UNIVERZA EDVARDA KARDELJA V LJUBLJANI
FAKULTETA ZA ELEKTROTEHNIKO

Sasa DIVIAK

PROGRAMIRANJE
V JEZIKU C

Delovno gradivo

LJUBLJANA 1986

UNIVERZA EDVARDA KARDELJA V LJUBLJANI
FAKULTETA ZA ELEKTROTEHNIKO

Sasa DIVJAK

PROGRAMIRANJE
V JEZIKU C

Delovno gradivo

LJUBLJANA 1986

T 260002~ L

Dr. Sasa Divjak, dipl.ing.,
izredni profesor na Fakulteti za elektrotehniko
v Ljubljani

PROGRAMIRANIE V JEZIKU C
Delovno gradivo

lzdala in zaloZila Fakulteta za olektrWo
v Ljubljani

Pripravija Komisija za tisk — urednik BoZidar Magajna
Tisk »F. Tori«, Ljubljana
Naklada 100 izvodov

PROGRAMMIN G
IN C LANGUAGE

HAND QUT

3.1.1. An Example C Program

L] The file hello.c:
main()
printf("Hello worldi");
] An example run:
Hello world!
4)
3.1.1.3. About C Programs

® Function definitions start with an {nter-
face seotion describing how they must be
called.

@ The main function can have a very simple
interface, as it ls sutomatically called by
the system when the program begins, and can
ignore any program arguments.

] After the interface scction goes the im-
plementation section, or outer block of the
function.

] Blocks are enclosed in ocurly braces, and
can enclose local declarations followed by
statements. =

3.1.2.1. Using Character Constants
] The file CharConsts.c:

matn()

putchar('a'); putchar('b');
putchar(' '); putchar('0');
putchar('1'); putechar(' ');
putchar('1'); putchar('€');
putchar(® '); putchar('\\');
Yutchar('\"s; putchor('\n'i;

The output:
ab 01 10 *

Cc-3-9

3.1.2,2. About Character Constants

° Characters can be represented by
their numeric character codes,

] For clarity and portability, an-
other notation is normally used,
involving the single quote (') and
backslash (\) characters:

L] To indicate their character codes, ordi-
nary printable characters are simply en-
closed between single quotes, for example:

lal lbl 'cl IOI O‘l l2l | Je=y(]
l'l I:l
L] Nonprintable character codes can be repre-

sented by using a backslash character, \,
followed by one to three octal digits,
.8.:

T\O! for an ASCII NULL
INT? for an ASCII BELL

3.1.2.3. Special Character Constants

L} For additional clarity and pertability, C
provides:

ENpY to represent a newline

character
‘\r! to represent a carriage return
LAY A to represent a tab
unambiguously

® Finally, since backslash (\) and single
quote (') have special meanings, they are
represented as follows:

SANY represents a single backslash
¥\ represents a single quote

5t o e B L O [N (L R

3.1.2.4. Using Character Variables

’ The file chars.c:
main()

char digit, special;
int letter, whoKnows;

digit = '8'; special = '$';

letter = 'd'; whoKnows = getchar();

putchar(digit); putchar (special);

putchar(letter); putchar (whoKnows) ;
: putehar('\n');

An example run:

q
8%dq

C-3-12

3.1.2.5. About Character Variables

° Since characters are represented by (im-
_ plementation dependent) character codes,
they can be represented by the same vari-
ables used to hold integer numbers.

o C has several datatypesa to represent in-
tegers, depending on how large the numbers
are expected to be.

° The datatype char may be used to hold cha-
racters which will occupy only one byte,
at least the values 0 through 127.

0 The datatype int should be used if an ex-
tended character set with more than 128
codes is being used. i

0 int should also be used if characters are
Being interspersed with special codes for
end of file, etc., which do not use any of
the 128 codes reserved for normal
characters.

S

3.1.3.1. Integer Constants & OQutput

The file: IntConsts.c
main()
{

printf("3d is the same as %d\n", 010, 8);
printf("3d is the same as Zd\n", 0x10, 16);

printf(“"Octal: %o, Decimal: %d, Hex: Ix\n",
10, 10, 10);

printf(“0Octal: %o, Decimal: 3d, Hex: Zx\n",
010, 010, 010);

printf{"0ctal: $o, Decimal: %d, Hex: %x\n",

.0x10, 0x10, 0x10);

printf("%1d is a long integer\n", 123456789) ;
printf("31d just thought it was.\n", 123L);

3.1.3.2. About Integer Constants

)
=

Integers may be represented in octal (bLase

8),-decimal (base 10), hexadecimal (base
16) and as character codes.

Octal constants are represented by the
digits 0-7, and must have o leading zero:

010 0177245 0177
Decimal constants may be represented by

the digita 0-9, but must not begin with an
initial zero:

10 hs 100
Hexadecimal constants may be represented

by the digits 0-9, and a-f. They must
begin with an initial Ox or 0OX:

0x10 0xffald oxff

C-3-17

ﬁ

3.1.3.1. Integer Constants & Output

The Output:

8 is the same as 8

16 is the same as 16

Octal: 12, Decimal: 10, Hex: a
Octal: 10, Decimal: 8, Hex: 8
Octal: 20, Decimal: 16, Hex: 10
123456789 is a long integer

123 just thought it was.

3.1.3.2. About Integer Constants

Negative integer constants begin with a
minus sign:

-010 - =123 -0xff

Integer constants which need to be passecd
to functions expecting long integers can be
followed by an 1 or L for long:

1000L Oxabel

Integer constants which are too large to be
single precision will automatically be rep-

resented as long integers, making the 1 or
L optional:

10000000L or Jjust 10000000
OxabcdefL or just Oxabedef

45

3.1.3.1, About Integer Variables

Integer values can be represented with or
without sign, and may be of various im
plementation dependent sizes,

- char will provide onc byte of storage,
which may or may not include a sign
bit, Only values 0..127 arc safe.

-~ int will provide some efficient but
unspecified amount of storage, usually
16 or 32 bits.

B int may be qualified with the words
short, long and unsigned.

- A short int provides at least 16 bits
of precision.

- A long int provides at least 32 bits of
precision,

C-3-20

3.1.3.41. About Integer Variables

The unsigned qualifier makes available all
the bits in an integer variable for rep |
resenting a non-negative value.

short, long and unsigncd may be used as ab
breviations for short int, long int and

unsigned int.

NS

B

3.1.4.1. Floating Point Constants

Floating point constants are always given
in decimal fractional or scientific
notation,

A decimal point is used to indicate the
start of the fraction part.

The letter e or E is used to indicate the
start of the exponent part,

123.45 123.456e7 0,12e-3

All floating bolnh constants are
represented with double precision.

A
ﬁ

_4-6

3.14.2. Floating Point Variables

NG

C provides two sizes of floating
point numbers, float and double,
with implementation dependent

range -and precision,

- float represents the available
single precision floating
point numbers, usually with at
least 32 bits,

- double represents the available
ouble precision floating point

numbers, usually with at lcast
64 bits,

Despite the ability to store single
precision floating point values,
all floating point calculations

are fertormcd using double
precision arithmetic,

C=3=-24

3.1.5.1., Mumerical Ingut/Output:
The file numbers.c:

main()

int netWorth, numKids;
float weight, height;

netWorth = 14; weight = 14.007e2;

/* next line could be deleted w/o effect ¥/

numKids = 10; height = 0.1} /* to be
trashed %/

printf("Please enter a decimal integer “);

printf("and a floating point number:\n"); axs the

gesye Teameter
scanf("%d %f", &numKids, &height); addresses

printf(“worth is %d, chidren, %d, ", networth, numKids)

printf("weight = %f\nand height, if.",
yezght, height);

_

3.1.5.2, Using Arithmetic Operators:
The File "NumOps.c":

£ SN

main()
{

int int1, int2;
Tloat flt1, flt2;

int1 = 2 + 3 = 15; /¥ result is negative %/

int2 = =int1; /* result is positive ¥/
int1 = 2+(3%5); /¥ result is 17 ¥/
int1 = 2+3%5; /% result is 17 %/
int2 = (2+3)*%5; /* result is 25 %/

int1 = int2 = 0; /% = associates ¥/
/% right to left %/

int1 = 123 /.10; /% yields quotient 12 %/
int2 = 123 % 10; /% ylelds remainder 3 %/
flt1 = 123 / 10; /% yields 12.3 %/
f1t2 = int1; /% integer to float ¥/
/* conversion implied %/ .
int2 = flt1; /¥ result is truncated %/

ﬁ

3.1.5.3. Arithmetic Operators

§ Integer division yields only the quotient,
the remainder can be obtained with the
operator %, pronounced *‘mod'':

1234,0 / 100 1is
12.34 1234 / 100 is
12

1234 % 100 is 34

[The operators ®, / and % are of higher
precedence than + and -, but parentheses
can be used to clarify or alter this pre
cedence, thus:

2+3%5 {3 the same as 2+(3%5), not
(2+3)%5S -

€-3-30

An Exazple of a € Function “ith One Input

"

The file proc.c:
sain()

decode('a');
decode('0');

decode(e) }
char ¢}

The output:

The character a has code 97.
’ The character 0 has code 58,

interface part

printf("The character Ic has cede 3¢.\n", ¢,

e ik pqrt .

€-3-32

3.1.7.1. An Example of the if Statement

The file if1.c:

main()

A (getchar() == 'y')

An example run:

Do you wish instructions?
gorry. none are available
Another example' run:

Do you wish instructiona?
n

_ 1-8

printf("Do you wish instructiona?");

printf("Sorry, none are available");

3.1.7.2., An if Statement with an else

The file if2.c:
main()
{

char c¢;

printf("Do you wish instructions?");
c = getchar();

if (¢ ==z 'y')
™ printf("Sorry, none are availablel\n");

else

printf("Well, its a good thing, ");
printf("because none are available.");

i

3.1.7.3. MNested if Statements

The file if3.c:
main()
{

char c;

printf("Do you wish instructions?");

¢ = getchar();

if (0 =5 'y')

T printf("Sorry, none are availablel\n");

..
SRk e s

else Af ("¢ == "n!

" " printf("Well, its a good thing, "); J
printf("because none are available.,"); !

i

!)
i els

A printf("Type y for Yes or n for No\n"); ,

R . T

3.1.8.1. True & False in C

L] Logical operations in C, such as the test
part of an if statement, take integer
values,

L A non=zero integer value is taken to be
True, or a successful test, thus:

Af (1) printf(“hello");

will always print hello,

L The integer value of zero is taken to be
False, or failure, thus:

if (0) printf("goodbye");

will never have any effect.

Nty

3.1.8.2. The logical operators

L] C has a sct of logical operators, yielding
either true (1) or false (0) results,

L) Integer and floating point values may be
compared for strict equality using the
operators:

s I=

° They may be compared for order by using
the relational operators:

> bT < s

.9 Logical expressions may be

combined into conjunctions
and disjunctions:

&% (logical and) i1 (logical
or)

3.1.8.3. Precedence of the logical operators

L] Precedcnce can always be clarified or al-
tered with parcntheses, for example, these
pairs have the same meaning:

a>bz==¢c>d
i (a>b) == (e>d)

a &b o
(a &yb) Ul ¢

allb&ke”
a il (b &kc)
ad<bfJc==148&a>d>hb
(adb) I ¢ (c == 4) &(a > b))

N

3.18.1, A Test Expression Example

R

File test.c:

Tain()
int a, b, ¢, d, sanc;
a=1; b = 2;
¢ = 3; d = 4
same = (a < b) == (¢ < d);
if (a < b)

“printf("%d is less than %d\n", a, b);

if (same)
priggt(“id and %d are ordered the same\n",
c, i

Qutput:

1 4s less than 2
3 and 4§ are ordered the same

Ln-do

C-3-16

3.2.1.2. Accessing Standard 1/0 Library
Definitions

g Accompanying the functions in the standard

I/0 library are a set of derinitions, which
can be included into your file with the
line:

#include <stdio.h>

© This line causes the C preprocessor to
fetch the file stdio.h from a special sys
tem area (/usr/include on UNIX), and

include its contents at this point in the
current file,

® The C compiler proper never sees any C

preprocessor requests; it just sees normal
C code,

/’*‘7‘ -

3.2.1.4. Variations with printf

The file printf.c:

main()
printf("char %c, decimal %d, octal %o,
hex f$x\n", 'a', 'a', 'a', 'a');

printf("float %f, string %s", 14.3,
“hello");

Output of the program:

char a, deoimal 97, octal 141, hex 61
float 14.300000, string hello

C-3-57

A-1

c-3-33
~ _ -

P.E.u-z-r Values are Coples

Funetion parasaters 3re actually local varlables which start out
with coples of the values handed in,

Thus in the followirg progras, flle “"varCepy.c™:
Tnln()
char ¢;
e mtats
rune(c)z
| putchar(e);

func(e)
: ghar ¢}

putchar(c);
s 'y
y putenlric):
The output is:

ava

C-3-59

3.2.2,1. About the Standard 1/0 Library \W

The standard 1/0 library provides a number
of useful functions for doing I/0 from C
programs,.

The standard I/0 library is not part of the
C language proper, but should be present in
any C program development environment.

When you compile a C program, the standard
library is automatically searched for any
functions not defined by the files
specified as arguments to the cc command,

1- 42

3.2.2,2. Passing Variable Addresses

L] If a function is to be able to change the
. values of variables, it must be passed the
address of those variables.

¢ The prefix operator & takes the address of
a variable,

The file ClearInt.c: Lt
main() S
{
int &;
i = 123;

ClearInt(&i);
printf("i = %d\n", 1);
)

CIearInt(pi) L ;
int * pi;

printt("Locatton = %d, 0ld value = %d\n",

i
K\ ' e =

-3.2.2.3. Using Multiple Function Outputs ‘\

Part of the file swap.c:
main()
(
char c1, c2;

el = 'a';

cz lblo

printt(“a = %¢, b = %e\n", c1,
e2); ;

suap(&cl, &c2);

printf("el = %c, ¢2 = %c\n",
cl, c¢2);

3.2.2.4. Using Variable Addresses

8 The rest of the file swap.c: 4 | &,)

swap(p1, p2)
¢ char *pi, %p2;

char temp;

temp = %p1;
*p1 = ¥p2;
¥p2 = temp;

templ_)

)

¢ In order to use an address of, or pointer
to, a variable, one must store it in a
pointer variable.

¢ Pointer variables are declared by

indicating what kind of value they may
point to,

\ =1 ' - ¢

> ® Ooa

3.2.2.4, Using Variable Addresses

® In the definition of a variable, asterisks

indicate that the variable in question is a
pointer to an object of the given datatype.
No runtime operation is implied,

® As part of a statement or an expression,

the asterisk prefix operator, (*), refers
to the data being pointed to by the pointer
variable, At runtime, this corresponds to
an extra memory fetch,

I 3.2.3.1. Reading Single Characters

[] Characters may be read from the standard
input by the function getchar.

The file getchar.c:

main()

char c; !

¢ = getchar(); /* save the 1st
char*/

getchar(); . /* chuck the 2nd

putchar(getchar());/* print the 3rd
putchar(e); /* print the 1st
}

e

- 3.2,3.2, Formatted Input

] The function scanf reads input according to
the formats specified by its format string.

L] scan{ understands the same format codes
that printfl does.

[] Whitespace characters (spaces, newlines ‘and
tabs) inbetween format codes in Lhe format < *

string will match any number of whitespace
characters in the input stream,

® Any extra nonwhitespace characters in the
format string are cxpected to literally
match characters in the input- stream,

L] scanf will keep recading until it fills all
the values called for, or until the input

stream deviates from the form specified by
the format string.

G

ot {hue

C-3-6"f

3.2.3.2. Formatted Input

scanf returns as its function value the
number of items successfully read, or the
special value EOF (defined in ¢stdio. h>) if

it reaches the end of the 1nput stream be
fore it has finished.

k = scanf (*%d %d *, ki, &j);

i (k<2)

usually

«e- complain...

vee EOF = -4

1- 45

Varlaticns or scanl

The file scanfl.c:

main()
{

char ¢}

Int 1, J;
'rr'.: £

printf("Please type a character, sn integer®);
printf(* and a floating polnt numder:\n%);

soanf(™ %o 34 3r~, &e, &%, AC) .
printf(*You typed Sc, 34 and S‘\n" e, 4, 0);

printf("Please type ““tep 10 teams'':\n");
L = scanf(® top %23 teazms™, 4));

printf(*l read %4 value(s), including the nuadber 3d.\n",
i, 3

An example run:

Please type 3 churuur, an intager and a floating poilnt nusber:

x 123 3.18159

ou :ypld x, 123 anda 3.181530
Plesae type ““top 10 teanms'':
top 10 teaas
3 I read | value(s), including the nuaber 10,

So—

3.3.1.1. Printing a Numeric Digit

Part of the file Putlnt.c:
PutDigit(d)
char d;
7¥ assertion: d is in {(0..9) #*/

{
) putchar(d + '0');

N

3.3.1.1. Printing a Numeric Digit

-

Part of the file Putint.c:
PutPosInt(i)

int 1;
7¥ assertion: 1 >= 0 #*/

(
i (>0

PutPosInt(1/10);
) PutDigit(1210);

4.1.1.4. Using Static Variables
L] Inlhiaiization clauses on variable defini-
tions apply only when variable is created.
- The file rand.c:
int rand()
T
static int seed = 31415;
seed := (seed + T227) % 23U5;
return seed; 3
® Only function rand can sce the variable
sced,
= Without the keyword static, rand would
always return (31415 « 7227) % 2345,
_ 1~ 46)

C-N=7

& - i

#.1.1.3. The Scope of Static Variables

¢ Externally declared static variables:

- are visible through the rest of the

- file (except within blocks which
redeclare the same name)

- do not require keyword static

¢ Internally declared variables (static or .
otherwise): /

- are visible within their block
(except within nested blocks which
redeclare the same name)

- require the keyword static

-)
static int count; o foo()
clatic float weight; 3
main()

..

ja——

h.1.2,1. Allocation of Automatic Storage

® lNew storage is automatically allocated
when: .

- a fanction is called
a block is entered

® The same storage i3 automatically reclaimed
when:

- the function returns 1
- control leaves the block H

Function calls & returns and block entry &
exits are always nested, permitting a sim-
ple storage management scheme,

h.1.2.3." Declaring Automatic Variables

erampie: fred (%)
® Function parameters arc automatic ut X,y

variables:

- allocated & ipitialized at function
call visible throughout the funection

body (except where name reused in
nested block)

] Internal variables arc automatic by
default;

- allocated at block entry

- initially contain a random value
(unless initialization clause used)

- are visible throughout the block

(except where name reused in nested
block)

_ 4-17 T ! | J

4.21.1. Allocating Array Variables

Int 1, ages(100];
float max, scores(100];

The file drrays.c:
main()

({
char ¢, hold(4], name(20];

¢ = 'X';
hold[0] = 'U'; hold[1] = 'N';
hold[2] = 'I'; hold([3] = c¢;

printf("What's your name? LH I
scanf("%s", name);

i = 10}
ages[i] el
ages[0) = 100; ages[99] =

max = 100.0;
scores[0] = 0/max; scores(1] = 1/max;
scores[98] = 98/max; scores[99) = 99/max;

Yrintf(“well, 1s, thats alll", name);

4- 18

§.2.1.2. 1Initdalized Static Arrays

File dates.c:

Ant IsleapYear(year)
Ant yeor;
return yearis & (year3¥0D !! lyears$100);

long DayOfipoch(year, month, day)
Ant year, month, day;
{

‘static int DayOffsets() = [O, %l, 53, 90, 120, 151;
=151, 212, 243, 273, 30§, 33' i
long onya,

days = year®3165 « year/% - year/100 « year/i00
+ Dayoffsets{month] « day;
if (month > 1 /® Feb */ 44 IslLeapYear(year))
dayses;

return days;

C-4-15

4,2.2.1." Declaring & Initializing

AL

buckels

Only statically allocated arrays can be
initialized with an initialization clause.

screen is an array of 24 arrays with 80
characters each, ® =3 plic 552

__‘Fhar screen[ZH]L&O]; i i 2 et
52 e 'g'.\\;

I4Xl4 is an array of ! subarrays, cach con-
taining 4 integers. IuXH i3 being initial-
ized to an identity matrix,

static int I4Xu()C) = ((1, 0, 0, 0}, {
?011' 0: 0]o [0, 01 11 0)v"(0» 00 01 1
i

Array sizes are optional where initializa-
tion clauses make it apparent.

Good practice suggests giving sizes ex-
plicitly if the size matters to the code
accessing the data.

1 - 19

5.2.3.1. VUsing Multidimensional Arrays \

The file “demos/multidim.c

main()
{

int src, dst;
Tioar amount, x{3)[3);

x[0)10) = 1; x[1)(1) = 1 x(2)(2) = 1;
x(1)(0) = 12; x[03(1) = 1 7 x(1)(0);
x(2)(1) = 3; x01)(2) = 1 /7 x(2)(V)

printf(®Enter the source & destination wunit®);
printf(*0 « inches, 1 = feet, 2 » yards®); g
scanf(®$4 34", &src, ddst);

printf(*"Amount: “);

scanf("sf", damount);

prantf(“Result is 37.", amount * 'x [sre)ldst));:

qo

£.2.3.3. Arrays of Unknown Size

t/does net check array index bounds, therefore:

The nunber of elezerts ©f on array serely being pointed to
are irrelevant:

h‘o;erud(n, ¥2, size)
int vill, v2l), size;

ir ¢ :xu)
v2{0) = v1[0) - v2[0);
/% modifies original caller's values %/
Vecturaddl svi[1), av2[1), size « 1);
/% passes array slice %/
]

)

Stylistically, the nuaber of eleaents of an array parazeter
shoulc appear if and only i the code i3 size dependent.

Although the nusber of elenents 13 irrelevant, the element
size i3 needed to perform indexing operations, therefore:

Dimersions of sultidimensional arrays regquire all but the
last array size.

]]
+)=a’

A 7 O B

i e

e e

1.2.4.1. The Increment & Decrement Operators

=

The increment operator ++ increments an
integer variable by 1:

++1 13 the some as 1 = 1 + 1

The decrement operator -- decrements in-
tegers similarly.

Pre-increments and pre-decrements (applied
in front) happen before expression

. LA
evaluation: e W &"‘Sm""“
s ‘n\" g
iz 0; ettt o)

j= +*1.* 4 ‘______,’/.U";:(.a\w
/% 1 s= 2. J =2 | %/

Post-increments and posf-decrements (ap-
plied behind) happen ter cxpreasion
evaluation:

i = 0; &z
3 = 44+ + L4
/* 4 52, Je=0 %/

4 - 20

——

i 4.2.4.3. Arrays Are Pointer Constants

L] Array identifiers refer to:

- the address of the array, i.e.,
the address of the first element of the
array, therefore they are simply
peinter constants

e Pointer variables pointing into arrays can
be stepped along sequential elements with
increments & decrements.

char name [20] ; #P<i C |
pe = name j]

«pe w5 ; /n has the same effect as namelol=3 */

pett | v now points to namelt) «/

/v name is @ conshant:

$0. .. pame = -~ is WG o

W.2.4.3. Arrays Are Pointer Constants

® The file unix.c: L NI X
?ain() TR

O‘—"‘
char '0. name[ul; = Lomwanampne ST .',. =
== o

e

name(0) = 'U'; -mame[1) = 'N'; /
name[2] = 'I" " name(3] = 'X'- 7

putchar('nane‘) putchar(*(name + 1));
gutohar(¥(name + 2));putchar(*(name + 3)

¢ = name; S
put.ohar("o++); putehar('c++) @

?utchar(¥c++); putchar(¥ec-)

noklica similar 4 assembly lanquage

i] B, MR
h.2.4.6. Passing Array Slices
[] The file slice.c: | L
. . l
main() (-/r —§!° "
char DoublaBul‘[Z][BO]; A s
GetLine(DoubleBuf(0]);~~ "’/
GetLine(DoubleBuf(1])")’ :
int GetLine(line)__---—@
char line()§ 17
ne = getchar() i
if (*line == '\p')
l "l
"line = -'\0"'
return 0"
return 1 + Getline(line + 1); }
& g:c;;:?lc‘:)njlaaljnc. returns {he number of acceptd charackrs v
N _A=21 ')

& c-1-29

h.2.4.7. Sharing Array Storage

wain()

char BigBuf[160];
char 'cp;l

cp BigBufl;
cp = ¢p + GetLine(ep);
ep = cp + GetLine(cp);

Blgﬂu# M"I'
1

cf CFlnew) = ek

[e Better : less storage needed w/

1.2.4.8. Arrays of Pointers

{ pointers !
char BigBuf[160]; _.~-~ o e

char *lines[3]; <~

lines[0] = BigBuf; -
lines(1) = lines(0) + GetLine(BigBuf);
lines(2] = 1lines[1] + GetLine(lines[1));
GetLine(lines([2]);

» Puts(lines(2]);
-~ puts(11ne3[1% ;:

" - puts(lines[0

Note that lines[21[5] is tho 6th element of
the 3rd line, just as if lines were a two
dimensional array.

Bigauf (SEITRIFES IR T T
"

4 hor: e s 7

lines (23053 = w(lines[27+5)

5.1.1.1. 7The Fora of the switch Statesment

File switeh.c:
7n1n()
char ¢;

printf("Please type a character: *);
© » getchar();

sviteh(¢)
e

gase '0': case '1': case '3’
case "%': case 'S': ¢ case ‘7'

case '8': case '9':

H e 'e': case '{': case '0':
ca u': 3e ‘A': case ‘E': case 'I':
case '0': ¢ S

prentf(*You H'ptd 2 vowel0);

3 printf("In upper or lower case0);

H Sase b ':

i printf("You typed a spaced);

break;

caze '':

::!nzr(-uu typed a tabld);
eak:

eToult:
printf("You iyped a consonant®);
printf(™or special character.”);

.?QL!:

o @t emp—— - - ———

5.1.1.2, The Semantics of the
switch Statement

The switch statement can take any integer
or character; that is, any discrete valuc,
and usc it to sclect statements to execute.

Each case must be labelled with a constant
expression, and must be unique.

If the value being switched on matches any
of the cases, execution will immediately
transfer to that case.

If none of the cases matches the switch
value, control will transfer to the default
case.,

If none of the cases match and there is no
default case, no action will be performed.

AN 2D

5.1.1.3, Using break Inside switch Cases

o Normally, cach alternative scquence of
statements in the switch statement will end
with a break statement.

L] The break statement terminates the switch
statement immediately.

[} Without the break statement, control would
pass into the next group of stotements;
this is:

- usvally confusing; hence, rarely
desirable

- but Is sometimes done to optimize a
highly time-critical section of code.,

5.2.1.1, The Usage of the while Statement

Part of the file GelPutStr.c:
main()
char s[80);
GetStr(s, 80, “\0);
Putser(s);

int PutStr(s)

:—— char ¥s;
uhil? (¥s 1= N0)
putchar(*s);
) S44)

(2)

5.2,1.3. The do Variant

Part of the file GetPutStr.c:

int GetStr(s, max, ender)

char ¥s, ender;

d o
el ehned a 7202)

¢ = getchar(); . 7
lensa; AL
if (len < max) P
) S+t = ¢ i
while (¢ !z ender %4 z F) |
T e I= EOF);: I

return len;

A= 2y

5.2.2.1. The Usage of the for Statement

The file for.c:

int GetStr(s, wax, ender)
char *s, ender;
int maxs

int ¢, len;
max--; /* for '\! #/

for (len = 0; (c = getchar()) !=

1= EOF ; len++) 4

il (len < max) ;

*S++r = O} ;

g = N\O': o A) v

return lén; ¢his is Po-,s.iblc because C““':-\'“fxé\,

tuannirs testing from left ~1o neg !;

50 ¢ iy defined before ¢!l =ecf

test,

ender && ¢

C-5-14

=)

$.2.3.1. Exiting Loops Prenaturely

The break statement will prezaturely break the innerzost leop in
whis t i3 enclosed, File UnCtrl.a:

/% Untranalate Control Characters %/

sain()

int ¢;
Vhile ((c = getehar()) != EOF)
Do €

£0.¢ ‘o an0507)

= getchar();
e '8 e dst ')
c - '8
¢ (cas ')
TYI7'; /% ASCLI DEL /
se if (G ux ' * /% 5P %/)
Tt T
else
putchar(*“*);

A€ (¢ a» EOF)

.

R
. "~

&
0
& -

/% waed Y/ ,{m

) putchar(<);

C-5-17

5.2.3.2, Skipping to the Next Iteration

The file NonBlank.c:

/* Copy nonblank characters */
main()
{

int ¢;

getehar()) != EOF)

if (1] Climss V)

S/ continue;
putchar(c);

2 " AT bt e i <

} @ will be compressed wilout Yanks and lous ’:

J ,‘_,._h__,—w”l-"— : S N
@b is pst an example . Could be bellec pogunaied
v"-"_'—Ah—‘

while ((e
S

/%

/

5.2.3.3. Cautions with break and continue

Ideally, the loop control structure should
express the entire context of the evalua-
tion of the statcments in between.

break destroys the "one entrance and one
exit" principle of control constructs,

Both break and continue have a tendency to
be overlooked by readers.

Good practice is to use break and continue
sparingly, and always with a comment call-
ing attention to their use.

_4~26

. J/
(N
- 5.3.2.1. Spaghetti Cade
/% Untranslate Control Characters */
main()
int e;
start:

it ((e = getehar()) == EOF) goto end;
TE (e != 43) gote doit;

¢ = getchar();

(70 dx 1@ &0 Y)
cs 0= '8

8130_1_!:(c == '7'")
c = '"177'; /* ASCII DEL %/

else iT (¢ == 1 vV /% Sp %/)
e = 17

clse

putchar('"');
AC (¢ == EOF) goto end;
doit: putechar(¢);

oto start;
end:

7 : =

_—@ 6,1.1.1, Declaration & Use cf Structures

The file: you,c:

Tnln()
strue
char nasze(20);
ong SSN;
AL welght;
1 yous

Cemmmnnaa=""

o m—— .

L.A\Struciure name

printf(“Plesse type your first nome, SSK & weignu:¥);
soanf(*3s 314 37", you.nase, lleu.SSI,‘lycu.vﬁ;ht);
printf(*Nase = %3, SSN.» %1d, velght 5 310,

you.name, you.SSN, you.weight);:) "'
R .

5 E o-weu,:;c;;:l:c-c R
" Qabk; 5 _:‘)

O e o S
this s "I“Qdy an addressy

SSN ... Social Secunity Humher

From the file SayOlder.c: ’,"

SLrUCL person <--==""

M and P2 are variables' :
of type 'stnictwe person.

char name{20]);

int age;

float neight, weight;
i

slorage reservation for

0 - .
ns fand £2 of 1hs tyre

A

struet person pl, p2;
!'!o-! ratio; \ &

printf("Enter first name, ase, helight & welght of 2 persons:0);
GetPersonl(ip));
GetPerson(ép2);

(pl.age > p2.age)

SayOlcer(pl, p2);
elso if (p2.sge > pl.age)

der(p2, p1);

else
Prantr(®ss i3 the same age @z 33 ", pl.rame, p2.rame);

Ar example run:

gEnter first name, age, helght & weight of 2 persons:
John 32 6.2 182.5

Mary 33 5.8 182.0

Mary is older than John

N

—

|€?I 6.1.1.3. Passing Structures to Functions

M——

From the file SayOlder.c: - bycail the vhele sincwe
SayOlder(older, younger) ¥

struct person older, younger;

(
printf("%s is older than %s", older.name,
younger.name) ;

]

GetPerson(p) .

struet person *p;

scanf("%s %d % %", (*p).name, &(*p).age,
&(¥*p) .height, &(*p).weight); -4

i
'
(:Eﬂll'ﬂﬂ fo the brackets)

)

: $.1.0.4, Efflciency & ASdreviations

The flle SayOlder2.a:
zatn()
{

struct person pl, p2;
! ﬂun ratio; g

princf("Enter flrat name, age, helght % welgzht of 2
persons:0);

GetFerson(&p)); GetParson(sp2);

AC (p1.age > p2.age)
Soyou.rugl.' p2);

else (¥
R A€ (p2.3ge > pl.age) SayOlder(ip2, Api);
else 1
) printf(™ss 13 the same aze as 230, pl.name, p2.name);
Al

SayOlder(older, younicr)
atruct person "clder

*younger;
[JoAF(s A8 i ddes than %3%, eldes-» name. ; yousger-> Name)}
1

GetPerson(p)
struct perscn %p;

.
.
.
.
.

acarf(“%3 34 30 80", pedname, Ap~dage, Spedneignt, Ap-
Jwelignt); A
'

\ ywuader — name |5 Ui same a3 (yaunger).name , but it i mere clear

£ 6.1.1.5. Combining Structures with Arrays W

teople [TORTT age Thelwe][70
The file: eldest.c: :

main()
(

O o |
struct person people(10), *p; =~ =
int §;

printf("Please input 10 person records,
each with:0);

printf("first nome, age, height & weight *);
for (i = 0; & € 10; i++)
GetPerson(&people(il); |

&people(0];

(£ = 1; 1 < 10; i+4)

il (people(i).age > p-dage)
p = &peoplelil;

or

printf("%4s is the eldest0, p->name); |

2

6.1.1.5a Combining Structures with Amays

/% Better solution »/
main ()

i;trucl: person »q: wp, people (40);
{or (g = people ; & peoples 40 gr+)
(-,etPer.son(g),
p= people
{or (q- peo,aLeH 4 q‘- PQ°PL¢+‘° ,qﬂ-)
If(q->age > p—>0Qg
pwg

; ! 6.1.1.6. Initializing Structures

From the rile: months.c:

truct month
o (Y FEO

¥ : o
char ¥name; (€t
int numDays;

hi : [T23]

stalic struct month LeapFeb = ["Feb", 29];

@

shtic struct month Months(12) =
'{"Jan". 31), ("Feb", 28), ("Mar", 31)
("Apr*, 30),{"May", 31), (%Jun", 30),

[”Jul", 3])’ (”Auu“ 31i' ("3 " 0
("0ct", 31), ("Nav". 30)] ["ngg": 31:'1

oo

\1-29 e

6.1.1.7. Limitations on Whole Structure
Operations

There are only three operations permissible
on structures:

(1) Taking the address of o structure,

(2) Referencing one of the fields of a
structure, and

(3) Assigning (copying) a structure.

In particular, this means that it is impos-
sible to compare structures for equality or
order with the relational operators of C

In older versions of C it is impossible to
copy structures, or return them as the
values of functions.

In particular, this means the inability to
assign structure values or pass a structure
as the value of a function parameter.

—

6.2.2.)., Esployees and thelr maragers.

Jaura = | "Laura Henry®, “President®, NULL) I

s;(:l-vuu.) Y

printfi”ss, 130, e-2raae, e-dtitle);
snounm(e=dmansger);

) o AT
i ! —a—)

The output!: - 1_
warren Szith, Production Hanager
Mike £llis, Cnief Ergineer
Laura Nenry, President

oia

(‘{‘lw')
RucH
((ﬁ o) CriasTt D)

vALLEN

L (PAgC . ekt

=
pasmer 0 Une gwadhare

The file wanagers.c: '.-"

finclude <stdio.n> aa bt

atruct employee ~ : \

SETS i 1
har Snase, *title; ¢
;__q_tu'. enployee *nansger; ‘et

sike = | "Mike Ellis", "chief Enginper™, dlavra 1,
rich = { *Rich Rocco®, "Marketing Director™, dlaura).

warren « | “Warren s:xth', wproduction Manager®, Amike);
min() (peinks i
)
ShowChain(Swarren)} , A

) o
SnowChain(e) N2 '
. struct eaployee ‘e ks wean® \

6.2.2.2.

Declaring & Initializing Linked Lists

From the file Unix.c:

struct charlist

SN

cd | x

c2
char data;

struct charlist ¥*next; e ®

¢t = ['X', NULL 1, -

¢2 = ('1', &C1),
c3={-u',&czg. é}
cii = ['u'. &C3

YUnix = &CH; 3 ek

m—

[

1-34

5.2.2.3. Traversing Linked Lists

Froa the file Unlx.c:
saln() /

J
rintf(~3c at hb, Unizx=>data, Unix);
printf("ic at $x9, Unlx-dnext->data, Urilz->next);
printf(®sc at hﬂ, Unix-2next-dnext-2dacta, Uniz-2next~
dnext);

Clput(Unix);)

Clputl ol)
struct charlist %cl;

while (el 1+ XULL)

putchar(cleddata);
'cl = clednext;
)

An example run:

U at 020 ’
¥ oat elc

1 at «18

UNIX

C-5-22

6.2,2,4, Creating List Struotures

Froo the file greeting.c:
?nn()

struct charlist *greeting, *rane;

greeting = Clmake('H', Claake('i', Clwake(' *, NULL)));
printf(®What's your naze? *);
rase = Clget();
Clput(greeting);
) Clput(rase); 1
struot charlist *ClLget()
int ¢
Af ((o = getchar()) == "n'il ¢ =» EOF)
retursn II(JLL:)
AN retyurn Claaxe(¢, ClLget H
(_ /) g 3 A : pecussiov!!
< aoveare expan il
An example run:

“hat's your name? Creg

Hi Greg
Lrictng L-—é\—/

= =ha ETD T EA =g

2
\

6,2.2.5. Creating New Storage

struct charlList *Clmake(d, n)

char d;
struct charlist ¥n;

struct charlist *tewp;

temp = (struct charList *) malloc(sizeof(
struct charlist)); e’

temp->data d;
temp->next n;

{
!
'l
return temp; This (5 specfic for UNIK
) (0.5pkm calt)

A4 C-6-21 7

5.2.2.6. Declaring & Creating Binary Trees

*‘\

Froa the file binTree.c:
struct binTree
2
int cata;
struct binTree ®"left, "right;
| H
strucl binTree *6Tmakel(¢, 1, r)
Wl d;
struct binTree %1, *r;

struct binTree "tem);

temp s (3truct binTree *) =malloe(sizeof(struct binTree));

tezp=>data = ¢; e et 4

temp->right = r;

return tesp;

6.2.2.7. Sorting With Binary Trees

From the file binTree.c:

sain()
{

struct binTree *t; !
FUIEs ' sV
printf(“Enter rumbers to be sorted, followed by “D0);
t = NULL;
while (scanf(®3d", &4) 1a EOF)
l
BTinsert(&t, §);
BTinorder(t);
lpu:ehar('O):
I ‘.
BTirorder(root)
struct binTree *root;
{
Af (root 1s NULL)

STinorder(root->left);
printf(¥3¢ ", root->data);
latlnornor(root-dright);

6.2.2.9. Inserting Into Binary Trees

From the file binTree.c:

BTinsert(pp, d)
struct binTree **pp;
int- d;

if (®pp == NULL) ,
Ipp = BTwoke(d, NULL, NULL);
else
if (d < ("pp)->data)
“BTinsert(&(*pp)=>left, d);
clse
BTinsert(&(%pp)->right, d);

NS

s

glruct complex {{loot real,imagy

elruct comples add (1, ci1)
stfudcomples c1, €2

¢ ireal = cf.real + c2.real;
c4.imag = ¢ fimag i ¢2.imay;
return ci;

J :

o

N

T.1.1.1.1. The Function fopen

FILE *fopen(filename, type)
char "filename, *type;

fopen btakes:

Filename an operating system specific
filename Lype a string determining
access permissions

and returns:

a stream descriptor (of type FILE *) for
doing I/0.

Access Permissions -

The string type can contain vorious charac=-

ter codes, including: EFTTTY TR __._\
! File «fp
r for read access I

’ .
w for write access fp =fopen(Tred’, 'r");
a for append access

7.1.1.2. MWriting to an External File

The file out.c:
finclude <stdio.h>
main()
FILE *fp;
fp = fopen("foo", "w");
fprintf(fp, "Hello world!");

fclose(fp); }

o

T Ty =/

7.1.1.3. Copying a File of Characters

The file copy.c:
finclude <stdio.h>

Tain() F
FILE *in, %out;
int ¢;

in = fopen("foo", “r%);
out = fopen("bar®, "w");

while ((e¢ = getc(in)) 1= EOF)
putc(c, out);

fclose(in);
fclose(out);

7.1.2.1, Single Character 1/0

int gete(stream) Returns a character
from the FILE ¥*stream; given
strecam, EOF on End O File.

An abbreviation for

int getechar()
7 gete(stdin).

/ int putc(c, stream) Puts c on the given

J stream.

! char ¢; . pute returns the charac-

' ter ¢

FILE *stream; for convenience in
expressions.

An abbreviation for

putchar(c)
pute(c, stdout),.

Inl, net emr il
Measse oF this

e Rcmchings can
rehurn fe velue EOF

shdin sldoul ... skndord 1npd (outpt) sbeam

1~ 35

wT.1.2.2, Single String 1/0

char #*gets(s)
_char *s;

gets reads a string from stdin into s,

The string from stdin is terminated with a
newline ('),

The string in s is terminated with an ASCII
NUL (nho').

char ¥*fgets(s, n, stream)
char *s;
int n;
FILE %*stream;

fgets reads a string from strecam into s
until either n-1 characters are recad, or a
newline 13 read.

The string will be NUL terminated.

For convenience in forming expressions,
fgets returns s,

7.1.3.1., Formatted File Input

AN

int scanf(lormat, pl, ..., pn)
char *forwmat;

Scans stdin, picking up values and putting
them into the pointers pl1 through pn ac-
cording to the format codes embedded in the
string format,

The number of items successfully read is
returned, unless End Of File occurs, in
which case EOF is returned,

int fscanf(stream, format, pl, ..., pn)
FILE ¥stream;
char *format; =

fscanl is the same as scanl, except that
the named stream is scanned, instead of
stdin,

NS

) i

7.1.3.2. Formatted File Oulput

printf(format, expl, .,,, expn)
char *format;

fprintf(stream, format, expl, ..,, expn)
FILE 2Xstream;
char *format;

In the case of printf, characters are wrlit-
ten to the strecam stdout. In the case of
Cprintf, they are written to the named
stream,

In either case, the values of the given
expressions arc written according to the
corresponding format codes in format, and
surrounded by any literal characters in
format,

The format codes are multitudinous, and
compatible with those used by scanf and
{scanf,

C-7=14

7.2.2.1. Copying Strings

ey
Gatler———
char *strepy(dst, srec) Jd
char *dst, ®src; 1’4Z99/

strepy copies the characters of sre to dst,
stopping after copying the terminating NUL
byte.

For convenience, strcpy returns dst,

char ¥strnecpy(dst, sre, n)
char *dst, ¥*src;
int n;

strnepy copies exactly n characters from
src to dst,

If src has fewer than n characters, it will
be NUL padded.

If src has n or more characters (not count-

ing its terminating NUL byte), then it will

be truncated, AND dst WILL NOT BE NUL

TERMINATED! ,/

7.2.2,2," Concatenating Strings

p E
char *strcat(dst, src) (G () I—

char *dst, ¥src; M

Copies src onto the end of dst. dst nceds
to have room to store the extra characters,
dst is returned.

char *strncat(dst, src, n)
char ¥dst, ¥src;
int n;

Like strcat, strncat copies src onto dst,
but will copy at most n characters, pre-
venting overflowing dst.

Even if not all of dst is copled, the
resulting string will be NUL terminated,

_4-37

7.2.2.3. Inspecting Strings

int strlen(s) Returns the length of the

char ¥s; HUL terminated
string u.

char *indexts, c¢) Returns a pointer to the

first char *s, ¢; occur-
rence of ¢ in 3, or 0.

char *index(s, ¢) Returns a pointer to the

last char %*s, c; occurrence
of ¢ in s, or 0.

G-

7.2.2.4. String Comparison

int stremp(sl, 352)
char %31, s2;

Compares s1 and s2 lexicographically, ac=-
cording to the collating sequence defined
by the character codes.

stremp will return a pesitive number ir s1

> 82, zero if 81 = 32 and a negative number
if s1 < =2,

int strncmp(sl, 52, n)
char %*s1, %s2;
int n;

strnemp compares s1 and s2 as L1f they had
been truncated to at most n characters,

Neither strcmp nor strncmp will compare
strings with embedded

digit strings in the human fashion, for
example, "12" is considered to be less than
"3n.

.

\

9.1.3.1. Controlling Compilation with Hacros

The C Preprocessor has the facility to se-
lect sections of code based upon the value
of macros,

f#ifdel Derk
vfork();
Jelse
fork();
fendif

- The code is selected by either #ifdefl
or #ifndef (if undefined), and the
felse clausc is aptional.

- If necessary, macros can be selectively
undefined with fundef.

3 (i

10.1.1,1, The Concept of a Process
‘fork!

The UNIX operating system has only one way
to generate multiple parallel processes.

When a UNIX process issuecs the fork system
call, it is split into two identical pro=-
cesses, the original and a copy.

All UNIX processes have unique process 16
numbers. The original process retains it's
process ID, and the copy rcceives a now
one.,

When first split, both processes arc ex-
ccuting the same code in the same place,
and have identical copies of @ll variables.

Only their different process id numbers and
the values returned by the fork systems
call differentiate parent from child,

The parent receives Lhe child's procesa id
as the value of the fork systems call.
The child reccives the value zero.

-

SN

Synchronization with Child
Processes

10.1.1.3.

The_fllo “demos/chapl10/wait.c:
main()
int pidi, pid2, status;
- Af ((pid1 = fork()) == 0)
{prlntf("l am the child process.)");

chid R

7 pid2 = wait(&status); =~

printf("I am the parent.");

3 printf(YMy child with pid %d just died
S with status %d.%, status%256);

y printf("It returned exit code %d.",

i\ status/256);

Sy

C~10-6

10.1.2.2. An Example Program
Using *fork' & ‘execl'

The file ~demos/chapl0/exccl.c:

Tnin()
int status;

puts("The people currently using the sys-
tem are:");
if (fork() == 0)

execl("/bin/who", "who', 0);

wolt(&status);
puts{“Courtesy of the program “‘who''.");

0
]

c-10-9

53

s g em—

10,2.1.), Creating Sinary Files

struct persan
{

char raseli0);
int age;
float heighs, welight;
1 H Al desaipioc

=ainl) -
{

sLatic struct peraon
Pl s
[00° %, 0%, r "6, ", "\0' , *\D',"\D* ,*\0),
21, 6.2, 185.3 },
Pt = {
|'H','b','l".'l'.‘h'.'l'.'\n'.'\D','\O'.'\D'l,
27, 5.2, 105.3);
fé = openi"somedata®™, 1); /% write access */
write(fd, 4p), sizeof(struct person));

write(fd, &p2, sizeof(struct person));
close(fd);

) o
fdm open (el 1)

read (1, buffer, brkcount)
wik (R, buflr, bykesunt)
close (#4)

N M

- — l‘-\ﬂ.\u'

10.2.1.2. Random Access Files

\

?truct person sk (i, offtet, whereltom)
'-—'--' N s =
char name(10]; t ;--M (3

int age; 3 ' 1+ cumal Peaatro

flodt height, weight; i 3. Gadoffie
)i L. how mey byl of

dis placement

main() (Longinkee)

int fd;

atruct person pl, p2;

fd = open("somedata", 2);

/* read/write access %/
read(fd, &pl1, sizeof(struct person));
read(fd, &p2,.-sizeof(struct person));
(Yseek(fd, OL, 0);.»
SSe-—ef Wi aYaYIVE t0 beginning of file 3/
write(fd, &p2, sizeof(struct person));

write(fd, &p1, sizeof(struct person));)

C-10~12

—

:
&

. —le

10.2.2.1. The Concept of a Pipe

A UNIX pipe is a connection between an out-
put stream and an Input stream, such that
data written to the output stream may be
read from the associated input stream.
Pipes may connect separate processes in
UNIX. 1In fact, programs have no way of
knowing in UNIX whether a file descriptor
i3 associated with a pipe, a file, or a
device (such as a tty).

Like bulffered files, pipes have a fixed
sized buffer, When the process writing to
the pipe flles the buffer, it is suspended,

When a process reads from a pipe, it is
suspended until there is data to read.

10,2,2.2, Creating Pipes

The file “demos/chap10/pipe.c;

Tain() ” olleh)

PildesC1 (el
s SO E : o
int fildes[2]; fildes
char *s1, s52(080);

pipe(fildes);

s1 = “hello";

urihe(fildeatl], 81, string(s1)+1);
read(frildes(0), s2, string(s1)+1);
puts(s2);

_4-44

10.2.2.3. Connecting Procecss Families
with Pipes

The file “demos/chap10/whonum,c:

main()

(0... standaed input
int fildes[2); 1... stondard oulput

pipe(fildes);

ir ((fork() == 0)

dup2(rildes(0), 0);
/% Install fildes(0) as stdin ¥/
execl("/usr/bin/nun", “num", 0);

dup2(rildes(1], 1);
/% Install fildes(1) as stdout ¥/
exeel("/usr/bin/who", “yho', 0);

C-10-16

“

10.3.1.1, Bit Structures

Structure declarations can specify the ex-
act number of bits to be used by cach
field, as well as where extra padding bits
should be inserted:

e

struotéporh}-"-- =St
:3; 2
ugslsned ready:1; v
»Gnsignod data:8;
1;
(/ o
| 44 [Gata__Jevyxe ¥ix]
i ot Lot
Vi Al
L
T R
10,3.1,2. Bit Operators

oINS

In addition to the logical operators, C
provides bitwise operators which operate on
cach bit of the words they arc applied to:

and &

or !

xor < (exclusive or)
invert ~ (one's complement)

There are also operators for shifting words
left or right by a given number of bits:

shift x left y bits:
shift x right y bits:

x << ¥y
X2y

{nt ab,c;
cw @ kb;
e walby
e mebj

b

_4~-42

10.3.2.2. Pecking & Poking with Casts

Normally, integers and pointers are incom=-
patible, But somectimes its necessary to
specify pointer values as integer
addregsses: e
. * /..-r—‘—"’"’ P
o(Gperalor - waed by the compler - €60 pAA

int ¥*p;
p = (int *) 0xfr56;

printf("Hemory location %x contains %d "
0xff56, *p);

" = 0 e
I h
 printf("How it contains zero.'; !

PEEKCFF5®)
\"\ sponds o poxe € crsb0) This corrspends g
S torre

10.3.2.3, Hardware Data Structure
Manipulation

ak

Hardware data structures, especially device
registers in memory mapped computer address
spaces, can be described as bit structures
and then manipulated quite flexibly:

struct port ¥p;

p = (struct port ¥) 0177644;
/% address of serial port. %/

while (1 p->ready)
/* device not recady %/ ;
/% busy wait ¥/

p->data = 'A';
/% send an 'A' out the port ¥/

10.3.2.1. Free Unions

C provides an explicit way to overlap
storage of alternative data structures,
called a union.

Unions provide for the worst case alignment
and storage requirements of the alternative
data structures specified, but do no
conversion,

Normally, unions are used only where part
of a data structure will need to have
values of different datatypes during dif-
ferent phases of a program.

However, sometimes it is necessary to ac-
cess a data structure with a datatype

description different from that used to
create it,

This usage should be used quite sparingly,
as it is highly dependent on non-portable
assumptions about low level data
representations, .

S

[0 SR

{0.3.2.4.0 Equivalents

&

X=X t+6 is the sume Qs Xohmb
amanry * ju the same as a n=Y
X-f\k; is lhe samec as %&k=3

C~{0=~25a

Sk s

@ £ Jvee oarrdad oo l
n-mm_ﬂ‘ . B— '

§ . g e ‘..,.. na mnh
= i W Hia P’ ok
, a0 e P g it ' [
- . i dpe TR * - .
= n® - B] g '

Al N

- o)

. -
| —
——
)
_—
-
)
—

o

Sed .- el Eeai=ai loome dday 5, U
P I sV vk -
- ria L“l-l ey Tl Fé WG
‘

8 + - "-
,IHI - Enkﬁ i Lass ek -ll'A-lli n‘-l

NAR. IN UNIV, KNJIZNICA
Ljubljana

362003

