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Abstract

The topic of this paper is digraphs of in-valence and out-valence 2 that admit a 2-arc-
transitive group of automorphisms. We classify such digraphs that satisfy certain additional
conditions on their order. In particular, a classification of those with order kp or kp2 where
k ≤ 14 and p is a prime can be deduced from the results of this paper.
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1 Introduction
This paper is about finite connected arc-transitive digraphs of in- and out-valence 2 the
order of which has a specific prime factorisation. We refer the reader to Section 2.1 for exact
definitions of notions such as digraph, arc-transitive, valence etc. To simplify exposition,
we tacitly assume throughout the paper (even where not stated explicitly) that all digraphs
are finite and connected.

Studying arc-transitive graphs and digraphs of orders with a specific prime factorisation
has a long history and has become increasingly popular in the last decade or two. For exam-
ple, arc-transitive graphs and digraphs of order p or 2p, where p is a prime, were classified
in [3] and [4], respectively; later, using the classification of finite simple groups, all arc-
transitive graphs and digraphs of order a product of two distinct primes were characterised
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in [36], and independently in [26], and those that are 2-arc-transitive were determined in
[23].

Once the prime factorisation of the order becomes more complex, results of this type
become considerably more complicated (see [38] for an illustration of the difficulties that
can arise when the order is a product of three distinct primes). However, when one fixes the
valence (and perhaps imposes some further restrictions), further analysis becomes possible
(see for example [5, 8, 10]).

Since every connected digraph of valence 1 is isomorphic to a directed cycle, valence 2
is the smallest interesting valence in the context of arc-transitive digraphs. In the literature,
arc-transitive 2-valent digraphs often arise in disguise as undirected 4-valent graphs admit-
ting a group of automorphisms acting transitively on the edges, vertices, but not on the
arcs of the graph; such group actions are usually called 1

2 -arc-transitive. Namely, if Γ is a
G-arc-transitive 2-valent digraph, then its underlying (undirected) graph Γ′ admits a 1

2 -arc-
transitive action of the groupG; and conversely, if the automorphism group of an undirected
4-valent graph Γ′ contains a subgroup G acting 1

2 -arc-transitively on Γ′, then there exists
an orientation of the edges of Γ′ that gives rise to aG-arc-transitive 2-valent digraph whose
underlying graph is Γ′ (in fact, there are precisely two such orientations giving rise to a
pair of opposite digraphs). In this sense, the study of G-arc-transitive 2-valent digraphs is
equivalent to the study of (G, 1

2 )-arc-transitive graphs of valence 4. There is a substantial
literature about the latter class of graphs (see for example [6, 18, 19, 20, 21, 25, 39, 40]).

If Γ is an arc-transitive 2-valent digraph, then, for some positive integer s, the auto-
morphism group Aut(Γ) acts regularly on the set of all s-arcs of the digraph. If s = 1,
then the automorphism group acts regularly on the arc-set, and if the order of the digraph
has a simple prime factorisation, one is usually able to classify all possible automorphism
groups and use this information to determine all digraphs upon which such groups can act.
An instructive example of how this can be done (in the case of undirected 4-valent graphs)
can be found in [10]. Here, we will avoid this case and restrict ourselves to the case s ≥ 2;
that is, we will assume that our digraphs are all 2-arc-transitive.

The two main results of the paper are Theorems 1.1 and 1.2, stated below and proved
in Section 3. The digraphs

−→
PX(t, s) appearing in the statements are defined in Section 2.5.

Theorem 1.1. Let p and q be distinct odd primes, and let a, b, c be integers satisfying
a ∈ {0, 1, 2, 3}, b, c ∈ {0, 1, 2}, and (b, c) 6= (2, 2). If Γ is a connected (G, 2)-arc-
transitive 2-valent digraph of order 2aqbpc and G is non-solvable, then the order of Γ is at
most 1224 and Γ is isomorphic to one of the sixty-seven digraphs in Table 1.

Remark. Exact descriptions of the sixty-seven exceptional digraphs of Theorem 1.1
are available in [29] (for the digraphs of order up to 1000) and [1] (for digraphs of larger
order). The digraphs are given there in a form readable by Magma [2].

Theorem 1.2. Let Γ be a connected (G, 2)-arc-transitive 2-valent digraph and suppose
that G is solvable. Let n be the order of Γ, and suppose that one of the following holds:

(i) n is odd and cube-free;

(ii) n = 2am, where a ∈ {1, 2, 3} and m is an odd, square-free integer;

(iii) n = 2aqbp2, where a ∈ {1, 2, 3}, b ∈ {0, 1} and p, q are distinct odd primes.

Then one of the following conclusions holds:
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Order Name |Autv | |S| soc(Aut)

2 · 3 · 5 ATD[30;6] 4 1 Alt(5)

2 · 3 · 7 ATD[42;3] 8 1 PSL(2, 7)

22 · 3 · 5 ATD[60;16] 4 1 Alt(5) × C2
22 · 3 · 7 ATD[84;20] 8 1 PSL(2, 7) × C2
22 · 3 · 7 ATD[84;23] 4 1 PSL(2, 7)

22 · 3 · 7 ATD[84;24] 4 1 PSL(2, 7)

2 · 32 · 5 ATD[90;12] 4 1 Alt(5) × C3
2 · 32 · 5 ATD[90;13] 16 3 Alt(6)

23 · 3 · 5 ATD[120;11] 4 1 Alt(5) × C2
23 · 3 · 5 ATD[120;54] 4 1 Alt(5) × C2
23 · 3 · 5 ATD[120;56] 4 1 Alt(5) × C2
2 · 32 · 7 ATD[126;15] 8 1 PSL(2, 7) × C3
2 · 3 · 52 ATD[150;16] 4 1 Alt(5) × C5
23 · 3 · 7 ATD[168;53] 8 1 PSL(2, 7) × C2
23 · 3 · 7 ATD[168;64] 4 1 PSL(2, 7) × C2
23 · 3 · 7 ATD[168;65] 4 1 PSL(2, 7) × C2
23 · 3 · 7 ATD[168;81] 4 1 PSL(2, 7) × C2
23 · 3 · 7 ATD[168;82] 4 1 PSL(2, 7) × C2
22 · 32 · 5 ATD[180;42] 4 1 Alt(6)

22 · 32 · 5 ATD[180;45] 4 1 Alt(5) × C2 × C3
22 · 32 · 5 ATD[180;57] 8 3 Alt(6)

22 · 32 · 5 ATD[180;58] 16 3 Alt(6) × C2
22 · 32 · 7 ATD[252;59] 8 1 PSL(2, 7) × C2 × C3
22 · 32 · 7 ATD[252;69] 4 1 PSL(2, 7) × C3
22 · 32 · 7 ATD[252;70] 4 1 PSL(2, 7) × C3
2 · 3 · 72 ATD[294;19] 8 1 PSL(2, 7) × C7
22 · 3 · 52 ATD[300;66] 4 1 Alt(5) × C2 × C5
2 · 32 · 17 ATD[306;11] 8 1 PSL(2, 17)

23 · 32 · 5 ATD[360;146] 4 1 Alt(6) × C2
23 · 32 · 5 ATD[360;148] 4 1 Alt(6)

23 · 32 · 5 ATD[360;150] 8 3 Alt(6) × C2
23 · 32 · 5 ATD[360;153] 8 3 Alt(6) × C2
23 · 32 · 5 ATD[360;154] 4 1 Alt(6)

23 · 32 · 5 ATD[360;158] 4 1 Alt(5) × C2
2

23 · 32 · 5 ATD[360;163] 4 1 Alt(5) × C2 × C3
23 · 32 · 5 ATD[360;172] 4 1 Alt(5) × C2 × C3
23 · 32 · 5 ATD[360;174] 4 1 Alt(5) × C2 × C3
23 · 32 · 5 ATD[360;201] 8 3 Alt(6) × C2
23 · 32 · 5 ATD[360;202] 16 3 Alt(6) × C2
23 · 32 · 7 ATD[504;162] 8 1 PSL(2, 7) × C2 × C3
23 · 32 · 7 ATD[504;180] 4 1 PSL(2, 7) × C2 × C3
23 · 32 · 7 ATD[504;182] 4 1 PSL(2, 7) × C2 × C3
23 · 32 · 7 ATD[504;232] 4 1 PSL(2, 7) × C2 × C3
23 · 32 · 7 ATD[504;233] 4 1 PSL(2, 7) × C2 × C3
22 · 3 · 72 ATD[588;87] 8 1 PSL(2, 7) × C2 × C7
22 · 3 · 72 ATD[588;90] 4 1 PSL(2, 7) × C7
22 · 3 · 72 ATD[588;91] 4 1 PSL(2, 7) × C7
23 · 3 · 52 ATD[600;199] 4 1 Alt(5) × C2 × C5
23 · 3 · 52 ATD[600;201] 4 1 Alt(5) × C2 × C5
23 · 3 · 52 ATD[600;204] 4 1 Alt(5) × C2 × C5
22 · 32 · 17 ATD[612;48] 4 1 PSL(2, 17)

22 · 32 · 17 ATD[612;49] 8 1 PSL(2, 17)

23 · 3 · 72 X1 4 1 PSL(2, 7) × C2 × C7
23 · 3 · 72 X2 4 1 PSL(2, 7) × C2 × C7
23 · 3 · 72 X3 4 1 PSL(2, 7) × C2 × C7
23 · 3 · 72 X4 4 1 PSL(2, 7) × C2 × C7
23 · 3 · 72 X5 8 1 PSL(2, 7) × C2 × C7
23 · 32 · 17 X6 4 1 PSL(2, 17) × C2
23 · 32 · 17 X7 8 1 PSL(2, 17) × C2
23 · 32 · 17 X8 4 1 PSL(2, 17) × C2
23 · 32 · 17 X9 4 1 PSL(2, 17) × C2
22 · 32 · 17 X10 4 1 PSL(2, 17)

22 · 32 · 17 X11 4 1 PSL(2, 17)

22 · 32 · 17 X12 4 1 PSL(2, 17)

22 · 32 · 17 X13 4 1 PSL(2, 17)

22 · 32 · 17 X14 4 1 PSL(2, 17)

22 · 32 · 17 X15 4 1 PSL(2, 17)

Table 1: Exceptional digraphs for Theorem 1.1. The column “Name” refers to the digraph
names as given in [28] (up to order 1000) or [1] (for orders greater than 1000). The number
of non-solvable 2-arc-transitive subgroups of Aut(Γ) (up to conjugacy) is given in the
column called |S|.
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(a) Γ ∼=
−→
PX(t, s) for some t ≥ 1 and s ≥ 0;

(b) condition (iii) holds, G has a normal Sylow p-subgroup P , which is elementary
abelian of order p2, and Γ/P ∼=

−→
PX(t, s) for some t ≥ 1 and s ≥ 0.

Remark. Let us spend a few words on the seemingly unfinished case (b) of Theo-
rem 1.2. The digraphs appearing in this case arise from regular covering projections onto
the digraphs

−→
PX(t, s) of order 2aqb where the groups of covering transformations are el-

ementary abelian of order p2, along which a 2-arc-transitive group of automorphisms of
−→
PX(t, s) lifts. The theory of lifting groups along elementary abelian covering projections
was developed in [14] and illustrated in several papers (see for example [15, 31]). If de-
sired, one could use this theory to determine all the resulting covering digraphs for fixed
(a, q, b). In particular, we could easily obtain a complete classification in the case of order
kp or kp2 for every k ≤ 14 and prime p.

Recently, numerous papers have been written in which authors classified arc-transitive
graphs and digraphs of fixed valence and orders with a simple prime factorisation (usu-
ally kp or kp2 for a fixed small k and variable prime p). Unlike in many of the above
mentioned papers, we have tried to prove our results in as general a form as our approach
allowed. Slight improvements are certainly possible (for example, using the classification
of finite simple groups whose order is divisible by four primes only [13], one could ex-
tend Theorem 1.1 to orders divisible by a third odd prime). However, it seems that major
improvements would require new ideas.

Finally, we would like to thank Pablo Spiga for pointing out an oversight in a draft
version of the paper, to Rok Požar for independent computer-based confirmation of Theo-
rem 1.1 in the range on up to 1500 vertices, and to the anonymous referees for their most
helpful remarks and for prompt and careful reading of the paper.

2 Preliminaries
2.1 On graphs and digraphs

Even though we are mainly interested in simple digraphs, it will be convenient in the
proofs to allow digraphs to be non-simple. We therefore define a digraph Γ as a quadruple
(V,A, head, tail) where V and A are finite non-empty sets and head and tail are functions
mapping from A to V ; we call the sets V and A the vertex-set and the arc-set of Γ and
denote them by V(Γ) and A(Γ), respectively. We then think of an arc to point from its tail
to its head. The cardinality of V(Γ) is called the order of Γ.

Similarly, a graph Γ is determined by a vertex-set V(Γ), edge-set E(Γ) and a function
end: E(Γ) → {X ⊆ V(Γ) : |X| ∈ {1, 2}}, assigning a pair of endvertices to each edge
of Γ. An edge e of a graph Γ is a loop provided that | end(e)| = 1, and two edges y and x
are parallel if end(x) = end(y). A graph Γ without loops and parallel edges is simple and
is uniquely determined by V(Γ) and the set {end(e) : e ∈ E(Γ)}.

If Γ is a digraph, then the underlying graph of Γ is the graph with vertex-set V(Γ),
edge-set A(Γ) and the end-function defined by end(x) = {tail(x),head(x)}. A digraph
is simple provided that its underlying graph is simple.

A sequence (x1, . . . , xs) of arcs of a digraph Γ is called an s-arc of Γ provided that
head(xi) = tail(xi+1) for every i ∈ {1, . . . , s − 1}. The set of all s-arcs of Γ is denoted
by As(Γ).
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An automorphism of a digraph Γ is a permutation of V(Γ)∪A(Γ) that preserves V(Γ)
set-wise and commutes with the functions head and tail. If G is a subgroup of the au-
tomorphism group Aut(Γ), then Γ is said to be G-arc-transitive (or (G, s)-arc-transitive)
provided that G acts transitively on A(Γ) (or As(Γ), respectively). When G = Aut(Γ),
the symbol G can be omitted from this notation.

If v is the tail and u the head of some arc x, then we say that u is an out-neighbour
of v and v an in-neighbour of u. For a vertex v ∈ V(Γ), we let Γ+(v) = {x ∈ A(Γ) :
tail(x) = v} and Γ−(v) = {x ∈ A(Γ) : head(x) = v}, and call the sizes of these two sets
the out-valence and the in-valence of v in Γ, respectively. (Note that when the digraph is not
simple the out-valence does not necessarily equal the number of out-neighbours of v, and
similarly for the in-valence). If for some integer k, the in-valence (out-valence) of every
vertex equals k, then we say that the digraph has in-valence (out-valence, respectively) k.
A digraph is called k-valent if it is of out-valence and in-valence k.

Observe that every arc-transitive digraph without vertices of out-valence 0 (in particu-
lar, every connected arc-transitive digraph) is vertex-transitive.

2.2 Non-simple arc-transitive 2-valent digraphs

In this section, we characterise arc-transitive 2-valent digraphs that are not simple. To
formulate the characterisation (Lemma 2.1), we first need to introduce the digraphs

−→
C

(2)
n

and
←→
C n for n ≥ 1. Both digraphs arise from an undirected cycle with each edge doubled,

and their vertex-sets and arc-sets can be taken to be Zn and Zn×Z2, respectively. In
−→
C

(2)
n

the functions head and tail are defined with tail(i, ε) = i and head(i, ε) = i + 1 for
every arc (i, ε) ∈ Zn×Z2. Similarly, in

←→
C n, the functions head and tail are defined with

tail(i, 0) = i, head(i, 0) = i+1, tail(i, 1) = i+1, and head(i, 1) = i. Note that
−→
C

(2)
1 and

←→
C 1 are both isomorphic to a digraph with a single vertex and two directed loops attached

to it, while
−→
C

(2)
2 and

←→
C 2 consist of two vertices and four arcs between them, two pointing

in each of the two possible directions. The proof of the following lemma is straightforward
and is left to the reader.

Lemma 2.1. If Γ is a connected non-simple arc-transitive 2-valent digraph of order n,
then Γ ∼=

−→
C

(2)
n or Γ ∼=

←→
C n, and if in addition Γ is 2-arc-transitive, then Γ ∼=

−→
C

(2)
n for

some n ≥ 2.

The following result will be needed in the proof of Theorem 1.2.

Lemma 2.2. Let G be a subgroup of Aut(
−→
C

(2)
n ) acting transitively on the s-arcs but not

on the (s+1)-arcs of
−→
C

(2)
n and let v be a vertex of

−→
C

(2)
n . ThenGv is an elementary abelian

2-group of order 2s and is normal inG. IfGv has order 4 and contains a non-trivial central
element of G, then n is even.

Proof. Observe that every automorphism of
−→
C

(2)
n that fixes v fixes every vertex of

−→
C

(2)
n ,

implying that Gv is the kernel of the action of G on the vertex-set of
−→
C

(2)
n , and is therefore

normal in G. Furthermore, Gv preserves set-wise each pair of arcs with the same tail
(and thus the same head). In particular, Gv is an elementary abelian 2-group. Since G
is transitive on the s-arcs but not on the (s + 1)-arcs, it is an easy exercise to show that
Gv acts regularly on the s-arcs starting at v, and since there are 2s of them, it follows that
|Gv| = 2s.
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Suppose now that n is odd, that |Gv| = 4, and that τ is a non-trivial central element of
G contained in Gv . Without loss of generality, we may assume that τ acts non-trivially on
the pair of arcs pointing out of v. Furthermore, since the index of Gv in G is n, it follows
that Gv is the unique Sylow 2-subgroup of G, and thus G = Gv oH , where H is a group
of order n. Moreover, since Gv is the kernel of the action of G on the vertices of

−→
C

(2)
n , it

follows that H acts regularly on the vertices of
−→
C

(2)
n ; in particular, H = 〈g〉 where g is an

automorphism of order n that maps every vertex to its unique out-neighbour.
Since τ = τg , the element τ acts non-trivially on every pair of arcs sharing the same

tail. In particular, τ is the unique non-trivial central element of G contained in Gv . Since
G = GvH and sinceGv is abelian, this shows thatH centralises no element ofGv \{1, τ}.
However, this is impossible sinceH has odd order and |Gv\{1, τ}| = 2. This contradiction
completes the proof of the lemma.

2.3 Alter-relations, alter-exponent, radius and perimeter

In this section, we present a very useful tool for studying digraphs, based on the orientation
of arcs in the walks of a digraph. The concepts presented in this section were first intro-
duced in [24] (for a generalisation to infinite digraphs, see [16]). All the facts stated below
were proved in [24] for simple digraphs and extend without any change to digraphs with
loops and multiple arcs.

A walk from a vertex v0 to a vertex vs of length s in a digraph Γ is a sequence
(v0, x1, v1, . . . , vs−1, xs, vs) of arcs xi ∈ A(Γ) and vertices vj ∈ V(Γ) such that for
any i ∈ {1, . . . , s} the pair

(
tail(xi),head(xi)

)
equals either (vi−1, vi) or (vi, vi−1). In

the former case, we say that xi is positively oriented, while in the latter case we say that
xi is negatively oriented in the walk. A walk is directed if all of its arcs are positively
oriented and is alternating if the orientation of the arcs in the walk alternates. A digraph Γ
is (strongly) connected provided that for any two vertices u, v ∈ Γ there exists a (directed)
walk from u to v. A vertex-transitive digraph is strongly connected if and only if it is con-
nected (see, for example, [27, Lemma 2]). A walk is closed provided that it begins and
ends in the same vertex.

Let W = (v0, x1, v1, x2, . . . , xn, vn) be a walk in a digraph Γ. The sum s(W ) is
the difference between the number of positively oriented arcs in W and the number of
negatively oriented arcs in W . The k-th partial sum sk(W ) is defined as the sum of the
initial walk (v0, x1, v1, . . . , vk) of length k. The set {sk(W ), 0 ≤ k ≤ n} is the tolerance
of W and vertices u and v are alter-equivalent with tolerance J (written uAJ v) if there
exists a walk from u to v with sum 0 and tolerance contained in J . It transpires that AJ
is an equivalence relation (called an alter-relation) for every interval J containing 0 and
that it is invariant under every automorphism of Γ. We will denote the equivalence class
containing a vertex v with AJ (v) and use the shorthand Ai(v) to mean A[0,i](v) (when
i ≥ 0) or A[i,0](v) (when i < 0). Note that since Γ is a finite digraph, there exists a
non-negative integer e such that Ae = Ae+1 and (by induction) Ae = A∞. The smallest
such integer e is called the alter-exponent of Γ and denoted exp(Γ). It can be shown that
exp(Γ) also equals the smallest non-negative integer i for which A−i = A−i−1 as well as
the smallest i such that A[−i,i] = A[−i−1,i+1]. When we consider alter-relations in several
different digraphs, we shall use the symbol AΓ

J (instead of AJ ) to denote the one in the
digraph Γ.

The number of equivalence classes of the alter-relation A∞ is called the perimeter of
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Γ and denoted perim(Γ). If the in-valence and the out-valence of each vertex is positive,
then the equivalence classes Bi of A∞ can be indexed by Zp (where p = perim(Γ)) in
such a way that every arc of Γ having its tail in Bi, has its head in Bi+1.

We will be particularly interested in the sets A1(v) and A−1(v). Note that these sets
consists of precisely those vertices that can be reached from v by alternating walks of even
length starting with a positively (negatively, respectively) oriented arc. The intersection
A1(v) ∩A−1(v) will be denoted Att(v) and called the attachment set (at vertex v).

Suppose henceforth that Γ is a G-arc-transitive digraph. Then the sets AJ (v) (as well
as Att(v)) are all blocks for the action of G on V(Γ) and their size depends only on J
(but not on v). One can thus define the radius of Γ (denoted rad(Γ)) to be the cardinality
of |A1(v)| for any v ∈ Γ, and the attachment number of Γ (denoted att(Γ)) to be the
cardinality of Att(v) for any v ∈ V(Γ). Since Att(v) ⊆ A1(v) ⊆ A2(v) ⊆ . . ., we see
that att(Γ) divides rad(Γ), and that |Ai(v)| divides |Ai+1(v)| for every i ≥ 1.

Suppose now that Γ is a 2-valent arc-transitive digraph. Then the sub-digraph of Γ
induced by a closed alternating walk of sum 0 that traverses every arc of Γ at most once is
called an alternating cycle. The length of an alternating cycle is defined to be the length of
the closed alternating walk that induces it. (Alternating cycles were introduced in [19] in
the context of simple (G, 1

2 )-arc-transitive 4-valent graphs.)
Note that an alternating cycle is uniquely determined by any of its arcs, implying that

the set of alternating cycles induces a decomposition of the arc-set of Γ. Furthermore,
this decomposition is preserved by every automorphism of Γ, implying that all alternating
cycles in Γ have the same length.

In addition to the assumption that Γ is a 2-valent arc-transitive digraph, assume for the
rest of the section that Γ is not isomorphic to any

←→
C n with n odd. Then an alternating

cycle is indeed a cycle (in the sense that the walk that generates it traverses every vertex of
the digraph at most once), and Γ contains at least two alternating cycles.

Furthermore, observe that A1(v) consists of every second vertex of an alternating cycle
starting with a positively oriented arc with its tail in v, and similarly, A−1(v) consist of
every second vertex of an alternating cycle starting with a negatively oriented arc with its
head in v. In particular, |A1(v)| = |A−1(v)| and the length of each alternating cycle is
twice the radius of Γ. Note also that there are precisely two alternating cycles meeting in a
given vertex v and the set of vertices that are contained in both of these alternating cycles
is precisely Att(v). Two alternating cycles therefore meet in either 0 or att(Γ) vertices.

Suppose now that att(Γ) ≥ 3 and let g ∈ Aut(Γ) fix an arc x of Γ. Then g fixes point-
wise the alternating cycle C containing x. Since att(Γ) ≥ 3, g fixes also at least three
vertices of each alternating cycle intersecting C, and therefore fixes each of these cycles
point-wise. But then by connectivity, g fixes each alternating cycles of Γ point-wise. In
particular, g is trivial. This proves the following easy, but very useful result.

Lemma 2.3. If Γ is a connected 2-valent 2-arc-transitive digraph, then att(Γ) ≤ 2.

We finish this section with another useful result.

Lemma 2.4. If Γ is a connected 2-valent 2-arc-transitive digraph and exp(Γ) = 1, then
Γ ∼=
−→
PX(m, 1) for some integer m.

Proof. If Γ is not simple, then by Lemma 2.1, Γ ∼=
−→
C

(2)
n for some n ≥ 2, implying that

exp(Γ) = 0; a contradiction. Hence Γ is simple, and we can apply [30, Theorem 7.1] to
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conclude that rad(Γ) = 2. Since exp(Γ) = 1, it is then easy to see that att(Γ) = 2, and
also that Γ ∼=

−→
PX(m, 1) for some m (see, for example, [19, Proposition 3.1]).

2.4 Covers and quotients

The second tool that we will use extensively is the concept of (di)graph coverings. This
tool is usually defined in the setting of undirected graphs, but extends naturally to digraphs.
In this section, we present a few basic facts and results and refer the reader to [14, 17] for
more details.

Let Γ and Λ be two digraphs. A morphism from Γ onto Λ is a function f : V(Γ) ∪
A(Λ)→ V(Λ) ∪ A(Λ) mapping V(Γ) to V(Λ) and A(Γ) to A(Λ) such that f(tail(x)) =
tail(f(x)) and f(head(x)) = head(f(x)) for every x ∈ A(Γ). A morphism is an epimor-
phism or isomorphism if it is surjective or bijective, respectively. (Note that an automor-
phism of a digraph is precisely an isomorphism from the digraph onto itself.)

An epimorphism ℘ : Γ→ Λ is a covering projection provided that for every v ∈ V(Γ)
the restrictions ℘+

v : Γ+(v) → Λ+(℘(v)) and ℘−v : Γ−(v) → Λ−(℘(v)) of ℘ to the out-
and in-neighbourhoods of v are bijective. For simplicity, we shall also require both Γ and
Λ to be connected. The preimage ℘−1(x) of a vertex or an arc x of Λ is called a fibre of
the covering projection ℘ and the group of all automorphisms of Γ that preserve each fibre
set-wise is called the group of covering transformations. If the latter is transitive on each
fibre, then the covering projection is regular.

Normal quotients of simple graphs were introduced in [33, 34] and have now become a
standard tool in studying symmetric graphs. Here we adapt this concept slightly to fit into
the setting of digraphs admitting loops and multiple arcs. This adaptation will prove most
useful in the proofs of our main results.

Let Γ be a digraph and let N ≤ Aut(Γ). Let AN = {xN : x ∈ A(Γ)} and
VN = {vN : v ∈ V(Γ)} denote the sets of N -orbits on the arcs and vertices of Γ,
respectively. Further, let tailN : AN → VN and headN : AN → VN be defined by
tailN (xN ) = tail(x)N and headN (xN ) = head(x)N . This defines the quotient digraph
Γ/N = (VN , AN ,headN , tailN ), together with the obvious epimorphism ℘N : Γ → Γ/N

satisfying ℘N (x) = xN for every x ∈ V(Γ) ∪A(Γ), called the normal quotient projection
relative to N . If N P G ≤ Aut(Γ), then there is an obvious, but not necessarily faithful
action of the quotient group G/N on the digraph Γ/N. Note also that if G acts transitively
on vertices, arcs or s-arcs of Γ, then so does G/N on Γ/N. If the quotient projection ℘N is a
covering projection, then the situation is particularly nice; for example:

Lemma 2.5. Let Γ be a digraph, let G ≤ Aut(Γ) and let N be a normal subgroup of G.
If the quotient projection ℘ : Γ → Γ/N is a covering projection, then the action of G/N on
V(Γ/N)∪A(Γ/N) is faithful, and moreover, the stabilisers Gv and (G/N)vN are isomorphic
for every v ∈ V(Γ).

We say in this case that the group G/N lifts along ℘. More precisely, a group H ≤
Aut(Γ/N) lifts along ℘ if there exists some G ≤ Aut(Γ), containing N as a normal sub-
group, such that G/N = H .

We now state two very useful sufficient and necessary conditions for a normal quotient
projection to be a regular covering projection. (We shall call a group N of automorphisms
of Γ semiregular provided that the stabiliser Nv is trivial for every v ∈ V(Γ).)
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Lemma 2.6. Let Γ be a connected digraph, let N ≤ Aut(Γ) and let ℘ : Γ → Γ/N be the
corresponding quotient projection. Then the following statements are equivalent:

(a) N is semiregular;
(b) the in-valence as well as the out-valence of v and ℘(v) coincide for every v ∈ V (Γ);
(c) ℘ is a regular covering projection.

The rest of the section is devoted to the interplay between the concepts of alter-relations
and covering projections.

Lemma 2.7. Let ℘ : Γ → Λ be a covering projection, let v be a vertex of Γ and let J be
an interval of integers containing 0. Then ℘(AΓ

J (v)) = AΛ
J (℘(v)).

Proof. Suppose that ũ ∈ ℘(AΓ
J (v)). Then there exists u ∈ V(Γ) such that ℘(u) = ũ and

a walk (v, x1, v1, . . . , xn, u) in Γ of sum 0 and tolerance within J . But then the projected
walk (℘(v), ℘(x1), ℘(v1), . . . , ℘(xn), ũ) is also a walk of sum 0 and tolerance within J ,
implying that ũ ∈ AΛ

J (℘(v)).
Conversely, suppose that ũ ∈ AΛ

J (℘(v)). Then there exists a walk (℘(v), x̃1, ṽ1, . . . ,
x̃n, ũ) of sum 0 and tolerance within J . Since ℘ is a local bijection, one can then construct
a lift (v, x1, v1, . . . , xn, u) such that ℘(xi) = x̃i, ℘(vi) = ṽi, and ℘(u) = ũ. Note that this
lift will also have sum 0 and tolerance within J , implying that u ∈ AΓ

J (v), and therefore
ũ ∈ ℘(AΓ

J (v)).

Lemma 2.8. Let Γ be a G-vertex-transitive digraph, let N be a semiregular normal sub-
group of G, let Λ = Γ/N and let ℘ : Γ → Λ be the corresponding covering projection.
Further, let v be a vertex of Γ, and let J be an interval of integers containing 0. Then
|AΓ
J (v)| divides |N ||AΛ

J (℘(v))|.

Proof. In view of Lemma 2.7, we see that AΓ
J (v) ⊆ ℘−1(℘(AΓ

J (v))) = ℘−1(AΛ
J (℘(v))).

SinceAΛ
J (℘(v)) is a block for the action of G/N on Λ, it follows easily that ℘−1(AΛ

J (℘(v)))
is a block for the action of G on Γ. Since AΓ

J (v) is also a block for G, it follows that
|AΓ
J (v)| divides |℘−1(AΛ

J (℘(v)))|. However, since the ℘-preimage of a vertex in Λ is an
N -orbit on Γ, it follows that the latter equals |N ||AΛ

J (℘(v))|.

Lemma 2.9. Let Γ be a connected, (G, 2)-arc-transitive 2-valent digraph and let N be a
normal subgroup of G. If N has odd prime order, then rad(Γ/N) = rad(Γ).

Proof. Let q be the order of N , let Λ = Γ/N and let ℘ : Γ → Λ be the corresponding
quotient projection. Suppose that the conclusion of the lemma is false, that is, rad(Γ/N) 6=
rad(Γ).

Since Gv is a 2-group (see Lemma 3.1) and N is of odd order, N acts semiregularly
on V(Γ). By Lemma 2.6, the quotient projection ℘ is then a regular covering projection.
Choose a vertex v of Γ and ε ∈ {−1, 1}, and consider the set T = AΓ

ε (v). Recall that
|T | = rad(Γ). By Lemma 2.7, ℘(T ) = AΛ

ε (℘(v)). Since the size of the latter is rad(Λ), it
follows by our initial assumption that |℘(T )| 6= |T |, implying that T contains at least two
elements of the orbit vN . Since both T and vN are blocks for the action of G on V(Γ), so
is their intersection. However, vN is of prime size, implying that vN = vN ∩ T , and thus
vN ⊆ T . Since this is true for any choice of ε, it follows that vN ⊆ AΓ

1 (v) ∩ AΓ
−1(v) =

Att(v). But then by Lemma 2.3 it follows that Γ is not 2-arc-transitive, a contradiction.
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2.5 Partial line graphs and digraphs of Praeger and Xu

In this section, we give a brief overview of the very useful concept of partial line graph
construction, which was invented in [21] to analyse G-arc-transitive 2-valent digraphs of
radius 2, and was further developed in [30].

For a digraph Γ and a positive integer s, the s-th partial line graph Pls(Γ) of Γ is
the digraph with vertex-set being the set of s-arcs As(Γ), the arc-set being As+1(Γ), and
the functions tail and head defined by the rules tail(x1, . . . , xs+1) = (x1, . . . , xs) and
head(x1, . . . , xs+1) = (x2, . . . , xs+1) for every (s + 1)-arc (x1, . . . , xs+1) of Γ. More-
over, we let Pl0(Γ) = Γ and write Pl instead of Pl1. Note that if Γ is a 2-valent digraph,
then so is Pls(Γ) for every s ≥ 0. The following formula (which appeared as [30, Lemma
3.2(i)] in the context of simple digraphs), provides an alternative, recursive definition of the
Pls operator:

Pls(Γ) ∼= Pl(Pls−1(Γ)) for s ≥ 1. (2.1)

The lemma below follows from [30, Lemma 3.1(iv)] and [30, Lemma 3.2(ii)] in the
context of simple digraphs. The proof remains unchanged in the case of non-simple di-
graphs.

Lemma 2.10. If Γ is a vertex-transitive digraph, then exp(Pl(Γ)) = exp(Γ) + 1.

The following result appeared as [30, Lemma 5.1] in the context of simple digraphs,
and extends to general digraphs via Lemma 2.1.

Lemma 2.11. If Γ is a 2-valent (G, 2)-arc-transitive digraph such that rad(Γ) = 2, then
Γ ∼= Pl(Λ), where Λ is a 2-valent (G, 3)-arc-transitive digraph of order half that of Γ.

The Pl operator can be used to define a very important class of digraphs, first studied
by Praeger and Xu [37] in the context of simple graphs, and by Praeger [35] in the context
of simple digraphs. For integers n and s, n ≥ 1, s ≥ 0, let

−→
PX(n, s) =

{ −→
C

(2)
n if s = 0

Pl(
−→
PX(n, s− 1)) if s ≥ 1

(2.2)

We shall call a graph isomorphic to some
−→
PX(n, s) simply a

−→
PX-digraph. Note that, in

view of (2.1), we have
−→
PX(n, s) ∼= Pls(

−→
C (2)
n ). (2.3)

The automorphism group of
−→
C

(2)
n acts naturally as a group of automorphisms on each

−→
PX(n, s) for s ≥ 1. The following surprising characterisation of

−→
PX-digraphs was proved

in [35, Theorem 2.9] in the context of simple digraphs. In view of Lemma 2.1, the result
extends to non-simple digraphs.

Lemma 2.12. Let Γ be a connected 2-valent G-arc-transitive digraph and let v ∈ V(Γ). If
G contains an abelian normal subgroupN that is not semiregular, then Γ is a

−→
PX-digraph.

The following lemma is an analogue of a similar result for the undirected graphs (see
[9, Lemma 3.1]). Our proof is just a slight modification of the proof given there.
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Lemma 2.13. Let Γ be a connected 2-valent, G-arc-transitive digraph and let N be a
minimal normal subgroup of G. Suppose that N is a 2-group and that Γ/N ∼=

−→
C

(2)
n for

some n ≥ 1. Then Γ is a
−→
PX-digraph.

Proof. SinceN is a minimal normal subgroup ofG and a 2-group, it is elementary abelian.
Let K be the kernel of the action of G on the set of N -orbits on V(Γ), and observe that
G/K acts faithfully on V(Γ/N). Let C be the centraliser of N in K. Then N ≤ C ≤ K.
Since N and K are normal in G, so is C. Since N and K have the same orbits on V(Γ),
so does C, implying that K = NKv and C = NCv for any vertex v.

Since the quotient Γ/N is 2-valent, Lemma 2.6 implies that the quotient projection Γ→
Γ/N is a covering projection, and also that N is semiregular (for otherwise the valence of
the quotient Γ/N would be less than that of Γ). Therefore, N ∩ Cv ≤ Nv = 1, and since
Cv centralises N , we see that C = N × Cv . Since the quotient projection Γ → Γ/N

is a covering projection, Lemma 2.5 implies that Gv embeds into a vertex-stabiliser in
Aut(

−→
C

(2)
n ). In particular, Gv (and thus Cv) is an elementary abelian 2-group, implying

that C is an abelian normal subgroup of G.
Let us now show that Cv 6= 1. By way of contradiction, assume that Cv = 1, and thus

that C = NCv = N . Now recall that K = NKv and N ∩ Kv = 1. Since both N and
Kv are 2-groups, so is K. In particular, the centre Z(K) is non-trivial. On the other hand,
since Z(K) ≤ C and since C = N , we see that Z(K) ≤ N . Since N is a minimal normal
subgroup of G, this implies that N = Z(K). But then K = NKv = N ×Kv , and thus
K is an elementary abelian 2-group. In particular, N , being the centre of K, equals K.
Now recall that G/K acts faithfully on V(Γ/N). On the other hand, G/K equals G/N, which is
clearly unfaithful on V(Γ/N). This contradiction shows that Cv 6= 1, and by Lemma 2.12,
Γ is a

−→
PX-digraph, as claimed.

Lemma 2.14. Let n and s be integers, n ≥ 1, s ≥ 0, let Λ =
−→
PX(n, s) and let v be a vertex

of Λ. Then exp(Λ) = s, |AΛ
∞(v)| = 2s and perim(Λ) = n. Suppose G is a group acting

transitively on the arcs of Λ and let K = 〈Gu : u ∈ V(Λ)〉, that is, the group generated
by all the vertex-stabilisers in G. Then K is the kernel of the action of G on the partition
{AΛ
∞(u) : u ∈ V(Λ)} and vK = AΛ

∞(v); in particular, K is normal in G. Furthermore,
the group K is elementary abelian of order 2s|Gv|, the quotient digraph Λ/K is isomorphic
to a directed cycle of length n, and G/K is a cyclic group of order n.

Proof. Observe first that exp(
−→
PX(n, 0)) = exp(

−→
C

(2)
n ) = 0. On the other hand, by for-

mula (2.2), Λ = Pl(
−→
PX(n, s − 1)), and thus by induction and Lemma 2.10, exp(Λ) = s,

as claimed.
By formula (2.3), a vertex of Λ is an s-arc of

−→
C

(2)
n . Now recall that V(

−→
C

(2)
n ) = Zn

and that there is an arc pointing from i to j if and only if j − i = 1. It is now clear that if
v is an s-arc of

−→
C

(2)
n starting in a vertex i of

−→
C

(2)
n , and W is a walk in Λ of sum k starting

in v, then the end-point of W will be an s-arc of
−→
C

(2)
n starting in i+ k; in particular, every

member of AΛ
∞(v) is one of the 2s s-arcs of

−→
C

(2)
n starting in i. On the other hand, if w

and u are arbitrary s-arcs of
−→
C

(2)
n starting in i and i + s, respectively, then there clearly

exists a directed walk in Λ of length s from v to u. By combining two such walks from v
to u and from an arbitrary w to u, one gets a walk from v to w of sum 0. This shows that
AΛ
∞(v) is precisely the set of all s-arcs of

−→
C

(2)
n starting in i. In particular, |AΛ

∞(v)| = 2s,
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as claimed. Since |V(Λ)| = 2sn and since perim(Λ) = |V(Λ)|/|AΛ
∞(v)|, it follows that

perim(Λ) = n.
The equality vK = AΛ

∞(v) follows directly from [30, Lemma 4.1] and [30, Corollary
4.2]. In particular, K fixes every class AΛ

∞(u), u ∈ Λ, set-wise, implying that K is con-
tained in the kernel (call it M ) of the action of G on the partition {AΛ

∞(u) : u ∈ V(Λ)}.
Moreover, vK = vM , and since Kv = Gv = Mv , it follows that K = M . In particular,
|K| = |vK | |Kv| = 2s|Gv|, as claimed.

The fact that Λ/K is isomorphic to the directed cycle of length perim(Λ) and that G/K

is a cyclic group of order perim(Λ) is now a direct consequence of either [24, Propositions
3.2 and 3.5] or [35, Proposition 2.1].

Finally, to see thatK is elementary abelian, recall that a vertex of Λ is an s-arc in
−→
C

(2)
n ,

and thus the stabiliser of a vertex in Aut(Λ) equals the stabiliser of an s-arc in Aut(
−→
C

(2)
n ).

However, each stabiliser of an s-arc in Aut(
−→
C

(2)
n ) is contained in the kernel of the action

of Aut(
−→
C

(2)
n ) on V(

−→
C

(2)
n ), which is elementary abelian of order 2n. Since K is generated

by the vertex-stabilisers Gu, u ∈ V(Λ), and thus by the stabilisers of the s-arcs of
−→
C

(2)
n in

G, it follows that K is also elementary abelian.

3 Proofs of the main results
3.1 Auxilliary results

We start this section by a folklore fact about the vertex-stabilisers in arc-transitive 2-valent
digraphs (see for example [22, Theorem 1.1] or [30, Theorem 1.2]).

Lemma 3.1. If Γ be a connected 2-valent (G, s)-arc-transitive but not (G, s + 1)-arc-
transitive digraph and v ∈ V(Γ), thenGv is a group of order 2s, generated by s involutions,
and acts regularly upon the set of all s-arcs starting in v.

The following is a well-known fact about the general linear groups GL(2, q).

Lemma 3.2. If q is a power of an odd prime, and H an elementary abelian 2-subgroup of
GL(2, q), then |H| ≤ 4, and if |H| = 4, thenH contains the central involution of GL(2, q),
namely the minus identity matrix.

Proof. Recall that the group SL(2, q) contains a unique involution, namely the minus iden-
tity matrix. This implies that the intersection H ∩ SL(2, q) is of order at most 2. On
the other hand, the quotient GL(2, q)/ SL(2, q) is cyclic (of order q − 1), implying that
H SL(2, q)/ SL(2, q) is cyclic; but this cyclic group is isomorphic to H/(SL(2, q) ∩ H),
and so of order at most 2. Hence the order of H is at most 4; and if it is of order 4, then
SL(2, q) ∩H is non-trivial and thus contains the minus identity matrix.

The following situation will occur several times in the proofs of the main results of the
paper. To avoid repetition, we formulate it as a lemma.

Lemma 3.3. Let Z be a group containing normal subgroups X and Y , such that X is
abelian and contained in Y . Let C be the centraliser of X in Y . If the order of X is
coprime to its index in C, then C = X × T for some normal subgroup T of Z. Moreover,
T is isomorphic to a normal subgroup of Y/X.
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Proof. Since both X and Y are normal in Z, so is C. Moreover, since X is abelian, it
is contained in C. Since, by assumption, the order of X is coprime to its index in C, the
Schur-Zassenhaus theorem implies that X has a complement, say T . However, since X
is centralised by C, it follows that C = X × T . Now observe that T consists of all the
elements of C of order coprime to |X|, implying that T is characteristic in C. Since C is
normal in Z, so is T . Furthermore, since X ≤ C P Y , the quotient Y/X contains a normal
subgroup isomorphic to C/X, which is isomorphic to T .

Lemma 3.4. Let m be an odd positive integer and G an arc-transitive group of automor-
phisms of the digraph

−→
PX(m, s). Then G contains a normal cyclic subgroup, the order of

which divides m and is at least m/(2s|Gv| − 1).

Proof. Let Λ =
−→
PX(m, s). By Lemma 3.1, the vertex-stabiliser Gv has order 2r for some

positive integer r. Let K = 〈Gv : v ∈ V(Λ)〉, and recall that by Lemma 2.14, K is an
elementary abelian normal subgroup ofG of order 2s+r andG/K is a cyclic group of order
m. In particular, K is a normal Sylow 2-subgroup of G.

Let C be the centraliser of K in G. By applying Lemma 3.3 with Z = Y = G and
X = K, we can conclude that C = K × T for some normal subgroup T of G, isomorphic
to a subgroup of the quotient G/K. Since G/K is cyclic of order m, T is cyclic of order
dividing m.

Further, the quotient G/C is isomorphic to the quotient of G/K by C/K, and since C/K ∼=
T and G/K is cyclic of orderm, the quotient G/C is a cyclic group of orderm/|T |. However,
G/C embeds into Aut(K), which is isomorphic to GL(r+s, 2). It is well known that every
cyclic subgroup of GL(r+s, 2) is of order at most 2r+s−1 (see for example [11, Corollary
2.7]), implying that m/(2s+r − 1) ≤ |T |.

3.2 Proof of Theorem 1.1

As in Theorem 1.1, let Γ be a connected (G, 2)-arc-transitive 2-valent digraph of order
2aqbpc, where p and q are distinct odd primes, a ∈ {0, 1, 2, 3}, b, c ∈ {0, 1, 2}, (b, c) 6=
(2, 2), and G is non-solvable. We need to show that Γ is isomorphic to one of the digraphs
in Table 1.

All such digraphs of order up to 1000 can be found by inspecting the census [28] of
arc-transitive digraphs of valence 2. It transpires that there are precisely fifty-two of them,
and they are all listed in Table 1 as digraphs labelled ATD. We may thus assume throughout
the proof that |V(Γ)| > 1000.

Suppose that G acts transitively on the s-arcs but not on the (s + 1)-arcs of Γ. Then
|Gv| = 2s (see Lemma 3.1) and therefore |G| = 2a+sqbpc. Now consider a composition
series 1 = G0 P G1 P . . . P Gk = G of G, and the corresponding set of composition
factors Fi = Gi/Gi−1 for i ∈ {1, . . . , k}. Recall that Fi are simple groups. Since G is
non-solvable, there exists j ∈ {1, . . . , k} such that Fj is non-abelian. Let T = Fj and note
that |T | divides |G|, which equals 2a+sqbpc.

It is known that there are precisely eight non-abelian simple groups whose orders
are divisible by at most three distinct primes (see, for example, [12]); these are Alt(5),
PSL(2, 7), Alt(6), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3), and PSU(4, 2). Out of
these, only the first five are such that the odd primes appear with multiplicity at most 2;
these five groups, together with their orders and the orders of their automorphism groups
are listed in Table 2.
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T |T | |Aut(T )|
Alt(5) 22 · 3 · 5 22 · 3 · 5 = 120

PSL(2, 7) 23 · 3 · 7 24 · 3 · 7 = 336
Alt(6) 23 · 32 · 5 25 · 32 · 5 = 1440

PSL(2, 8) 23 · 32 · 7 23 · 33 · 7 = 1512
PSL(2, 17) 24 · 32 · 17 25 · 32 · 17 = 4896

Table 2: Simple groups of orders divisible by three primes only, with odd part cube-free

Observe that the order of each of these groups is divisible by 3 and that the other odd
prime divisor is 5, 7, or 17. We may thus assume without loss of generality that q = 3 and
p ∈ {5, 7, 17}.

If p = 5, then |V(Γ)| ≤ 8 · 3 · 52 = 600, contradicting our initial assumption. This
rules out the groups Alt(5) and Alt(6) as possibilities for T .

If p = 7, then the order 2a3b7c of Γ is larger than 1000 only when a = 3, b = 1
and c = 2. Since 9 divides the order of PSL(2, 8), this implies that T 6∼= PSL(2, 8), and
therefore T ∼= PSL(2, 7) and |V (Γ)| = 8 · 3 · 72 = 1176.

Finally, if p = 17, then T ∼= PSL(2, 17), and since 32 divides the order of PSL(2, 17),
it follows that the order of Γ is 8 · 32 · 17 = 1224.

We shall now distinguish two cases, depending on whether G contains a non-trivial
abelian normal subgroup or not.

Case I. Suppose that G contains a non-trivial abelian normal subgroup. Then G con-
tains a minimal normal subgroup N that is abelian. Since G is non-solvable, Γ is not
isomorphic to a

−→
PX-digraph. In view of Lemma 2.12, N is then semiregular, and thus

℘ : Γ→ Γ/N is a regular covering projection.
If N is a 2-group, then, since the 2-part of |V(Γ)| is 8, we see that |N | ∈ {2, 4, 8}.

The possible orders of Γ/N are then 147 and 153 (when |N | = 8, and T ∼= PSL(2, 7) and
PSL(2, 17), respectively), 294 and 306 (when |N | = 4), and 588 and 612 (when |N | = 2).

Now suppose that N is of odd order. Since N is solvable, T is a composition factor
of G/N and thus |T | divides |G|/|N | = 2a+sqbpc/|N |. Since |N | is odd and b + c ≤ 3,
it follows that the odd part of |T | is of the form qb

′
pc
′

where b′ + c′ ≤ 2; in particular,
T 6∼= PSL(2, 17), and therefore T ∼= PSL(2, 7), |N | = 3 or |N | = 7, and |V(Γ/N)| =
2a · 3 · 7 ≤ 168. In fact, since we have already established that |V(Γ)| = 8 · 3 · 72 when
T ∼= PSL(2, 7), it follows that |N | = 7 and |V(Γ/N)| = 168.

We have thus shown that in Case I, we have |V(Γ/N)| ∈ {147, 153, 168, 294, 306, 588,
612} and therefore the quotient digraph Γ/N appears in the census [28]. By searching
the census for 2-arc-transitive digraphs of these orders with a non-solvable automorphism
group, one sees that the triple (T, |N |, Γ/N) is as one given in Table 3 (here the data in the
last column corresponds to the names of digraphs as given in [28]).

Using the methods described in, say, [14, 32], for each of the digraphs Γ/N from Ta-
ble 3, all the corresponding N -regular covers were computed for which a 2-arc-transitive
subgroup of Aut(Γ/N) lifts, and the resulting nine covering digraphs were included in Ta-
ble 1 under the names X1, X2, . . . ,X9.

Case II. Suppose now that G contains no non-trivial abelian normal subgroups. Let us
now consider the group generated by all minimal normal subgroups of G, called the socle
of G and denoted soc(G). Since G contains no non-trivial abelian normal subgroups, it
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T |N | Γ/N

PSL(2, 7) 2 ATD[588;87], ATD[588;90], ATD[588;91]
PSL(2, 7) 4 ATD[294;19]
PSL(2, 7) 8 order 147; none
PSL(2, 7) 7 ATD[168;53], ATD[168;64], ATD[168;65], ATD[168;81], ATD[168;82]
PSL(2, 17) 2 ATD[612;48], ATD[612;49]
PSL(2, 17) 4 ATD[306;11]
PSL(2, 17) 8 order 153; none

Table 3: Possible quotients of Γ by a minimal abelian normal subgroup

follows that soc(G) is a direct product of non-abelian simple groups (see, for example, [7,
Theorem 4.3A]). Since the order of every non-abelian simple group is divisible by at least
three distinct primes, and since not both b and c are 2, soc(G) is a simple normal subgroup
of G and is therefore isomorphic to the non-abelian composition factor T of G.

Moreover, G acts faithfully by conjugation on soc(G) and thus embeds into its auto-
morphism group. Since soc(G) is isomorphic to either PSL(2, 7) or PSL(2, 17), we see
that G is isomorphic to one of PSL(2, 7), PGL(2, 7), PSL(2, 17) or PGL(2, 17). On the
other hand, recall that |G| = 2a+sqbpa and that a = 3 and s ≥ 2, implying that |G| is
divisible by 25. This rules out all but the last possibility, that is G ∼= PGL(2, 17). Since,
in this case, |V(Γ)| = 23 · 32 · 17 and |G| = 25 · 32 · 17, it follows that |Gv| = 4. By
Lemma 3.1, Gv is elementary abelian. In particular, Γ is a coset digraph of G with respect
to an elementary abelian subgroup of order 4 and a non-self-paired suborbit of length 2.
A direct inspection of the appropriate subgroups of PGL(2, 17) and their coset digraphs
reveals that there are six pairwise non-isomorphic digraphs arising in this way. They are
listed in Table 1 as digraphs X10,X11, . . . ,X15. This concludes the proof of Theorem 1.1.

3.3 Proof of Theorem 1.2

We shall say that a positive integer n satisfies condition (i), (ii) or (iii), respectively, if the
following holds:

(i) n is odd and cube-free;

(ii) n = 2am, where a ∈ {1, 2, 3} and m is an odd, square-free integer;

(iii) n = 2aqbp2, where a ∈ {1, 2, 3}, b ∈ {0, 1} and p, q are distinct odd primes.

As in the statement of Theorem 1.2, we assume that Γ is a connected 2-valent (G, 2)-
arc-transitive digraph with G solvable, and that one of the conditions (i), (ii) or (iii) holds
for n = |V(Γ)|. We need to show that either:

(a) Γ is a
−→
PX-digraph; or that

(b) n satisfies the condition (iii) and G contains a normal Sylow p-subgroup P , which is
elementary abelian of order p2 and such that Γ/P is a

−→
PX-digraph.

Suppose that the theorem is false and let Γ be a minimal counter-example (in terms of
n). In particular, Γ is not a

−→
PX-digraph. By Lemma 2.1, Γ is then simple. Since G acts

transitively on the vertex-set of Γ and since the vertex-stabiliser Gv is of order 2s for some
s ≥ 2 (see Lemma 3.1), it follows that |G| = |Gv|n = 2sn.
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We shall now prove a few facts about Γ and G, finally resulting in a contradiction.

Fact 0: If N is a semiregular normal subgroup of G, then Γ/N is a
−→
PX-digraph, or

n/|N | (and thus also n) satisfies the condition (iii) and the Sylow p-subgroup of G/N is
elementary abelian of order p2 and normal in G/N.

Proof: Since N is semiregular, by Lemma 2.6, Γ → Γ/N is a covering projection, and
by Lemma 2.5, Γ/N is a connected 2-valent (G/N, 2)-arc-transitive digraph. Moreover, since
every divisor of an integer satisfying one of the conditions (i), (ii), or (iii) also satisfies one
of these conditions, the minimality of the counterexample Γ implies that either Γ/N is a
−→
PX-digraph or that n/|N | satisfies the condition (iii) and the Sylow p-subgroup of G/N is
indeed as claimed.

Fact 1: n does not satisfy the condition (i); in particular, n is even.

Proof: Assume the contrary (that is, n is odd and cube-free). Since n is odd, the vertex-
stabiliser inG is a Sylow 2-subgroup ofG, and every 2-subgroup ofG is contained in some
vertex-stabiliser in G.

Let N be a minimal normal subgroup of G. Since G is solvable, N is elementary
abelian. If N is a 2-group, then N ≤ Gv for some vertex v, and thus the action of G on the
vertices of Γ is not faithful, implying that Γ is not simple, a contradiction.

Hence N is an elementary abelian group of odd order, and thus acts semiregularly on
the vertices of Γ. By Fact 0, Γ/N is a

−→
PX-digraph, and since its order is odd, it must be

isomorphic to
−→
PX(n′, 0) where n′ = n/|N |. Further, by Lemma 2.9 (note that rad(Γ/N) =

1 6= rad(Γ)), we see that N is not of prime order. Since the order of Γ is cube-free, it
follows that N is elementary abelian of order p2 for some odd prime p.

Let us now consider the group G/N acting on Γ/N . Since Γ/N ∼=
−→
PX(n′, 0), by Lemma

2.2, the stabiliser (G/N)vN of a vertex vN of Γ/N is elementary abelian and normal in G/N .
Note also that (G/N)vN = GvN/N , implying that GvN is normal in G.

LetC be the centraliser ofN inGvN . If we apply Lemma 3.3 withX = N , Y = GvN
and Z = G, we see that C = N × T for some normal subgroup T of G, isomorphic to a
subgroup of Y/N ∼= Gv . In particular, T is a 2-group. Since the order of Γ is odd and T is
a 2-group, T fixes a vertex of Γ, and being normal in G, it acts trivially on the vertex-set of
Γ. Since Γ is a simple digraph, it follows that T = 1, and thus C = N .

Since GvN is normal in G and contains Gv , it contains Gu for every vertex u ∈ V(Γ).
In particular, GvN contains every involution of G. Together with the fact that N is self-
centralising in GvN this implies that no involution of G centralises N .

Now consider the centraliser D of N in G. We have just shown that D has odd order,
implying that D is semiregular, and thus, Γ/D ∼=

−→
PX(n′′, 0) for some odd integer n′′.

Moreover, since G/D acts 2-arc-transitively on Γ/D, the Sylow 2-subgroup S of G/D is the
vertex-stabiliser of every vertex of Γ/D, and is thus normal in Γ/D, elementary abelian,
and of order at least 4. On the other hand G/D embeds into Aut(N) ∼= GL(2, p). By
Lemma 3.2, it follows that S is of order 4 and contains an involution that is central in G/D.
However, by Lemma 2.2, this implies that n′′ is even. This contradiction concludes the
proof of Fact 1.

Fact 2: The group G does not contain a normal elementary abelian subgroup of order
p2 for any odd prime p.

Proof: Assume the contrary and note that in view of Fact 1, n then satisfies the condition
(iii); that is, n = 2aqbp2 for some a ≤ 3 and b ≤ 1. Moreover, G contains a normal
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elementary abelian subgroup P of order p2. Since p is odd, P is semiregular, and by Fact
0, either Γ/P is a

−→
PX-digraph, or n/|P | = 2aqb satisfies the condition (iii). The latter is

clearly false, while the former implies that the conclusion (b) of Theorem 1.2 holds for Γ,
a contradiction.

Fact 3: rad(Γ) ≥ 3; that is, the alternating cycles of Γ are of length at least 6.

Proof: Assume the contrary; that is, rad(Γ) < 3. Since Γ is simple, we have rad(Γ) 6=
1. Hence rad(Γ) = 2, and by Lemma 2.11, it follows that Γ ∼= Pl(Λ) for some connected
2-valent (G, 3)-arc-transitive digraph Λ of order 1

2n. If Λ is a
−→
PX-digraph, then by formula

(2.2), so is Γ, a contradiction. By the minimality of the counterexample Γ, this implies
that conclusion (b) holds for the pair (Λ, G) in place of (Γ, G), and in particular, that G
contains a normal elementary abelian subgroup of order p2 for some odd prime p. However,
the latter contradicts Fact 2.

Fact 4: The group G contains no normal subgroup of odd prime order.

Proof: Suppose the contrary and let N be a normal subgroup of G of odd prime order
q. Since Gv is a 2-group, N is semiregular. By Fact 3 and Lemma 2.9, Γ/N is not a

−→
PX-

digraph. But then Fact 0 implies that n = 2aqp2 and the Sylow p-subgroup P̃ of G/N is
normal in G/N and isomorphic to Z2

p.
Let Q be the preimage of P̃ with respect to the quotient projection G → G/N. Then

Q is a normal subgroup of G of order qp2, containing the normal subgroup N of order q.
Let C be the centraliser of N in Q. Since N is abelian and since N has order coprime to
its index in Q, we may apply Lemma 3.3 with Z = G, Y = Q and Z = N , to conclude
that C = N × P for some normal subgroup P of G, isomorphic to a normal subgroup of
Q/N. Since the latter is isomorphic to P̃ , we see that P is either trivial, cyclic of order p, or
isomorphic to Z2

p.
If P is trivial, then C = N , and Q/N embeds into Aut(N), implying that Q/N is cyclic.

However, Q/N is isomorphic to P̃ , which is isomorphic to Z2
p, a contradiction. Further, by

Fact 2, the order of P is not p2. This leaves us with the possibility that |P | = p.
Now consider the quotient Γ/P. Since the order of Γ/P is 2aqp, Fact 0 implies that Γ/P

is a
−→
PX-digraph. But then, by Lemma 2.9, rad(Γ) = rad(Γ/P), which is at most 2, since

Γ/P is a
−→
PX-digraph, contradicting Fact 3.

Fact 5: If N is a minimal normal subgroup of G, then N is semiregular and of order 2

or 4. If |N | = 2, then Γ/N ∼=
−→
PX(m, 2), and if |N | = 4, then Γ/N ∼=

−→
PX(m, 1) for some

odd integer m. Moreover, exp(Γ) = 2.

Proof: Letm be the odd part of n. By Fact 1, n = 2amwhere a ≥ 1 andm is cube-free.
Let N be a minimal normal subgroup of G. Since G is solvable, N is elementary abelian,
and since |G| = 2a+sm, Facts 2 and 4 imply that N is a 2-group. If N is not semiregular,
then by Lemma 2.12, Γ is a

−→
PX-digraph, contradicting our assumptions. Hence N is

semiregular, and thus |N | divides n, and therefore |N | = 2t for some integer t satisfying
1 ≤ t ≤ a.

By Fact 0, either Γ/N is a
−→
PX-digraph, or n/|N | satisfies the condition (iii) and the

group G/N contains a normal elementary abelian subgroup P̃ of order p2.
Suppose first that the latter case occurs. Then n/|N | = 2a−tqbp2 where a − t ≥ 1.

Since a ≤ 3, this implies that t ∈ {1, 2}. As in the proof of Fact 4, let Q be the preimage
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of P̃ with respect to the quotient projection G→ G/N. Then Q is a normal subgroup of G
of order 2tp2, containing the normal subgroup N of order 2t. Now consider the centraliser
C of N in Q, apply Lemma 3.3 with Z = G, Y = Q and X = N , and conclude that
C = N × P for some (possibly trivial) p-group P which is normal in G. If P is trivial,
then Q/N ∼= P̃ ∼= Z2

p embeds into Aut(N) ∼= GL(t, 2). Since t ≤ 2, this is clearly not the
case. Hence P is non-trivial, contradicting either Fact 2 or Fact 4.

This contradiction shows that the former case occurs, that is Γ/N ∼=
−→
PX(2a−t−rm, r)

for some integer r such that 0 ≤ r ≤ a − t. Let Λ = Γ/N and let ℘ : Γ → Λ be the
corresponding quotient projection. Since a ≤ 3 and t ≥ 1, we see that r ≤ 2.

If r = 0, then Lemma 2.13 implies that Γ is a
−→
PX-digraph, a contradiction.

If r = 1, either a = 2 and t = 1, or a = 3 and t ∈ {1, 2}. Let v ∈ V(Γ) and let
v′ = ℘(v). Observe that exp(Λ) = 1 (see Lemma 2.14) and |AΛ

i (v′)| = 2 for every i ≥ 1.
By Lemma 2.8, it follows that |AΓ

i (v)| divides 2t|AΛ
i (v′)| = 2t+1 ≤ 8 for every i ≥ 1.

Since |AΓ
1 (v)| = rad(Γ) ≥ 3, it follows that |AΓ

1 (v)| ∈ {4, 8}. If |AΓ
1 (v)| = |AΓ

2 (v)|, then
exp(Γ) = 1, and by Lemma 2.4, Γ is a

−→
PX-digraph, a contradiction. Hence |AΓ

1 (v)| <
|AΓ

2 (v)|, implying that |AΓ
1 (v)| = 4 and |AΓ

i (v)| = 8 for every i ≥ 2 (hence exp(Γ) = 2).
Moreover, since 8 = |AΓ

2 (v)| divides 2t+1, we see that t = 2 and a = 3, implying that
Λ =

−→
PX(m, 1), as claimed.

Similarly, if r = 2, then a = 3, t = 1 and Λ =
−→
PX(m, 2). Hence exp(Λ) = 2,

|AΛ
1 (v′)| = 2 and |AΛ

i (v′)| = 4 for every i ≥ 2. Moreover, as above, |AΓ
1 (v)| ≥ 3 and

|AΓ
1 (v)| < |AΓ

2 (v)|. In view of Lemma 2.8, it thus follows that |AΓ
1 (v)| = 2|AΛ

1 (v′)| = 4,
and |AΓ

2 (v)| = |AΓ
∞(v)| = 8. In particular, exp(Γ) = 2, as claimed. This concludes the

proof of Fact 5.

Fact 6: The order n of Γ is at most 744.

Proof: Let N be a minimal normal subgroup of Γ and recall Fact 5. Since exp(Γ) = 2,
[30, Theorem 7.1] implies that |Gv| ≤ 24. By Lemma 2.5, also the stabiliser (G/N)vN has
order at most 24. By Lemma 3.4, this implies that G/N contains a normal cyclic group Ỹ
whose order is ` for some odd integer ` satisfying

` ≥ m/(2α+4 − 1), (∗)

where α is either 1 or 2, depending on whether |N | = 4 or |N | = 2, respectively. Let
Y ≤ G be the preimage of Ỹ with respect to the quotient projection G→ G/N, let C be the
centraliser of N in Y , and apply Lemma 3.3 to deduce that C = N × T for some cyclic
group T P G of order dividing `. Since T is cyclic, every subgroup of T is characteristic in
T and thus normal in G. If T is non-trivial, this implies that G contains a normal subgroup
of odd prime order, contradicting Fact 4. Hence T = 1, and C = N .

If |N | = 2, then α = 2, N is central in Y , and Y = C = N . However, ` = |Y |/|N |,
and thus ` = 1. In view of (∗), we see that m ≤ 22+4 − 1 ≤ 63, and therefore n =

|N ||V(Γ/N)| = 2|V(
−→
PX(m, 2))| = 8m ≤ 504.

If |N | = 4, thenα = 1, and by (∗), we see thatm ≤ 31`, and thus n = 4|V(
−→
PX(m, 1))|

= 8m ≤ 248`. On the other hand, since C = N , the cyclic group Y/N of order ` embeds
into Aut(N) ∼= GL(2, 2) ∼= Sym(3), and thus ` ≤ 3. But then n ≤ 3 · 248 = 744. This
concludes the proof of Fact 6.

Since a census of all simple arc-transitive digraphs of valence 2 is available in [28], we
can easily see that no counter-example to the theorem of order at most 1000 exists. This,
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however, contradicts Fact 6, and thus proves the theorem.
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