GEOLOGIJA 62/1, 89-101, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.004 © Author(s) 2019. CC Atribution 4.0 License Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline (Sava Folds, eastern Slovenia) Kalpionelidna biostratigrafija in sedimentacija Biancone apnenca Rudniške antiklinale (Posavske gube, vzhodna Slovenija) Daniela REHAKOVA1 & Boštjan ROŽIČ2 1Comenius University, Faculty of Natural Sciences, Department of Geology and Paleontology, Ilkovičova 6, 842 15 Bratislava, Slovak Republik; e-mail: daniela.rehakova@uniba.sk 2University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Aškerčeva 12, SI-1000 Ljubljana, Slovenia; e-mail: bostjan.rozic@ntf.uni-lj.si Prejeto / Received 5. 2. 2019; Sprejeto / Accepted 12. 4. 2019; Objavljeno na spletu / Published online 31. 7. 2019 Key words: Mt Rudnica, Dinarids, drowned platform, Biancone - Maiolica limestone, calpionellids, biostratigraphy, Berriasian Ključne besede: Rudnica, Dinaridi, potopljena platforma, biancone - maiolica apnenec, kalpionelide, biostratigrafija, berriasij Abstract Mt Rudnica in eastern Slovenia structurally belongs to the Sava Folds. The mountain itself is an exposure of the Mesozoic core of the Rudnica Anticline. The major part of the core is composed of Triassic rocks deposited on the NE margin of the Dinaric (Adriatic) Carbonate Platform, overlain locally by deep-marine Berriasian Biancone limestone. The latter formation was logged in a newly discovered section on the northern slopes of Mt Rudnica near the village of Loka pri Žusmu. The Biancone limestone of Mt Rudnica is mostly monotonous, calpionellid-bearing limestone with only minor up-section differences in colour, chert presence, and clay content. It is characteristic pelagic facies for the entire Tethyan Realm of the time. Using calpionellid as well as dinocyst biostratigraphy, the formation was subdivided into Early Berriasian Calpionella Zone - Alpina and Ferasini Subzones, Middle Berriasian Calpionella Zone - Elliptica Subzone and upper Berriasian Calpionellopsis Zone - Oblonga Subzone. Within the Early Berriasian part of the formation a synsedimentary slump was documented, whereas the largest increase in clay content is observed in the topmost, i.e. Late Berriasian part of the formation. Izvleček Gora Rudnica v vzhodni Sloveniji strukturno pripada Posavskim gubam. V osrednjem delu gore izdanja mezozojsko jedro Rudniške antiklinale. Večji del jedra sestavljajo triasne kamnine, ki so se odlagale na severovzhodnem obrobju Dinarske (Jadranske) karbonatne platforme, nad njimi pa je mestoma odložen globokomorski, berriasijski biancone apnenec. Slednji je bil posnet v novo odkritem profilu na severnih pobočjih Rudnice pri vasi Loka pri Žusmu. Biancone apnenec iz Rudnice je povečini monoton apnenec s kalpionelami, ki vzdolž zaporedja kaže le manjše spremembe v barvi, prisotnosti roženca in vsebnosti gline. Predstavlja značilen pelagični facies celotne Tetidine province tega časa. Na podlagi kalpionelidne in tudi dinocistne biostratigrafije je bila formacija razdeljena na spodnji berriasij (Calpionella cona - Alpina in Ferasini podconi), srednji berriasij (Calpionella cona - Elliptica podcona) in zgornji berriasij (Calpionellopsis cona - Oblonga podcona). V spodnjeberriasijskem delu formacije je bil dokumentiran sinsedimentni plaz, medtem ko v vrhnjem, zgornjeberriasijskem delu formacije opazujemo povečano vsebnost glinene komponente. 90 Daniela REHÄKOVÄ & Boštjan ROŽIČ Introduction At present, the GSSP of the Jurassic-Cretaceous boundary remains undefined (Cohen et al., 2018) and as such encourages the search for precise biostratigraphic markers within different fossils groups. Calpionellids are an example of such group, owing to their uniform occurrence and diversification; as a result they are widely used in biostratigraphic analyses of the Late Jurassic and Early Cretaceous pelagic sequences throughout the Tethyan Realm (Allemann et al., 1971; Remane, 1971; Remane et al., 1986; Pop, 1974, 1994; Rehakova & Michalik, 1997; Lakova, et al., 1999; Boughdiri et al., 2006; Housa et al., 2007). From the point of view of calpionellid biostratigraphic potential, we note that alongside Calpionellites darderi, the index marker for the Berriasian/Valanginian stage boundary (Bulot, 1996), Calpionella alpina is considered to be most useful marker for determination of the Jurassic/Cretaceous boundary (Andreini et al., 2007; Housa et al., 2007; Wimbledon, 2008; Michalik et al., 2009; Grabowski et al., 2010a,b; Lukeneder et al., 2010; Pruner et al., 2010; Michalik & Rehakova, 2011; Petrova et al., 2012; Guzhikov et al., 2012; Lakova & Petrova, 2013; Lopez-Martinez et al., 2013, 2015; Wimbledon et al., 2013, 2017; Hoedemaeker et al., 2016; Michalik et al., 2016; Svobodova & Kostak, 2016; Grabowski et al., 2017; Elbra et al., 2018 a,b; Kowal-Kasprzyk & Rehakova, 2019). This study presents the calpionellid biostra-tigraphy (supplemented by dinocyst data) of the Biancone limestone from Mt Rudnica (fig. 1). Biancone limestone is found on the northern slopes of Mt Rudnica, where it overlies, with a prominent stratigraphic gap, the Late Ladinian to Early Carnian dolomite (Anicic et al., 2004). Pioneering work on calpionellids from Mt Rud-nica was provided by Babic (1979), who already recognized most of the calpionellids described in our paper. However, in this study, sample, locations were scattered along the wider area and only point-samples were taken. We revisited the area and found, logged, and sampled a near-ful-ly exposed section of the Biancone limestone. This paper provides a description of the section as well as detailed calpionellid biostratigraphy combined with calcareous dinocyst determinations. We also provide data from a supplementary section that we logged, which is likely from the GK-1418 sampling site of Babic (1979). We describe and discuss the sedimentological particularities of the Biancone limestone from Mt Rudnica. Geological setting The Sava Folds of E Slovenia are characterized by post-Miocene N-S shortening inside the Sava compressive wedge that originated in the triangle between the W-E striking Periadri-atic tectonic zone, the NW-SE Idrija tectonic zone, and the WSW-ENE mid-Hungarian tectonic zone (fig. 1a) (Placer, 1999, 2008). The entire region is composed of a series of anticlines and synclines with generally E-W striking fold-axes. In the synclines, Oligocene to Neogene Parate-thys sediments are preserved. In the anticlines, this sedimentary cover is eroded, and anticline cores reveal Carboniferous, Permian and Mesozoic successions (Buser, 1978; Aničic & Ju-riša, 1985a; Aničic et al., 2004; Buser, 2009). Older structures, particularly thrust-faults, show the clear overprint of a young compression of the Sava Folds, namely, the folding of thrust planes (Placer, 1999). The studied sections are situated in the eastern part of the Sava Folds - more precisely, in the Mesozoic core of the Rudnica Anticline that is a large scale, morphologically well-expressed anticline. It is embraced by the Laško Syncline to the north and the Planina Syncline to the south (fig. 1b), both of which are composed of Oligocene and Miocene sediments that show only minor deformation as the result of young N-S compression (Placer, 1999, 2008). Unlike the synclines, the anticline core is composed of more intensively deformed Mesozoic, mostly Triassic rock successions (Buser, 1978; Aničic & Juriša, 1985a) (fig. 1c). It begins with Anisian limestone and dolomite. Upwards it passes on to the highly diverse Lad-inian succession, which is characterized either by mafic volcanic rocks (diabase) or by alternating shales, limestones with chert, and sandstone. Further upwards it passes on to coarse crystalline (saharoid) massive dolomite that locally alternates to limestone (Buser, 1978, 1979; Aničic & Juriša, 1985a, b; Aničic et al., 2004). Traditionally, this formation is considered to be Carnian in age, but more recent studies from other parts of Slovenia indicate that it is, at least in part, still Ladinian (Celarc, 2004, 2008; Čar, 2010). At Mt Rudnica, it can contain limestone with chert and shale in the upper part of the formation (Aničic et al., 2004). On the northern slopes of Mt Rudnica, near the village of Loka pri Žusmu, this formation is overlain by Biancone limestone that is considered to be a latest Jurassic to earliest Cretaceous in age (Aničic et al., 2004). The strati-graphic contact is marked by a prominent gap that covers the major part of the Upper Triassic Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 91 Fig. 1. a) Geostructural subdivision of the Alpine-Dinaric-Pannonian transition zone with axes of the Sava Folds (compiled from Placer, 1999, 2016); boxed area is enlarged in Figure 1 b. b) Eastern Sava Folds with positions of major structures marked (simplified from Buser, 1978; Anicic and Jurisa, 1985a); boxed area is enlarged in Figure 1 c (national border follows the Sotla River). c) Geological map of the eastern part of the Rudnica Anticline (after Anicic et al., 2004) with positions of studied sections marked. Methods Biancone limestone was logged in two sections. The main section was logged on the northern slope of the small peak (N46°09'21", E15 °31'26"), some 300 m NNE of the Zakusekov vrh peak. The supplementary section was logged along the for- as well as most all of the Jurassic. Outcrops of the Biancone limestone are limited to the rather narrow area between the village of Loka pri Žusmu and two minor peaks (Zakušekov vrh and Kašlinov hrib) of Mt Rudnica. 92 Daniela REHÄKOVÄ & Boštjan ROŽIČ est road, some 200 m further NW of the main section (N46°09'25", E15°31'31"). Samples were taken in closely-spaced intervals. Beds have been numbered with the RA prefix designating the main section and RB the supplementary section. A total of 17 samples were selected for the thin sections, which were used for microfacies analyses and to document successions of stratigraphically important calcareous microfossils, namely calpi-onellids and calcareous dinoflagellates. Thin sections were studied under the LEICA DM 2500 polarizing microscope, and selected bioclasts and allochems were identified. The Axiocam ERc 5s camera was used to document microfacies and bio markers. The thin-sections will be stored in the archive of the Faculty of Natural Sciences and Engineering, University of Ljubljana. The Calpionellid zonal scheme sensu Rehäkovä and Michalik (1997) combined with cyst distribution (Rehäkovä, 2000) were applied. Microfacies types are named according to the terminology of Dunham (1962); standard microfacies type (SMF) and facies zones (FZ) as proposed by Wilson (1975) and modified by Flügel (2004) were determined. Fig. 2. Detailed sedimen-tological sections of the Biancone limestone from the Rudnica Anticline, with positions of samples and calpionellid biozones marked. Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 93 Description of the studied sections In the main studied section of the Biancone limestone from Mt Rudnica, both boundaries are covered. The first outcrops of coarse-crystalline dolomite occur some 5 m below the logged section. In the covered interval, dolomite and subordinate chert particles are found in the soil. The top of the section is also covered. Fragments of dark-coloured shale are present in the soil. Our field observations indicate that the upper boundary is also stratigraphic. We propose that the overlying succession belongs to the very spatially limited Aptian-Albian Lower Flyschoid formation, which in the wider region either lies over the Biancone limestone or directly over Triassic strata (Buser, 1978; Anicic & Jurisa, 1985a). In the main section, the Biancone limestone was logged for 12 m (figs. 2, 3a). It forms a monotonous succession of well-bedded, micritic, variably-coloured limestone. It is light yellowish-brown in the lower 3 m, becomes brighter in the next meter, and is almost white in the next 2.5 m. Upwards, in the next 5 m the opposite trend is observed. In the uppermost 1.5 m the limestone is coloured violet-red (fig. 3b). This part of the formation also shows a slight increase in clay content, is laminated, and beds are thinner than in the major part of the formation. Chert occurs in the form of beds (up to 20 cm), lenses and nodules. Generally speaking, it is black/dark grey in colour in the lower part of the formation and dark red in the upper part of the formation. From the 4th to 5th m of the section, the chert is folded. Folded bedding planes are also expressed within the limestone, albeit less clearly, and this interval probably represents a synsedimentary slumping of the pelagic sediment (fig. 3c). According to the description by Babic (1979), the location of the supplementary section most likely corresponds to his sampling site GK-1418. In this section, contacts of the Biancone limestone with the surrounding formations are also not exposed, but the nature of the outcrops indicates that they are represented, at least partly, by fault contacts. 4.5 m of the Biancone limestone were logged. As a rule, the succession corresponds to the main section, but colours are largely light-grey to white, whereas cherts are black to dark-grey in colour. In the topmost part, bedding planes are wavy and laterally discontinues. Fig. 3. a) General up-sec-tion field view of the Biancone limestone from Mt Rudnica main section. b) Violet-red coloured and thin-bedded limestone and chert from uppermost part of the formation. c) Synsedimentary slump between the 4th and 5th meter of the main section. 94 Daniela REHÄKOVÄ & Boštjan ROŽIČ Microfacies, calpionellid zonation The studied limestone belongs to the standard microfacies SMF 3. Biomicritic mudstone to wackestone contains rare calpionellids, dino-flagellate cysts, calcified radiolarians, ostra-cods, globochaetes, and crinoids. Silt-size quartz grains are locally present. Facies indicates a basin to lower slope depositional environment (facies zones 1-3 in Flügel, 2004). Despite the fact that bioclasts are quite rare and some are not particularly well preserved, it was possible to determine the main calpionellid index markers, on which basis the limestone sequence was dated as Early to Late Berriasian (standard Calpionella Zone with the Alpina, Ferasini and Elliptica subzones and the standard Calpionellopsis Zone, Oblonga Subzone). The Ferasini and Oblonga subzones were established and could improve the calpionellid zonation scheme previously identified by Babic (1979). Early Berriasian Calpionella Zone, Alpina Subzone (sensu Pop, 1974, Remane et al., 1986); samples RA 0,1; RA 1,0; RA 2,25; RA 2,9; RA 4,1 The lowest part of the studied section is built of variable bedded light Biancone limestone bearing chert nodules and chert layers. Slump structures appear at the top of the interval containing the samples RA 4,1 and RA 4,9 (note that the last one already belongs to the succeeding Ferasini Subzone). Biomicritic limestone is mudstone with rare to infrequent calpionellids (figs. 4a-e) and cysts of calcareous dinoflagellates (figs. 5m, n). Very rare Calpionella alpina, Crassicollaria parvula dino-flagellate cysts of Colomisphaera minutissima, Colomisphaera lapidosa, Colomisphaera carpath-ica were observed in the micrite matrix. The matrix contains frequent planar euhedral dolomite (figs. 4a-c, e). These burial-stage dolomite crystals are impregnated by Fe-hydroxide. Planar fabrics are favoured at lower precipitation temperatures. There are also thin dissolution seams filled with Fe-hydroxides and nests of pyrite (fig. 5t) visible in a slightly recrystallized matrix. Early Berriasian Calpionella Zone, Ferasini Subzone (Pop, 1994); samples RA 4,9; RA 5,2; RA 6,3; RB 0,3; RB 2,5 The first occurrence (FO) of Remaniella ferasini, the index marker of the Ferasini Subzone, was identified in sample RA 4,9 (fig. 4i). Mudstone also contains rare Calpionella alpina (fig. 4h), Calpionella elliptalpina, Calpionella sp., Remaniella duranddelgai, Remaniella catalanoi (fig. 5k) Crassicollaria parvula, Tintinnopsella carpathi- ca (figs. 4j,k), dinoflagellate cysts Colomisphaera cieszynica (fig. 5o), Colomisphaera lapidosa, Colomisphaera carpathica (fig. 5p), Stomiosphaera mulluccana (fig. 5s), Globochaete alpina spores, fragments of ostracods, crinoids, calcified radiolarians, and foraminifera with calcite tests -Spirillina sp. A few deformed loricae, dissolution seams, scattered pyrite and rare dolomite rhom-boeders were all documented in the matrix. Middle Berriasian Calpionella Zone, Elliptica Subzone (Pop, 1974); samples RA 6,7; RA 8,0; RA 8,9; RA 10,3; RB 4,7 The FO of Calpionella elliptica, the index marker of the Elliptica Subzone, was observed in sample RA 6,7 (fig. 4l, m, s). The mudstone and local wackestone of this interval also contain rare Calpionella alpina (fig. 4r), Calpionella minuta (fig. 4n), Remaniella catalanoi (fig. 5b), Crassicollaria parvula (fig. 4t), Tintinnopsella carpathica (fig. 5c), Lozenziella hungarica (figs. 4p,q), Lo-renziella plicata (figs. 4o, 5a), locally common cysts of Colomisphaera carpathica (fig. 5q), Co-lomisphaera cieszynica (fig. 5r), Colomisphaera lapidosa, rare fragments of aptychi, ostracods, calcified radiolarians, crinoids, foraminifera Spirillina sp., and Globochaete alpina cysts. Some loricae are deformed (fig. 5l), some bioclasts and the local matrix are slightly silicified. Pyrite is commonly scattered in the matrix. Late Berriasian Calpionellopsis Zone, Oblonga Subzone (Allemann et al., 1971); samples RA 11,15; RA 11,8 Few loricae of the genus Calpionellopsis were identified in the uppermost interval, starting in sample RA 11,15 (figs. 5d, e, g). The beds are more regular and thinner in this part of the sequence. Calpionellopsis cf. simplex (fig. 5g), Calpionellopsis oblonga (fig. 5d, h-j), Calpionella elliptica, Calpionella minuta, Tintinnopsella carpathica (fig. 5f), cysts of Colomisphaera lapidosa, calcified radiolarians, and ostracods were observed among the bioclasts. The matrix contains silt-size quartz grains and muscovite. Pyrite occurs in the walls of calcite veins (fig. 5u), which indicates that at least part of the pyrite formed after lithification. Discussion The Biancone limestone of Mt Rudnica corresponds to the pelagic, calpionellid-bearing limestones (known also as Maiolica limestone) that are common Late Tithonian to Lower Cretaceous facies of Western and Central Europe Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 95 Fig. 4. Calpionellids from Rudnica main section (scale bar is 50 ^m); a) Calpionella alpina (sample RA 0,1), b) Calpionella grandalpina (sample RA 0,1), c) Calpionella alpina (sample RA 1,0), d) Crassicollaria parvula (sample RA 0,1), e) Calpionella alpina (sample RA 2,25), f) Calpionella elliptalpina (sample RA 4,1), g) Crassicollaria parvula (sample RA 4,1), h) Calpionella alpina (sample RA 4,9), i) Remaniella ferasini (sample RA 4,9), j) Tintinnopsella carpathica (sample RA 4,9), k) Tintinnopsella carpathica (sample RA 6,3), l-m) Calpionella elliptica (sample RA 6,7), n) Calpionella minuta (sample RA 8,0), o) Lorenziella plicata (sample RA 8,9), p-q) Lorenziella hungarica (sample RA 8,9), r) Calpionella alpina (sample RA 10,3), s) Calpionella elliptica (sample RA 10,3), t) Crassicollaria parvula (sample RA 10,3). 96 Daniela REHÄKOVÄ & Boštjan ROŽIČ Fig. 5. Calpionellids from topmost part of Rudnica main section and supplementary section, and calcareous dinocysts from both sections (scale bar is 50 ^m); a) Lorenziella plicata (sample RA 10,3), b) Remaniella catalanoi (sample RA 10,3), c) Tintinnopsella carpathica (sample RA 10,3), d) Calpionellopsis oblonga (sample RA 11,15), e) Calpionellopsis sp. (sample RA 11,15), f) Tintinnopsella carpathica (sample RA 11,15), g) Calpionellopsis simplex (sample RA 11,15), h-i-j) Calpionellopsis oblonga (sample RA 11,8), k) Remaniella catalanoi (sample RB 2,5), l) deformed lorica of Tintinnopsella carpathica and Colomisphaera lapidosa (sample RA 6,7), m) Colomisphaera lapidosa (sample RA 0,1), n) Colomisphaera minutissima (sample RA 1,0), o) Colomisphaera cieszynica (sample RA 4,9), p) Colomisphaera carpathica (sample RA 6,3), q) Colomisphaera carpathica (sample RA 8,9), r) Colomisphaera cieszynica (sample RA 10,3), s) Stomiosphaera moluccana (sample RB 2,5), t) subhedral pyrite within micrite matrix (sample RA 2,9), u) framboidal pyrite along the vein-wall (sample RA 11,15). Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 97 (Wieczorek, 1988; Weissert, 2010), and characterize all deep-water paleogeographic domains of the Southalpine-Dinaric Realm (Weissert, 1981; Goričan, 1994; Šmuc, 2005; Rožič, 2009; Goričan et al., 2012, 2018). Biancone limestone also occurs on the north-eastern margin of the Dinar-ic Carbonate Platform, where it overlies (with a prominent stratigraphic gap) the Lower Jurassic or Upper Triassic platform carbonates, and locally Middle to Upper Jurassic cherty limestone (Babic, 1973; Aničic & Dozet, 2000), which is known as the Izvir Formation (Rižnar, 2006; Poljak et al., 2017). The Biancone limestone on Mt Rudnica probably represents the distal, drowned part of the Dinaric Carbonate Platform. The onset of the Biancone limestone sedimentation in the continuous basinal successions of the Southalpine-Dinaric Realm is dated as Late Tithonian (Goričan et al., 2012). The calpionellid biostratigraphy of the Mt Rudnica section (presented in this paper) indicates a slightly postponed, i.e. Early Berriasian onset of sedimentation. Three possible solutions are here proposed for the delay: A) Biancone limestone is not fully exposed in the studied sections, and the Late Ti-thonian part of the limestone is covered (in light of our field observations, this option is less likely); B) the drowning unconformity of Mt Rudnica area was prolonged until the Berriasian as the result of certain paleogeographic conditions; and C) the Late Tithonian part of the Biancone limestone is dolomitized and consequently does not outcrop, because dolomites are more prone to weathering. This last option is supported by field observations, where weathered chert (and also dolomite) particles were observed in the soil just below the main section. Additionally, partial, upwardly-decreasing dolomitisation was also observed in the thin sections. Similar conditions are reported from the northern part of the Trento Plateau, from the area where the Biancone limestone directly overlies the Hauptdolomit/Dolomia Principale Formation (Lukeneder, 2011, 2015). In the Early Berriasian part of the Mt Rudnica main section (Calpionella Zone, the transition from the Alpina to Ferasini subzones) a synsed-imentary slump was observed, which indicates an inclined bottom in this part of the drowned platform margin. Slumps, though they are more poorly dated or more widely time-distributed, are also known from other sections of the Southern Alps and Dinarides, (Weissert, 1981; Goričan, 1994; Šmuc, 2005), where most locations are situated on the drowned platforms. A generally coeval Bohinj Formation, which is a prominent mass-movement breccia and calcarenite bed, is reported from the Bled Basin (Kukoč et al., 2012). Today, the outcrops of this basin are found in the Julian Alps in NW Slovenia but were once located paleogeographically closer to the Neotethys Ocean (Goričan et al., 2018), and probably quite close to the Mt Rudnica area. The Late Berriasian, i.e. uppermost part of the Mt Rudnica main section (Calpionellopsis Zone, Oblonga Subzone) sees a slightly higher clay content. This may indicate changing global climate conditions, namely a gradual change from the arid Early Berriasian to the humid Valanginian climate (Follmi, 2012). A similar trend is observed in the western part of the Slovenian Basin (Rožič and Rehakova, in prep.). A Lower Cretaceous upwardly-increasing siliciclastic input is well documented in the Bled Basin, where the so-called Transitional unit lies above the Bohinj Formation. This is generally attributed to the Berriasian, which still contains beds of Biancone-type limestone, but shows a gradual upward increase in clay interlayers. Finally, it passes into flysch-type deposits of the Valanginian-Hauterivian Studor Formation, characterized by ophiolite debris (Ku-koč et al., 2012; Goričan et al., 2018). A similar, albeit delayed (proposed as starting in the Barre-mian) turn is reported from Mt Ivanščica in Croatia, which is another inselberg that represents a direct, eastern continuation of the Mt Rudnica anticline, with corresponding outcrops located approximately 40 km to the east (Babic and Zupanič, 1973; Lužar-Oberiter et al., 2009; 2012). Conclusions The Biancone limestone of Mt Rudnica is a typical latest Jurassic-early Lower Cretaceous calpionellid-bearing pelagic limestone of the Tethyan Realm. It sedimented on the submarine swell, i.e. on the drowned NE margin of the Dinaric (Adriatic) Carbonate Platform. With a prominent drowning unconformity, it overlies the Upper Triassic platform dolomite. Using calpio-nellid biostratigraphy, the studied sections were determined as Berriasian in age. The formation was further subdivided into Early Berriasian Calpionella Zone - Alpina and Ferasini Subzones, Middle Berriasian Calpionella Zone - Elliptica Subzone, and Late Berriasian Calpionellopsis Zone - Oblonga Subzone. The monotonous pelagic succession is interrupted by a synsedimentary slump in the Early Berriasian. The Late Berria-sian part of the formation shows an increase in the clay content, which may suggest a gradual shift to a humid Valanginian climate. 98 Daniela REHÄKOVÄ & Boštjan ROŽIČ Acknowledgements These investigations of microfacies, calpionellids and cysts were supported by the Slovak Grant Agency APVV-14-0118 project and by VEGA 2/0034/16. Fieldwork and thin-section elaboration was supported by the Slovenian Research Agency (research core funding No. P1-0195(B)). We thank Lucija Slapnik for her assistance in the fieldwork. This article represents a contribution by the Berriasian Working Group (BWG) of the International Subcommission on Cretaceous Stratigraphy (ICS). References Allemann, F., Catalano, R., Fares, F. & Remane J. 1971: Standard calpionellid zonation (Upper Tithonian - Valanginian) of the Western Mediterranean province. In: Farinacci A. (ed.): Proceedings of the II Planktonic Conference, Roma 1970, 1337 - 1340. Andreini, G., Caracuel, J.E. & Parisi, G. 2007: Calpionellid biostratigraphy of the Upper Tithonian - Upper Valanginian interval in Western Sicily (Italy). Swiss Journal of Geosciences, 100: 179-198. Aničic, B. & Juriša, M. 1985a: Osnovna geološka karta SFRJ, list Rogatec 1: 100.000 = Basic Geological Map of Yugoslavia, sheet Rogatec 1: 100.000. Zvezni geološki zavod, Beograd. Aničic, B. & Juriša, M. 1985b: Osnovna geološka karta SFRJ 1: 100.000. Tolmač za list Rogatec = Explanatory notes for sheet Rogatec of the Basic Geological Map of Yugoslavia 1: 100.000 (in Slovenian). Zvezni geološki zavod, Beograd: 76 p. Aničic, B. & Dozet, S. 2000: Younger Paleozoic and Mesozoic rocks in the northern Krško depression borderland, Slovenia (in Slovenian, with extended English abstract). Geologija, 43/1: 13-35. https://doi.org/10.5474/ geologija.2000.001 Aničic, B., Ogorelec, B. & Dozet, S. 2004: Geološka karta Kozjanskega 1: 25.000 = Geological map of the Kozjansko (Slovenia) 1: 25.000. Geološki zavod Slovenije, Ljubljana. Babic, L. 1973: Upper-Tithonian-to-Valanginian basinal sediments west of Bregana (in Croatian, with extended English abstract), 26: 11-27. Babic, L. 1979: Limestone with calpionellids on Mt. Rudnica (eastern Slovenia) (in Croatian, with extended English abstract). Geološki vjestnik, 31: 13-20. Babic, L. & Zupanič, J. 1973: Uppermost Jurassic and Early Cretaceous deposits on Mt. Ivanščica (northern Croatia) (in Croatian, with extended English abstract). Geološki vjestnik, 26: 267-272. Boughdiri, M., Sallouhi, H., Maalaoui, K., Soussi, M. & Cordey, F. 2006: Calpionellid zonation of the Jurassic - Cretaceous transition in north Atlasic Tunisia. Updated Upper Jurassic stratigraphy of the "Tunisian Trough" and regional correlations. Comptes Rendus Geoscience, 338: 1250 -1259. Bulot, K. 1996: The Valangian stage. In: Rawson P. F., Dhondt A. V., Hancock J. M., Kennedy W. J. (eds.): Proceedings of the Second International Symposium on Cretaceous Stage Boundaries. Bulletin de l'Institut Royal des Sciences Naturelles de Belguique, 66: 11-18. Buser, S. 1978: Osnovna geološka karta SFRJ, list Celje 1: 100.000 = Basic Geological Map of Yugoslavia, sheet Celje 1: 100.000, Zvezni geološki zavod, Beograd. Buser, S. 1979: Osnovna geološka karta SFRJ 1:100.000, Tolmač za list Celje = Explanatory notes for sheet Celje of the Basic Geological Map of Yugoslavia 1: 100.000 (in Slovenian). Zvezni geološki zavod, Beograd: 72 p. Buser, S. 2009: Geološka karta Slovenije 1: 250.000 = Geological map of Slovenia 1: 250.000. Geološki zavod Slovenije, Ljubljana. Celarc, B. 2004: Problems of the „Cordevolian" Limestone and Dolomite in the Slovenian part of the Southern Alps (in Slovenian, with extended English abstract). Geologija, 47/2: 139-149. https://doi.org/10.5474/ geologija.2004.011 Celarc, B. 2008: Carnian bauxite horizon on the Kopitov grič near Borovnica (Slovenia) - is there a »forgotten« stratigraphic gap in its footwall? (in Slovenian, with extended English abstract). Geologija, 51/2: 147-152. https://doi.org/10.5474/geologija.2008.015 Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.X. 2013-updated 2018: The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204. Čar, J. 2010: Geološka zgradba idrijsko-cerkljan-skega hribovja: tolmač h Geološki karti idrij-sko-cerkljanskega hribovja med Stopnikom in Rovtami v merilu 1: 25.000 = Geological Structure of the Idrija - Cerkno hills: explanatory book to the Geological map of the Idrija - Cerkljansko hills between Stopnik and Rovte 1: 25.000. Geološki zavod Slovenije, Ljubljana: 127 p. Dunham, R.J. 1962: Classification of carbonate rocks according to depositional texture. Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 99 In: Ham, W.E. (ed.): Classification of carbonate rocks, Am. Ass. Petr. Geol. Memoir, 1: 108-121. Elbra, T., Rehâkovâ, D., Schnabl, P., Čižkova, K., Pruner, P., Kdyr, Š., Bubik, M., Svobodovâ, A. & Švâbenickâ, L. 2018a: Magneto- and biostratigraphy across the Jurassic-Cretaceous boundary in the Kurovice section, Western Carpathians, Czech Republic. Cretaceous Research, 89: 211-223. Elbra, T., Schnabl, P., Čížkovâ, K., Pruner, P., Kdyr, Š., Grabowski, J., Rehâkovâ, D., Svobodovâ, A., Frau, C. & Wimbledon, W.A.P. 2018b: Palaeo- and rock magnetic investigations across Jurassic-Cretaceous boundary at St Bertrand's Spring, Drôme, France -Applications to magnetostratigraphy. Studia Geophysica et Geodaetica, 62: 323-338. Flügel, E. 2004: Microfacies of Carbonate Rocks. Springer-Verlag, Berlin: 976 p. Föllmi, K.B. 2012: Early Cretaceous life, climate and anoxia. Cretaceous Research, 35: 230-257. Goričan, Š. 1994: Jurassic and Cretaceous ra-diolarian biostratigraphy and sedimentary evolution of the Budva Zone (Dinarides, Montenegro). Mémories de Géologie, 18: 177. Goričan, Š., Košir, A., Rožič, B., Šmuc, A., Gale, L., Kukoč, D., Celarc, B., Črne, A.E., Kolar-Jurkovšek, T., Placer, L. & Skaberne, D. 2012: Mesozoic deep-water basins of the eastern Southern Alps (NW Slovenia). Journal of Alpine Geology, 54: 101-143. Goričan, Š., Žibret, L., Košir, A., Kukoč, D. & Horvat, A. 2018: Stratigraphic correlation and structural position of Lower Cretaceous flysch-type deposits in the eastern Southern Alps (NW Slovenia). International Journal of Earth Sciences, 107/8: 2933-2953. https://doi. org/10.1007/s00531-018-1636-4 Grabowski, J., Michalik, J., Pszczolkowski, A. & Lintnerovâ, O. 2010a: Magneto- and isotope stratigraphy around the Jurassic/Cretaceous boundary in the Vysokâ Unit (Male Karpaty Mountains): correlations and tectonic implications. Geologica Carpathica, 61/4: 309-326. https://doi.org/10.2478/v10096-010-0018-z Grabowski, J., Haas, J., Mârton, E. & Pszczolkowski, A. 2010b: Magneto- and bio-stratigraphy of the Jurassic/Cretaceous boundary in the Lokut section (Transdanubian range, Hungary). Studia Geophysica et Geodaetica, 54: 1-26. Grabowski, J., Haas, J., Stoykova, K., Wierzbowski, H. & Branski, P. 2017: Environmental changes around the Jurassic/ Cretaceous transition: new nannofossil, che-mostratihraphic and stable isotope data from the Lokut section (Transdanubian Range, Hungary). Sedimentary Geology, 360: 54-72. Guzhikov, A.Yu., Arkadiev, V.V., Baraboshkin, E. Yu., Bagaeva, I., Piskunov, V. K., Rud'ko, S.V., Perminov, V.A. & Manikin, A.G. 2012: New sedimentological, bio-, and magnetostratigraphic data on the Jurassic-Cretaceous boundary interval of Eastern Crimea / Feodosiya). Stratigraphy and Geological Correlation, 20/3: 261-294. Hoedemaeker, J.P., Janssen, N.M.M., Casellato, C.E., Gardin, S., Reháková D. & Jamrichová, M. 2016: Jurassic - Cretaceous boundary in the Río Argos succession (Caravaca, SE Spain). Integrated biostratigraphy of section Z along the Barranco de Tollo. Revue de Paleobiologie, 35: 111-247. Houša, V., Pruner, P., Zakharov, V. A., Košták, M., Chadima, M., Rogov, M. A., Šlechta, S. & Mazuch, M., 2007: BorealeTethyan correlation of the JurassiceCretaceous boundary interval by magneto- and biostratigraphy. Stratigraphy and Geological Correlation, 15: 297 - 309. Kowal-Kasprzyk, J. & Reháková, D. 2019: A morphometric analysis of loricae of the genus Calpionella and its significance for the Jurassic/Cretaceous boundary interpretation. Newsletter on Stratigraphy, 52: 33 - 54. Kukoč, D., Goričan, Š. & Košir, A. 2012: Lower Cretaceous carbonate gravity-flow deposits from the Bohinj area (NW Slovenia): evidence of a lost carbonate platform in the Internal Dinarides. Bull. Soc. Géol. France, 183: 383-392. Lakova, I., Stoykova, K. & Ivanova, D. 1999: Calpionellid, nannofossils and calcareous di-nocyst bioevents and integrated biochrono-logy of the Tithonian to Valanginian in the West Balkan Mountains, Bulgaria. Geologica Carpathica, 50: 151-168. Lakova, I. & Petrova, S. 2013: Towards a standard Tithonian to Valanginian calpionellid zona-tion of the Tethyan Realm. Acta Geologica Polonica, 63: 201 - 221. López-Martínez, R., Barragán, R., Reháková, D. & Cobiella-Reguera, J.L. 2013: Calpionellid distribution and microfacies across the Jurassic/Cretaceous boundary in western Cuba (Sierra de los Óreganos). Geologica Carpathica, 64: 195 - 208. López-Martínez, R., Barragán, R. & Reháková, D. 2015: Calpionellid biostratigraphy across the Jurassic/Cretaceous boundary in San José de loo Daniela REHÁKOVÁ & Boštjan ROŽIČ Iturbide, Nuevo León, northeastern Mexico. Geological Quarterly, 59: 581-592. Lukeneder, A. 2011: The Biancone and Rosso Ammonitico facies of the northern Trento Plateau (Dolomites, Southern Alps, Italy). Annalen Naturhistorischen Museums, Wien, Serie A, 113: 9-33. Lukeneder, A. 2015: Biancone transformed into dolosparite: evidence for secondary recrystallisation (Dolomite Mountains, S.Tyrol, N.Italy). Annalen Naturhistorischen Museums, Wien, Serie A, 117: 35-62. Lukeneder, A., Halasová, E., Kroh, A., Mayrhofer, S., Pruner, P., Reháková, D., Schnabl, P., Sprovieri, M. & Wagreich, M., 2010: High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria). Geologica Carpathica, 61: 365 - 381. Luzar-Oberiter, B., Mikes, T., von Eynatten, H. & Babic, L. 2009: Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): evidence from Cr-spinel chemistry. International Journal of Earth Sciences, 98: 1097-1108. Luzar-Oberiter, B., Mikes, T., Dunkl, I., Babic, L. & von Eynatten, H. 2012: Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia). Swiss Journal of Geosciences, 105: 377-399. Michalik, J., Reháková, D., Halásová, E. & Lintnerová, O. 2009: The Brodno section - a potential regional stratotype of the Jurassic/ Cretaceous boundary (Western Carpathians). Geologica Carpathica, 60: 213-232. Michalik, J. & Reháková, D. 2011: Possible markers of the Jurassic/Cretaceous boundary in the Mediterranean Tethys: A review and state of art. Geoscience Frontiers, 2: 475-490. Michalik, J., Reháková, D., Grabowski, J., Lintnerová, O., Svobodová, A., Schlögl, J., Sobien, K. & Schnabl, P. 2016: Stratigraphy, plankton communities, and magnetic proxies at the Jurassic/Cretaceous boundary in the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geologica Carpathica, 67: 303-328. Petrova, S., Rabrenovic, D., Lakova, I., Koleva-Rekalova, E., Ivanova, D., Metodiev, L. & Malesevic, N., 2012: Biostratigraphy and mi-crofacies of the pelagic carbonates across the Jurassic/Cretaceous boundary in eastern Serbia (Stara Planina-Porec Zone). Geologica Balcanica, 41: 53-76. Placer, L. 1999: Structural meaning of the Sava folds. Geologija, 41 (1998): 191-221. https:// doi.org/10.5474/geologija.1998.012 Placer, L. 2008: Principles of the tectonic subdivision of Slovenia. Geologija, 51/2: 205-217. https://doi.org/10.5474/geologija.2008.021 Poljak, M., Rižnar, I., Demšar, M., Novak, M. & Toman, M. 2017: Geološka karta vzhodnega dela Krške kotline 1: 25 000 = Geological Map of the Eastern Part of the Krško Basin 1: 25 000. Geološki zavod Slovenije, Ljubljana. Pop, G. 1974: Les zones des Calpionelles Tithonique-Valanginiens du sillon de Resita (Carpates meridionales). Revue Roumaine de Géologie Géophysique et Géographie, sér. Géol., 18: 109-125. Pop, G. 1994: Calpionellid evolutive events and their use in biostratigraphy. Romanian Journal of Stratigraphy, 76: 7 - 24. Pruner, P., Houša, V., Olóriz, F., Košták, M., Krs, M., Man, O., Schnabl, P., Venhodová, D., Tavera, J.M. & Mazuch, M. 2010: Highresolution magnetostratigraphy and biostratigraphic zonation of the Jurassic/Cretaceous boundary strata in the Puerto Escaño section (southern Spain). Cretaceous Research, 31: 192-206. Reháková, D. 2000: Evolution and distribution of the Late Jurassic and Early Cretaceous calcareous dinoflagellates recorded in the Western Carpathians pelagic carbonate facies. Mineralia Slovaca, 32, 79-88. Reháková, D. & Michalík, J. 1997: Evolution and distribution of calpionellids - the most characteristic constituents of Lower Cretaceous Tethyan microplankton. Cretaceous Research, 18: 493-504. Remane, J. 1971: Les Calpionelles. Protozoaires planktoniques des mers mésogéennes de l'époque secondaire. Annales Guébhard, 47: 369 - 432. Remane, J., Borza, K., Nagy, I., Bakalova-Ivanova, D., Knauer, J., Pop, G. & Tardi-Filácz, E. 1986: Agreement on the subdivision of the standard calpionellid zones defined at the 2nd Planktonic Conference Roma 1970. Acta Geologica Hungarica, 29: 5-14. Rižnar, I. 2006: History of research of the Krško and Veliki trn beds (revision). Razprave IV. razreda SAZU, 47: 79-99. Rožič, B. 2009: Perbla and Tolmin formations: revised Toarcian to Tithonian stratigraphy of the Tolmin Basin (NW Slovenia) and regional correlations. Bull. Soc. Géol. France, 180: 411-430. Svobodová, A. & Koš^k, M. 2016: Calcareous nannofossils of the Jurassic-Cretaceous boundary strata in the Puerto Escaño section Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline 101 (southern Spain) - biostratigraphy and pala-eoecology. Geologica Carpathica, 67: 223-238. Šmuc, A. 2005: Jurassic and Cretaceous Stratigraphy and Sedimentary Evolution of the Julian Alps, NW Slovenia. Založba ZRC, Ljubljana: 98 p. Weissert, H. 1981: Depositional processes in an ancient pelagic environment: the Lower Cretaceous Maiolica of the Southern Alps. Eclogae Geologicae Helvetiae, 74: 339-352. Weissert, H. 2010: Mesozoic Pelagic Sediments: Archives for Ocean and Climate History During Green-House Conditions. In: Huneke & Mulder (eds.): Deep-Sea Sediments. Developments in Sedimentology, 63: 765-792. Wieczorek, J. 1988: Maiolica - a unique facies of the Western Tethys. Annales Societatis Geologorum Poloniae, 58: 255-276. Wilson, J.L. 1975: Carbonate facies in geologic history. Springer, Berlin: 471 p. Wimbledon, W.A.P. 2008: The Jurassic-Cretaceous boundary: an age-old correlative enigma. Episodes, 31: 423-428. Wimbledon, W. A.P., Rehakova, D., Pszczolkowski, A. Casellato, C.E., Halasova, E., Frau, C., Bulot, L.G., Grabowski, J., Sobien, K., Pruner, P., Schnabl, P. & Čižkova, K. 2013: An account of the bio- and magnetostratigraphy of the upper Tithonian- lower Berriasian interval at Le Chouet, Drôme (SE France). Geologica Carpathica, 64: 437-400. Wimbledon, W.A.P., Rehakova, D., Halasova, E., Lintnerova, O., Michalik, J., Pruner, P., Schnabl, P., Cizkova, K., Kostâk, M., Svobodova, A., Bulot, L.G., Frau, C., Bakhmutov, V., Grabowski, J., Wierzbowski, A., Pszczolkowski, A., Leanza, H., Riccardi, A., Vennari, V., Aguirre-Uretta, B., Tchoumatchenko, P., Stoykova, K., Ivanova, D., Sha, J., Li, G., Meizhen, C., Jianguo, L., Xiaoqiao, W., Riding, J., Hunt, C., Rawson, P., Copestake, P., Arnaud-Vanneau, A.M., Mohialdeen, I.J., Andreini, G., Parisi, G., Speranza, F., Satolli, S., Martinez, A.L.M., Barragan, R., Benzaggagh, M., Verreussel, R., Munsterman, D., Hoedemaeker, P., Vajda, V., Erba, E., Casellato, C., Bown, P., Pandey, K., Fozy, I., Bardhan, S., Mojon, P.O., Sames, B., Lakova, I., Ivanov, M., Poulton, T.P., Galloway, J., Haggart, J.W., Davies, E.H., Alsen, P., Piacecki, S., Gardin, S., Galbrun, B., Ogg, J.G., Lucas-Clark, J., Pujana, I., Yondon, K. & Oloriz, F. 2017: The Tithonian/Berriasian stage boundary and the base of the Cretaceous System. In: 10th International Symposium on the Cretaceous Vienna, August 21-26, 2017. Abstracts, p. 290. List of microfossils mentioned in the text in alphabetical order. Calpionellids Calpionella alpina Lorenz,1902 Calpionella elliptalpina Nagy, 1986 Calpionella elliptica Cadisch, 1932 Calpionella minuta Housa, 1990 Calpionellopsis oblonga (Cadisch, 1932) Calpionellopsis cf. simplex (Colom, 1939) Crassicollaria parvula Remane, 1962 Lorenziella hungarica Knauer and Nagy, 1964 Lorenziella plicata Remane, 1968 Remaniella catalanoi Pop, 1996 Remaniella ferasini (Catalano, 1965) Remaniella duranddelgai Pop, 1996 Tintinnopsella carpathica (Murgeanu and Filipescu,1933) Calcareous dinoflagellates Colomisphaera carpathica (Borza, 1964) Colomisphaera cieszynica Nowak, 1968 Colomisphaera lapidosa (Vogler, 1941) Colomisphaera minutissima Nowak,1968 Stomiosphaera molluccana Wanner, 1940