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‘We study two "disjoint disks properties" in dimer;si;:n 3 due to
H.W.Lambert and R.B.Shézf?é!cifié.J.Math. 24 (1968) 511-518), the Dehn
lemma property (DLP) and the map separation property (MSP). Theorem
l. Let G be a cell-like closed O-dimensional upper semicontinuous
decomposition of a 3-manifold M (pcssibly with boundary) with NGC
int M. Then the following statements are equivalent: (i) M/G has the
DLP; (ii) M/G has the MSP; (iii) M/G is a 3-manifold. Theorem 2. Let
C be the class of all compact generalized 3-manifolds X with dim S(X)
< 0 and let C < C be the subclass of all X&C with 8(X) < {pt} and
X=S3. Then fhe following statements are -equiva.lent_: (i) fI'hg Poinca-
ré conjecture in dimension three is true; (ii) If X€ C has the DLP
or the MSP then S(X) = 9; (iii') If xego has the DLP or the MSP then
s(x) = @. |

We also study neighborhoods of peripherally l-acyélic compacta
in nonorientable 3-manifolds. We prove a finifeness and a neighbor-
hood theorem for 'such ccmpacta and as an application extend a result
cf J.L.Bryant and R.C.Lacher concerning resolutions of a;most ZZ -
acyclic images of orientable 3-manifolds (Math.Proc.Camb.Phil.Soc.
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88 (1980) 311-320), to nonorientable 3-manifolds. Theorem 3. Let f
be a closed, monqtone mapping from a 3~manifold M onto a locally
simply connected 222 -homology 3-manifold X. Sup'pése that there is
a O-dimensional set ZC X such that ﬁl('f-l(x);ze) = 0 for all x €
"X - 2. Then the set C = {x€X l £71(x) is not cell-like} is local-
ly finite in X. Moreover X has a resolution.

Included is an investigation of the basic properties of gener-
alized 3-manifolds with boundary, a topics on which little study
has been done so far, as well as some results on régﬁlar neiéhbor-
hoods of compacta in 3-manifolds with applicatioﬁs to homotopic PL

embeddings of compact polyhedra into 3-manifolds.
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INTRCDUCTION

Generalized manifolds have held an important position in topol-
ogy ever since they were introduced in the l930'sﬂ‘For low dimen-
sions (;i2) their local algebraic properties are strong enouéh to
imply that they are genuine manifolds. In higher dimensions they
are interesting for at least two reasons: (i) they‘arise in many
different ciasses (as quotient spaces of cell-like upper semicon-
tinuous decompositions of manifolds, as manifold factofs, as quo-
tients of Lie group actions on ménifolds, and as suspensions of
homology spheres), and (ii) they have the same global algebraic
properties possessed by manifolds (local orientability, duality).
Recent success in higher dimensions -- a remarkably simple charac-
terization of n-manifolds (n>5) -- has stimulated en upsurge in
interest in the geometric topology of generalized manifolds, so we
first briefly review these results which, in turn, motivated our
research in-dimension three.

The definition of a topological n-manifold (withoutvboundary)
is simple -- this ié a separable metrizable space that locally
looks like W . However, when working with topologicai spaces it is
quite often difficult'to determine whether a certain construction
is a topological manifold. Thus it would be desirable to have a
short list of topological properties that are reasonably easy to
check and that characterize topological ménifolds. Such a list

1



2
should not include e.g., homeomorphisms (sinc§ they are usually
difficult to cdnstruct), or induction on dimension (since nice sub-
manifolds are in general hard.to find), or homogeneity (since the
construction is usually already euclidean at some points so that
homogeneity is precisely the problem), etc. His sucéessful solu-
tion of J.W.Milnor's classical problem about the double suspension
of homology 3-spher¢s [17 ;Ch.11] , led J.W.Cannbn-to conjecture
that topological n-manifolds are precisely generalized n-manifolds
satisfying a ﬁminimal amount of general position" [1&Conjecture_
(1.3)].

In higher dimensions (n> 5) this conjecture was proved soon
thereafter, in two steps: (i) in 1977 R.D.Edwards showed that every
resolveble generalized n-manifold (n>5) with Cannon's disjoint
disks property (DDP) [17 ;p.83] is a genuine n-manifold ([23] and
[25 ;pp.118-122]), and (ii) in 1978 F.Quinn announced a proof that
every generalized n-manifold (n>5) is resolvable ([53] and [55
Theorem(1.1) ]). Exploring the latest remarkable results of S.Donald-
son [21] and M.H.Freedman [27] in dimension four, Quinn proved
the resolution conjecture also for dimension foﬁr,[56 ;Theoren
(2.6.1) ] . Therefore in order to get a characterization of L-mani-
folds, an analogue of Edwards? shrinking theorem for this dimension
should be déveloped.

This dissertation is a study of generalized 3-manifolds with
O-dimensional singular set and their possible role in characteri-

zation of 3-manifolds. Before summarizing our results we briefly

" review the work of others in this area.



3
M.G.Brin and D.R.McMillan,Jr. proved that, modulo the Poincar®

conjecture, every compact generalized 3-manifold with O-dimensional
singular set has a resolution t12 ;Theorem 5 ], hence by J.L.Bryant
and R.C.Lacher a conservative one [14;Theorem 1] , provided it sat-
isfies a certain "torsion-free" hypothesis. This extra condition was
inherited from Brin's extension of the Léop theorem and Dehn's lemma

[10;Theorems 1-3] they used in their proof. T.L.Thickstun removed
the "torsion-free" hypothesis from [10] and thus from [12] as well
[61] - He latef proved a positive result [62;Main Theorem] (obta-
ined independently by R.J.Daverman) to the effect that such general-
ized 3-manifolds are images of "tame" generalized 3-manifolds (whose
singular set has genus zero at each point), and consequently disén—
tangled the Poincaré conjecture from the resolution theorem [61] .
Another pcsiti§e result is due to Bryant and Lacher who proved that
every locally contractible 22- acyclic image of a 3-manifold has a
resolution (and is thus a generalized 3-manifold) [14;Theorem 2] .
.A refinement of their proof enabled them to omit the acyclicity
hypothesis over a zero-dimensional set provided that the 3-manifoid
domain was orientable [14;Theorem 3] . In Chapter Two we prove that

orientability is not necessary:

Theorem 2.7. Let f be a closed, monotone mapping from a 3-manifold
M without boundary onto a locally simply connected Zz - homology
3-manifold X. Suppose that there is a O-dimensional set ZCX such

that ﬁl(f-l(x);fz = 0 for all x€X - Z. Then the set C = { x €X l

5)
f—l(x) is not cell-like } is locally finite in X. Moreover, X has a

resolution.



4
M.Starbird introduced two notions of the disjoint disks property
{DDP I and DDP II) fér decompositions G of']R3 (rather than for the
quotient spacesjBB/G) and he proved that for G a ceil-like; upper
Aseﬁicontinuous 0-dimensional decomposition, satisfying either DDP I
or IIJDPF 11, JR3/G% ]R3 [60;Theofem (3.1)] . His result is useful for
genersalized 3-manifolds wahich are alfeady known to be a gquotient
X.=ZB3/G. A different epproach was faken by Bryant and Lacher who
showed that if in a compact generalized 3-manifold X the singular
set S(X) lies in a compact, tamely embedded O-dimensional set ZCX
(i.e;, 7 is 1-LCC in X) then X is a topological 3-manifold, provided
X contains at most finitely many pairwise disjoint fake 3-cells
[14 ;Theorem L4] . (This generalizes previous results of C.H.Edwards,
Jr. [22;Theorem 1] and C.T.C.Wall [66;,Corollaries 1 and 2] .) How-
ever, the condition "S(X)C Z where Z is a closed 1-LCC subset of X"
is not suitable since many potential singular sets may be wildly
embedded in X. Professor Lacher suggested in July 1980 that instead,
one should look for a disjoint disks property for generalized 3-man-
ifolds X with O-dimensional singular set such that it would imply
first, the existence of a resolution f:M —X aﬁd sécond, the
shrinkability of the associated cell-like decomposition G = { f-l(x)[
x€X } of M, In ChapteriTh;ee we prove that a concept due to H.W.
Lambert and R.B.Sher, called the map separation property (MSP)
[44 ;p.514] characterizes the 3-manifold property in certain cases
(modulo the Poincar?d conjecture). We also stﬁdy’a similar concept

from [44] called the Dehn's lemma property (DLP) and show it plays

the same role as the MSP:



>
Theorem 3.8. Let G be a cell-like, closed O-dimensional upper semi-
continuouS'decomposition of a 3—mohifold M (possibly with boundary)
such that ﬁ&c:inthd. Then the following statements are equivalent:
(i) M/G has the DLP;
(ii) M/G has the MSP;

(iii) M/G is a 3-manifold.

Theorem 3.10. Let C be the class of all compact generalized 3-meni-

folds X with dim S(X) < 0 and let C,C C be the subclass of all X€C
with S(X) c {pt} and such that X= S3. Then the following statements
are equivalent: |

(i) Poincar& conjecture in dimension three is true;

(ii) If X€C has the DLP or the MSP then S(X) = @;

(iii) I Xego has the DLP or the MSP then S(X) = ¢.

We conclude this introduction by a description of the organizaé
tion of the dissertation. In Chapter One we collect most important
facts about UV and LC properties, about upper semicontinuous decom-
posiﬁions of manifolds, and about generalized manifolds., In Chapter
Two we investigate the nature of the neighborhoods of certain com-
pacta in nonorientable 3-manifolds and prove a finiteness and a
neighborhood theorem. We then use these results to prove Theorem
(2.7). Also inciudéd is a comparative study of vérious kindé of acy-
clicity over 222 for embeddings of compacta in 3-manifolds. In Chap-
ter Three we introduce the DLP and the MSP, verify that every 3fman—
ifold has both properties and then prove Theorems (3.8) and (3.10).

We conclude by an application of the DLP/MSP to the study of isola-
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. ted singularities. InChapter Four we preseht a study of generalized
3~manifolds with boﬁndary, an area where almost no research has been
done yet. We prove several results analogous to those known for gen-
eralized 3-manifolds. In Chapter Five we collect some open problems
and state some conjectures related to this topies. In the Appendix
we study regular neighborhoods of compact polyhedra and prove some
results concerning homotopic PL embeddings of compact polyhedra into
3-manifolds. We have included these results since they are related

to (and were motivated by) those from Chapter Two.



I. PRELIMINARIES |

In this chaptor we collect some important definitions and re-
sults from three subjects that underline our dissertation topics:
UV, LC, and related properties, upper semicontinuous decompositions,
and generalized manifolds. Standard refereoces for other topics are:
E.H.Spanier [59] for algebraic topology, C.P.Rourke and B.J.Sanderson
[57] for PL topology, J.Hempel [32]for 3-manifolds, K.Borsuk [7]

for ANR's, and R,C.Lacher [40] for cell-like mappings.

l. UV, LC, and Related Properties

A continuum is a compact and connected set. A compactum K in an
ANR X has property k-UV (resp. UV;uv®) (k€2 ) if for each
neighborhood Uc X of K there is a neighborhood Vc U of K such that
any singular k-sphere in V is null-homotopic in U (resp. any singu-
lar j-sphere in V (0<J<k) is null-homotopic in U;.V is null-homo-
topic in U). An n-manifold is a topological n-manifold without
boundary. A compact subset K of an n-menifold M is cellular in M
if K is the intersed¢tion of a propefly nested decreasing sequence
of n-cells in M., A space X is gg;l;ligg_if there exist a manifold N
and an embedding f:X>> N such that f(X) is cellular in N. For fi-
nite-dimensional compacta £his,is known to be>equivalent to "X has
property UV® " [40;p.509] . A mapping (or a map) is a continuous
map bﬁt not necessarily also PL, A map defined on a space (resp.

an ANR; a manifold) X is monotone (resp. cell-like; cellular) if

T




8
~its poi'nt-invérses are continua (resp. cell-like sets; cellular sets)
in X. A closed map is proper if its point-inverses are compact.

A compactun K in a manifold M is point-like if M - K& M -{pt},
A subset Z of a space X is m- eg_ligible if for each open set U in
X the inclusion-indﬁced homomorphism Itl(U - z)_i—»nl(u) isl1-1. A
space X is k-LC (resp. ;g_k; LC® ) at x€X (kéZZ+) if for every
neighborhood U in X of x there exists a neighborhood V?U of x such
that any singular k-sphere in V is null-homotopic in U (resp. any
singular jJ-sphere in V (0< j< k) is null-homotopic in U; V is null-
homotopic in U). A subset Zc X is 1-LCC (for "locally simply cocon-
nected") if for every x€X and every neighborhood UCX of x there
is a neighborhood VCU of x such that the inclusion-induced homo-
morphism nl(V -2) —-*nl(U - Z) is 0. A compactum K in an ANR X

has k-uv(R) (resp. uvk(R); uv® (R)) property (k€Z_+ , R a PID) if

for each neighbtorhood UcX of K there is a neighborhbod VCU of K
such that any singular k-cycle in V is null-homologous in U (resp.
any singular j-cycle in V (02 J<k) is null-homologous in Uj any
singular j-cycle in V (J2>0) is null-homologous in U), with coef-
ficients in R understood. The uv properties are related to gech co-
homology: if a compactum X has properties J-uv(R) (J = k-1,k; R a
.PID) then ﬁk(X;R) = 0 and conversely, b:ri.f ﬁJ(X;R) =0 (J = k,kt1;
R a PID) then X has property k-uv(R) [403;p.502] . A map defined on
Va.n ANR is E (resp. uvk(R)) (k€Z+ , R a PID) if its point-inver-
ses have UVE (resb. uvk(R)) property. The foliowing two results
will often be needed in our proofs: the first one is a consequence

of the Vietoris-Smale-Begle theorems [40 ;pp.505-508] , while the
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second one is due to R.C.Lacher and D.R.McMillah, Jr. [43;Lemma
(4.1)7 :

Proposition 1.1. Suppose that f:X —»Y is aproper UVk-l (resp.

. ,
uvsz)) map (k€ Z,,Ra PID) and that Y is Lc* (resp. lck(R)).
Then the inclusion-induced homomorphism nq(X,*) '—>r[q(Y,*) (resp.
‘ Hq(X;R) —+Hq(Y;R)) is bijective for 0< q< k-1 and surjective for

q=k 5

Proposition 1.2. Let M be a manifold, V a connected open set in M,
and suppose that the inclusion-induced homomorphism 5H1(V;Zg) -

HI(M;ZE) is 0. Then V is orientable. %%

2. Upper Semicontinuous Decompositions

Let G = {gCX } be a decomposition of a space X into compact
(and connected) sets and let T :X——>X/G be the corresponding quo-

tient map, HG the collection of all nondegenerate (i.e., g # #)

elements of G, and NG their union. A set UCX is G-saturated if U =

nla (U). A decomposition G is upper semicontinuous if for each

g €G and for each open neighborhood UCX of g there exists a G-sat-
urated open neighborhood VCU of g. Equivalently,T is a closed map.

A decomposition G of a separable metrizable space X is k-dimensional

(resp. closed k-dimensional) (K+l1€Z,) if dim m(N,) = k (resp.

dimm (cl(NG)) = k). A decomposition G of a metric space X is weakly
shrinkable if for each €> 0 and each neighborhood UCX of NG there
is a homeomorphism h:X—*X such that h | (X - U) = id and for each
8€G, diam h(g) <e . A decomposition G of a metric space X is shrin-

kable if_ for every €>0 and every G-saturated open cover & of NG
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there is a homeomorphism h:X — X such that
(i) h| (X - 2 *) = id, where R * =U{ U€E Q} ;
(ii) for each gé€G, diamh.(g) < € ;

(iii) for eé.ch g€ G there is a U€ Q such that h(g)vgcU.
Theorem 1.3. Let G be a cell-like upper semicontinuous decomposition
of an n-manifold M.-Fox; n = 3 assume, in addi{:ion, that each g'.eG
has a neighborhood in M embeddable in ]R3 . Then G is .shrinka‘ble if
and only if M/Ga M. |
Proof. Follows by Bing's Shrinking criterion[45] and Armentrout-
Quinn-Siebenmann's Approximation theorem([1l, [56;Coroliary (2.6.2)],

[581). 22

An upper semicontinuous decomposition G of an n-manifold M has

a defining sequence if there is a sequence {Mi] i> 1} of closed

subsets MiC M with the following properties:
(i) for each i, each component of Mj, is a compact n-mani-
fold with boundary;

(ii) for each'i, Mi+ c 1nj;Mi;

1

(iii) for each geG, geH, if and only if g is a nondegener-

n .

ate component of i>1 Mi
It is well-known (and easy to prove) that an upper semicontinuous
decomposition of a PL manifold has a defining sequence if and only
if it is closed O-dimensional. In our studies of decompositions we

shall mainly consider those decompositions which are definable by

(homology) cubes with handles (cf. a paper of McMillan,Jr. [47]),
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3. Generalized n-Manifolds

A space X is an euclidean neighborhood retract (ENR) if it is

homeomorphic to a retract of an open subset of some R". Equiva-
lently, X is a separable, locally compact, finite-dimensional met-
rizable ANR. Let R be a PID. A Hausdorff space X is an R-homology

n-manifold (n €N ) if for each x€X, H*(X,X-{x};R) ¥ E0-®( (x};R). A
manifold , }

Hausdorff space X is an R-homology n-—ma.nifold with boundary (ne )
if for each x € X, either H*(X,X- {x} ;R) e ﬁn:*({x} sR) or = 0. The
subset X' = {xex| H*(X,X-&};R) £ 0 } is called the boundary of X

and £ = X - X the interior of X.

Lemma 1.4. Let X be an ANR and R a PID. -
(i) If X is an R-homology n-manifold then for each x€X and
each q€ Z
. Rj;q=n
Hq(x,_x-{x} R) = {
03;q#n
(ii) If X is an R-homology n-manifold with boundary then for
each x€X and each q€Z ‘
R ; qg=n and xé)‘f

0 ; otherwise

Hq(X,X— {x} ;R) ; {

Proof. On the class of ANR's the Cecn cohomology agrees with the
singular cohomclogy. The conclusion now follows by the Universal

Coefficients theorem. X%
Lemma 1.5. Let X be an R-homology n-manifold and an ANR, where R is

a PID. Choose any x€X and let i*:Hq(X-{x} ;R) — Hq(X;R) be the in-

clusion-induced homomorphism (q€ Z ). Then the following holds:
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n then i, is 1-1; -

(i) if q

(ii) if q = n-1 then i, is onto;
(iii) if q # n-1,n then i, is bijective,
Proof. Consider the homology seqﬁence of the pair (X,X-{x}) over R

and apply Lemma (1.4)., ¥

A generalized n-manifold is an ENR that is also a Z -homology n-

manifold. A generalized n-manifold with _‘pounda.ry is an ENR X such

that X is a Z -homology n-manifold with boundary and X is a general-
ized (n-1)-manifold. Let X be a generali‘zed n-manifold (possibly
with boundary). The set S(X) ={x€X | x has no neighborhood in X

homeomorphic to an open subset of Bn} is the singular set of X,

its complement M(X) = X - S(X) is the manifold set of X. The points

of S(X) (resp. M(X)) are called the singularities (resp. manifold
points). If X =¢ or 5(Xx)c® then M(X) is a topological n-manifold.
Generalized manifolds arise as (i) the finite-dimensional quo-
tient spaces of cell-like upper semicontinuous decompositions of
ma.nifoldé; (ii) the manifold factors; (iii) the qoutients of the
Lie group actions on manifolds; and (iv) thé suspensions of Z -ho-
mology spheres. A resolution of a generalized n-manifold X is a

pair (M,f) where M is an n-manifold and f:M -+» X is a proper cell-

like surjection. A resolution (M,f) of X is conservative if for

each x€ M(X), f-l(x) = * .,

Theorem 1.6. Let X be a generalized n-manifold. If n = 3 assume
‘the Poincaré conjecture and also that dim S(X) < 0. Then X has a

conservative resolution.
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Proof. If n< 2 then S(X) = # ([68;Theorems (IX.1.2) and (IX.2.3)]).
If n = 3 then X has a resolution by T.L.Thickstun [61] hence by J.
L.Bryanﬁ and R,C.Lacher [14;Theorem 1], a conservative resolutign.
For n = 4 the assertion was recently proved by F.Quinn ([56;Theorem
(2.6.1) and Corollary (2.6.2)]). If n> 5 then X résdlves by Quinn's
Resolution theorem [55;Theorem (1.1)] and the assertion then fol-

lows by L.C.Siebenmann's Approximation theorem [58] . %%

A metric space X has the disjoint disks property (DDP) [17] if

fqr every € > 0 and every two maps fl,fz;Bz — X there are disjoint
maps gl,g2:52 — X such that d(fl,gl)< € >d(f2,g2).

Theorem 1.7. Topological n-manifolds (nz_S) are precisely the gener-
alized n-manifolds satisfying the DDP.

Proof. Follows ﬁy R.D.Edvards’ Shrinking theorem [23] and Theorems

(1.3) and (1.6). ¥

L. Generalized 3-Manifolds

Dimension three is in many respects peculiar mostly due to the
unresolved status of the Poincaré conjecture. We list some of the
most important facts. First, X cannot have "cone" singularities

(which are common in higher dimensions) [42;p.84] and [14;p.311] :

Proposition'l.8. Let X be a generalized 3-manifold (possibly with

boundary). Then no singularity of X can have an open cone neighbor-

hood in X. }¥

Corollary 1.9. Let X be a PL generalized 3-manifold (possibly with

boundary). Then X is a 3-manifold. ¥*
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Another pfoperty of generalized 3-manifolds peculiar for this
dimension is a kind of algebraic finiteness, as it was observed by

Bryant and Lacher [14;pp.312-313 1

Proposition 1.10. Let X be a compact generalized 3-manifold (resp.
with a resolution). Then there exists an integer k such that among
any k+l pairwise disjoint 22 -homology 3-cells at least one is con-

tractible (resp. a 3-cell). ¥

So far we have made no assumption on the dimension of S(X). The
following result of Brin and McMillan [12 ;Theorem 1 ] delineates
the 0-<_iimensiona.1 singular set case as natural and closely related

to the embedding problem for open 3-manifolds:

Proposition 1.11. Let X be a compact generalized 3-manifold with

dim 5(X) < 0. Then the following statements are equivalent:
(i) X has a resolution;
(ii) M(X) embeds in a compact 3-manifold;
(iii) S(X) has a noighborhood NCX such that NAM(X) embeds
in a compact orientable 3-manifold;
(iv) S(X) has a nreighborhood NCX suoh that NNM(X) embeds
in B3, 3
Let X be a generalized 3-manifold with O-dimensional singular
set. Then by [12 ;Lerma 1] every p€X has arbitrarily small compact
generalized 3-manifold-with-boundary neighborhoods NCX such that N
is a compact orientable surface in M(X). We say that X has genus

'<n at p if p has arbitrarily small such neighborhoods N with N a

surface of genus < n. We say that X has genus n at p if X has genus
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<n at p and doesn't have genus <n-l at p. If X doesn't have ge-
nus <n at p for any n we say that xfxﬁ@p_s_ © at p. We shall
denote the genus of X at p by g(X,p) [42] . We say that a generalized

3-manifold X satisfies Kneser Finiteness (KF) if for each compact

subset XOCZX there is an integer k such that Xo contains at most k
pairwise disjoint fake cubes., A sequence of pairwise disjoint com-

pacta {Cg' in a metric space X is a null-sequence if for every €>0

all but finitely many améng Ci's have diameter < g,

It is not surprising that the Poincaré conjecture enters into
the picture as soonbas we try to resolve generalized 3-manifolds
(Just recall Proposition (1.11)). We consider an example which will
be used later on in the dissertation. Suppose fake cubes exist and
consider in S3 a null-sequence of pairwise disjoint 3-cells{IB£
converging to a point p€ES3. Replace each Bi by a fake cube Fi and
choose a metric in W = (83 - Ui:lint Bi YU ( Ui:lFi) so that Fi's

also converge to p.

Proposition 1.12. W3 is a compact generalized 3-manifold with the

'following properties:

(i) s(w) ={pl; (We shall call such singularities "soft

singularities".)

(ii) W doesn't have a resolution; |
‘os = a3
(iii) w = 87,
(iv) g(w,p) = 0.

Proof. (i) Follows by Kneser's Finiteness theorem [32;Lemma (3.1L)].

(ii) Follows by Proposition (1.10).
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(iii) Let f:W -»83 be the map which shrinks out all Fi's. Then
f is cell-like hence by [40 j;Theorem (4.2)] & homotopy equivalence.

(iv) Clear. ¥

Proposition 1.13. Let X be & generalized 3-manifold with S(X)c Z,

vhere ZCX is a closed, O-dimensional set, Then the following vstate-'
ments are equivalent:
(i) 2 is 1-LCC in X;

(ii) z is T _-negligible;

1
(iii) For every z€7Z, g(X,z) = O.

Furthermore, anyone of the statements (il)-(iii) implies that all

singularities of X are'soft" i.e., X is obtained from a 3-ma.nifold

by replacing null-sequences of pairwise disjoint 3-cells by null-

sequences of pairwise disjoint fake cubes. The latter property --

that all singularities of X are'soft"-- is strictly weaker than

(i)-(iii) if Poincar€ conjecture is false,

Proof. (i) => (iii): See the proof of Theorem L in[14 ;pp.317-318] .
(iii) =>(ii) : Let UCX be an open set and J a loop in U - Z.

Since dimZ = 0 and g(X,z) = 0 for all z€Z there is a covering Vl’

sesy V,c of ZNnU with pairwise disjoint compact generalized 3-man-

- ifolds with boundary .&i = 82

C M(X) for all i. (We may assume that X
is compact.) Suppose now that Jv bounds a (singular) disk in U. With
techniques described in details in the proofs of Theorems (3.i) and
(3.9) we can make this disk locally PL near the surface S =Ui:l\./i ,
put it ir general position with respect to S, and cut it off at S,

thus pushing it into U - Z, or just get it off V.N Z for each i.
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(ii) =(i): Let x€X be an arbitrary point and choose a neighbor-
hood UCX of x., Since X is an ANR it is 1-LC. Thus there is a neigh-
borhood VCU of xisuch that the inclusion-induced homomorphism -

Hl(V) — N.(U) is 0. Since Z is Hl-negligible, the homomorphisms

l(
nl(v - 7) — nl(v) and nl(u -2) — nl(u) are 1-1, Consider the
commutative diagram:

i o
1 (V - 2) - m (U - 2)

I trivial [
m(v) —=25— 1 ()
Clearly, i, = 0. |

Assume now, say the statement (i). By [14 ;Theorem 4 ] no open
subset VCX has the XF unless VCM(X). This implies X has only"soft"
singularities.

The last assertion is demonstrated as follows: take any wiid
Cantor set in'S3, direct to it a nice null-sequence of pairwise dis-
Joint 3-balls in S3 and then replace each of them by a fake 3-cell.
Denote the new space by Y. Clearly, Y is a generalized 3—ménifold,
S(Y) is precisely the chosen wild Cantor set, and by [14 ;Theorem k4 ]

S(Y) cannct be 1-LCC in Y, so Y doesn't satisfy the statement (i)

(hence neither (ii) and (iii)). ¥*¥

Corollary 1.1L. Let X be a generalized 3-manifold satisfying KF and

suppose that S(X)C Z, where Z is a closed, O-dimensional set in X.

O.

Then X is a 3-menifold if and only if for every x€X, g(X,x)

Proof. Follows by [14 jTheorem 4] and Proposition (1.13). ¥¥
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We conclude by stating two important results due to T.L.Thicks-
tun: his extension of the Loop theorem [61](see also [11 ;p.30] )
and his Resolution theorem [62] which considerebly improves the
n = 3 case of Theorem (1.6) -- most notably, it disentangles the

Pon".nc;a.ré conjecture from (1.6).

Theorem 1.15. Let X be a compact generalized 3-manifold-with-bound-

ary ﬁeighborhood of the singuiar set of a generalized 3-manifold,

where X is a 2-manifold. Let C be & component of 5(, let N be a nor-
mal subgroup of *Hl(C), and let J be 2 loop in C that shrinks in X
but that has [J]¢ N. Then in any neighborhood of J in C there is

a simple closed curve K such that [K] € N and K shrinks in X. %}

Theorem 1.16. Let X be a compact Z -hcmology 3-menifold with bound-

ary such that dim S(X) <0, S(X)c X, and X satisfies KF. Then there
exist a proper cell-like surjection £:(Y,Y) —— (X,X) from a compact
generalized 3-manifold Y with boundary, with only"soft"singulariti-

es. (So, in particular, if the Poincaré conjectui‘e is true, X has a

resolution.) %



II. NEIGHBORHOODS OF COMPACTA IN NONORIENTABLE

3-MANIFOLDS

The ﬁain result of this chapter is Theorem (2.7) -- a general-
ization of & theorem of J.L.Bryant and R.C.Lacher [14;Theorem 3 ]
on resolutions of Ze ~homology 3-manifolds which are almost l-acy-
clic (over 22) images of orientable 3-manifolds, to Z, ~homology

3-manifolds which are almost l-acyclic images of nonorientable 3-

manifolds. In the first two sections we develop two technical re-
sults -- a finiteness and a neighborhood theorem (Theorems (2.1)
and (2.2)). We then use them in Section Three to prove Theorem
(2.7). In the last section we present a comparative analysis of
various kinds of l-acyclicities for compacta in 3-manifolds. Some
related results that were inspired by these findings are col-

lected in the Appendix at the end of the dissertation.

1. A Finiteness Theorem

T.E.Knoblauch [35] pfoved that in a closed orientable 3-man-
ifold there can be but a finite number of pairwise disjoint compact
sets that do not have a neighborhood embeddable inZR3. He also
gave an example in [35]to show that this need not hold for nonori-
entaﬁle 3-manifolds. In the theorem below we give an additional

condition under which the statement is true also in the nonorienta-

ble case.

19
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Theorem‘ 2.1. For every closed nonorientable 3-manifold M there ex-
ists an integer K such that if Xl,.. . ,XK+1CM are pairwise disjoint
compact sets and each Xi has a neighborhood UiC M such that the in-
clusion-induced homgmorphlsm Hl(Ui-xi ;ZZZ) —_— H‘.L(M;ZZ) is 0,

then at least one Xi has a neighborhood which embeds in ]R3 .

Proof. We work with 222 coefficients and we shall supress them from

the notation. Let Xl’ ey

suppose that each Xi has a neighborhood UiC M such that the inclu-

X-nCM be pairwise disjoint compact sets and

sion-induced homomorphism Hl(Ui-Xi) —_— Hl(M) is trivial and if
i . n = . = U -n = -n . i-
i# J then U:L UJ @. Let X =1 Xi and U = U i=1 Ul and consi

der the following commutative diagram

O B @yl 1)
£ !
e ——— Hl(U-X) _ Hl(U) —_— Hl(U,U—X) —_ ..
e p ~| p'
N e

e — Hl(M—X) —__F_.. Hl(M) —_— Hl(M,M—X) _ ...

e
e

where the horizontal sequences are exact and p' is the excision

isomorphism. Suppose that for some u, € im [ Hl(Ui) — Hl(U) ]

e B = n = ( ' n = ! —lv
Iio p(ui) 0. Then p( Lo ui) 0 hence f'( Ty ui) (p")
n

L = T n
Flep( I,y w) =0so I,

_ .n s _
f(v) for some véHl(U-X). Now, v = I, , Vv, Where v, €im [ Hl(Ui Xi) '

u, € ker f' = imf. Therefore X.E u, =
i i=1 i

- H1(U-X)] therefore f(vi) = u, for each i since the Ui's are
pairwise disjoint. We conclude that p(ui) = pf(vi) = e_(vi) =0
since by hypothesis e is trivial. Therefore the image of the inclu-

sion-induced homomorphism Hl(U) -~ Hl(M) is the direct sum of the
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images of the inclusion-induced homomorphisms Hl(Ui)-+ HL(M)’
1<i<n. So if we let b, = rankIH}M) then n-by of the homomorph-
isms Hl(Ui)-—+ Hl(M)fare trivial and so n-b, neighborhoods U, are
orientable by Proposition (1.2).
Consider the orientable 3-manifold double cover F:M —M of M.

Let k(M) ve the Knoblauch number of ® [35;Theorem 1 }. Since every
orientable neighborhood 1lifts in M to two homeomorphic copies it
follows that if 2(n-bl) > k(M) then some X, has a neighborhood which
embeds in{BB. We can now determine the number K from the equation
2(K—bl)-k(ﬂ) =0: K= [%(a+ra.nk H:L(M;Zz)+l]+-b:L where a is the max-
imal number of pairwise disjoint nonparallel incompressible twosided
surfaces in M and [t] denotes the largest integer not greater than t.
That such an a always exists follows by Haken's Finiteness theorem

[29 ;p.48 ]. (The proof in [29]is valid only for irreducible 3-man-
ifolds [30]. For a proof of the general case see e.g., A.H.Wright's

dissertation [69].) %

Remark. Theorem (2.1) holds also over the integers: by the Univer-
sal Coefficients theorem we have the following commutative diagram:

, £ , _
00— Hl(Ui-Xi,ZZ )®zz,‘2 —--»Hl(ui-xi,zz2 ) — Tor(Ho(Ui-Xi,Z )4 2) —0

e [u

0—— H (M;Z )®722—5——» H (M3, ) —— Tor(H (M;Z),Z, ) —0

Since Tor(HO(Ui-Xi;ZZ );222) =0 = Tor(Ho(M;z ),zz2 ), £ and g are
isomorphisms. Thus if j,=0 then j}=0.
On the other hand Theorem (2.1) is false over Z&), p any odd

pPrime number, as the following example illustrates: let M = P2><Sl,
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where. P2 denotes the proAjective plane.. For each t€ S:L let Xt = Pex{t},
Since M-X, contracts onto P° and since Hi(PQ;ZPS = 0 it follows
that the inclusion-induced homomorphism- Hl(M-Xt;Zp) — Hl(M;ZP )
is trivial. However, no Xt has a neighborhood embeddable in JR3'

since P2 doesn't embedd in R- [28 ;Theorem (27.11) ].

2. A Neighborhood Theorem

Let K be a continuum in a 3-manifold M. How nice a neighborhood »
can K have? For example, if K is cellular in M then K is the inte‘r-
sectionv of . properly nested 3-cells, while if it is cell-like then
K is the intersection of = properly nested homotopy 3-cells with 1-
handles [47 ;Theorem 3 1. We describe below neighborhoods of almost

l-acyclic (over Eg) continua K.

Theorem 2.2, Let K be a continuum in the interior of a 3-manifold M
with (possibly empty) boundary. Suppose that K does not separate
its connected neighborhoods and that for every neighborhood UCM of
K there exists a neightorhood VC'U of K such that the iﬁclusion-
induced homoporphism Hl(v—K;ZZ) — Hl(U;ZQ) is trivial. Then K =
ni:l Ni where each NiC int M is a compact 3-manifold with boundary
satisfying the following properties:
(i) for each i, Ni+lc int N5
(ii) -Ni is obtained from a compact 3-manifold Qi with a 2-
sphére boundary by adding to 3Qi a finite number of
orientable (solid) l-handles;
(iii) for each i, the inclusion-induced homomorphism
) is trivial;

H.( 9N

. — .
1 i+l’zz2 ) Hl(Ni’Z

2
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(iv) there is a homeomorphism h,:N, = N. such that h, | 3N,
i7i i i i

id and hi(Q;) =Q where Q;..’C.int Qi is formed by

i+l
pushing Qi into int Qi along a collar of aQi.
Remark, Theorem (2.2):(i)-(iii) was proved for orientable 3-man-
ifolds by D.R.McMillan, Jr. [49 ;Theorem 2] . A.H.Wright observed
[70 ;Theorem 2 ]’that McMillan's theorem generalizes to nonorientable
3-manifolds bﬁt he did not obtain orientable l-handles. Neither of
the two papers [49]and [70] gave details of the proof because it |
was eﬁough to indicate necessary changes in the proof of an earlier
result of McMillan [47 ;Theorem 2 ]. Theorem (2.2):(iv) was proved
for orientable 3-manifolds by J.L.Bryant and R.C.Lacher [14 ;Lemma C].
We have decided to present the details in order to explain the spe-
cific situastion for nonorientable 3-manifolds. Our proof of (i)-
(iii) is modelled after the proof of [49;Theorem 2] as outlined in
the lecture notes of McMillan [48;pp.45-49] , from which we also
quotg the following folklore lemmas we shall need at several points

in the dissertation (cf. [48;pp.T-8,p.49]1 ).

Lemma 2.3. Let K be a compact set in the interior of a 3-manifold M,
K # M and let NCM be a neighbofhood of K. Then there exists a com-
pact polyhedron UCint N with the following properties:
(i) each component of U is a 3-manifold.with bbundary;
(ii) each closed surface in U-K sepgrates U-K;
(iii) XcintU. %2
Let M be a compact 3-manifold with boundary and let Fl,...,FmC:

M be its boundary components, Then we define the total genus of
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M to be the sum of the genera of F, (1<is<m): g(dM) = Z il:l g »
8; = genus of Fi'
Lemma 2.4. Let M be a compact orientable 3-ﬁanifold with boundary
and let R = 2Zp or the rationals (p a prime). Let i*:Hl(aM;R) —

Hl(M;R) be the inclusion-induced homomorphism. Then rankp (imi, ) =

g(aM). *x

Proof of Theorem (2.2). First, we shall prove that K= n _i:1 N, vhere
N, satisfy (i) and (ii). It will follow by hypotheses that we can
find a subsequence of {_Ni} satisfying (iii). By choosing a further
subsequence we shall demonstrate (iv). We shall supress the Z, co-
efficients from the notation. |
To prove (i)-(iii) it therefore suffices to show that given a
neighborhood UC M of K there is a compact 3-manifold neighborhood
NcU of K such that N is obtained from a compact 3-manifold Q with
33 a 2-sphere, by attaching a finite number of orientable (solid)
l-handles to 3Q. So let UCM be a neighborhood of K. We may assume
the following about U:
(1) Uisanonorientable connected compact 3-manifold with
5oundary;
(2) Kcint U
(3) U-K is orientable and connected;
"~ (4) each closed surface in U-K separates U-K.
The condition (3) follows by Proposition (1.2) since, for sufficient-
1y small U's, the inclusion induces trivial homomorphisms Hl(U-K)

— Hl(M)’ The condition (iv) is provided by Lemma (2.3).
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Let noe]N be Haken's number of U [29 ;p.48 ]. Using the hypothe-
sis we can construct an ordered (n0+2)—tuple Y = {vo.’vl""’vnoi‘l }
of compact 3-manifolds with boundary such that:
(5) v, =1U;
(6) Vi+lCint Vi 3
(1) 3Vi is an orientable (possibly disconnected) two-sided
closed 2-manifold;
3 — .
(8) Hl( vi+l) Hl(vi) is trivial;
(Q) Kcintvno+l .

(Note, that (7) follows by (3) and (4).)
n +1
Define the complexity of Y to be the integer c(Y) = E i:O Zn:O

(n+l)2gi(n),where gi(n) is the number of componehts of 3Vi with ge-
nus n [473;p.130] . We shall show that in a finite number of steps
we can improve Y so that it will still satisfy (5)-(8) (but not ne-
cessarily also (9)) and that for some i21, avi will be a goiiection
of 2-spheres. We shall achieve this by compressing 9Y = V) i=0 3Vi
in a careful manner to reduce the complexity c(Y) and then we shall
apply Hakeﬁ"s Finiteness theorem [29].

The sequence of compressions that accomplish our goal is a se-
quence of modifications on Y (McMillan [47] calls them "simple moves")
c;f two types: if a compression of 3Vi takes place along a disk con-
tained in Vi we say that we removed a l-handle while if the compres-

. sing disk lies outside \7’1 we say that we added a 2-handle. So sup-
pose first that there is a disk DCint Vo such that DNJ3Y = 3DC BVi

for some i€ {l,...,no+l} and such that 9D bounds no disk in 3Vi.

S (3 . 0 1] . 1] . = .
o D either lies outside V, (in int vi-l) or inside Vi (in Vi Vi+l)
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In the first case we add a 2-handle to V, whilé in the second case
we remove a l-handle from Vi' Denote the new Vi and Y by VE and Y’,
respectively. Note that in both cases we did not change any VJ,
i # 3. By [47 ;Lemma 4], l_<_c(Y’)_<c(Y) so by a fj-.nife number of
cdmpreséioné we get Y* = {Vg,...,V; ;1} which canho£ be cbmpreSsed
in such a manner anymore. A routineo"trading disks" argumehtnnow
implies that each component of 3Y* which is not a 2-sphére is in-
compressible. ,

We want to verify that Y* satisfies the conditions (5)-(8). We
first note that if F is a boundary of a 3-manifold Z it still
bounds after the compression: if we added-a 2-handle then the new F
will bound the manifold Z plus.the "half-open" 3-cell attached via
the 2-handle, while if we removed a l-handle from Z then the new F
will bound the manifold Z minus the "half-open" 3-cell removed via
the 1l-handle. Therefore Y* is well-defined.

Next, Y* satisfies (5) and (6) by our construction, To prove
(7) we show that a compression of an orientable boundary of a 3-man-
ifold Z always yields an orientable boundary: suppose fifst that -
2 = Z+(2-handle) had nonorientable boundary. Then we couid find a‘
simple closed curve JC 3Z” such that J would reverse the orientati-
on in 3Z%., We éould isctope J off the cocore of the 2-handle and
hence off the entire handle and into 9Z, thus showing 9Z to be non-
orientable. Since removing a l-handle from Z has the same effect on

9Z as adding a 2-handle to the compiementary 3-manifold component
bouhded by 3Z, the preceeding argument also proves that for z7 =1

-(1-handle), 3Z” stays orientable. Finally, the condition (8) fol-
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lows by [47;Lemma B ] because we made the simplifications Vi-——>V;

without disturbing VJ’ i# 3.

We now prove that for some ké&({ l,...,no+l }, 3V§ is a collection
of 2-spheres, If not, then by Haken's Finiteness theorem [29] for
some 1<p<gq Sn +1 there exist components 5,¢ av; and S,C GV; that
are topologically parallél and different from 82. So there is an em-
bedding £:8, X [0,1] —U such that £(S x{s}) = S_ where s=0;1. Let
X = f(Slx [0,1]). We may assume that no surface in (int X)NaY* is
parallel to S, in X. By [65;Corollary (3.2)] each incompressible
surface in int X is parallel to Sl in X.'Therefore (int X)N 3Y* con-
sists entirely of 2-spheres. Also, X must be irreducible for if
there were a 2-sphere in X which would not bound a 3-cell in X then
it would be incompressitle hence parallel to Sl # 52. Therefore X
minus the interiors of a finite disjoint collection of 3-cells lies
in V;. Hence every l-cycle in Sl is homologous to a l-cycle in 82
thus it bounds in V; by (8). Since by Lemma (2.4) the image of the
inclusion-induced homomorphism Hl(av;)-—+ﬂl(v;) has rank (as a
vector space over 22) equal to g(.SV;), it follows by (7) that S,
is a 2-sphere, a contradicticn.

Let V be a 3-manifold among V; all of whose boundary component;
are 2-spheres. Clearly, (9) may no longer be true so we now take
care of that. During the compressions, when we attached a 2-handle
it may have happened that it passed through the space in U that was
previously occupied by a l-handle whichvwas removed at an earlier

stage, In such cases we require that the boundary of the 2-handle

be in general position with respect to the boundary of the l-handle.
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In addition, we shall assume that the annulus removed from 8V£
(recall BVE is orientable so it contains no M&bius bands) in the k-
th compression be disjoint from all l-handles or 2-handles involved
in the preceeding k-1 ﬁompressions. So if we now add to oV all 1-
handles that were removed from V during the compressions, we get
several 1l-handles attached to 3V. Note that adding of en old l-hand-
le H to 9V may result in many new smaller l-hanﬁles as H may run
through several 2-handles that now occupy portions of its original

place. (See Figure (2.1).)

Figure 2,1.
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Every resulting l—handlé is orientable.AFor suppose in réattéch-
ing the l-handles sequentially we have added a nonorientable l-hand-
le. Then for every subsequent reattachment of the remaining l-hand-
les we have only one isotopy class of attaching maps [57 jTheorem -
(3.34)] so we end up with a nonorientable surface., But this is im-
possible by (3) and (4). We may also assume that for every result-
ing l—handle H both ends of H are attached to the same boundary com-
ponént for otherwise we add H to V thus'reducing the number of boun-
dary components of V by one.

The 3-manifoldAN vhich we get from V by reattaching all l-hand-
les may be disconnected so we keep only the component which contains
K. Thus N is obtained from a compact 3-manifold Q with 3Q a collect-
ion of 2-spheres by attaching a finite number of orientable l-hand-
les to 9Q so that every l-handle has both ends on the same component
of 9Q. Let‘pié Zi (i=1;2) be arbitrary points on two distinct 2-

sphere components Z. and 22_0f 9Q. Since K doesn't separate N there

1
is a polygonal arc A in N-K joining 12 and Py Suppose that A pass-
es through a l-handle H. We may assume that ANH is just one arc
meéting 9Q in only two points on 22. Then ANH can be replaced by
another polygonal arc BCN-int H attached to 22. So we may assume
that A doesn't pass through any of the l-handles. Therefore by dril-
ling tunnels we can effectively Join the components of 3Q thus ob-
taining the desired neighborhood N. (See Figure (2.2).)

We can describe the structure of the neighborhoods N of K as

follows: N = Q+(l-handles) where Q captures the "nonorientability"

of K while the hendles capture the "pathology" of K. (Figure (2.3))
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Figure 2,2
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Figure 2.3
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It remains to prove (iv). So assume K = [\ i:l Ni where Ni = Qi+
(1-handles), as in (i)-(iii). Let K, C int Qi be a spine of Q. Let
éi be the closed 3-ﬁ1anifold we obtain by attaching a 3-cell to aQi.

For each i>1, N, = (Nl/Ki) # Qi (the interior connected sum). Re-

1
call that Nl is a nonorientable compact 3-manifold with boundary so
by [32;(3.15),(3.17)) N, admits a unique normal, prime decomposition

1 . . s
. Consider normal, prime decompositions

No= M #. . #M, M # 57
for Nl/Ki and Qi (i >1). Observe that every Nl/Ki is »orieﬁtable-b'e-
cause (Nl—’ii)hK =@ so Nl—wi is orientable and I\I]_/Ki:‘)I\Ii/Ki = an
orientable cube with handles. Therefore in a norxﬁa.l, prime decompo-
sition Ni/l{ii TAl#'"# Ap# Bl#"'#B'q of I\IlZKi such that p 20 factors
Ai = Szx Sl. On the other hand éi must be nonorientable (since Nl
is) so in a normal, prime decomposition éi = Cl# co FF Cr’ every Ci
# s2x st By [32 ;Lemma (3.17) ] we méy replace each A; by P = the
nonorientable Sz-bundle over Sl to get a normal, prime decomposition
for N, = P# ... # P# B, # ...#Bq# cl# e #C (p factors P). It fol-
lows by the uniqueness of normal, prime decompositions that p+g+r=n
and after a suitable permutation of the indices of summands each Ci
is homeomorphic to some Mi' Therefore among n+l ai's at least two
have the same prime su;mnands (up to a homeombrphism). By choosing
an appropriate subsequence of {Qi} we may henceforth assume that for
each i <J there is a homeomorphism si,j:Qi -—jQJ.

We first construct hl’ Let qm:’Nl — Nl/Km be the quotient map
where KmC int Qm is a spine of Qm and let i <j. Then the identity
on BNl induces a homecmorphism t:{J: B(Nl/Ki) — B(Nl/KJ) which makes

the next diagram commutative:
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T i B
}aglom " L aylem
o~ ij .
8(N1/Ki) > » a(Nl/KJ)

We shall show how to extend tij to a homeomorphism tiJ:Nl/Ki —

Ny /K,

Take a simple closed curve Jc:a(Nl/KJ) such that J is essential
on a(Nl/Ki) and null-homotopic in Nl/Ki' Since N, = (Nl/Ki)-#Qi we
can consider J also as an essential simple closed curve on aNl which

is null-homotopic in N,. Therefore qJ(J) is a simple closed curve

1'
on a(Nl/KJ) which is essential on a(Nl/Kj) and null-homotopic in
Nl/KJ).-By Dehn's lemma,J (resp. tij(J)) bounds an embedded disk

v ot ..
(D,3D) € (N, /K, ,3 (W, /X)) (resp. (D',aD") € (N /K, (N, /K,))). By (i1}
Nl/Km is a cube with (solid) l-handles, so in finitely many steps we
can cut Nl/Ki along ccmpressing disks D to get a 3-cell Ri' Extend

t{j over each D by mapping it to the corresponding compressing disk
D' in Nl/K described ebove., Finally, we can extend t{j over the

J

interior of R, to get t.,.
i iJ

Recall agaln_that N, = (Nl/Km)#Qm for all m >1. Let B €Q and

C Cint (Nl/Km) be open 3-cells, m=i,Jj. Let f,: (Qi-Bi) —_—
8((N1/Ki)—Ci) be an attaching homeomorphism for the connected sum
(Nl/Ki)#féi. If we define the attaching hdmeomorphism fJ for (Nl/KJ)

' -1 -1
# by £, = (s.,|d)ef, o (t)! then the diagram on the top of the
Q, vy £, ( lJI Je£ e ( J‘J) ag P

next page will commute. (Note that because QJ is nonorientable any

two attaching homecmorphisms f, are ambient isotopic [573;Ch.3] .)

J
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B((n, /k)-B;) iy o /K))-B,)

£, f
l o s, e, l J
Finally, define hiJ:Nl —»Nl by hij(x) = sij(x)'if XE€ Qi é.nd =

. i EN.-Q.. . = i . *) = Q*, Tt

tlj(x) if x €N -Q,. Clearly, hljl o, = id and hlJ(Ql) Q). The

homeomorphism hl is the composition of hl > and a homeomorphism
?

of Nl that is the identity outside a neighborhood of 8Q2 in Nl

and pushes Q’Q_‘ onto Q2. We can get hi’ i>2 in a similar way (see

the proof of Lemma C in [14;pp.317-318] ). ¥¥

Let K be a compact set in the interior of a 3-manifold M. We
say that K can be engulfed in M if the interior of some punctured
3-ball in M contains K. A sequence {Ki} of compact 3-manifolds with
boundary is a W-sequence if for every i the following conditions
hold:

(i) K,Cint K, -3
(ii) the inclusion-induced homomorphism. is trivial:
I — 1 .
1 (&) 1K)

An open 3-manifold M is called s Whitehead manifold if it can be ex-

pressed as M = U 'K, for some W-sequence of handlebodies [5Qp.313].

-]

i=0
An examination of the proofs in a recent paper of D.R.McMillan,

Jr. and T.L.Thickstun [50] shows that the orientability hypothesis

can be removed from all results in [50] if one uses Theorem (2.2) in

the place of [49 ;Theorem 2 ]:

Theorem 2.5, Let M be a compact 3-manifold (possibly with boundary )

and KcintM a compact subset. Then K can be engulfed in M if and
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only if there is an open, connected neighborhood UCM of K such that

U embeds in S and H U3 Z)=0. ¥

1
Theorem 2.6. Let M be a compact 3-manifold (possibly with boundary).
Then M contains no fake 3-cells if and only if each Whitehead mani-

fold that embeds in int M also embeds in s3. 4

3. A Resolution Theorem

J.L.Bryant and R.C,Lacher have proved that every locally con-.
tractible l-acyclic over Z, image X of a 3-manifold M without
boundary admits a resolution. In particular, X is a generalized
3-manifold [l4;Theorem 2] . A refinement of their proof enabled
them to omit the acyclicity hypothesis over a O-dimensiocnal set
"provided M was orientable [l4;Theorem 3] . We show below that
orientability is not necessary. (We are referring to the case p=0

or 2 of [14 ;Theorem 3] only.)

Theorem 2.7. Let f be a closed, monotone mapping from a 3-ma.nifold
M without boundary onto a locally simply connected Zz ~homology 3-
manifold X. Suppose that there is a O-dimensional set ZCX such
that ﬁl(f‘l(x);zzz) = 0 for all x €X-Z. Then the set C = {x€X |
f"'l(x) is not cell-like } is locally finite in X. Moreover, X has

a resolution.

Proof. Again we supress the coefficients. Let A = {x€X | ﬁl(f_l(x))
# 0}, By [38 ;Theorem (4.1) ] A is locally finite in X. Let B ={ x€X |
33

f-l(x) has no neighborhood in M embeddable in R . In order to

show that B is locally finite in X it suffices by Theorem (2.1) to

prove that for each x€X, f-l(x) possesses a neighborhood UCM such
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that H (U-£"7(x)) — K (M) is trivial,
So let x€X, Since A is locally finite in X there is a neighbor-

1

hood WCX of x such that WnAc{x }. By hypothesis X is LC™ so there

is a connected neighborhood W'c W of x such that any loop in W' is
null-homotopic in W. Consider the following commutative diagram:

i

(7)) — L iy (- 00)

,’;lfl* ' glf’*

B (W-{x}) - — H, (V-{x})
x| 5 x|
H (") e L mW)

where the horizontal homomorphisms are induced by inclusions, fl*
are the isomorphisms of Proposition (1.1), and j, and j} are the
isomorphisms from the homology sequence of the pairs (W,W-{x}) and
(W' ,W'-{x}), respectively. By hypothesis, i, = O hence i} = 0. Thus
wé may apply Theorem (2.1) --'we conclude that B is locally finite
in X. |

By Theorem “(2.2), f-l(x) is definable by (orientable) cubes with
handles for all x € X-B, so by [49 ;Theorem 3], f’l(x) has the 1-UV
pr‘opefty. Since cubes with handles have no higher homotopy, each
f-l(x) has the UV® property‘ and hence CCB (cf.[40] ). Therefore C
is locally fixiite in X’. Note that, in particular,‘by G.Kozlowski and
J.J.Walsh [36], X-C (hence also X) is finite-dimensional.

It now remains to find a resolution for X. We construct it by
improving f over the points of C. Observe first, that if x€X is an

arbitrary point and WCX is any of its neighborhoods then combining
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the isomorphism Ho(f-l(w)—f—l(x));gﬁo(w;{kl) given by ProPOSitionr
(1.1), with the isomorphism HO(W;{X})Q;HO(W) given by Lemma (1.5),
we can conclude that f—l(x) doesn't separate its connected neighbor-
hoods in M. It follows by the argﬁments employed in the diagraﬁ on
page 36 that f-l(x) satisfies the hypotheses of Theorem (2.2). So

if we let c€C and put K = £ (c) then K = N i:; N, where N;'s are
the compact 3-manifolds with boundary described in the conclusions
of Theorem (2.2). We shall use the notation from that theorem in

the rest of the proof (i.e., Q> Qg, and hi)'

(The following is modelled after [14;pp.316-31T] .) Let M' =

M/Q{ and let h!':N. — N. be a homeomorphism such that h!|3N, = id
i*7i i it"

! = #* 7 L — 1 *
and hi(Qi+l) Q¥,,- Define a map h¥:M M by letting hi(x)
hihi(x) for xélﬁ.and = x otherwise. Then h; is a homeomorphism and

*(o%) = Q% M = ] s . . s
hi(Qi) Yo Let g M M' be the quotient map. Define inducti
-1 .
= * M M - = - R
vely g, gi_l(hi) M M', i> 1. Then gi](M Ni) gi_ll(M Ni)
Also, the only nondegenerate point-inverse of &; is Q€+l' Indeed,
-1 -1 -1 ‘ -1 -1
= * = * * = 00= * [ ] ? *
g; = g;_,(nd) g;_p(n¥_ ;)" (n¥) . g, (nh}) ()™, b}
are homeomorphisms, the only nondegenerate point-inverse of 8o is
=1 -1
* *) = * * *) = * * * =
clearly Qf, and g; g (G}) = (h¥...hfg Je_(a}) (n¥...n¥)(a})

* * * - - %* * - * . ! = '>
(hi...hz)(Qz) ces hi(Qi) Q¥,,- Let NI gi(Ni+l), 1__0, and
K' = r\i:O Ni. It follows by Theorem (2.2) that for every i, l&(Ni)
is free on finitely many generators. Also, considering the commuta-
tive diagram on the top of the next page we observe that i, is onto

and j, = O by the choice of Ni's and»gi's. Hence i} = 0, too. It

follows by [49;Theorem 3] that K'is cell-like.



Definé a map g:M-K — M' by letting g = g; on M-int Ni . Then
g(M-K) = M'-K' and >g is a homeomorphism. Finally, we let f£':M' — X
be given by f£'(x) = fg-l(x) for x€EM'-K' and = ¢ for x€K'. It is
easj to see that f' is a continuous, proper onto map. Since K'is

cell-like, fis cell-like over X-(C-{c}):

M-K £ > M'-K!
-
n \I\ fg-]'// n
-
£ < 5
M —f——x =T ——
\\\
V) / c~ v
~
~N
K S K

The proof is now completed by repeating the above surgery over the

rest of C (i.e., over C-{c}.) ¥¥

An alternative proof of Theorem (2.7). Let A = {x€X]| ﬁl(f-l(x) # 0}.

By [14 ;Assertion 1 on p.315 ], A is locally finite in X. Since by
[48 ;Proposition 2 ]and Proposition (1.2), every f-l(x), x € X-A, has
an orientable neighborhood in M, it follows Aby [14 ;Assertion 3 on
p.-316 1 that C-A is lccally finite in X-A. It thus remains to show
that no limit point of C-A can belong to A. Let a€A and suppose
that for a sequence {xn}CX-A ’,}_i,?.xn = a. By [1l4;Assertion 2 on p.

316 ], every f-;(x) is strongly Z, -acyclic hence by [47 ;Theorem 2],

the intersection of a nested sequence of Za -homology 3-cells with
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handles. Thus for each n2 1 there exists an orientable neighborhood
U CM of the continuum f"l(xn) and a Z, -homology 3-cell with hand-
les B CU such that f-l(xn)Cint H . We may also assume that if

i # J then UiﬁU = ¢, It is a well-known corollary of Grushko-Neu-

J

mann theorem [32 ;p.25] that in a compact 3-manifold there is but
a finite number of pairwise disjoint ZZ -homology 3-cells that fail
to be genuine 3-cells [69]. Therefore, by [49;Theorem 3] all but a
finite number among f_l(xn) are 1-UV hence cell-like [40]. Thus x,
€ C for all but a finite number of indices x;. Therefore the set C-A
is locally finite in X. Consequently, C is locally finite in X. The
construction of a resolution for X is now as in the preceeding .
proof. %%

The next corollary provides a partial converse in dimension 3
to a well-known fact that cell-like upper-semicontinuous decomposi-
tions of topological n-manifolds yield generalized n-manifolds (for -

n > k4 assume also the quotient space is finite-dimensional).

Corollary 2.8. Let G be a O-dimensional upper semicontinuous decom-

position of a closed 3-manifold M such that M/G is a generalized
3-manifold. Then the set C ={geG l g is not cell-like } is

finite.

Proof. Since G is upper semicontinuous the quotient mep q:M —*M/G
is closed and monotone., Let Z = q(NG). Then dim Z < 0. The conclusion

now follows immediately by Theorem (2.7). ¥¥

Remarks. (1) The Hopf meps or the Bing map [13 ;p.48] show that if

q(NG) is a l-manifold then all nondegenerate elements g €G may fail
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to be cell-like. Thus the restriction dimG = 0 in Corollary (2.8)
seems reasonable,

(2) Spine maps [i3;p.h8] show that the set C in Corollary
(2.8) may have any finite number of elements even when C = HG'

(3) The following modification of the clas;ical construction
of thé Whitehead continuum [67] shows that all nondegenerate elements
of G may fail to be cellular in M even when q(NG) is a Cantor set
end G is cell-like. Let'{Ti} be the defining sequence for the
Whitehead continuum. Keep To. Replace Tl by two smaller solid tori

Tpo &nd TOl as shown in Figure (2.4).
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In "an analogous way replace T2 by four smaller solid tori TOOO’

Cint 'I‘Ol , etc. Let Y = Tof\(TOOUTOl)n
3

Top1C 10t Tog 8nd Ty 5T,

lUT OU T ..)N.,. and let G be the decomposition of S

(To00 Y To01Y To0Y To11
into points and the components of Y.

4. Peripheral l-Acyclicity

We wish to compare various concepts of l-acyclicity we employed

in the preceeding sections. Let K be a subset of an ANR X. We say

that the inclusion K€ X is strongly (resp. weakly peripherally,

strongly peripherally) l-acyclic over R (R a PID) if for each neigh-

borhood UCX of K there is a neighborhood VCU of K such that the
inclusion-induced homcmorphism Hl(V;R) - Hl(U;R) (resp. Hl(V-K;R)
- Hl(U;R); Hl(V-K;R) — Hl(U-K;R)) is trivial. It is well-known
that strong l-ascyclicity does not depend upon the embedding of K
into X and that furthermore, for R a field, it is equivalent to the
condition ﬁl(K;R) = 0 [40;p.502] . The following example shows that
the other two acyclicities may depend upon the embedding. Let X =

2 1 3 3

s®xst ana K= 8% v s —~ X be embed-

, and let £;:K — R~ and g:R
'dings_. Then KCX is strongly peripherally l-acyclic over any PID R
(since X-K is an open 3-cell) while (gf)(K)CX is not even weakly
peripherally l-acyclic for any PID.R.(Jjust take U = g(JR.3 )). It is
not a coincidence that dimK = 2 in this example for we prove in
Theorem (2.11) that for dimK< 1 and X an R-orientable 3-manifold,
all three l-acyclicities are equivalent.so, in particular, independ-

ent of the emtedding.,

It is clear that strong peripheral l-acyclicity implies weak pe-
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ripheral l-acyclicity. We now show that for compacta in _3-manifoids

the two concepts are equivalent if R = 222 5

Theorem 2.9. Let K be a compact set in the interior of a 3-manifold
M. Suppose that KcM is wéakly peripherally l-acyclic over ZQ . Then

KCM is strongly peripherally l-acyclic over ZQ .
Proof. We shall sup‘ress ZZ coefficients from the notation. Using
the hypothesis we can express K as the intersection of a properly

nested sequence of compact 3~-manifolds Ni cintM with boundary such
that all inclusion-induced homomorphisms Hl(Ni-K) —> Hl(Ni_l) are
trivial,

Let o be a simple closed curve in Ni—K. Then there is an integer

J »1i such that acNi-NJ. Let ZCaNJ_*_l be a component of 3N3+1’

Since I 1is a closed 2-manifold it contains a bouquet T of finitely
many simple closed curves so that I -T is an open 2-cell. Let B<C T

be one of these loops. Since H. (3N, .) — H.(N,) is trivial, B
J+l 1'J

bounds a surface [, in NJ. Also, & bounds a surface I‘d in Ni-—l since

B

Hl(Ni—K) — Hl(Ni-l) is trivial. Put the surfaces I‘a and I‘B into

general position, Let Pysee .,pt€ I'anB be the points of the intersec-
tion, ordered in such a way that for each i, p; lies between 17

and P, OB B, Note also that each P; lies in intI‘a because arans

=qNB = @, Let ACN:.L be a regular neighborhood of B J'.n\Ni_l and

1
C = %A, Thus A can either be a solid torus or a solid Klein bottle.
For each i, there is a disk Di c intl‘a centered at p; such that
A ﬂI‘q = Ui:l Di' Let CiC C be the annulus determined by the pair
.t . .
- . L] ] 3 . i f
aD.2i), 15_11[2 ], i.e., D21-1UC:LUD21 is the boundary o

(3551
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Figure 2.5,

the 3-cell E_ which Dy;_, @nd Dy, cut off on A and which doesn't
contain any D,j’ J # 2i-1,2i, (See Figure (2.5).)

We now do the following surgery on I'a: replace each pair (D2i-l’
D2i) by the annulus Ci’ 1< ii[-té-] . Denote the new surfacé by I‘:
If t is even then F¥N B= ¢ while if it is odd then TGN B= {p} .
Suppose t were odd. Consider ‘X = I‘:nI‘Band let ACX be the compo-
nent containing the point Py - Then A is a compact l-manifold hence
an arc. Plainly, pteBA. Let q€9A be the other endpoint. Now, q €
Pa* because BI‘a* l'\l‘8 =C!f\r6= @ since FBCNJ and aCNi—NJ. Also, éé
BI’B because (Z)I“3 -{pt}) n .TI’:= (Bf\ I’:)-{pt} = @.8ince qeara*u 3‘I‘B

this yields a contradiction to our hypothesis that t was odd.
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We can therefore assume that @ bounds a surface I in Ni-l such that
for every loop 8 €T, I'npg = @. Thus if [ hits NJ+l at all, it en-
ters through open dlgks in aNJ+l and so it can be cut off at aNJ+I

’ i - ~K., %
Hence o bounds a surface in .Ni NJ+1C Ni K. %% \

Theorem 2.10. Let R be a PID and let K be a compact set in the in-

terior of an R-orientable 3-manifold M. Suppose that K is strongly
l-acyclic over R. Then KCM is strongly peripherally l-acyclic

over R.

Proof. We shall supress the coefficients from the notation. Let V

<cUcCM be neighborhoods of K such that the inclusion-induced homo-

morphism Hl

(V) —#-Hl(U) is trivial. Consider the following commuta-
tive diagram:

(v) — ...

oo H2(V,V—K) _— Hl(V-K) — H

f
ﬁl(x)/

Jx J
~ * *
f! .
1

)y ———r H2(U,U-K) —_— Hl(U-K) —_— Hl(U) —_ ..

1

e

vhere the horizontal sequences are from the homology sequence of
the pairs (V,V-K) and (U,U-K), and £,f' are the Alexander duality
isomorphisms. By [40 ;p.5021] , ﬁl(K) = 0 hence i, is a monomorphism.

Since J# = 0 we can therefore conclude that j} = 0. **

The converse of Theorem (2.10) is falsé: let M = (82x Sl)-B
vhere B<382x Sl is the interior of a 3-cell. Then K = 82 v Sl is a
spine of M so that M-K = 82x [d,l). Therefore, K is strongly peri-
pherally l-acyclic over any PID R. On the other hand K certainly

is not strongly l-acyclic over any PID R. Note that in this example
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dimK = 2. The next theorem asserts that there can be no counter-

example with dimK <1I.

Theorem 2.11. Let R be a PID and let K be a compact set in the in-

terior of an ‘R-orientable 3-nie.nifold M. Suppose that dimK < 1. Then
tﬁe fol;owiﬁg statements are equivalent: |

(i) K is strongly l-acyclic over Rj

(ii) KcM is strongly peripherally l-acyclic over R;

(iii) KCM is weakly peripherally l-acyclic over R.

Proof. We shall supress the coefficients from the notation. We al-
ready know that (i) =(ii) by Theorem (2.10), whivle (ii) = (iii) is
clear. We show (iii) = (i): let VCUCM be neighborhoods of K such
that the inclusion-induced homomorphism Hl(V-K) — Hl(U) is trivial.
Let z be a l-cycle in V. By [39;Lemma (2.1)] =z is homologous to a
l-cycle z*eZl(V-K). By hypothesis, z*~ 0 in U hence z%0 in U, as

%%
well. 2%

Theorem 2.12. Let K be a compact set in the interior of a 3-manifold

M. Then ‘the following statements are equiva.lént:
(i) K€M is weakly peripherally l-acyclic over Z,
(ii) K<M is strongly peripherally l-acyclic over Z, ;
(iii) There exists a neighborhood WCM of K such that each
simple closed curve in W-K is 22 -hbmologous to zero

in M-K.

Remark. Let W be an open ne;’.ghborhood of K such as ih (iii) abvove.
Then by [49 ;Lemma 1] X is strongly l-acyclic over 222 if and only

if, in addition, each simple closed curve in W is 2’22 -homologous to
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zero in M, This gives us a gocd measure of the (possible) differ-

ence between the two acyclicities (over Z, ).

Proof of Theorem (2.12). We only need to prove (iii) =>(ii) since

(ii) =>(iii) is clear and (i)¢&>(ii) follows by Theorem (2.9). So
let UCM be a neighborhood of K. We may assume t‘hat UcwW , that U
is a compact 3-manifold with boundary,and that Kc.iint U. Let Sc U
be .a. component of 3U. Then there is a bouquet T<S of simple closed
curves such that S- U{JET} is a.n open 2-cell. By hypothesis, each
curve J €T bounds a surface S; in M-K. Let V = intU - U{SJIJeT}
and let J* be a simple ciobsed curve in V-K. Then J* bounds a surface
. S* in M-K. Using the same argument as in the proof of.Theorem (2.9)
we can show that J* bounds a surface S' in M-(K U( U{SJ |7eT} ))

and hence enters S through open disks and can thus be cut off on S.

We may therefore assume that S'CU-K. This shows that every l-cycle

in V-K bounds in U-K. ¥¥

Corollary 2.13. Let K be a compact set in the interior of a 3-mani-
fold M and suppose that Hl(M—K;Ze) = 0. Then KCM is strongly pe-
ripherally l-acyclic over 22 .

Proof. Apply Theorem (2.12) with W = M, ¥



III, A DISJOINT DISKS PROPERTY FOR 3-MANIFOLDS

The main results of this chapter are Theorems (3.8) and (3.10)
-~ we show that the map separation property»(MSP),,a concept due to
H.W.Lambert and R.B.Sher [44] is an appropriate analogue of J.W.
Cannon's disjoint disks property (DDP) for the class of compact
generalized 3-manifolds with O-dimensional singular set, modulo the
Poincaré conjecture., In the first section we introduce the MSP and
a similar concept from [44], called the Dehn's lemma property (DLP)
and we prove that 3-manifolds have both properties. In the second
section we prove the main results. We conclude the chapter by an
application of Thickstun's extension of the Loop theorem (Theorem
(1.15)) to the study of isolated singularities

1. Dehn Disks in 3-Manifolds

We recall that a mepping means only a continuous hence not ne-
cessary PL map. A mapping f of a disk (resp. disk with holes) D in-

to a space X is called a Dehn disk (resp. Dehn disk with holes) if

Sff\aD = @, where Sf = {xeD|f-1(f(x)) # x } is the singular set
of f., Also, define Zf = f(Sf). A space X is said to have the Dehn's

lemma property (DLP) [44]if for every Dehn disk f:D — X and every

neighborhood UCX of Ef there exists an embedding F:;D —X such

that F(D)Cc £(D)V U and F(3D) = £(3D), A space X is said to have the

map separation property (MSP) [44] if given any collection of Dehn

kT
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disks f.,...,f, :D—>sX such that if i # J then fi(aD)(\fJ(D) =g,

1 k
an@ given a neighborhood UCX of Ljiil fi(D) there exist mappings

Flse+esFiD—U such that for each i, F,[aD = £, (3D end if i #

then F; (D)NF,(D) = 4.

Lambert and Sher say in [44]that "it is a well-known (and use-
ful) fact that s3 has the DLP and the MSP" but they give no proof
or reference [44;p.514] . We prove below that every 3-manifold
(possibly with boundary) has both prcpez;ties (by (3.2) and (3.7)).

This result follows by the following stronger result:

Theorem 3.1. Let f:D —M be a Dehn disk in a 3-menifold M (pos-
sibly with boundary) and UCM a neighborhood of L. Then there
exists an embedding F:D —M such that

(i) F(D)-U = £(D)-U;

(ii) F |3 = £ |aD.

Corollary 3.2. Every 3-manifold (possibly with boundary) has the

DLP, ¥¥

The proof of Theorem (3.1) relies heavily on two deep results
from 3-manifolds topology =-- R.H.Bing's Surface Approximation theo-

rem [5] and D.W.Henderson's extension of Dehn lemma [33 ;Theorem

(1v.3)] .

Theorem 3.3.(R.H.Bing [5] ) Let P he a compact surface in a 3-manifold M,

N C P a closed subset, and let f:P —-’1R+ be an arbitrary map, Assume that
at each point x €N, P is locally PL in M at x. Then there exists a surfa-
ce P*¥* ¢ M and a homeomorphism h:P»» P* such that:

(i) h|N:N —>P* is the inclusion;
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(ii) for every X€P, d(x,h(x)) < f(x);
(iii) for every x€P, with f(x)> 0, P* is locally PL in M

at h(x). 2%

Theorem 3.4.(D.W.Henderson [33]) Let M be & 3-manifold and f:D — M

a PL disk with Sf lm = (. Then for every €>0 there exists a PL

embedding F:D — M such that

(i) F(D)-Ne( 2.) = £(D)-N_( I.), where N_ is the e-neighbor-
hood of Ef;
 (ii) F|® = £|aD. ¥%

Corollary 3.5.(Bing's extension of Dehn's lemma [15;Theorem (4.5.4)])

Let £:D — M be a Dehn disk in a 3-manifold M (possibly with bounda-
ry) and UCM an open neighborhood of f(int D). Then there is a ho-

meomorphism F of D into f£(3D)V U such that F is locally PL except

(possibly) on 3D.
Proof. Follows by Theorems (3.1) and (3.3). ¥¥

Proof of Theorem (3.1). We first consider the case when f(D)cC int M,

Here is an outline of the proof: Put Sf inside pairwise di'sjoint PL

1 m
( -

U). Let ¢ = U,”_ C.. Assume that on
i=1l "1

disks with holes C CmC £

12000
some neighborhood of 4C,f is a locally PL embedding.
Step 1. Consider the surface H = f(D-int C) , Use Theorem
(3.3) to mé.ke H PL,
Step 2. Consider the singular surface L = £(C)., Use Zeeman's
Relative Simplicial Approximation theorem [72] to
make L polyhedral.

Step 3. Now HUL is a desired PL Dehn disk. Apply Theorem
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Step 1(Bing) Step 4
(replacements)

Atep 3 (Henderson)

Figure 3.1,



(3:4) to get an embedded disk T<M.
Step 4. Replace the portions of T which lie qutside U by
corresponding pieces of H., (See Figure (3.1).)
In general, the curves from>f(aC) are géing to-be“wild;y'embedded in
M so additional care must be taken to improve f near 3C. This is
achieved by using four concentric families of pairwise disjoint PL
disks with holes rather than Jjust one such family (our C).

Now, the details, Let U” = f-l(U).'By [15 ;Theorem (4.8,3)] ,
there exist families {A]g_'j)l 1<i _<_t‘} s L2y <h, of paiﬁise disjoint
PL disks with holes in U” such that:

(1) for each i,J, A§J)C intA§J+l)’;

(2) S,Cint B, ;
wherg BJ = L)izl Agj). Let k=1;2. By (1) and (2), f|(D-int B2k-l)
is an embedding hence f(D—intBak_l) is closed in M thus Vk = U-
f(D—iﬁt B2k-l) is open in M and VlC V2CU. Let Vl'; = f_l(Vk). Then:

(3) s,cV]Cint B, ;
(4) BZCVECint B3 .
Let KCLCD-U” be PL annuli such that 3D = 3L N 3. (See Figure

(3.2).)
Apply Theorem (3.3) to replace f by a Dehn disk £:D— M with

the following properties:
(5) £,] (D-D)) = £|(D-D,);
(6) fI]Dl is locally PL;

(1) Sfl = 53
where'D:L = int(Bh-—Bl). Apply Theorem (3.3) again to get a Dehn disk

f2:D—> M such that:
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Figure 3.2
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(8) f2l(D~int L) = fll(D-int L) ;
(9) r2|int1, is locally PL;

(10) s, =58, ..
£, 4

Remark. We could have gotten the map f2 from f in Just one step ra-

ther than going via f.. However, we shall need fl in assembling the

1
final map F (See Figure (3.4).)
Another application of Theorem (3.3) yields a Dehn disk f3:D »
—* M such that:
(11) 3105 = £5|0p5
(12) f3|(D-D2) is locally PL;

(13) s, =85_ 3
f3 f2

where D‘2 = KUB3.
Remark. If for some 36{1,2,3;)“} the simple closed curves f(aBJ)CM
and f(3K)CM are nicely embedded in M we can skip £, and f, and
Just apply Theoreﬁ (3.3) to £|(D-int BJ) to get f3. However, if
this isn't the case then we must get fl and f2 first to make cer-
tain that f( a(ﬁ-_D;)) is nicely embedded in M.
By Zeeman's Relative Simplicial Approximation theorem [72]

there is a Dehn disk £),:D— M such that:

(1k) fhl(D-intBé) = f3[(D-int32);

(15) fhl(D-(int XudD) is PLj

(16) s, C V'2'.

f
_ L
By Theorem (3.4) there is an embedding fs_:D —» M such that:
(17) fslintI) is locally PL;
(18) fSlK = fth;

(19) fs(D)—Va = fu(D)-Vz.
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In particular, by (k), (5); (8), (11), (1L), (18), and (19):

(20) f),(D-int Bj) ;'f;(D) c fh(,D)uve." |
Note; however, that in generél, fh and fS do not agree pointwisgly,'not
even on D;inﬁ B3.

We wish to know what regions of D are mapped by f5 onto fh(D-in£B3).

Let C = f;lfh(D-int Bs). By (20),‘C'is well-defined and non-empty. There
exist pairwise disjéint PL disks with holes {Ei|].5:is rY such that

(21) D-int By = UL E;.
'By (16), fh(D-int B3) is a collection of disks with holes, namely fh(Ei)’s

hence by (20) so is C = L}i:l f;lfh(Ei). Define F:D — M by
-1
£1° (0| (D-int BB)) °f5 (x) 5 x€C
(22) F(x) =
fs(x) ; xeD-(int CudD)

‘The map F is well-defined: each x €C lies in precisely one disk with

-1
holes f5 fh(Ei), S0 f5

is an embedding, therefore fil is well-defined over fh(D—int B3). Also,

(x) lies in fh(Ei)' Now, by (16), fh](D- int B3)

(23) £, | 98, = f#] 3B,
hence for every x &C- 3D: fl.(fhl(D-int B3))-10f5(g) = fl.(fh‘QBB)—l'fS
(x) = id-fs(x) = fs(x) so F is well-defined. By (3), (7), and (20)—(23),
F is an embedding and by (5), (8), (11), (1k), (19), ar_xd;(,20)—(23)',
F(D)-U = £(D)-U as desired. (See Figure (3.3).) |
Remark. The disk F(D) is thus obtained from.fS(D) by glueing together the
pieces fS(D-int C vdD) and fl(D-int B3) using the‘homeomorphism fﬂl'fS on

3c-3D. (See Figure (3.4).)
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Figure 3.k.

It remains to consider the case when f(D)N 3M # ¢. Attach a col-
lar C, = 9M % [0,1] to 3M and extend the neighborhood U over C, in
the obvious way -- let U” = UVU((UNM) x[0,1]). Let M" =M UaM C,-
Apply the preceeding case to the 3-manifold M” to get an embedding
F”:D — M: such that F7(D)-U” = £(D)-U” and F”|3D - £|3D. The disk
F”(D) may now hit M”-M so we wish to push it in M by a nice ambient
PL isotopy with support in U”., Note that by taking a PL collar h:
M x[0,1] — M of 3M in M we get a "product structure” in M” close
to M, i.e,, CoUh( oM x [0,1]) is PL homeomorphic to éM x[~-1,1]

where we identify oM with aM x(0} ., We can now construct the desi-

red ambient PL isotopy Ht:M’ x [0,1] — M” by pushing F7(D) from
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h(oMx[0,1))

‘apply Theorem (3.1)
for f(D) inside M’

push F){D) down
l to M along the fibers

Figure 3.5.



58
M“-M down to M by means of stretch'ing‘down the fibers of fhe preduct
Mx[-1,1] . Finally, let F:D —-rf(D)_Uﬁ be given by F = HlF".i (See
Figure (3.5).) ¥%

l,...,fk:D —~M be Dehn disks in a 3-manifold M
(possibly with boudary) such that if i # J then fi(aD) an(D) = g.

k

Theorem 3.6. Let f

Then for every neighborhood UCM of Ui fi(D) there exist embed-

1

l,....,Fk:D—-r U such that:

(i) for each i, Fil int D :int D — U is locally PL;

dings F

(ii) for each i, Fil o} = fil aD;
(iii) if i # J then Fi(D)nFJ(D) = @,

Corollary 3.7. Every 3-manifold (possibly with boundary) has the

MSP. %%

Proof of Theorem (3.6). By an argument similar to the one in the

preceeding proof we may assume that for each i, fi(D)C int M. We
use induction on k. For k=1 the assertion follows by Theorems

(3.1) and (3.3). Assume now that the assertion is true for all k<n
and consider the case k=n+l. By the inductive hypothesis there are
“embeddings Fl,..,,FntOU-fn+l(aD) satvisfyin‘g (i)-(iii) and f ., can
be replaced by an embeddiixg fzﬂ_:D — U—('Ui:l Fi(aD)) —such that

f’+l|intD is locally PL, f;1+l is in general position with respect

”

to the surface S = Ui=l Fi(D), and fn+l|aD fn_‘_l_laD. Hence
f;+l(D)n S is a finite collection of pairwise disjoint PL simple
closed curvés. Starting off with an innermost one (on the surface

S) of these curves, we can eventually cut f;+l(D) off S inside the

neighborhood U thus obtaining the desired embedding Fn+l' -4
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2. Recognizing 3-Manifolds

The next result is an improvement of a theorem of H.W.Lambert
and R.B,Sher [44] who proved our result for the case when G is a
point-like, closed O-dimensional upper semicontinuous decomposition

of S3. (Consequently, their conclusion (iii) was S3/Ga; S3.)

Theorem 3.8, Let G be a cell-like, closed O-dimensional upper semi-

continuous decomposition of a 3-manifold M. If vaM £0 assumé that

NGC;in’cM . Then the following statements are equivalent:

(i) M/G has the DLP;
(ii) M/G has the MSP;

(iii) M/G is a 3-manifold.

Remark. The ideas Lambert and Sher used to prove their result in (u:]
can easily be adapted to prove Theorem (3.8) for the case when every
g €G has a neighborhood in M embeddable in ]R3 (and (iii) then reads
M/G &M). Here's how this would go: By [64;Lemma (2.5)] it suffices

that given € >0 and é, neighborhood UCM of NG we find ‘a homeomorph-
ism h:M— M that shrinks all elements of G to a size less than €

and stays the identity off U.‘ By [47;Theorem 3 ] there are pairwise
disjoint cubes with handles Fl""’FkCU such that NGC Uil:l int Fi'

Let Wl,...,

Fk’ respectively. Restrict our attention to FlC Wl and let Cl =

NGn Fl' As far as Fl is concerned it suffices to find a homeomorph-

ism hl:M—* M that shrinks Cl

hl as the composition of two homeomorphisms fl,gl:M —~M. The first

one, T

WkCU be pairwise disjoint open neighborhoods of Fl" ces

and stays the identity off Wl' We get

:tM— M shrinks F. towards its l-dimensional spine so that

1 1
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fl(Fl) can be split up into adjacent 3-cell "chambers" of size <¢/2
( Figure (3.6)).Pull this chamber partition up in F,. It is now
clear that if gGG lies in at most two ad’Jacent chambers it will get
shrunk under fl to a size less than ¢/2 + ¢/2 = €. So it now remains
to make each g €G meet at most one wall of these "chambers". By

going to M/G and using the DLP (or the MSP) we can recover new walls

in FlCM as illustrated in Figure (3.T) on p..6_3.Pick any homeomorph-

ism gy of M which maps new walls on. the old ones and rests off Fl.

Finally, let hl= £18-

Figure 3.6.
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This proof will not work for Theorem (3.8). For, the best we can
say about G is that by [47 ;Theorem 3] it is definable by homotopy
cubes with hand'les‘. So if there are fake cubes, some of the chambers

in the partition of F above may fail to be 3-cells hence no homeo-

1
morphism g, cen be produced. A different approach is called for.

Proof of Theorem (3.8). The implications (iii) =»(i) and (iii) =

(ii) follow by Corollaries (3.2) and (3.7), respectively. We prove
(i) = (iii) and (ii) =>(iii) simultaneously. So assume M/G has ei-

ther the DLP or the MSP.

Assertion 1. If every g€G has a neighborhood in M embeddable in ]R3

then M/G &M,
As we have already observed above the proof from (44] will work
except that instead of [52 ;Theorem (2.1)] one should use an impro-

vement due to R.C.Lacher [40 ;Lemma A on p.506] ,
Assertion 2, If G, = { g€G |g has no neighborhood embeddable in
R } then W(Go) is locallj finite in M/G, where m:M—*>M/G is the
quotient map.

If M is orientable apply [35 ;Theorém 1] and if it is not apply
Theorem (2.1).
Assertion 3. For every gé€ G‘ and every neighborhood UCM of g there

is a hcmotopy 3-cell HCU such that gc<int H.

We may assume that U is G-saturated. By [47 ;Theorem 3], G is
definable by homotopy cubes with handles hence there is a homotopy

cube with handles HCU such that gcint H, By going further
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in the defining sequence for G we may_assume'that on some neighbor-
hood NCU of BH the restriction w|N:N — M/G is ah embeddiﬁg. The
idea of thé proof”is-to use the DLP or the MSP to cut the handles
of H along pairﬁise.disjoint compressing disks which miss g. We de-
tect such disks as follows. |

Assume first that M/G has the DLP. Let Cl and 02 be.disjoint
simple closed curves on éH such that they are null-homotopic in H
but not on 3H. By Dehn's lemma there exist embeddings.fl,fQ:(D,aD)
— (H,9H) such that £,(3D) = C;, i=1;2. By running a ribbon in
U-int H between slighﬁly expanded diskg fl(D) and fZ(D) we get an
embedding f:D — U such that for disjoint subdisks Dl,DéCZintD,
f|D; = f;, i=132 and f(D—(DlU D2))CU—H. Since by our choice w|N:
N — M/G is an embedding it follows that =f:D — n(U) is a Dehn
disk and that Z"f = z”flu Z“fe. Therefore EnfCZﬂ(intIi) so using
the DLP we can get an embedding F:D — nf(D)Uqn(int H) such that
F(3D) = nf(3D). Let qi:D — n(H) be the subdisks of F(D) bounded
by nfi( D), i=1;2. Note that ql(D)ﬂ q2(D) = @ so there exist dis-
Joint neighborhoods WiC1T(U) of qi(D). Let Vi = N-l(wi). By [40 ;
Lemma A on p.506 ], a4 lifts to a Dehn disk Q;:D — V. NH, i=1;2,
By Theorems (3.1) and (3.3) we can assume that Q is a locally PL
embedding. Since Vlr\V2 = ¢‘one of the’disksiQi(D) will miss g
hence by cuttiné'along it we get a homotopy cube with one handle
less, H*, which contains g in its interior. (See Figure (3.8).)
In continuing this process one must be careful to choose the new
pair of simple closed curves C*, C* away from the intersections of

2

NG with H*. That 1s because in doing the compressions we may have
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Figure 3.7.

cut

along D

Figure 3.8.
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hit some elements of HG— 81} s§ ﬁow aH*nNG may no longer be émpty.
Since axiy possible intersections lie inside fhe two copies of the
compressing disk 'on 3H*, we can alwayé push C:’L‘ and Cg off HGn JH*
if necessary. This way W :M—+M/G is an embedding <,_5n a neighbor-
hood of c;.f,‘i=1;2. (See Figure (3.9).)

If instead of the DLP we have the MSP for M/G the procedux;e is
similar. We do not need to introduce f for it suffices to consider
fi’ i=1;é. Use the MSP to separate the Dvehn'disks wfl, 1rf2:D —

n(H). The rest of the argument stays the same,.

We riow finish off the proof of the theorem, first for the case
when M = @, By Assertion 2, G = GoUGl where G, = G-G_ and the set
Tr(Go) is locally finite in M/G. Consider M = M/G, and let wo:M — Mo
be the corresponding quotient map. Since the elements of G are
cell-like, Mo is a generalized 3—manifold. Clearjy, S(Mo)C"o(Go)’
where S(Mo) is the singular set of Mo' Also, MQ satisfies | KF

by Proposition (1.10) since it is resolvable.

Assertion 1& For every péMo, g(Mo,p) = 0,

Ifp ¢ no(Go) then p & S(Mo) so the assertion is clear, Let
P NO(GO). By Assertion 2, there is a neighborhood UCM_ of p such
that Unwo(Go) ={pl}. Let V =TT;1(U). By Assertion 3, there is a

homotopy cube HCV such that n;l(p)CintH and 3HN( UV {g €G} ) =

@. Therefore, wo(aH) is a 2-sphere so ﬂo(H) is the desired neigh-
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torhood of P.
It now follows by Assertion 4 and Corollary (1.1k) that S(Mo) =

@ since dim S(Mo) < dim TTO(GO) <0, Thus M_ is a 3-manifold. Consider

G’l' = GlU ﬂb(Go) as a vdecomposit_ion of M. By Assertions 2 and 3,
the decomposition GI is cellular, closed O-dimensional, and upper

semicontinuous. Also, MO/GI :S(M/GO)/GI ’&M‘/G so MO/GI has the DLP

- (the MSP, respectively). By Assertion 1, Mo/GI is homeomorphic to
Mo so M/G is homgomorphic to Mo and thus is a 3-manifold. This com-
pletes the proof if 3M = @.

In the case when 3M # @ we consider the ciouble DM of M (i.e.,
we identify two copies of M along 3M using the ideni*;ity map) and
apply the preceeding arguments to the to the decomposition DG, the
double of G. The proofs of all assertions go through the same al-
though we are not claiming that in general, the hypothesis "™™/G
has the DLP/MSP" implies "DM/DG has the DLP/MSP". The point is that
we do n;)t need that much to prove Assertions 1l-L4, Of course, in our -
case it eventually turns out that DM/DG has the DLP and the MSP

since we prove that DM/DG is a 3-manifold. ¥¥

Theorem 3.9. Let X be a generalized 3-menifold with O-dimensional
singular set such that for every x€X, g(X,x) = 0, Then X has the

DLP and the MSP,

- Proof. We first prove the DLP. Let f:D —> X be a Dehn disk. We first
show that we may assume f£(3D)N S(X) = @. Indeed, by hypothesis there
is a neighborhood NCD of 3D such that SfﬂN = @, Thus N nf—l(S(X))

is O-dimensional so there is a PL simple closed curve JC N-f-l(S(X))
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such that J is ambient PL isotopic in N t§ 9D. Let ECD be the sub-
disk of D bounded by J and consider the Dehn disk £7 = flE:E-—+‘X.
If we can show how to find an embgdding F’:E—' f(E)YUU, where UcX
is ; neighborhood of I, = I_. such that F*(J) = f’kJ), then by

f f
defining F:D — X to be f on D-E and F” on E we get the desired em-

bedding.
So assume that f£(3D)NS(X) = @ and that £(3D)CcX-U. By
[12 ;Lemma 1] and by Theorem (3.3) we can find a collection Nl”"’

Nkc:X of pairwise disjoint compact generalized 3-manifold-with-

boundary neighborhoods of S(X)N £(D) such that:
(1) for each i, r’:i is a locally PL 2-sphere;
(2) Ens(x) = ¢;
(3) s(x)n (£(D)-U)c H,C X-(£(3D)VvU);

(4) s(x)nf(D)nUC HQCU;

Ni, H, =V k N., and H = H UH_. Then by (2),

where H 2~ Vi=ptl i 172

_y b
1Y

£(D)n HC M(X).

Here is an outline of the proof. First, we want to make £(D)
meet H "trensversely". But f may not be (even locally) PL so we

must improve it to be (locally) PL near H. We do this as follows:

close to H2 we use the Simplicial Approximation theorem while close
to ﬁl we use Theorem (3.3) in order to keep f an embedding in that

region. By applying general position in M(X) we can make f(D) meet
1 transversely and then we can either cut it off at él (by standard
"eut and paste" techniques) or "push" £(D)n ﬁl into M(X) (replacing
annuli of f(D)(\fll by "nicer" annuli in le\M(X)) while intersect-

ions of f(D) with ﬁe are dealt with in a different manner, again



68
making f(D) lie in M(X). Apply The.’orvem (3.1) to get an embedding
- F7:D — M(X) such that F’IabD = £|3D and F7(D)-U = £(D)-U, Finally,
| replace the portions which I.Il' cuts off F7(D) vy £(D)n Hl and thus
obtain the desired embedding F:D — X with F(D)c£(D)VU U and F(3D)
= f(ab). (See Figures (310, (3.11), and (3.12).)

Now the details. By [15 ;Theorém (h.8,3)], there exists a col-
lection Bl""’BkC int D of pairwise disjoint PL disks with héles
such that:

(5) for each i, f'l(ﬁi)c int B; 3
(6) Alcn-f'l(U);
(1) Ayt (U-s(x));

.k B.. Let A = AlU A2. Applying

= P
where A, . ui= i=p+l i

1 1
Theorem (3.3) to flAlel——' X and the Simplicial Approximation the-

B. and A, = U
i 2

orem to f|A2:A 1

5 — X we replace f by a map f.:D — X with the fol-

lowing properties:
(8) fl|intA is locally PL;
(9) fl|(D—int A) = fl(D-int A); 7

(10) sflc u.
Note that by (2), _fiCM(X) hence we can apply general position in

M(X) to get a map f2:D .~ X such that:

(11) £, is ambient isotopic (in X) to £3

(12) £, is in general position with respect to H;
(13) £, |(D-int &) = £ | (D-intA);

(14) s, cu.
P
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Case 1A:
1<i<p

A Step 7:

Step 1: Bing
: 1 going back

Step 2: 1 t Step 6:
' pushing

general

position

Step 3: 1 ¢
¢ glueing

“cut and paste”’

.

Step 4:
Theorem (3.1) and ‘’reparametrization’

Figure 3,10,
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Step 1: Bing 4 Step7:
1 i going back

Step 2: l t Step6:
general position ' pushing

Step 3: .
replacing annuli

- Step 4:
Theorem (3.1) and ‘‘reparametrization’’

Figure 3.11,



Case 2:
PHI<i<k

1 Step 1:
Simplicial approximation  theorem

1 Step 2: )
General position

1 Step 3: .
shrinking at N;

1 Step 4
Theorem (3.1)

Figure 3.12,
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Let i E.{l,...,p}. By (12) and (l'h‘), fé(D)f\l:Ii is a collection

' (1) (i) (i)

;b ;
(i)

which bound (in Ni) either disks D(l) or annuli A,"', respectively:

of pairwise disjoint PL simple closed curves J " 6r K

(15) fz(D)nl\'I.

co(1) (
; {Jl ?...,Jt

i 51

(1) (1) - (1),
D * ,51 ,...,Asi} ;

R S S GUNSRR AL
. 1

: (i)
(16) £,(D)NN, = {D,"",. 0, t

(17) for»ea.ch i,J: Jgi),g aDCi);

- (18) for each i,J: Lgi)U Kgi) =3A(i);

(1) (4) o (i) 4(3) _
b ﬂDq Dp (\Aq

(19) for each i,p,q: D

(i) . ,(1)
= A7 A = 0.
p M ¢
In order to get f£(D)nNn Ni inside M(X) we perform the following sur-
(i)
) )

gery: we replace every disk Dsl) (resp. annulus A by another

disk 5§1) (reép. annulus Kgi)) with the following properties:

(20) for each i,J: ﬁgi)c N, N M(X) and Jgi) =aﬁ§i);

(21) for each i,J: Kgi)c NinM(X) and Lgi)U K(i) =3K(i)

J
(22)for each i,p,q: ﬁl()i)ﬂ ﬁ((li) = 131()5')!'\ Kéi) = —I()i)-f\ Kéi) =@
( See Figure (3.13).)

Now let i € {p+l,...,k} . By (1), (2), (&), (6), (8), and (12)
we may assume that I‘.Ii-f'(D) # @ (for otherwise we may't'ake slightly
smaller Ni obtained by pushing Ni into int Ni along a collar CC
M(X)f\l\li on I(Ii ). Thus by shrinking out the disk I\'Ii-{pi}, where p].; ,
éﬁli-f(D) is an arbitrary point, we may assume that f(D)nl;Ii is
Just a point, (See Figure (3.1 ).)

By performing the replacements described in thé preceeding two

paragraphs we obtain a map f3:D — X with the following properties:

(23) f2(D)ﬂ N, can be recovered from f3(D) by replacing each
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(il il i
iy

Figure 3.13
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(i) (1),
{1 (resp. At
l""_’xk}’ wherg xieﬁi’ p+l ii <k;

5§i)'(or Kgi)) by D resp. A

(2k) f3(D)r\H2 = {xP+
(25) f3(D)c:M(x);

(26) s, CcU;

I3

(27) f3 is a Dehn disk (not nece;sarily PL);
(28) £,(D-int A) € £,(D) U U; |

(29) f3|aD = falaD;

(30) f3(D-(H vu)) = fz(D-(HUU));
because (23) follows by (20) and (21); (24)-(26) by (1k4)-(22); (28)
by (13)-(21), and (?8)—(30) follow by the construction of f3.

By (25) we can apply Theorem (3.1) to get an embedding Fl:D — X

such thét:

(31) F,(D)-U = £,(D)-U;

(32) FllaD = £, | .

Next, replace the disks ﬁgl) (resp. annuli’ﬂgl)) by the disks D

(1)
) J
(resp. annuli Kgl)). Since whenever F and f3 agree they agree (in
general) only pointwisely, we must do some "reparametrization" (in
a similar way as it was done in the proof of Theorem (3.1)). For
‘each i,§, let ﬁgl) = le(ﬁgl)) and Kgl) = F;l(ﬂsl)). By (26), (28),

and (31), there exist PL homeomorphisms uij’vij:D — D such that

the diagrams

~1) Rl ) +() | (i)
D,j > DJ | AJ -> AJ
Ny 5l N 8l
f-l(ﬁgi)) f;"@ﬁ”)

3

commute.
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»

Define Fé:D —X by

feui'j(x)‘ ; xéfgl(ﬁgi)) for somé»ii,J

x) = fzvij(x) ; xef;l(}'igi)) for some i,J
Fl(x) ; otherwise,
Then by (26)-(32), we have the following propefties fof F,
(33) sFé = 9
- (34) F (D) ce (D) U U
(35) F,(D)-U = £,(D)-U;
(36) 'lean = £ loD.
By (11) there is an embient isotopy Kt:'XxI —X from £, to f;. Let
F3 = K.LF2' Then by (33)-(36) we have that: |
(37) SF3 = ¢;
(38) F3(D)Cfl(_D)UU;
(39) F4(D)-U = £, (D)-U;
(k0) FlaD = £|aD.

- Let gi:D — D be a homeomorphism that makes the diagram

-1 3]
Fq (fl(Bi)) > F3(D)

commute for each i€{1,...,p}. By (9), the map F:D — X given by
fgi(x) ; x€B, for some 1< i< p
F(x) = .
F3(x) ; otherwise
is well-defined. By (37)-(40) we have that Sp = @, F(D)cf(D)vU
(in fact, we have more -- F(D)-U = £(D)-U), and F|3D = £|3D. This

completes the proof that X has the DLP,
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We now prove that X has the MSP, too. Let fl,...,fk:D — X be

Dehn disks, UCX a neighborhood of _Ui}:l fi(D), and suppose that if
i ‘# J then fi(avlv).)f\ fJ(D) = @, As before, we may assume: that for
each i, fi(an)n S(X) = @. Since X was already shown to have the DLP
we may also assume that all fi's are embeddings. Cover S(X)N
(Ui}_fl fi(D)) by a collection of pairwise disjoint generalized 3-
manifolds with boundary Nl,...-,NtCU such that for each i, I:Ii is a

locally PL 2-sphere and I:Ii/\S(X) =@ ((12;Lemma 1] and Theorem
(3.3)). We may also make Ni's small enough as to be sure that for
no J is f‘J(aD)f'\Ni # @, Let P = Ui:l-ﬁi' As before, we can apply
Theorem (3.3) close to P in order to make P meet each 'fJ(D) trans-
versely. Then we can cut each fj(D) off at P (working within M(X)NU
#all the time) and thus get a new Dehn disk f3:D — X with fS{aD =
fj |aD. Since f3(D)C M(X) we can apply Corollary (3.7) to get f3's
disjoint and yet still inside U and keeping their boundaries fixed.
*%

Since f, and f{ agree on the boundary, this completes the proof. ¥¥

J J

Theorem 3.10. Let C be the class of all compact generalized 3-mani-

folds X with dimS(X)<0 and let C,C C be the subclass of all X €C
which have < 1 singularity and are also homotopy equivalent to
83. Then the following statements are equivalent:

(i) Poinéaré conjecture in dimension three is true;

(i1) If X€C has the DLP or the MSP then S(X) = @;

(iii) If xego has the DLP or the MSP then S(X) = 0.

Proof, (i) =p (ii): If Poincarf conjecture is true then X has a con-

servative resolution f£:M — X by Theorem (1.6). Let G ={ f-l(x) |x€X},
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be the associated cell-like, closediofdimensional upper semicon-
ﬁinuous decomposition of M, It follows by Theorem (3.8) that S(X)
= 9. |

(1i) = (iii): Clear.

(iii) = (i): Suppose the Poincaré conjecture is false,
C§nsider the construction W‘3 from Proposition (1.12). Then Wégo,
On the other hand, W has the DLP and the MSP since g(W,x) = 0

for all x €W, by Theorem (3.9). Contradiction, since S(W) # @. ¥

3. Isolated Singularities

In this section we give an application of the DLP (MSP) to
studying isolated singularities in generalized 3-manifolds. The
proof is an application of Thickstun's extension of the Loop the-

orem (Theorem (1.15)) for compact generalized 3-manifolds with O-

dimensional singular set,

Theorem 3.11. Let X be a generalized 3-manifold satisfying KF and

suppose that X has the DLP or the -MSP (in fact, it suffices to as-

sume the MSP only for pairs of Dehn disks)..Then X has no isolated
singularities.

Remarks. If Poincaré conjecture is true this follows by Theorem
(3.10),provided dim S(X) <0 and that a "complete" MSP is assumed.
Suppose now that fake cubes exist, Then one cannot drop any of the
hypotheses from Theorem (3.11): the example of M.G.Brin [9] (or
the example of Brin and D.R.McMillan,Jr.[12]) has S(X) ={#} and sa-
tisfies KF; on the other hand the example W from Proposition (1.12)

has S(W) ={%} and also the DLP and the MSP by Theorem (3.9).
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Corollary 3,12. Let M be an open 3-manifold with finitely many ends

and M its Freudenthal comﬁactification‘ Then the.following state-
ments are equivalent:

(i) ﬁ is a 3-manifold;

(ii) M is an rc? Z -homology 3-manifold, satisfies KF and

has either the DLP or the MSP,

Proof. (i) = (ii): Follows by Corollaries (3.2) and (3.7) and by
Kneser's Finiteness theorem,

(i1) = (i): M is clearly finite-dimensional hence it is an
ENR‘as soon as it is LC ® at the points pl,...;pt of compactifica-
tions (assume that M has t ends). Since for each i, M is always
0-LC at p; and since M deforms onto a Freudenthal compactification
of a locally finite 2-dimensional polyhedron with t ends, it suffi-

ces to show that M is LC2 at each ;. The assertion now follows by

Theorem (3.11). :;

Proof of Theorem (3.11).Here is the idea of the proof: by Corollary

(1.14) it suffices to show that every point p€ X which has a neigh-
borhood UCX such that ﬁnS(X)c{p}, satisfies the condition that
g(X,p) = 0, This is done using standard disk-trading technigues
from 3-manifolds topology except that instead of the classical Loop-
theorem we must invoke Theorem (1.15) and the classical Dehn lemma
is replaced here by the DLP (resé. MSP) combined with Theorem (3.3).
The latter is done as follows: whenever we want to perform a cut
along a compressing disk D which hits p we may use the DLP (or the

MSP) on two "close" copies of D to make one of them miss p so that
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the cut can be perférmed in M(X).

ﬁow the details. Let p€X and let UCX'be an open neighborhood
of p such that U ns(X)c{p}. By [12 ;Lemma 1] there is a compact
orief;table-connected generalized 3-manifold NcU with boundary a
compact orientable 2-manifold such that p€ int N. Since X is an
ENR it is locally contractible [7 ;’.[fheofém (vV,103)] so we may
assume that N is null-homotopic in'U. Let ¢ = L 20 (n+l)2g(n)
where g(n) is the number of components of N with genus n [47;p.130].
Choose N so that c is minimal. We shall show that ¢ = 0. So suppose
that ¢ >0. Then there is a boundary componezit CcN with positjive ge-
nus ;C is & 2-sphere with k >0 handles since N is orientable. Let
L:E)B2 —+.C be an essential simple closed curve. By our choice qf N
the inclusion-induced homcmerphism Hl(l\.l) — Hl(U) is trivial hence
there is an extension f:B2 —» U of L over B2. Using methods similar
to those employed in the proof of Theorem (3.9) we can assume that
f is locally PL near C and that it is in general position with res-
pect to C, because CCM(X). Thus we may assume f-l(C) is a finite
collectionvof pairwise disjoint PL simple closed curves in B}2, one
of them being 3B2. Let Jcint B2 be an innermosf such curve and let

ECf(’,Ba) be the (sirigular) subdisk bounded by f£(J). There are three
"possibilities,

. Case 1. f(j) is inessential on C, Then f(J) bounds a (sin-
.gular) disk E“C C. Exchanging E with E” we can go to the next in-
nermost curve.

Case 2, f(J) is essential on'C and ECU-int N. Since U-int N

€ M(X) we can use Dehn's lemma to attach a 2-handle to N after we
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have made E locally PL by Theofem (3.3). This reduces ¢ which, in
- turn, contradicts the minimality of c. Hence this case ‘cannot occur.
Case 3. F(J) is essential on C and ECN, By Theorem (1.15),

£(J) cah be replaced by & simple closed curve J°CC such that J” is
nontrivial on C buﬁ bounds a Dehn disk in N, Let RCC be a regular
neighborhood of J” in C and let Jl'and J2 be two simple closed cur-
ves boundary components of R, Then Ji bounds a Dehn disk Di in N
for each i = 1;2, Assume first, that X has the MSP, Then we can get
Dl and D2 disjoint in N -- denote them by DI and Dg, respectively.
Thus one of them will miss p, say p € D¥. By Theorem (3.3) we can
make D{ locally PL -- denote it by D{*. Then by cutting N along DI*
we reduce the complexity ¢ which, in turn, again contradicts its
minimality. Hence this case cannot occur either. (See Figure (3.15).)
If instead of the MSP we have the DLP the argument is similar --
Join the Dehn disks Dl and D2 by a ribbon in U-int N to get a Dehn
disk D. Apply the DLP to get an embedded disk D* such that D*-int N
= D-int N and that 3D* = 3D, This replaces Dl-and D2 by embedded
disjoint subdisks D¥, bgc:D*r\N so one of them, say DI, misses p.
The rest of the argument is now as before: apply Theorem (3.3) and
cut N along D{* to reduce the complexity c.

We conclude that indeed ¢ = 0 hence g(N,p) = 0. Since N satis-

fies KF and since S(N)c {p} it follows by Corollary (1.14) that

N is a 3-manifold. In particular, p €M(X). %*
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Figure 3.15.

Remark, Suppose that X is a compact generalized 3-manifold with
dim S(X) < 0, satisfying KF and having the DLP or the MSP. If s(Xx)
0 then X has the following properﬁies;
(i) X admits no resolution ([14 ;Theorem 1 ] and Theorem
(3.8));
(ii).S(X) is wildly embedded in X (Proposition (1.13) and

Corollary (1.14));

(iii) S(X) has no isolated points (Theorem (3.11)).



IV. GENERALIZED 3-MANIFOLDS WITH BOUNDARY

Little investigation has been done concerning generélized mani-
folds with boundary. In this chapter we present some results which .
are most of the time'analogues-of those known for generalized mani-
folds.

Let R be a PID and consider an R-homology n-manifold X with
boundary., We first observe that X need not be an ﬁ-homélogy (n-1)-
manifold (as it would be the case with topological manifolds with |
boundary). A simple example is the interior of any n-manifold with
boundary together with just one point of its boundary (n>1). It
may also happen that X is an R-homology (n-l)-mgnifold with boun-

dary. The next proposition gives a criterion for determing the

boundary points of X

Proposition 4.1. Let X be an ANR and an R-homology n-manifold with

boundary, R a PID. Suppose that p€X and that H,(X-{p}R) % H,(X;R).
Then p € (X) .
Proof. We supress the coefficients., Consider the homology sequence

of the triple (X,X,%-{p}) over R;

iy . I .. A . e 1y iy
ves .__.,Hq+l(X,X- o} _._>Hq+l(X,X) —-qu(X,X- ®}h ——»Hq(X,X-—tp}) —
Ju

——n Hq(X,)'() —_—e e

Since H*()'()_&__H*(f(- fp ) it follows by [59 ;Lemma 6 on p.202] that

83
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H*(Xak-{P})iiﬂ*(X;k). Hence im A, # 0 = keri, so H*(i,k-{p}) X

ker J,= O thus by Lemma (1.4), p €(X) . 1%

By Corollary (1.9) true generalized 3-manifolds with boundary.

cannot have a PL structure. The next result is from [59 ;p.277)

Proposition 4.2, Let X be a PL R-homology n-menifold with boundary,

R a PID. Let K be a triangulation of X. Then X is a subpolyhedron
of X;‘Kl= X, K is a pseudo n-manifold with boundary and Lefshetz

duality holds, i.e., H*(X,)’{;R);Hn_*(i) and H,(X,X;R)XH T (X). 3%

It is not difficult to manufacture examples of generalized

manifolds with boundary as the next proposition shows:

Provosition 4.3. Let X be a compact generalized n-manifold with

S(X) cZ, where ZCX is a closed, O-dimensional set. Then there exi-
sts an n-cell BCX for which ZC?dB, S(Y) = Z, and Y is a compact

generalized n-manifold with boundary, where Y = X-int B.

Proof. Let BOCZX-Z be any tamely émbedded n-cell. We get B from Bo

by pushing out from B, wildly embedded (in X) "feelers" towards the

points of Z. ¥}
Example L. L, Let X = 53 and B = thickened one half of the Fox-Artin
wild arc [26 ;Example (3.1)] . Then S(Y) = {p }= the wild point of
the arc. (See Figure (L.1).) |

Lemma h.z. Let X and Y be generalized n-manifolds with boundary and

suppose that there exists a homeomorphism n:X — Y. Then X ké Y is

a generalized n-manifold.
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Fig‘lre hvl'

Proof of Lemma (4.5). Since X is an ENR so is X Uh Y by [7 ;Theorem

(IV.6.1)]. It therefore suffices to show that X Y Y is a Z-homolo-
gy n-manifold. The argument we give below is valid over any PID R,
We shall supress the coefficients. Consider the Mayer-Vietoris se-
quence for the pairs (X,X-{p}) and (Y,Y-{h(p)}). (By the Excision
theorem it suffices to consider only the case when pé}'(, cf. also
Lemma (1.4).):

‘or—s Hq(x,x-{p})@Hq(Y,Y'-{h(p’)})“_, B (XY Y,y N-{p}) —

H (k-0 — B (,X-pH@H ) (Y,Y-{n(p) D) —sr ...

Since p€X and h(p)€Y it follows by Lemma (1.4) that H,(X,X-{p})

0 2H,(Y,Y-{h(p)}). Alsc, X is a generalized (n—l);manifold hence:
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b Y,(X h Y)—{p})gﬁé_l(}'(,}.(—{p})'—\‘—-:ﬁlif q=n and %0 if q # n.

The assertion now follows by Lemma (1.4). %}

H (X
q¢

We now turn to dimension three, First, we prove an analogue of
the Finiteness theorem of J.L.Bryant and R.C.Lacher (Proposition

(1.10)): Propositions (%.6) and (4.8).

Proposition 4.6, For every compact generalized 3-manifold with boun-

dary X there is an integer ko such'that among any k°+l pairwise dis-

Joint Z, <homology 3-cells in X at least one is contractible,
Proof. By Lemma (L4.5) the double DX of X is a generalized 3-manifold
so there exists the Bryant-Lacher number n for DX (Proposition
- 1 * %

(1.10)). Let k_ (3ot £

Let X be a generalized n-manifold with boundary. We say that X
has a resolution if there is a pair (M,f) where M is an n-manifold
with boundary and f:M — X is a proper cell-like onto map such that

£(aM) C X.

Lemma L4.7. Suppose that X is a generalized n-manifold with boundary.

If X has a resolution then X has a conservative resolution.

Proof. Apply’Theorem (1.6) to i.(Note that the hypothesis concern-
ing the Poincaré conjecture is necessary only for the existence of

a resolution in dimension three.). ¥

Proposition 4.8. Let X be a compact generalized 3-manifold with

boundary. Suppose that X has a resolution. Then there exists an in-
teger k_ such that among any k +1 pairwise disjoint Z, ~homology

3-cells there is at least one genuine 3-cell.
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Proof. Let k. be the Kneser number of M [32 ;Lemma (3.1L4)] and k2

1
the number determined for X by Proposition (h‘.6). Let k= k,tk,
and consider an arbitrary (k°+l)—tuple Fl,..'. »Fye s CX of pairwise
disjoint 222 -homology 3-cells. By p,ushinfg_ each F: into int Fi along
a collar on 3F, we ma.ﬂr assume that each F, lies in M(X)nk. The as-
sertion now ‘fo_llows by Propositio'n (4.6), Lemma (L4.7),and Kneser

Finiteness in M. X%

Proposition 4.9. Suppose that X is a compact generalized n-manifold

with boundary. If n = 3 assume that dim S(X)<0 and that the Poinca-

r€ conjecture in this dimension is true. Then X has a resolution.

Proof. Let Y = X + C, .where C = Xx1 is & collar on X. By the argu-
ments employed in the proof of Lemma (4.5) and by [7 ;Theorem
(Iv.6.1)], Y is a generalized n-manifold with boundary. Also, S(Y)
cS(X). That Y resolves now follows by [62;Main Theorem] if n=3, by
[56 ;Theorem (2.6.1)] if n=k, and by [55 ;Theorem (l.vl)] if n>5.

(If n<2.5(X) = ¢ by [68;Theorens (IX.1.2) and (IX.2.3)].) So there
is a proper cell-like surjection £:(M,M) —— (Y,Y) from ann-manifold
with boundary. Let g?Y ——+X be the collapse of Y onto X along the
fivers {x} *I (x€X) of the collar C. Then g is clearly cell-like

so by [40;p.511], gf:(M,BM)—-’-*(X,).C) is a resolution of X. X%

Remark., Suppose that the Poincar€ conjecture is false. Let X* be the
example described in Proposition (1.11) and let BCX* be a nicely
embedded PL 3-cell in X* sﬁch that the limit point p lies on 3B. Let
X & X*-int B, (See Figure (4.2).) Then X is a compact generalized

3-manifold with boundary, P €X, S(X) ={p} , and X doesn't admit a
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Figure L.2.

resolution, by (L4.8). This example together with (4.9) yields:

Corollary U4.10, Let C be the class of all compact generalizéd 3-mani-

folds with boundary such that dimS(X) <0 and let €, €C be the sub-
class of all X€C such that S(X)C » and X is a homotopy 3-cell. Then
the following statements are equivalent:

(i) Poincaré conjecture in dimension thre.e is true;

(i1) If X€C then X has ‘a resolution;

(iii) If X€C then X has a resolution. ool
ﬂ

Let X be a compact generalized 3-manifold with boundary and sup-
pose that the double DX of X is a 3-manifold. Then X need not be a

3-manifold: e,g., R.H.Bing proved that the double of the Alexander
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solid horned sphere yields 83 [4] . But we can prove something:

Proposition h.ll, LetuX be a compact generalized 3-manifold with
beundary such that DX is a 3-manifold. Then X has no isolafed sin-

' éularities.

- Proof. Since ﬁ is a closed surface in a closed 3-manifold DX it fol-
lows by a results due to 0.G.Harrold and E.E.Moise [31] that X
can be wild et each point at most from one side in DX, But in DX

the two sides are "symmetric". Hence XCcDX is 1-ICC.so tke assertion

now follows by Proposition (1.13) and Theorem (3.9). ¥

The following is a generalization to generalized 3-manifolds

with boundary of a results due to Bryant and Lacher [14;Theorem k4] :

Proposition 4.12. Let X be a compact generalized 3-manifold with

boundary and suppose that S(X)C Z, where ZcX is a closed, O-dimen-

sional set in X, 2 is 1-LCC in X. Then X is a 3-manifold if and

only if it has the KF.

Proof. The "if" direction is Kneser finiteness theorem. So assume
now that X has the KF. Cover Z with pairwise disjoint 2-cells in X
(note, that by [14 ;Theorem 4] we may assume that s(x)CX) so that
the boundaries of these 2-cells lie in M(X). Because of the 1-LCC
condition these boundaries bound some Dehn disks in X hence real PL
disks (apply Dehn's lemma in M(X)). The methods of the proof of

Theorem L4 in [14] now yield the desired conclusion, :3
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| Proposition 4.12. Let X be a generalized n-manifold with boundary

and Y = X+C, where C is a collar on X. Suppose that Y is an n-mani-

fold with boundary. Then the double DX of X is also an n-manifold.

Proof. Let G be the decomposition of DY, the double of Y, into

points and fibers of the two adjacent copies of the collar C. Then
.G is a shrinkable, cell-like upper semicontinuous decomposition. By
hypothesis, DY is an p-ma.nifold so by Theorem (1.3), DY% DY/G. Since

DX% DY/G, the assertion follows. %}



V. EPILOGUE

.In the last chapter we review some open problems which are rela-
ted to results vpresehted in the 'dis_serta.tion. First, we consider the
resolution problem fo?c 222 —homélogy 3-manifolds., Theorgm (2.;T) im-
plies (so does already [14 ;Theorem 3] ) that a locally simply con-

nected Z, -acyclic inia.ge X of a 3-manifold M is a generalized 3Fman—

2
ifold. R.J.Daverman and J.J.Walsh [20] constructed an example of
an upper semicontinuous decomposition G of 83 with the following
properties: |
(i) each g€G is strongly Z -acyclic but not cell-like;

(ii) S3/G is a Z -homology 3-manifold;

(iii) §3/G is 1™ (Z) 3

(iv) 83/G is not an ANR.

Note, that H, = G. By Theorem (2.7), (i) implies that S3/G is not

G
even 1-LC, since if it were 1-LC on Just an open set UC 83/G then
almost all g €G which are mapped into U would have to be cell-like.
Thus one cannot drop the 1-LC condition from Theorem (2.T). However,
one can try to weaken the hypothesis on M: let's assume that M i.s
only a éenera.lizéd 3-manifold. By Proposition (1,1), X is still a
Zé-homclogy 3-manifold. What is not clear is whether X is also a
7Z -homology 3-manifold, 1.e, is every ENR which is a Zz -homology

3-manifold necessarily also a Z -homelegy 3-manifold [42]2

91
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If instead of ZZ2 we have va,p a.ny-odq prime, then the ansver
to this question is negative. For, let X be the suspension of the
projective plane, X = ZP2. Then X is locally contractible and since
it's a finite dimensional simplicial complex it follows vy . [7;.
Theorem (V.10.3)] that X is an ENR. Next, we show that X is a %p—
homology 3-manifold. We shall supress the coeffiéients Zp « By Lem-
ma (1.4) and by the Excision theorem it suffices to éhow that
Hq(zpz,zP?'-{ai});zap ifq=3end %0if q# 3, where a ,8,€ £p?
are the suspension points. From the Mayer-Vietoris sequence for the
triple (ZP2,£P2—{8.1},2P2—{8.2}) we have that gq+l(2P2)“='Hq(P2) for
every q . From the homology sequence of the pair (ZPZ,ZPQ-{ai}) we

2,£P2'—{ai}) for all q >0 hence we can con-

L")
have that H (}:Pz)}___ﬁ (zP

q q
clude that Hq(ZPz,ZPQ—{ai}) ;ﬁq_l(Pe) for all q. Since p was an odd
prime, the assertion follows. Now, the only two singularities are
& and 8y Since each has an open cone neighborhood in X it follews
by Proposition (1.8) that X can't be a generalized 3-manifold hence
not a Z -homology 3-manifold. Note that this particular example
doesn't work for p = 2 since H2(£P2,ZP2-{ai};ZQ) N zzz# 0. In fact,

we can prove the following more general observation:

Proposition 5.1. Let X be the suspension of a closed surface and

suppose that X is a Zz -homology 3-manifold, Then X is a 3-manifold.

Proof. Clearly, X is an ENR, By the Excision theorem it has the lo-

cal Z~-homology of ]R3 everywhere except maybe at the suspensibn

points a, and 8ye By hypothesis X is a 22 -homology 3-manifold so

1
n
by Lemma (1.4), H*(X,X—{ai};Zz) ’_\'__H*(S3;Zz) hence by the Universal
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. . R oy
Coefficients theorem H*(X,X-—{ai};ﬂ.); H*(Ss;ZZ). Thus X is a general-
'ized 3~-manifold so by Proposition (1.8), a € M(X), i=1;2. This pro-

ves that .S(X) = #. ¥

We remark here that a negative answer to Lacher's questioq qou-
ted above would &ieldvan example of a Z2- homology 3-manifold that
is not a Z, -acyclic imege of any 3-menifold. For if it were then
by Theorem (2.7), X would be a generalized 3-manifold. Therefore
such a negative example would yield a counterexample to the reso-
lutioﬁ conjecture for ZQ- homology 3-manifolds.

Next, we wish to state two problems concerning the DLP and the
MSP. Let X be a compact generalized 3-manifold with dim S(X)<0 and
satisfying the KF. By Theorem (1.16) there is a compact generalized
3-manifold Y and a cell-like map f from Y onto X. Also, dim s(y)=o,

g(Y,y) = 0 for all y€Y, and all singularities of ¥ are "soft" (in

the sense of Proposition (1.13)).

Question 5.2. Let f:Y — X be as above and suppose that X has either

the DLP or the MSP, Does Y satisfy the KF?

If the answer is "yes" then first, by Corollary’v>(l.13), Y is a 3-
manifold so it X has a resolution and is thus, by Theorem‘ (3.8),it-
self a 3-manifold, This would answer in the affirmative the next
question, which tries to disentangle the Poincaré conjecture fx;om

Theorem (3.10) (as Theorem (1.16) does with the n = 3 case of Theo-

rem (1.6)):

Question 5.3, Suppose that X is a compact generalized 3-manifold with

dim S(X)< 0, satisfying the KF, and with the DLP or the MSP. Is S(X) =§?
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Note, that by Theorem (3.8) it would suffice to only show that X

has a resolution.

We also wish to discuss some open problems concerning generalized

3-manifolds with boundary. The following obstruction arises at once:

Question 5.4. Let M be a’ ;:ompa.ct 3-menifold with boundary .and f:M

—~X & cell-like mapping onto an ANR X. Let DX = X UX/R, where R
is the equivalence relation on X xX given by: xRy &= f-l(x)(‘\ M=
f_l(y)n M#@ (x,y€X)., Is then ‘the a.és_oc’iated mapping Df:DM — DX
é.lsg .ceil-like?

If the answer is affirmative then we get an analogue of Proposition
(1.11):(i) = (ii). |

Provosition 5.5. Let X be a resolvable compact generalized 3-mani-

fold with boundary and suppose that dim S(X)<0. If the answer to

Question (5.4) is affirmative then M(X) embedds in some closed
3-manifold.
Proof. Let £:(M,3M) "'"*(X,}'() be a resolution of X. Then Df:DM—>DX

is a resolution of DX, by (5.4). It follows by Proposition (1.11)

that M(DX) embedds in the interior of some compact 3-manifold hence
so does M(X)c M(DX). ¥

Another useful consequence of a possible affirmative answer to

Question (5.4) would be the following analogue of Theorem (2.7):

Prorosition 5.6. Let X be a locally simply connected 22 -homology

3-manifold with boundary. Suppose that there exist a 3-manifold M

with boundary and a closed, monotone map £f:M—*X such that for
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every xéX-Z, ﬁl(f-l(x);Zé) = 0, where ZcX is some O-dimensional
set. If the aﬁswer,to Question (5.4) is affirmative then X has a re-

solution.

Proof. Let Y = X+C; where C is a cdllar on X. Then Y is a general-
ized 3-manifold with boundary,.Y is 1-LC, and S(‘Y)C S(X). Assuming
that (5.4) is true we can extend f over N = M+b, where D is a col-
lar on M, fiberwise to get a map g:N —-Y satisfying the hypotheses
we reqﬁired initially for M,X, and f. By similar methods as those
applied’in the proof of Theorem (2.T) one can now show that Y has

a resolution hl:P -y, Let h2:Y —»X be the collapse of C onto X

(along the fibers of C). Then h = hzhl:P —»X is a resolution of

X. (See Figure (5.1).) i

Figure 5,1.
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Question 5.7. Let X be a compact generalized 3-manifold with boﬁndary

end suppose that dim S(X)<0. Are the following statements equivalent:

(i) X embeds in the interior of a compact 3-manifod with
bouhdary;

(ii) X plus a collar on X is a 3-manifold with boundary{

Question 5 8. Let X be a compact generalized 3-mahifold with boundary

and suppose that dim S(X)<0., Suppose also that M(X) embeds in the in-

terior of a compaﬂt 3-man1fold with boundary. Does then X have a re-

solution?

Example 5.9. Let X be a compact generalized n-manifold with boundary
and let Y be X plus a collar C on X. Suppose that Y is an n-manifold

with boundary. Then

(i) s(X)cX

(ii) X has a resolution (Jjust collapse Y onto X along the fi-

bers of C).

The converse need not be true. E.g., let A be a noncellular arc
with one wild point 7 ACB", An@" = {p} [26] . Then X = E"/A is
a compact generalized n-manifold with boundary and satisfies both
properties (i) and (ii). If Y = X+C were an n-manifold with boundary
then A would necessary have to be'cellular.One can thus only con-
clﬁde that Y is a compact generalized n-manifold with boundary,

s(Y)cs(X), and that Y resolves if and only if X has a resolution.

(See Figure (5.2) on p.97.)
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Question 5.10, Suppose that X is a resolvable generalized n-manifold

with boundary. Does X have a conservative resolution?

Question 5.11, Suppose that X is a compact generalized 3-manifold

with boundary and that there is a proper cell-like onto map £¢(M,3M)
—> (X,X) from a compact 3-manifold M with boundary onto X. Suppose
furthermore that flaM:aMf“*+k is proper and cell-like, f-l(k).= oM,

and that S(X)c:i. Is then X a 3-manifold with boundary?

Question 5.12. Let X be a generalized 3-manifold with boundary with

dim S(X)< 0 and satisfying the KF. Assume that X has either the DLP

or the MSP. Is then X resolvable? If "yes", is then X a 3-manifold

with boundary?
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_For resolvsble compact generalized 3-manifolds X with dim 5(X)<0
the properties DLP and MSP were equivalent, by Theorem (3.8). Let

DDP I and DDP II-be Starbird's disjoint disks properties [60] .

Question 5.13. Let G be a cell-like O0~-dimensional upper semiconti-

nuous decomposition of a 3-manifold M. What implications exist be-
tween thé following statements:
(i) M/G has the DLP;
(ii) M/G has the MSP;
(iii) M/G has the DDP I;
(iv) M/G has the DDP II;

(v) M/G is a 3-manifold.

Throughout the dissertation we have been dealing mostly with ge-
neralized manifolds with small singulaf sets, It has been known for
many years that, e.g. in dimension three examples exist where S(X)
is the whole space X (such an example is due to K.W.Kwun [37]). No
results are available concerning resolutions of generalized 3-mani-

folds X with dim S(X)>1. except [14 ;Theorem 1].

Question 5.1h4, Let X be a compact generalized 3-menifold with dim

S(X) = 1. Suppose that M(X) embedds in the interior of a compact 3-

manifold with boundary. Does X have a resolution?

Question 5.15. Let X be a compact generalized 3-manifold satisfying

the KF and with S(X)c A, where ACX is a locally homotopically un-

knotted arc in X. Is X a 3-manifold?
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APPENDIX: REGULAR NEIGHBORHOODS OF COMPACT POLYHEDRA

IN 3-MANIFOQLDS

Strong péripheral l-acyclicity is a homology version of McMil-

lan's cellularity criterion (CC) [46]while weak peripheral l-acy-

clicity is a homology version of  his weak cellularity crite-

rion (WCC) [46]). It is therefore interesting to observe that by
Theorem (2.9) the two acyclicities are equivalent over ZZ2 while

CC is clearly a stronger property than WCC (Just consider any non-

1 2 1

cellular arc in S°). The example M = s2xs , K=8%v s from [39]

shows that WCC is not a topological property o‘f K (i.e., it may
depend on the embedding, as might CC). Same example' confirms this
for peripheral acyclicities (p.ltl). On the other hand we proved in
Theorem (2.11) that the peripheral l-acyclicities do not depend on
the embgdding (if K is compact and M is a 3-manifold) provided
dimK £ 1. This is an a.ﬁa.logue of the result of Lacher [39] to the
effect that if K is a codimension >2 compact subset of a PL n-mani-
fold M, n # 4, then WCC is equivalent to the 1-UV property and thus
independent of embedding [39 ;p.499] . In [39] Lacher asked the
follc-wing (to our knowledge still open) question: Suppose that f is
an embedding of a compa.c‘cj set K into an n-manifold N, homotopic to
the inclusion KcN. If KCN has WCC does f(K)C N have the same pro-
perty? In this appendix we answer in the affirmative Lacher's quest-

ion for PL embeddings of polyhedrain 3-manifolds. .
105.
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Theorem A.l. Suppose that f:K—+ M is a PL embedding of a compact
polyhedron in the interior of a 3-manifold. Suppose that f is homo-
topic to the inclusion KCM and that KCM has WCC (resp. is peri-
pherally l-acyclic over Z, ). Then .f(K)CM has WCC (resp. is peri-

pherally l-acyclic over Ez).

l,f2:K — intM be homotopic PL embeddings of a com-

pact polyhedron K in a PL m-manifold M. Let Nic int M be a regular.

Lemma A.2. Let

neighborhood of fi(K), in M. Then x(a‘Nl) = x(3N,).

Proof. Let r # 0 be any even natural number satisfying r> 2k-m+3,
where k = dimK and m = dimM. Choose a triangulation of MX ]Rr con-
sistent with the one on M and define PL embeddings Fi:K — M X R by
Fi = fi x0, i=13;2. Since fi's a.fe homotopic there is a homotopy H:
KxI — MxR from F, to F,. Define a map H¥:/KxI —~MxR xI by
H*(x,t) = (Ht(x),t) for each (x,t)€KxI., By [72]we may assume that

H* is PL. Since 2k-m+2 <r, it follows that 2(k+1)-(m+r+l) < 2k+2-m-
(2k-m+2)-1 = -1 <0, so by general position [57;Theorem (5.4)]1 we
may assume that H* is a PL embedding hence a conc.orda.nce- [34;p.128] .
Now; (m+r)-3 >m+(2k-m+3)-3 = 2k> k, so by [34 ;Corollary (1.4)], Fy

and F. are ambient PL isotopic. Let N¥ = N.x Br_, i=1;2. Then by
i i

2
[57 ;Corollary (3.29)], N;..’ is a regular neighborhood of Fi(K).in

: r » ; » : * 2 * IN¥ =
M xR , so Nl g N2 . In particular, BNl T, 8N2. Now, _Ni

r r-1 . s

(aNix B") U(aNix Sr—l) (Nix S'™") thus the Euler characteristic of
* dc-
aNi is:

1 1

) )

* x RY x o~ - r-
x(on¥) x (3N, B)+x(Ni S x (3N, x §

L(3%,) + x(N) x (877) - Xy )x (877 = x (o)
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where the second‘ equality follows by the product fofmula for the Eu-
ler characteristic and the third equality by the fact that r is al-
ways even. hence X(Sr_l) = 0, Consequently, x(aNl) = x( aNI) =
x (aN8) = x(aN,). ¥}
Lemma A.3. Let K be a compact polyhedron in the interior. of a 3-man-
ifold M. Then the following statements are equivalent:

(i) K is weakly peripherally l-acyclic over 22 in M;

(ii) KCM has WCC;

‘(iii)' For every regular neighborhood NCM of K, 3N is a col-

lection of 2-spheres.

Proof. (i) = (iii) Let NCM be a regular neighborhood of a weakly
peripherally l-acyclic (over 222) compact polyhedron K. Then there
is a regular neighborhood N*cCint N of K such that the inclusion-
induced homomorphism H]_(N*—K;ZZ.2 ) — Hl(N;Zz) is trivial. Since
c4(N-N*) = 3N*x [0,1] and N*-K = IN* x [O.,l) = N* it follows that
every l-cycle in 3N* bounds (over 222 ) in N*, By Lemma (2.4), g(aN¥
= 0. By Lemma (2.3), 3N* is orientable hence 9N* is a collection of
2-spheres.

(iii) = (ii) Clear.

(11) = (i) Let VCUCM be neighborhoods of K such that the
inelusion i:V-K— U induces a zero homomorphism i o on fundamental
groups. Consider the following commutative diagram

| 1, (V-K) Y nw
i h l h'
i*

Hl(V—K;?ZQ) -~ Hl(U;ZZz)
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where h,h' are the Hurewicz eéimorphisms..Since iﬁé = 0 it follows
that i, = 0, too. %%

Proof of Theorem (A.1l).LetN C int M be a regular neighborhood of K

and N*cintM a reguiar neighborhood of f(K). By hypothesis and by
Lemma (1.2), 8N is orientable, and by Lemma (A.3), aN is a collec~
tion of 2-spheres. By Lemma (A.2) so is then 3N*. Another applica-

tion of Lemma (A.3) now yields the conclusion. ¥}

We continue with a result concerning pairs of polyhedra in 3-
manifolds. So let (K,L)be a compact polyhedral pair in the interior
of & 3-manifold M. By Theorem (2.9) and Lemma (A.3), the properties
"KcM has WCC", "KcM is strongly peripherally l-acyclic over ZZz" s
and "KCZM is weakly peripherally l-acyclic over 222" are equivalent.
In the next result "X has property P" will mean "X has any of these

three properties (hence all three)":

Theorem A.4. Suppose that K and L are of the same simple homotopy

type. Then K has property P if and only if L has property P.

Lemma A.5. Let N be a neighborhood of a compact polyhedron K<int M,
where M is a PL n-menifold. Then N is a regular neighborhood of K

if and only if N is a compact n-manifold with boundary and N is of

the same simple homotory type as K.

Proof. The only if part is well-known [57;Corollary (3.30)] . So we
prove the other implication. There is a sequence of expansions and
collapses (in M) that transform N into K. We may do the expansions
first [18 ;Exercise (4.D)] . It suffices to give the proof for the

case when there is just one expansion. Let N“DN be N after the ex-
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pansion and lef N*c int N be N pushed in int N along a collar on 3N
(keeping K fixed), Since N” collapses onto K, N is a régular
neighborhood of K in M [57 ;Corollary (3.30)] . Also, N” collapses
onto N* and N collapseé onto N* hence‘both N” and N are regular
neighborhoods of N* in M, It follows by the uniqueness theorem

[57 ;Theorem (3.24)] that there is an ambient PL isotopy of M
carrying N onto N” with support in M-N¥*, Hence N is a regular

neighborhood of K in M. (See Figure (A.1).)

Figure A.1,
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Proof of Theorem (A L), We only prove the necessity. The other im-

plication is proved similarily. Let (A,B) be a regular nelghborhood

£ (K,L) in M, By Lemma (A. 5), Ais a regular neighborhood of L and

thus homeomorphlc to B [57 ;Theorem (3. 2&)] . By Lemma (A.3), 3A is

a collection of 2-spheres hence so is 9B, The conclusion now follows
by another application of Lemma (A.3). **

In the second part of the appendix we wish to discuss a related
question concérning regular neighborhoods of homotop{cally PL embed-

ded_cdmpact polyhedra in 3-manifolds.

Question A.6. Let K be a compact polyhedron with H (K; z, ) = 0 and let

fl f2 :K — M be homotopic PL embeddings of K into a 3-manifold M. Let V

C M be a regular neighborhood of fi(K) in M (i=1,2). Is then Nl N.?

2

2R

Consider the following example: let M = 83, K = Slv ng Sl, and let fi

be the two standard PL embeddings --fl(K) has both Sl’s attached at the
same side of 82, while f2(K) has one st on each of the two sides of 82,
. . _ a2 .
Clearly, f e £, However, Nl* N, because 3Nl = 5° U (double torus) while
3N2 = (Slx Sl) U(Slx Sl). This example shows why condition on H2(K) is
necessary. It is known that Dunce hat {71) can be PL embedded in Sh in

such a manner that the boundary of the corresponding regular neighborhoed

is not even simply connected. Hence (A.6) has a negative answer in dim L.

Proposition A.T. Suppose the answer to Question (A.6) is affirmati-

ve. Then the following statements are'equivalent:

(i) The Poincaré conjecture in dimension three is true;

(ii) The spine of any homotopy 3-cell PL embeds in R
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Proof, (i) =?(i3i):This implication is independent of (A.6) and is
obvious.

(ii) =>(i):Suppose Kcint F is a spine of a homotopy 3-cell
F. Let BCintF be a nicely embe_dded‘3-cell. By hypothesis there is
a PL embedding f:K— int B. Let CCint B be aregular neighborhood
of £(K) in int B. Since F is contractible,.f is homotopic to the
inclusion K F. Also, F is a regular neighborhood of K [57 ;Corol-
lary (3.30)] . If the ahswer to Question (A.6) is affirmative then
F =C so C is a homotopy 3-cell, Since CCintB = ]R3 , Cis a real

3-cell hence so is F. ¥}

Theorem A.8. The answer to Quesfion (A.6) is affirmative if K sati-
sfies any of the following conditions:

(i) dimK <1;

(ii) K is a compact surface with boundary;

(iii) K is a closed surface and BNl is a 2-sthere.

Proof. We may assume that K is connected. First, essume (i). By

(32 ;Theorem (2.4)], N, is a 3-cell with n, (possibly nonorientable)
1-hendles, n; €. Since £, is homotopic to f,, we have that "].(Nl)
> nl(Nz) hence n, = n,. Suppose now that, say N; is orientable and

1

N2 nonorientable., Then there is an orientation-reversing loop J in

o+ Since £,% £, and N, collapses onto fi(K), there is a loop J* in

N, with [J*] = [J] Eﬂl(M) hence J* also reverses the orientation.

This yields a contradiction to the assumption that Nl is orientable.

N

N2.

e

It now follows by [32;Theorem (2.2)], that Nl
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Assume next that K_satisfies (ii). Then there exists a bouquet
T of simple closed curves on K such that K collapses onto T. The
" conclusion now follows by case (i) above and [57 ;Corollary (3.29) 1.

Finally, assume (iii). Then N, is an I;bundle over fl(K) so 3ﬁl
is a double covering of fl(K) hence fl(K) is either s° orva, the
projective plane. Thus K is either 82 or fg.

If K = 52 then fi(K) is necessarily twb-sided since there are
no one-sided 2-spheres in 3-manifolds. (Indeed, suppose‘Sc:M3 is a
2-sphere in a 3-menifold M and consider a reguiar neighborhood NC M
of S. Then N is a preoduct I-bundle since S is simply connected and
hence no loop on S can reverse the orientation in M. Thus S must be
two-sided.) Consequently, Ni = fi(K)><I hence Nl %i N,

If K = P2 we first consider the case when M is orientable. Then
both embeddings fi(K) are one-sided since otherwise fi(K)x I would
represent a nonorientable 3-submanifold of M, an impossibility.
Hence Ni is a twisted I-bundle over Pz. It is known that over P2

there is but one twisted I-bundle (up to a PL homeororphism). Con-

N
sequently, Nl = N2'
Finally, assume that M is nonorientable and that K = P2. If
both embeddings fi(K) are one-sided apply the preceeding argument.
" If both embeddings fi(K) are two-sided then N, = fi(K)x I hence

N. 2 N . So it remains to consider the case when, say fl(K) is one

1L 2
~-sided and f2(K) is two-sided. Consider the orientable double cover
$:M —M of M. Then fl(K) lifts in ff to two disjoint homeomorphic
copies while ﬁ—lfz(K) is connected (and double covers f2(K)). Since

£ %1, the number of components of i-lfi in M agree. Contradiction.%%¥
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We concludée the appendix with some further commenté regarding
Question (A.6). Note, first, that by Lemma (A.2), the boundaries of
the regular neighborhoods are alway; homeomorphic, since they areAboth
connected (because H2(K:‘Zg) =A0>imp1ies that Ni—fi(K) is connected)
and they are.eifher both orientable or both nonorientable (because

flzxfz).

Professor W.Heil suggested the following question which -- if the
answer is affirmative -- would.yield a negative answer to Question (A.6):

= the square knot, K2 = the granny knot, and let
3

Question A.9. Let K,

Mi be the corresponding knot space, i.e. Mi =S

- (open tubular neigh-
borhood of Ki in S3). It is well-known that Ml * M2. However, do Ml and

M, collapse to homeomorphic spines?

There are certain grounds for a belief that the answer to (A.9) is ne-
gative: although the fundamental groups of Mi are isomorphic, the peri-
pheral systems are different, i.e. the diagram below can never be com-

pleted to a commutative one -- and that obstruction could determine the
spine of Mi'

nl( aMl) —_— IIl(Ml)

3

Hl(mz) —y Hl('MQ).
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