism group. A strategy of how to generate symmetry type graphs is shown
in [2]. Dress and Huson (1987) refer to such graphs as the Delaney-Dress symbol, [7].
Dress and Brinkmann (1996), as well as Balaban and Pisanski (2012), give applications to
mathematical chemistry in [8] and [1], respectively.

In [20], Orbanić, Pellicer, Pisanski and Tucker (2011), show the 14 symmetry type
graphs of edge-transitive maps. Later, in [4] and [5], the complete list of possible symmetry
type graphs with at most 6 vertices is determined. In particular, in [4] are described some
properties of the symmetry type graphs, and also, the advantages of symmetry type graphs
were applied to completely solve the problem of symmetry types of medial maps. While,
in [5] is given an extension of the results in [19] of all possible symmetry type graphs of a
map and its truncated map might have, for up to 7 and 9 vertices.

The paper is organized in the following way. In Section 2, we formally define a map
and its flag graph. In Section 3, we define the symmetry type graph of a k-orbit map and
give some of its properties, also studied in [4]. In Section 4, we define the chamfering
map and find some conditions for the original map as for its chamfering map in manner to
determine whether the chamfering map of a k-orbit map has 4k flag-orbits or not. Finally,
we conclude with Theorems 5.1 and 5.3 where we obtain the number of flag-orbits that the
chamfering map has if we repeat this operation t times on the same map.

2 Maps
A mapM is defined as a cellular embedding of a connected graph on a surface. Let BS be
the barycentric subdivision ofM and let Φ be a triangle in BS . Label the vertices of Φ by
Φ0, Φ1 and Φ2 according to whether they represent a vertex, an edge or a face (mutually
incident) in the mapM. Note that every triangle of BS is adjacent to other three triangles,
see Figure 1. If two triangles Φ and Ψ of BS are adjacent by the edge with vertices Φj
and Φk, with j, k ∈ {0, 1, 2} and j 6= k, then we say that Φ and Ψ are i-adjacent, for
i ∈ {0, 1, 2} and i 6= j, k. In this case we shall denote Ψ by Φi (likewise Φ by Ψi) and
note that for every triangle Φ and i ∈ {0, 1, 2}, (Φi)i = Φ.

Combinatorially, a map can be seen as a set F(M) of flags, and the relation between
pairs of elements in F(M) in the following way. To each flag in F(M), we assign a
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Figure 1: Barycentric subdivision ofM and the flag Φ = (Φ0,Φ1,Φ2) ∈ F(M).

triangle Φ in BS described by the ordered triple (Φ0,Φ1,Φ2), represented by the vertices of
Φ in BS , and denote by Φi the corresponding i-adjacent flag of Φ inM, with i ∈ {0, 1, 2}.
Note that as it happens for the degenerated cases: as a map with a single vertex and edge
but two faces, or a map with two vertices, one edge and a face; two adjacent flags can be
represented by the same triple, however they are assigned to different triangles. We shall
say that a mapM is a non-degenerated map if the triples (Φ0,Φ1,Φ2) are in one to one
correspondence to the flags ofM.

Let s0, s1 and s2 be the three permutations in the symmetric group Sym(F(M)) such
that, for every flag Φ,

Φsi = Φ · si = Φi,

with i = 0, 1, 2. Note that s0, s1, s2 and s0s2 are fixed point free involutions. Furthermore,
by the connectivity of the map the action of the subgroup of Sym(F(M)) generated by
these three distinguished involutions, denoted by Mon(M) := 〈s0, s1, s2〉, is transitive on
the set of flags F(M). The group Mon(M) is known as the monodromy (or connection)
group of the mapM, [10].

An automorphism of the mapM is a bijection between vertices, edges and faces pre-
serving their adjacency on the map. Thus, an automorphism ofM induces a permutation of
the flags in F(M) such that its action commutes with the elements of Mon(M). In other
words, for every automorphism α ofM, every flag Φ ∈ F(M) and every i ∈ {0, 1, 2} it
follows that

Φsiα = (Φα)si ,

[14]. The connectivity of the map implies that the only automorphism that fixes a flag is the
identity one. That is, the action of the automorphism group Aut(M) over the set F(M)
is semi-regular, and hence divides F(M) into k orbits of the same size; in such caseM is
called a k-orbit map. If the action of Aut(M) over the set F(M) is transitive we say that
the map is regular (or reflexible). The 2-orbit maps were widely studied and classified (in
different contexts) in [9] and [15]. The most studied and understood type of 2-orbit maps
is the chiral one, which has two orbits on its flags where any two adjacent flags belong to
different orbits.
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2.1 Flag graph

Given a mapM, we can construct a graph GM in the following way. The set of flagsF(M)
of the mapM corresponds to the vertex set of the graph GM, and two vertices Φ and Ψ in
V (GM) are adjacent by an edge of colour i = 0, 1, 2 if and only if the corresponding flags
are i-adjacent inM (see Figure 2). We shall refer to the graph GM as the flag graph of the
mapM.

0

1

2
Φ

Φ1

Φ0

Φ2

Figure 2: Local representation of the flag graph GM of a mapM.

Observe that the distinguished generators s0, s1 and s2 of the monodromy group
Mon(M) of the mapM label the coloured edges of its flag graph GM in a natural way.
Hence, for each flag Φ ∈ F(M), a word w = si0si1 · · · sin ∈ Mon(M) describes a path
along the edges in GM, coloured by i0, i1, . . . , in, starting at the vertex Φ and ending at the
vertex Φw, with

Φw = (Φi0) · si1 · · · sin =: Φi0,i1,...,in .

Since in general the action of Mon(M) is not semi-regular on F(M), this implies that one
can have differently “coloured” walks in GM going from Φ to another flag Ψ that induce
different words of Mon(M) that act on the flag Φ in the same way.

Note that in GM the edges of a given colour form a perfect matching (an independent
set of edges containing all the vertices of the graph), and the union of two sets of edges of
different colour is a subgraph whose components are even cycles; such subgraph is known
as a 2-factor of GM. In particular, note that since (s0s2)2 = 1 and s0s2 is fixed-point free,
the cycles with edges of alternating colours 0 and 2 are all of length four.

Note that the connected components of the 2-factor of colours 0 and 2 in GM, define
the set of edges of M. In other words, the edges of M can be identified with the orbits
of F(M) under the action of the subgroup generated by the involutions s0 and s2; that is,
E(M) = {Φ〈s0,s2〉 | Φ ∈ F(M)}. Similarly, we find that the vertices and faces ofM are
identified with the respective orbits of the subgroups 〈s1, s2〉 and 〈s0, s1〉 on F(M). That
is, V (M) = {Φ〈s1,s2〉 | Φ ∈ F(M)} and F (M) = {Φ〈s0,s1〉 | Φ ∈ F(M)}. Thus, the
group 〈s0, s1, s2〉 acts transitively on the sets of vertices, edges and faces ofM.

The automorphism group Aut(M) ofM induces a bijection between the flags ofM
preserving their adjacencies, and an edge-coloured preserving automorphism of the graph
GM is a bijection between the vertices of GM, preserving the adjacencies on the elements
of F(M). Consequently, Aut(M) is isomorphic to the edge-coloured preserving auto-
morphism group of the flag graph GM.
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Recall that Aut(M) partitions the set F(M) into k orbits of the same size. Let
Orb(M) := {OΦ|Φ ∈ F(M)} be the set of all flag-orbits of M. By the connectivity
of GM we have the following lemma.

Lemma 2.1. Let O1,O2 ∈ Orb(M), Φ ∈ F(M), and w ∈ Mon(M). If Φ ∈ O1 and
Φw ∈ O2, then Ψ ∈ O1 if and only if Ψw ∈ O2, for any Ψ ∈ F(M).

3 Symmetry type graph of a map
We define a graph T (M) (fairly, a pre-graph as in [24]), that we call the symmetry type
graph ofM, as the quotient of the flag graph GM, under the action of the automorphism
group Aut(M) of the map. Hence, the vertices of T (M) correspond to the elements
in Orb(M), where two vertices OΦ,OΨ ∈ Orb(M) are adjacent by an edge of colour
i = 0, 1, 2 if and only if there are flags Φ′ ∈ OΦ and Ψ′ ∈ OΨ that are i-adjacent in GM
(if the two i-adjacent flags Φ′ and Ψ′ belong to the same flag-orbit, then the edge of colour
i is projected into a semi-edge in T (M)). By Lemma 2.1 the symmetry type graph T (M)
is a 3-valent (pre-)graph of chromatic index 3.

It can be seen that the action of Mon(M) on the set Orb(M) is defined as OΦ · w =
OΦw , for any w ∈ Mon(M) and Φ ∈ F(M). This action is transitive, as is the action
of Mon(M) on F(M). Since GM is a connected graph, then its corresponding symmetry
type graph T (M) is connected as well.

The symmetry type graph of regular maps is a graph with a single vertex and three
semi-edges of colours 0, 1 and 2. Moreover, the symmetry type graph of chiral maps is a
graph with two vertices and three parallel edges coloured by 0 ,1 and 2, connecting both
vertices. In fact, chiral maps are commonly said to be of symmetry type 2.

The number of symmetry types of k-orbit maps is bounded by the number of connected
cubic graphs with k vertices, properly three edge-coloured, where the colours 0 and 2 are
as in the Figure 3. The reader can refer to [4] and [5] for all possible symmetry type graphs
with at most 6 vertices.

Figure 3: Possible quotients of 0-2 coloured 4-cycles of GM.

4 Chamfering map
The chamfering map Cham(M) of any (non-degenerated) mapM is produced, as its name
says: by chamfering the edges inM. More precisely, the edges of a mapM are replaced
by hexagonal faces, surrounding the faces ofM, in Cham(M) (see Figure 4). Hence, the
set of faces of Cham(M) is in correspondence with the set of faces F (M) and the set of
edges E(M) ofM. That is, the set of faces of Cham(M) is

F (Cham(M)) = F (M) ∪ E(M).
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Figure 4: Dodecahedron (left) and the chamfering of the dodecahedron (right).

It is straightforward to see that the map Cham(M) has two types of edges: those between
hexagonal faces and those between a face Φ2 in F (M) and its adjacent hexagonal faces
(corresponding to the incident edges on the face Φ2 in M). This is, the set of edges of
Cham(M) is

E(Cham(M)) = {{Φ0, {Φ0,Φ2}}|Φ ∈ F(M)} ∪ {{Φ1,Φ2}|Φ ∈ F(M)}.

In fact, Cham(M) has exactly 4|E(M)| edges. Finally, the set of vertices of M is
a proper subset of the vertices of Cham(M), and the remaining 2|E(M)| vertices in
V (Cham(M)) \ V (M) (each of these vertices are adjacent to exactly one vertex in
V (M)), all have degree 3. Thus, the set of vertices of Cham(M) is

V (Cham(M)) = V (M) ∪ {{Φ0,Φ2}|Φ ∈ F(M)}.

For an alternative definition of chamfering we refer the reader to [6].
Observe that the map on the left (dodecahedron) in Figure 4 is regular, while the map

on the right is a 4-orbit map with symmetry type 4Dp
(Figure 5). There is a single orbit of

OΨ
OΨ2 OΨ2,1

OΨ2,1,0

Figure 5: Symmetry type graph 4Dp .

flags, OΨ, on a pentagon and three different flags on a hexagon. Note that by chamfering a
non-degenerated mapM, every flag Φ := (Φ0,Φ1,Φ2) in F(M) is divided into four flags
of Cham(M), as is depicted in Figure 6, and the corresponding four flags to Φ ∈ F(M)
in Cham(M) can be written as

(Φ, 0) :=(Φ0, {Φ0, {Φ0,Φ2}},Φ1), (Φ, 1) :=({Φ0,Φ2}, {Φ0, {Φ0,Φ2}},Φ1),

(Φ, 2) :=({Φ0,Φ2}, {Φ1,Φ2},Φ1), (Φ, 3) :=({Φ0,Φ2}, {Φ1,Φ2},Φ2).
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Φ0

Φ2

Φ1

Figure 6: The four respective flags of F(Cham(M)) to the flag Φ = {Φ0,Φ1,Φ2} ∈
F(M).

It is then straightforward to see that the adjacencies of the flags of Cham(M) are closely
related to those of the flags ofM. In fact, we have that,

(Φ, 0)0 = (Φ, 1), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φs1 , 0),

(Φ, 1)0 = (Φ, 0), (Φ, 1)1 = (Φ, 2), (Φ, 1)2 = (Φs1 , 1),

(Φ, 2)0 = (Φs0 , 2), (Φ, 2)1 = (Φ, 1), (Φ, 2)2 = (Φ, 3),

(Φ, 3)0 = (Φs0 , 3), (Φ, 3)1 = (Φs1 , 3), (Φ, 3)2 = (Φ, 2).

Thus, we define the algorithm in Figure 7 to construct the flag graph of Cham(M) out of
GM.

Proposition 4.1. The flag graph GCham(M), of the chamfering map Cham(M) of any map
M, can be quotient into a graph as the symmetry type graph 4Dp .

Proof. Let Ai = {(Φ, i)|Φ ∈ F(M)} be the subset of F(Cham(M)) containing all flags
of Cham(M) of the form (Φ, i), with i = 0, 1, 2, 3. Then, F(Cham(M)) = A0 ∪ A1 ∪
A2 ∪ A3 and Ai ∩ Aj = ∅ whenever i 6= j. Hence, (A0,A1,A2,A3) is a partition of the
set of flags F(Cham(M)). Based on Figure 7, it is straightforward to see that the quotient
of GCham(M) over such partition, is isomorphic to the symmetry type graph of a map with
symmetry type 4Dp

(see Figure 5).

Note that for any flags Υ ∈ A3, Υ2 ∈ A2, Υ2,1 ∈ A1 and Υ2,1,0 ∈ A0, we
can define a flag ΦΥ ∈ F(M), by assembling these four flags in Cham(M). Observe
that an automorphism ᾱ ∈ Aut(Cham(M)) that sends a flag Υ′ ∈ Ai to another flag
also contained in Ai, with i = 0, 1, 2, 3, is induced by an automorphism α ∈ Aut(M)
that sends ΦΥ′ to the assembled flag ΦΥ′ᾱ in M. Say this in other way, for each au-
tomorphism α ∈ Aut(M), there is an automorphism ᾱ ∈ Aut(Cham(M)) such that
(Φ, i)ᾱ = (Φα, i), with Φ ∈ F(M) and i = 0, 1, 2, 3. Then, it follows that

|Orb(Cham(M))| ≤ 4|Orb(M)|.

Motivated by Proposition 4.3 of [19], we are interested in studying the number of pos-
sible flag-orbits of the chamfering map Cham(M).
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Figure 7: Local representation of a flag in GM, in the left. The image under the chamfering
operation, locally obtained, in the right.
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Certainly, the chamfering map Cham(M), of a k-orbit mapM, has 4k orbits on the
set of flags F(Cham(M)), if for any Φ,Ψ ∈ F(M) there is no flag of the form (Φ, i)
in the same orbit as a flag of the form (Ψ, j), with i, j ∈ {0, 1, 2, 3} and i 6= j. In
fact, if the chamfering map Cham(M) of a k-orbit map M is a 4k-orbit map then, the
algorithm presented in Figure 7 works as an algorithm on the vertices of T (M) to obtain
the symmetry type graph T (Cham(M)) with 4k vertices, of the chamfering map ofM.

We denote by r0, r1 and r2 the distinguished generators of Mon(Cham(M)). Observe
that, in particular, (Φs0 , 3) = (Φ, 3) · r0, (Φs1 , 3) = (Φ, 3) · r1, and (Φs2 , 3) = (Φ, 3) ·
r2r1r0r1r0r1r2, for any Φ ∈ F(M). This is, the action of the subgroup

D = 〈r0, r1, r2r1r0r1r0r1r2〉 ≤ Mon(Cham(M))

over the subset of flags F(M)×{3} in Cham(M) is isomorphic to the action of the mon-
odromy group Mon(M) over the set F(M), inducing the following action isomorphism.

(f, g) : (F(M), 〈s0, s1, s2〉)→ (F(M)× {3}, 〈r0, r1, r2r1r0r1r0r1r2〉),

where f : Φ 7→ (Φ, 3) is a bijective function, and g : (s0, s1, s2) 7→
(r0, r1, r2r1r0r1r0r1r2) is a group isomorphism, as that defined in [14]. Then, the ac-
tion of D is transitive on the set of flags F(M) × {3}. Moreover, the action of D on
F(Cham(M)) fixes the setA3 and permutes the setsA0,A1 andA2. Further on, because

(Φ, 3) · r2 = (Φ, 2), (Φ, 3) · r2r1 = (Φ, 1) and (Φ, 3) · r2r1r0 = (Φ, 0),

conjugating D by the elements r2, r2r1 and r2r1r0 in Mon(Cham(M)), we obtain three
different subgroups of Mon(Cham(M)), that act transitively on the set of flags F(M) ×
{2}, F(M) × {1} and F(M) × {0}, respectively. Therefore, we say that the conjugate
subgroup Dai ≤ Mon(Cham(M)) fixes the set Ai, for each i = 0, 1, 2, 3, and permutes
the sets Aj1 , Aj2 and Aj3 , with j1, j2, j3 ∈ {0, 1, 2, 3} \ {i}, where a0 = r2r1r0, a1 =
r2r1, a2 = r2, and a3 = id

With the following lemma we see that the chamfering map of a k-orbit map M, not
necessarily has 4k flag-orbits. By an equivelar map with Schläfli type {6, 3} we mean a
map that all its faces are 6-gons, and all its vertices have degree 3.

Lemma 4.2. Let Cham(M) be the chamfering map of a mapM. If there is an automor-
phism α ∈ Aut(Cham(M)) such that (Φ, i)α = (Ψ, j) for some Φ,Ψ ∈ F(M) and
i 6= j, with i, j ∈ {0, 1, 2, 3}. Then,M is an equivelar map with Schläfli type {6, 3}.

Proof. Consider the partition (A0,A1,A2,A3) of the set F(Cham(M)), where Ai =
{(Φ, i)|Φ ∈ F(M)}, i = 0, 1, 2, 3, and recall that if we assemble the flags Υ ∈ A3,
Υ2 ∈ A2, Υ2,1 ∈ A1 and Υ2,1,0 ∈ A0, we can define a flag ΦΥ ∈ F(M).

Suppose that there is an automorphism α ∈ Aut(Cham(M)) such that (Φ, i)α =
(Ψ, j) for some Φ,Ψ ∈ F(M) and i 6= j, with i, j ∈ {0, 1, 2, 3}. We shall verify the
image, under α, of the assembled flags (Φ, 0), (Φ, 1), (Φ, 2), (Φ, 3), corresponding to Φ ∈
F(M), in terms of the adjacent flags of (Ψ, j). Note that Φ0 ∈ (Φ, 0) and Φ2 ∈ (Φ, 3),
but they are neither in (Φ, 1) nor in (Φ, 2). Then, we have the following cases.

0) For i = 0.
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– If (Φ, 0)α = (Ψ, 1), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ2,1)1, since
(Φ, 0)α = (Ψ, 1) := ({Ψ0,Ψ2}, {Ψ0{Ψ0,Ψ2}},Ψ1) and
(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 1)0,1,2 = (Ψ2,1, 0) :=
(Ψ0, {Ψ0, {Ψ0, (Ψ

2)2}}, (Ψ2,1)1).
– If (Φ, 0)α = (Ψ, 2), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ0,1)1, since

(Φ, 0)α = (Ψ, 2) := ({Ψ0,Ψ2}, {Ψ1,Ψ2},Ψ1) and
(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 2)0,1,2 = (Ψ0,1, 1) :=
({(Ψ0)0,Ψ2}, {(Ψ0)0, {(Ψ0)0,Ψ2}}, (Ψ0,1)1).

– If (Φ, 0)α = (Ψ, 3), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ0,1)1, since
(Φ, 0)α = (Ψ, 3) := ({Ψ0,Ψ2}, {Ψ1,Ψ2},Ψ2) and
(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 3)0,1,2 = (Ψ0,1, 2) :=
({(Ψ0)0,Ψ2}, {(Ψ0,1)1,Ψ2}, (Ψ0,1)1).

Similarly, we follow the same analysis in the next cases.

1) For i = 1.

– If (Φ, 1)α = (Ψ, 0), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ2,1)1.
– If (Φ, 1)α = (Ψ, 2), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.
– If (Φ, 1)α = (Ψ, 3), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.

2) For i = 2.

– If (Φ, 2)α = (Ψ, 0), then Φ0α = {Ψ0, (Ψ
2)2} and Φ2α = (Ψ1)1.

– If (Φ, 2)α = (Ψ, 1), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.
– If (Φ, 2)α = (Ψ, 3), then Φ0α = {(Ψ1,0)0,Ψ2} and Φ2α = Ψ1.

3) For i = 3.

– If (Φ, 3)α = (Ψ, 0), then Φ0α = {Ψ0, (Ψ
1,2)2} and Φ2α = Ψ1.

– If (Φ, 3)α = (Ψ, 1), then Φ0α = {(Ψ1,2)0, (Ψ
1,2)2} and Φ2α = Ψ1.

– If (Φ, 3)α = (Ψ, 2), then Φ0α = {(Ψ1,2)0,Ψ2} and Φ2α = (Ψ0,1)1.

Observe from the cases above, that all the vertices {Ψ0,Ψ2}, {(Ψ0)0,Ψ2},
{Ψ0, (Ψ

2)2}, {(Ψ1,0)0,Ψ2}, {Ψ0, (Ψ
1,2)2}, {(Ψ1,2)0, (Ψ

1,2)2} and {(Ψ1,2)0,Ψ2} are
vertices with degree 3 in Cham(M). So as all the faces (Ψ2,1)1, (Ψ0,1)1, (Ψ1)1 and Ψ1,
correspond to 6-gons in Cham(M). Thus, the vertex Φ0 has degree 3 and the face Φ2 is a
6-gon inM, with Φ ∈ F(M). Furthermore, let Φw = ∆ ∈ F(M), with w ∈ Mon(M).
Then we have that

(∆, i)α = (Φw, i)α = (Φ, i)w̄α = ((Φ, i)α)w̄ = (Ψ, j)w̄,

with w̄ ∈ Mon(Cham(M)). Recall that the conjugated subgroup Dai of
Mon(Cham(M)) fixes the setAi and permutes the setsAj1 ,Aj2 andAj3 , with j1, j2, j3 ∈
{0, 1, 2, 3} \ {i}, where a0 = r2r1r0, a1 = r2r1, a2 = r2, and a3 = id. Since
(∆, i) = (Φ, i)w̄, it follows that w̄ ∈ Dai , and henceforth (∆, i)α = (Ψ, j)w̄ ∈ Ajk ,
with j, jk ∈ {0, 1, 2, 3} \ {i}.

Thus, we follow with a similar analysis as the previous one for (∆, i)α = (Ψ, j)w̄, and
we conclude that the vertex ∆0 has degree 3 and the face ∆2 is a 6-gon inM. This latter
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was for arbitrary ∆ ∈ F(M) and w ∈ Mon(M). Therefore, we have that each vertex
in V (M) has degree 3 and every face F (M) is a 6-gon. Consequently, the mapM is an
equivelar map with Schäfli type {6, 3}.

By the Euler characteristic of a map, the surface of an equivelar map with Schläfli type
{6, 3} is either the torus or Klein bottle. In the following subsection we find the number of
flag-orbits of the chamfering of an equivelar map of type {6, 3}.

4.1 Chamfering of equivelar maps of type {6, 3}

In [16] Hubard, Orbanić, Pellicer and Weiss studied the symmetry types of equivelar maps
in the torus, described as {6, 3}v1,v2 , where v1 and v2 are two linearly independent vectors.
In [27] Wilson shows that there are two kinds of maps of type {6, 3} in the Klein bottle, and
denotes them by {6, 3}|m,n| and {6, 3}\m,n\ respectively, where the two glide reflections
of these maps are on axes that are at distance a multiple of n and have length a multiple of
m.

Regarding equivelar toroidal maps of type {6, 3}, from Theorem 8 in [16], we obtain
the following proposition.

Proposition 4.3. Equivelar toroids with Schläfli type {6, 3} are either regular, chiral, or
have symmetry type 302 or 6Hp .

1 2 302 6Hp

Figure 8: Symmetry type graphs of regular, chiral, 302 and 6Hp
maps.

An equivelar toroidal map of type {6, 3} is described as {6, 3}v1,v2 , where the linearly
independent vectors v1 and v2 are a linear combination of the basis {

√
3e1,

√
3

2 e1 + 3
2e2},

with the origin in the centre of an hexagon in the {6, 3}-tessellation of the plane.
In Figures 9–12 examples of equivelar toroids and their corresponding chamfering

maps are depicted. Note that by chamfering a toroidal mapM := {6, 3}v1,v2 we replace
the edges ofM by the corresponding hexagonal faces in Cham(M). Thus, the centres of
adjacent faces of Cham(M) are at half distance than in the centres of adjacent hexagons
of M. This implies that the chamfering map Cham(M) is the equivelar toroidal map
{6, 3}2v1,2v2 . Thus, we have the following lemma.

Lemma 4.4. LetM be an equivelar toroidal map of type {6, 3}. Then the symmetry type
graph T (Cham(M)) is isomorphic to T (M).

As what it concerns to equivelar maps of type {6, 3} in the Klein bottle. Following
[27], the two kinds of maps of type {6, 3} in the Klein bottle are denoted by {6, 3}|m,n|
and {6, 3}\m,n\ respectively, where m and n are measured in
respect to the centres of the hexagons. The map in the Klein bottle, described as {6, 3}|m,n|,
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{6, 3}(1,1),(2,−1)

{6, 3}(2,2),(4,−2)

Cham(M)

Cham(M)

{6, 3}(2,0),(0,2)

{6, 3}(4,0),(0,4)

Figure 9: Chamfering of regular toroids of type {6, 3}.

{6, 3}(2,1),(−1,3)

Cham(M)

{6, 3}(4,2),(−2,6)

Figure 10: Chamfering of chiral toroids of type {6, 3}.
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{6, 3}(2,1),(3,−1)

{6, 3}(4,2),(6,−2)
Cham(M)

{6, 3}(2,0),(−1,2)

{6, 3}(4,0),(−2,4)

Cham(M)

Figure 11: Chamfering of 3-orbit toroids of type {6, 3}.

{6, 3}(2,1),(2,0)

{6, 3}(4,2),(4,0)

Cham(M)

Figure 12: Chamfering of 3-orbit toroids of type {6, 3}.
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results by using two glide reflections of length m
2 on axes of type (a) or (b), as in Figure 13,

that are n
√

3
2 apart. And, the map in the Klein bottle, described as {6, 3}\m,n\, results by

using two glide reflections of lengthm
√

3
2 on axes of type (c) or (d) as in Figure 13, that are

n
2 apart. In both cases, the generating glide reflections are symmetries of the regular hexag-
onal tessellation of the plane. Since the glide reflection axes (a), (b), (c) and (d) are either

(a) (b)
(c) (d)

Figure 13: Possible glide reflection axes in {6, 3}.

parallel to the edges of the hexagons or cross the edges in their midpoint, by chamfering an
equivelar mapM in the Klein bottle, of type either {6, 3}|m,n| or {6, 3}\m,n\, the distance
between both glide reflection axes and their length are the half than for those inM. This
is, in Cham(M), the values of m and n are the half as those forM. Therefore, the cham-
fering map Cham(M) is an equivelar map in the Klein bottle described as {6, 3}|2m,2n|,
or as {6, 3}\2m,2n\, with glide reflection axes of type (a) or (d), respectively.

Hence, we obtain the following lemma.

Lemma 4.5. If M is the toroidal map {6, 3}v1,v2 or a map in the Klein bottle of type
either {6, 3}|m,n|, or {6, 3}\m,n\, then Cham(M) is a map on the same surface of type
{6, 3}2v1,2v2 , {6, 3}|2m,2n|, or {6, 3}\2m,2n\, respectively.

Following [27] we can see that maps {6, 3}|m,n| and {6, 3}\m,n\ have 3mn edges
and thereby 12mn flags. Moreover, the automorphism group of these maps have 4m
elements. Thus, the maps {6, 3}|m,n| and {6, 3}\m,n\ are 3n-orbit maps. Hence,
Cham({6, 3}|m,n|) = {6, 3}|2m,2n| and Cham({6, 3}\m,n\) = {6, 3}\2m,2n\ have 48mn
flags and their respective automorphism group have 8m elements. Therefore, {6, 3}|2m,2n|
and {6, 3}\2m,2n\ are 6n-orbit maps. In Figures 14 and 15 are depicted examples of maps
of type {6, 3}|m,1| and {6, 3}\m,1\, with m even and odd, and its chamfering maps. Note
that both maps of type {6, 3}|m,1| and {6, 3}\m,1\ have symmetry type 302, while their
chamfering maps {6, 3}|2m,2| and {6, 3}\2m,2\ have symmetry type 6Hp .

Corollary 4.6. If M is a k-orbit toroidal equivelar map of Schläfli type {6, 3}, then
Cham(M) is a k-orbit map, with k = 1, 2, 3, 6. If M is a k-orbit equivelar map of
Schläfli type {6, 3} in the Klein bottle, then 3|k and Cham(M) is a 2k-orbit map.
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{6, 3}|2,1|

{6, 3}|4,2|

{6, 3}|3,1| {6, 3}|6,2|

Cham(M)

Cham(M)

Figure 14: Chamfering of a 3-orbit map of type {6, 3}|m,1| in the Klein bottle.

{6, 3}\2,1\ {6, 3}\4,2\

{6, 3}\3,1\
{6, 3}\6,2\

Cham(M)

Cham(M)

Figure 15: Chamfering of a 3-orbit map of type {6, 3}\m,1\ in the Klein bottle.
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5 Conclusion
Putting our results together we see that lemma 4.2 implies that ifM is a k-orbit map such
that Cham(M) is not a 4k-orbit map, then it is of type {6, 3}. Hence, Corollary 4.6 implies
the following theorem.

Theorem 5.1. Let M be a k-orbit map. Then, Cham(M) has either k, 2k or 4k flag-
orbits.

We denote as T (Cham(T ′)) the chamfering symmetry type graph with 4k vertices that
results from applying the algorithm in Figure 7 to the symmetry type graph T ′ of a k-orbit
map. (See for instance Figures 16). As a consequence of the above discussion we have the
following corollary.

Corollary 5.2. LetM be a k-orbit map with symmetry type either 1, 2, 302 or 6Hp , and
Cham(M) its chamfering map. Then the following holds.

(1) IfM is a regular map, then Cham(M) is either regular of type {6, 3} (and hence
toroidal), or has symmetry type 4Dp

.

(2) If M is a chiral map, then Cham(M) is either chiral of type {6, 3} (and hence
toroidal), or has symmetry type graph T (Cham(2)) with 8 vertices. (See Figure 16.)

(3) IfM has symmetry type 302, then Cham(M) is either a toroidal map of type {6, 3}
with symmetry type graph 302, or Cham(M) is a 6-orbit map in the Klein bottle and
has symmetry type graph 6Hp

, or it has symmetry type graph T (Cham(302)) with
12 vertices. (See Figure 16.)

(4) IfM has symmetry type 6Hp
, then Cham(M) is either a toroidal map of type {6, 3}

and has symmetry type graph 6Hp
, or Cham(M) is a 12-orbit map in the Klein

bottle, or it has symmetry type graph T (Cham(6Hp
)) with 24 vertices. (See Figure

16.)

In [6] A. Deza, M. Deza and V. Grishukhin denote by Chamt(M) the t-times cham-
fering ofM. It is straightforward to see that Chamt(M) of a k-orbit equivelar mapM on
the torus is a k-orbit map described as {6, 3}2tv1,2tv2 . Similarly, Chamt(M) of a k-orbit
equivelar map M on the Klein bottle is a 2k-orbit map denoted either {6, 3}|2tm,2tn| or
{6, 3}\2tm,2tn\.

Finally, based on the results obtained in the previous section, we conclude with the
following theorem.

Theorem 5.3. LetM be a k-orbit map and Chamt(M) the t-times chamfering map ofM
having s flag-orbits. Then at least one of the following holds.

1. s = 4tk, 2tk or k.

2. If s 6= 4tk, then χ(M) = 0 (M is on the torus or on the Klein bottle) andM is of
type {6, 3}.

3. IfM is on the torus of type {6, 3} then s = k and k = 1, 2, 3, 4.

4. IfM is on the Klein bottle of type {6, 3} then s = 2tk and 3|k.

Furthermore, joining the results obtained for the medial and truncation operations on k-
orbit maps, in [19], that motivated the work done for this paper, with the results in obtained
for the chamfering operation on k-orbit maps, we obtain the following table.
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T (Cham(2))

T (Cham(302)) T (Cham(6Hp
))

Figure 16: Symmetry type graphs of Cham(M), withM of type 2, 302 and 6Hp
.

M′ Me(M) Tr(M) Cham(M)

|Orb(M′)| 2k or k 3k, 3k
2 or k 4k, 2k or k

k|3 k = 1, 2, 3, 6

Table 1: Possible number of possible flag-orbits of a map M′ with regard to k =
|Orb(M)|, whereM′ is the medial, truncation or chamfering map ofM .
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