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Estimating the Coefficient of Asymptotic Tail
Independence: a Comparison of Methods

Marta Ferreira?

Abstract

Many multivariate analyses require the account of extreme events. Correlation is
an insufficient measure to quantify tail dependence. The most common tail depen-
dence coefficients are based on the probability of simultaneous exceedances. The
coefficient of asymptotic tail independence introduced in Ledford and Tawn ([18]
1996) is a bivariate measure often used in the tail modeling of data in finance, en-
vironment, insurance, among other fields of applications. It can be estimated as
the tail index of the minimum component of a random pair with transformed unit
Pareto marginals. The literature regarding the estimation of the tail index is exten-
sive. Semi-parametric inference requires the choice of the number £ of the largest
order statistics that lead to the best estimate, where there is a tricky trade-off be-
tween variance and bias. Many methodologies have been developed to undertake
this choice, most of them applied to the Hill estimator (Hill, [16] 1975). We are go-
ing to analyze, through simulation, some of these methods within the estimation of
the coefficient of asymptotic tail independence. We also compare with a minimum-
variance reduced-bias Hill estimator presented in Caeiro et al. ([3] 2005). A pure
heuristic procedure adapted from Frahm et al. ([13] 2005), used in a different con-
text but with a resembling framework, will also be implemented. We will see that
some of these simple tools should not be discarded in this context. Our study will be
complemented by applications to real datasets.

1 Introduction

It is undeniable that extreme events have been occurring in areas like environment (e.g.
climate changes due to pollution and global heating), finance (e.g., market crashes due to
less regulation and globalization), telecommunications (e.g., growing traffic due to a high
expanding technological development), among others. Extreme values are therefore the
subject of concern of many analysts and researchers, who have come to realize that they
should be dealt with some care, requiring their own treatment. For instance, the classical
linear correlation is not a suitable dependence measure if the dependence characteristics in
the tail differ from the remaining realizations in the sample. An illustration is addressed in
Embrechts et al. ([9] 2002). To this end, the tail dependence coefficient (TDC) defined in
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Joe ([17] 1997), usually denoted by A, is more appropriate. More precisely, for a random
pair (X, Y’) with respective marginal distribution functions (dfs) Fx and Fy, the TDC is
given by

)\zltiglP(Fy(Y) >1—t|Fx(X)>1-1), (1.1)
whenever the limit exists. Roughly speaking, the TDC evaluates the probability of one
variable exceeding a large value given that the other also exceeds it. A positive TDC
means that X and Y are tail dependent and whenever null we conclude the random pair
is tail independent. In this latter case, the rate of convergence towards zero is a kind
of residual tail dependence that, once ignored, may lead to an under-estimation of the
risk underlying the simultaneous exceedance of a large value. On the other hand, by
considering that the random variables (rv’s) X and Y are tail dependent when they are
actually asymptotically independent, it will result in an over-estimation of such risk. The
degree of misspecification depends on the degree of asymptotic independence given by
the mentioned rate of convergence, denoted 1 in Ledford and Tawn ([18] 1996). More
precisely, it is assumed that

P(Fx(X)>1—t,Fy(Y)>1—1t)=tY"L(t), n € (0, 1], (1.2)

where L(t) is a slowly varying function at zero, i.e., L(tx)/L(t) — last | Oforall z > 0.
We call the parameter 7 the coefficient of asymptotic tail independence. Whenever n < 1,
X and Y are asymptotically independent and, if n = 1, asymptotic dependence holds if
L(t) — ¢ > 0,ast | 0. Incase X and Y are exactly independent then = 1/2 and we can
also discern between asymptotically vanishing negative dependence and asymptotically
vanishing positive dependence if, respectively, n € (0,1/2) and n € (1/2,1). Observe
that we can state (1.2) as

P <min (1 — FlX(X), - l;y(Y)> > t) = t7Y"L(1/t), (1.3)

and thus 7 corresponds to the tail index of the minimum of the two marginals standardized
as unit Pareto. The tail index, also denoted extreme value index, quantifies the “weight”
of the tail of a univariate distribution: whenever negative, null or positive it means that the
tail of the underlying model is, respectively, “light”, “exponential” or “heavy”. In what
concerns univariate extreme values, it is the primary parameter as it is implicated in all
other extremal parameters, such as, extremal quantiles, right end-point of distributions,
probability of exceedance of large levels, as well as return periods, among others. There-
fore, the estimation of the tail index is a crucial issue, with numerous contributions in the
literature. A survey on this topic can be seen, for instance, in Beirlant et al. ([2] 2004).

Under a semi-parametric framework in the domain of heavy tails, the Hill estimator,
introduced in Hill ([16] 1975), have proved to possess good properties, being an essential
tool in any application on this topic. For a random sample (71, ..., T},), the Hill estimator
corresponds to the sample mean of the log-excesses of the k£ 4 1 larger order statistics
Tom > oo > Ty ks 1€,

1 Tii1.
H,(k)=H(k) := ) log %:1” 1<k<n, (1.4)
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Consistency requires that k£ must be intermediate, that is, a sequence of integers k = k,,,
1 < k < n, such that

k, — oo and k,/n — 0, asn — oo.

There is no definite formula to obtain k£ and it must be chosen not too small to avoid
high variance but also not to large to prevent high bias. Figure 1 illustrates this issue,
particularly the dashed line corresponding to a unit Frchet model where the tail index is 1.
Observe also that there is a kind of stable area of the sample path around the true value of
the tail index, where the variance is no longer high and the bias haven’t started to increase.
This disadvantage is transversal to the semi-parametric tools concerning extreme values
inference. In the particular case of the Hill estimator, many efforts have been made to
minimize the problem, ranging from bias-corrected versions to the implementation of
procedures to compute k. The minimum-variance reduced-bias (MVRB) Hill estimator
presented in Caeiro et al. ([3] 2005; see also Neves ef al. [21] 2015) was developed for
the Hall-Welsh class (within Generalized Pareto distributions), with reciprocal quantile
function

F'(1—1/z) =Cx" (1 +~B2"/p+ o(z")), x — o0, (1.5)

where v > 0 is the tail index of model F', C' > 0, and 5 # 0 and p < 0 are second order
parameters. The MVRB Hill estimator is given by

CH, (k)= CH(k) := H(k) (1 - W) J1<k<n, (1.6)

where 3 and p are suitable estimators of 3 and p, respectively. Details about these latter
are addressed in Caeiro et al. ([4] 2009) and references therein. We will denote it “cor-
rected Hill” (CH). Our aim is to compare, through simulation, several methods regarding
the Hill and corrected Hill estimators applied to the estimation of . We also consider the
graphical and pure heuristic procedure presented in Frahm et al. ([13] 2005) in the con-
text of estimating the TDC A in (1.1), also relying on the choice of k upper order statistics
with the same bias/variance controversy. All the estimation procedures are described in
Section 2. The simulation study is conducted in Section 3 and applications to real datasets
appear in Section 4. A small discussion ends this work in Section 5.

2 Estimation methods

In this section we describe the procedures that we are going to consider in the estimation
of the coefficient of asymptotic tail independence 7 given in (1.3) and therefore corre-
sponding to the tail index of

T =min((1 - Fx (X)), (1 - F(Y)™). 2.1

Coefficient 7 is positive and we can use positive tail index estimators such as Hill. Observe
that 7" is the minimum between two unit Pareto r.v.’s Alternatively, we can also undertake
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Figure 1: Hill plots of 1000 realizations of a unit Pareto (full line) and a unit Fréchet
(dashed line), both with tail index equal to 1 (horizontal line).

a unit Frchet marginal transformation since 1 — F'y (X) ~ —log F'x(X). However, in the
sequel, we prosecute with unit Pareto marginals, since the Hill estimator has smaller bias
in the Pareto models than in the Frchet ones (see Figure 1; see also Draisma et al. [6]
2004 and references therein). In order to estimate the unknown marginal df’s F'x and Fy
we consider their empirical counterparts (ranks of the components), more precisely,

T =min((n+1)/(n+1-RX),(n+1)/(n+1—RY)),i=1,....n

where Rf( denotes the rank of X; among (X1,...,X,) and RZY denotes the rank of Y;
among (Y7,...,Y,).

The estimation of n through the tail index estimators Hill and maximum likelihood
(Smith, [24] 1987) was addressed in Draisma et al. ([6] 2004). Other estimators were
also considered in Poon et al. ([23] 2003; see also references therein) and more recently
in Goegebeur and Guillou ([14] 2013) and Dutang et al. ([8] 2014). However, no method
was analyzed in order to attain the best choice of & in estimation.

In the domain of positive tail indexes, the Hill estimator is the most widely studied
and many developments have been appearing around it. The main topics concern meth-
ods to obtain the value of k related to the number of tail observations to use in estimation
and procedures to control the bias without increasing the variance. The corrected Hill
version in A(1.6), for instance, removes from Hill its dominant bias component estimated

by H(k)(B(n/k)?)/(1 - p).

In the following, we describe the methods developed in literature for the Hill estimator
to compute the value of &, that will be used to estimate 7 (the tail index of rv 7" in (2.1))
in our simulation study.

Based on Beirlant et al. ([1] 2002) and little restrictive conditions on the underlying
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model, we have

T H(i
Y o= (i + 1) log ———"=t (0

TT(L—)(H-I):TL H(Z =+ 1)

1

k

=n+b(n/k) ( )/’ +e,i=1,...,k, (2.2)

where the error term ¢; is zero-centered and b is a positive function such that b(z) — 0, as
x — oo. Extensive simulation studies conclude that the results tend to be better when p is
considered fixed, even if misspecified. Matthys and Beirlant ([19] 2000) suggest p = —1.
From model (2.2), the resulting least squares estimators of 77 and b(n/k) are given by
TS = Ve bES/(1=p) and b5 =GR s ()7 - Ly 23)

p k =1 k 1—p

Thus, by replacing these estimates in the Hill’s asymptotic mean squared error (AMSE)

2
_n? b(n/k)
AMSE(H (k) = % + (<—/> ,

1—p

we are able to compute E;pt as the value of £ that minimizes the obtained estimates of the
AMSE and estimate 7 as H (/lgcl,pt).

On the other hand, we can compute the approximate value of & that minimizes the
AMSE, given by

ot ~ bl ) 2/1-20) =20/ 120 (1202 2.4)

—2p

)1/(1*2/-7)

See, e.g., Beirlant e al. ([1] 2002). Replacing again 7 and b(n/k) by the respective least
squares estimates in (2.3) with fixed p = —1, we derive %optvk, for £ = 3,...,n, using
(2.4). Then compute Egpt = medicm{%opt,k, k = 3,..,15]}, where [z] denotes the
largest integer not exceeding x and consider 7 estimated by A (Egpt).

Further reading of the methods is referred to Beirlant ef al. ([1] 2002), Matthys and
Beirlant ([19] 2000) and references therein. In the sequel, they are shortly denoted, re-
spectively, AMSE and KOPT.

The adaptive procedure of Drees and Kaufmann ([6] 1998) looks for the optimum %
under which the bias starts to dominate the variance. The method is developed for the
Hall-Welsh class of models defined in (1.5), for which it is proved that the maximum
random fluctuation of Vi(H(i) — n), i = 1,..,k — 1, with k = k, an intermediate
sequence, is of order v/log log n. More precisely, for p fixed at —1, we have:

1. Consider r,, = 2.5 x 1 x n%%, with 7] = 7 s .-

2. Calculate k(r,) := min{k = 1,...,n — 1 : max,<, Vi|H(i) — H(k)| > ra}. If
Vi|H (i) — H(k)| > r, doesn’t hold for any k, consider 0.9 x 7, to 7, and repeat
step 2, otherwise move to step 3.

3. Fore € (0, 1), usually € = 0.7, obtain

| i) )
kg = 5(2772)1/3 <~n5>
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This method will be shortly referred DK.

Sousa and Michailidis (2004) method is based on the Hill sum plot, (k,Sy), k =
1,...,n — 1, where S, = kH(k). We have E(S;) = kn, an thus the sumplot must
be approximately linear for the values of k where H (k) = 7, with the respective slope
being an estimator of 7. The method essentially seeks the breakdown of linearity. Their
approach is based on a sequential testing procedure implemented in McGee and Carleton
([20] 1970), leaning over approximately Pareto tail models. More precisely, consider the
regression model y = Xn + 4§, with y = (S, ..., Sk)’, X = [14]%_, and § the error term.
It is checked the null hypothesis that a new point ¥, is adjacent to the left or to the right
of the set of points y = (y1, ..., yx ), through the statistics

TS = 57 <<yo ~T+ Y@ —ﬂ:‘)?) ,

i=1

where * denotes the predictions based on k + 1 and s*> = (k — 2)7!(y'y — 7X"y). Since
T'S is approximately distributed by F _, the null hypothesis is rejected if 7'S'is larger
than the (1 — «)-quantile, F} ;_21_o. The method, shortly denoted SP from now on, is
described in the following algorithm:

1. Fit a least-squares regression line to the initial & = vn upper observations, y =
[y;]*_, (usually v = 0.02).

2. Using the test statistic 75, determine if a new point y, = y; for j > &, belongs to
the original set of points y. Go adding points until the null hypothesis is rejected.

3. Consider kyey = max(0,{j : TS < Fiy-21-a})- If knew = 0, no new points
are added to y and thus move forward to step 4. Return to step 1. if ke, > 0 by
considering k = kyey.

4. Estimate 1 by considering the obtained k.

The heuristic procedure introduced in Gomes ef al. ([15] 2013), searches for the
supposed stable region encompassing the best k to be estimated. More precisely, we need
first to obtain the minimum value jo, such that the rounded values to j decimal places
of H(k), 1 < k < n, denoted H(k;j) are not all equal. Identify the set of values of k
associated to equal consecutive values of H(k;jy). Consider the set with largest range
0 = kpax — knin. Take all the estimates H (k;jo + 2) with kpay < k < Kkpin, i.€., the
estimates with two additional decimal points and calculate the mode. Consider K the set
of k-values corresponding to the mode. Take H(k), with k being the maximum of /.
Since it was specially designed for reduced-bias estimators, we shortly referred it as RB
method hereinafter.

Frahm et al. ([13] 2005) also presented a heuristic procedure that can be applied to all
estimators depending on a number k of rv’s whose choice bears the mentioned trade-off
between bias and variance. Indeed is was developed within the estimation of the TDC A
defined in (1.1). It was adapted to the Hill estimator in Ferreira ([11, 12] 2014, 2015) as
follows:
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1. Smooth the Hill plot (k, [ (k)) by taking the means of 2b + 1 successive points,
H(1),...,H(n — 2b), with bandwidth b = |w X n].

2. Define the regions p, = (H(k), ..., H(k+m—1)),k=1,....,n—2b—m+1, with
length m = [v/n — 2b]. The algorithm stops at the first region satisfying

k+m—1

> [HG) - Hk)| < 25,

i=k+1
where s is the empirical standard-deviation of H (1), ..., H(n — 2b).

3. Consider the chosen plateau region py* and estimate 7 as the mean of the values of
pr* (consider the estimate zero if no plane region fulfills the stopping condition).

The estimation of 7 through the plateau method was analyzed in Ferreira and Silva
([10] 2014) with respect to the sensibility of the bandwidth. The value w = 0.005 seems
a reasonable choice (thus each moving average in step 1. consists in 1% of the data), also
suggested in Frahm et al. ([13] 2005). In the sequel it will be referred as plateau method
(in short PLAT).

Both RB and PLAT are simultaneously graphical and free-assumption methods since
they are based on the search of a plane region of the estimator’s plot that presumably con-
tains the best sample fraction k to be estimated through a totally “ad-hoc” procedure. The
sumplot is also a graphical method and the remaining procedures are neither graphical
nor free-assumption.

3 Simulation study

In this section we compare through simulation the performance of the methods described
above within the estimation of 7 through the under study estimators Hill in (1.4) and
corrected Hill in (1.6).

We have generated 100 runs of samples of sizes n = 100, 1000, 5000 from the follow-
ing models:

e Bivariate Normal distribution (n = (14 p)/2; see, e.g., Draisma ez al. [6] 2004); we
consider correlation p = —0.2 (n = 0.4), p = 0.2 (n = 0.6) and p = 0.8 (n = 0.9);
we use notation, respectively, N(—0.2), N(0.2) and N(0.8).

e Bivariate t-Student distribution ¢, with correlation coefficient given by p # —1
(\ = 2F, (—\/(wr (1 —p)/0 —I—p)>, see Embrechts ef al. [9] 2002; we

have A > 0 and thus = 1); we consider ¥ = 4 and p = 0.25 (A = 0.1438) and
v =1and p = 0.75 (A = 0.6464); we use notation, respectively, ¢, and ¢;.

e Bivariate extreme value distribution with a asymmetric-logistic dependence func-
tion £(w,y) = (1 — ar)x + (1 — az)y + ((ar2)"* + (agy)"/*)", with 2,y > 0,
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dependence parameter o € (0, 1] and asymmetric parameters a;,as € (0,1] (A =
2—1(1,1), see Beirlant et al. [1] 2004; we have A > 0 and thus n = 1); we consider
a=07anda, = 0.4, ay = 0.2(\ = 0.1010) and o = 0.3 and a, = 0.6, as = 0.8
(A = 0.5182); we use notation, respectively, AL(0.7) and AL(0.3).

e Farlie-Gumbel-Morgenstern distribution with dependence 0.5 (n = 0.5, see Dutang
et al. [8] 2014); we use notation F'GM (0.5).

e Frank distribution with dependence 2 (n = 0.5, see Dutang et al. [8] 2014); we use
notation F'r(2).

Observe that the case N(0.8) is an asymptotic tail independent model close to tail
dependence since 7 = 0.9 ~ 1. On the other hand, the cases ¢, and AL(0.7) are tail
dependent cases (1 = 1) near asymptotic tail independence since A = 0.1438 ~ 0 and \ =
0.1010 ~ 0, respectively. We consider these examples in order to assess the robustness of
the methods in border cases.

In Figures 2 and 3 are plotted, respectively, the results of the simulated values of
the absolute bias and root mean squared error (rmse), for the Hill and corrected Hill
estimators, in the case n = 1000. All the results are presented in Table 1 concerning
the Hill estimator and Table 2 with respect to the corrected Hill. Observe that this latter
case requires the estimation of additional second order parameters (3 and p). To this end,
we have followed the indications in Caeiro et al. ([4] 2009). For the p estimation, there
was an overall best performance whenever it was taken fixed at value —1, leading to the
reported results.

The largest differences between Hill and corrected Hill can be noticed in the above
mentioned border cases, with the corrected one presenting lower absolute bias and rmse.
The other models also show this difference but in a small amount. We remark that we are
working with the minimum of Pareto rv’s and the Hill estimator is unbiased in the Pareto
case. The FGM and Frank models behave otherwise with a little lower absolute bias and
rmse within the Hill estimator, for either estimated or several fixed values tried for p.

The failure cases in the DK method (column “NF” of Tables 1 and 2) correspond to
an estimate of & out of the range {1,...,n — 1}, which were ignored in the results. It
sets up the worst performance, which may be justified by the fact that the class of models
underlying the scope of application of this method excludes the simple Pareto law.

The corrected Hill exhibits better results in general, particularly for methods KOPT,
PLAT and AMSE, followed by SP and RB, in large sample sizes (n;,=1000). The PLAT
procedure also performs well with the Hill estimator unlike the SP.

For n = 100, we have good results within RB and SP based on corrected Hill. Once
again, the PLAT method behaves well in both estimators.

The border cases of weak tail dependence (¢4, and AL(0.7)) are critical throughout all
evaluated procedures and estimators. On the other hand, the methods are robust in the
border case of tail independence near dependence expressed in model NV (0.8).

4 Applications

In this section we illustrate the methods with three datasets analyzed in literature:
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Figure 2: Simulated results of the absolute bias of Hill (full) and corrected Hill (dashed), for
n = 1000, of the models (left-to-right and top-to-down): N (—0.2), N(0.2), N(0.8), t4, t1,
AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

e [: The data consists of closing stock index levels of S&P 500 from the US and FTSE
100 from the UK, over the period 11 December 1989 to 31 May 2000, totalizing
2733 observed pairs (see, e.g., Poon et al. ([23] 2003)).

e [I: The wave-surge data corresponding to 2894 paired observations collected during
1971-77 in Cornwall (England); it was analyzed in Coles and Tawn ([5] 1994) and
later also in Ramos and Ledford ([22] 2009) under a parametric view.

e [II: The Loss-ALAE data analyzed in Beirlant et al. ([2] 2004; see also references
therein) consisting of 1500 pairs of registered claims (in USD) corresponding to an
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Figure 3: Simulated results of the rmse of Hill (full) and corrected Hill (dashed), for
n = 1000, of the models (left-to-right and top-to-down): N (—0.2), N(0.2), N(0.8), t4, t1,
AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

indemnity payment (loss) and an allocated loss adjustment expense (ALAE).

The respective scatter-plots are placed in Figure 4. For the US and UK stock mar-
ket returns, the largest values in each tail for one variable correspond to reasonably large
values of the same sign for the other variable, hinting an asymptotic independence but
not exactly independence. In the wave-surge data, the dependence seems a bit more per-
sistent within large values, as well as in Loss-ALAE data. The Hill and corrected Hill
sample paths of n estimates are pictured in Figure 5. Table 3 reproduces the estimates
obtained with each method and estimators under study. The estimation results found in
literature for the financial (I), environmental (II) and insurance datasets (III) are respec-
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tively approximated by 0.731, 0.85 and 0.9. The results seem to be in accordance with the
simulation study.
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Figure 4: From left to right: scatter-plots of datasets I, II and III.
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Figure 5: From left to right: sample paths of Hill (full;black) corrected Hill (dashed;grey) of
datasets I, II and III.

5 Discussion

In this paper we have analyzed some simple estimation methods for the coefficient of
asymptotic tail independence, with some of them revealing promising results. However,
the choice of the estimator is not completely straightforward. It can be seen from simula-
tion results that the ordinary Hill estimator may be still preferred over the corrected one
in some situations. Also in boundary cases of tail dependence near independence, there
are still some worrying errors to correct. These will be topics of a future research.
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SP

n = 100 | abias

N(—0.2) | 0.0449
N(0.2) | 0.0574
N(0.8) | 0.1372

ty | 0.4187
t | 0.2266
AL(0.7) | 0.4642
AL(0.3) | 0.2825
FGM(0.5) | 0.0383
Fr(2) | 0.0805

n = 1000 | abias
N(-0.2) | 0.0425
N(0.2) | 0.0462
N(0.8) | 0.1178

ty | 03921

t | 0.1975
AL(0.7) | 0.4518
AL(0.3) | 0.2369
FGM(0.5) | 0.0358
Fr(2) | 0.0630

n = 5000 | abias

N(-0.2) | 0.0485
N(0.2) | 0.0486
N(0.8) | 0.1253

ty | 0.4103
t | 02075
AL(0.7) | 0.4594
AL(0.3) | 0.2694
FGM(0.5) | 0.0391
Fr(2) | 0.0831

rmse
0.0590
0.0698
0.1460
0.4223
0.2323
0.4658
0.2855
0.0578
0.0954

rmse

0.0546
0.0642
0.1266
0.4013
0.2095
0.4544
0.2597
0.0430
0.0859

rmse
0.0515
0.0490
0.1261
0.4117
0.2090
0.4595
0.2712
0.0422
0.0842

Bl

90
89
93
96
96
94
98
90
88

819
826
866
893
933
941
885
846
696
k
4369
4804
4902
4853
4902
4999
4950
4562
4854

KOPT
abias
0.0387
0.1202
0.1881
0.4121
0.1605
0.4625
0.1686
0.0507
0.2065

abias
0.0059
0.0370
0.0832
0.3303
0.0777
0.3906
0.1282
0.0303
0.0305

abias
0.0217
0.0288
0.0725
0.2709
0.0499
0.3428
0.0956
0.0277
0.0620

rmse
0.1232
0.2002
0.2726
0.4458
0.2297
0.4895
0.2364
0.1683
0.1762

rmse

0.0515
0.0687
0.0907
0.3339
0.0896
0.3931
0.1356
0.0525
0.0791

rmse

0.0280
0.0346
0.0745
0.2745
0.0543
0.3448
0.0989
0.0387
0.0684

12
15
16
20
14
18
17
12
13

121
171
277
220
238
197
303
178
132

k
629
847
1343
548
1062
457
969
705
617

AMSE
abias
0.0258
0.0878
0.1935
0.4309
0.2318
0.4784
0.2877
0.0163
0.0320

abias
0.0378
0.0519
0.1231
0.3703
0.1530
0.4245
0.1821
0.0429
0.0409

abias
0.0424
0.0410
0.1021
0.2746
0.0804
0.3558
0.1100
0.0415
0.0862

rmse
0.0579
0.1224
0.2402
0.4362
0.2344
0.4863
0.3024
0.1117
0.1265

rmse

0.0474
0.0690
0.1239
0.3737
0.1562
0.4270
0.1859
0.0600
0.1136

rmse
0.0445
0.0422
0.1043
0.2829
0.0843
0.3633
0.1137
0.0460
0.0926

Eall

68
64
77
79
95
92
73
56
61

Sl

652
777
920
460
509
592
496
630
405
k
3353
3684
3357
648
1442
1178
1101
2053
1590

RB
abias
0.0286
0.0532
0.1323
0.4155
0.2144
0.4572
0.2498
0.0362
0.0839

abias
0.0437
0.0394
0.0926
0.4056
0.1886
0.4392
0.1940
0.0487
0.0952

abias
0.0399
0.0384
0.0907
0.4106
0.2039
0.4411
0.1989
0.0487
0.1027

rmse
0.0470
0.0714
0.1397
0.4188
0.2199
0.4594
0.2556
0.0585
0.0960

rmse

0.0455
0.0432
0.0940
0.4061
0.1906
0.4398
0.1945
0.0516
0.0963

rmse
0.0406
0.0391
0.0915
0.4107
0.2043
0.4413
0.1998
0.0494
0.1030

Eall

69
75
75
76
76
78
74
75
77

Sl

755
754
625
822
779
643
580
762
786
k
3135
3590
3052
4418
4573
3222
3024
3655
3650

DK
abias
0.0350
0.0388
0.1320
0.3007
0.1923
0.3447
0.1991
0.0508
0.0041

abias
0.0242
0.0223
0.0991
0.0431
0.0479
0.1613
0.0800
0.0216
0.0380

abias
0.0920
0.0601
0.0696
0.0636
0.0209
0.1898
0.0499
0.0421
0.0035

rmse
0.2883
0.4878
0.4158
0.5849
0.3481
0.6026
0.3459
0.3649
0.3391

rmse

0.3225
0.3651
0.3588
0.6092
0.1042
0.6207
0.1506
0.3347
0.3451

rmse
0.3383
0.4406
0.2242
0.4472
0.0393
0.5659
0.0641
0.3120
0.2501

Mo A D W oo W

k
48
39
84
29
78
45
108
50
50

k
572
402
737

34
235

20
298
190
286

Z —_ Z Z
= w o = bk~ O '—‘Ol\),_rj UIOOO\UJUILA\][\)-P,TJ

SO O NN O = O = =

PLAT
abias
0.0111
0.0384
0.1133
0.3539
0.1300
0.4199
0.1585
0.0302
0.0764

abias
0.0247
0.0297
0.0716
03114
0.0554
0.3827
0.0868
0.0415
0.0691

abias
0.0214
0.0261
0.0585
0.2653
0.0201
0.3511
0.0529
0.0313
0.0692

rmse
0.0780
0.1042
0.1440
0.3734
0.1507
0.4342
0.1864
0.1052
0.1293

rmse

0.0399
0.0452
0.0784
0.3172
0.0664
0.3864
0.0961
0.0532
0.0795

rmse
0.0271
0.0330
0.0625
0.2688
0.0328
0.3534
0.0642
0.0379
0.0738

Table 1: Simulation results from Hill estimator, where abias denotes the absolute bias, N F' the number of fails and & correspond to the mean of
the k values obtained in the 100 runs.
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HE) [ 1 k 1 k 11 k
DK | 0.6510 21 |0.8255 83 |0.7827 78
SP | 0.6025 2592 | 0.5922 2893 | 0.6584 1499

KOPT | 0.6733 744 | 0.9137 738 | 0.8444 135

AMSE | 0.6494 955 | 0.7076 1244 | 0.6850 1172
RB | 0.6041 2477 | 0.5967 2772 | 0.7428 708

PLAT | 07148 - | 08755 — |08110 -

CH(k)| 1 k 1 k 11 k
DK | 0.7654 5 |04521 1 |0.7044 27
SP | 0.6725 2592 | 0.8581 2893 | 0.8671 1499

KOPT | 0.7070 585 | 0.8991 412 | 0.8661 176

AMSE | 0.6925 726 | 0.8997 596 | 0.8386 678
RB | 0.6652 2264 | 0.8300 2040 | 0.8671 1499

PLAT | 07261 - |0.8908 — |0.8524 -

Table 3: Estimates of n and respective values k, of datasets I, II and III.
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