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In this paper we present an evolutionary algorithm for solving the nutrition problem of composing and 
balancing healthy meals. We treat this problem as a single-objective and multiconstrained fractional 
knapsack problem that is easy to formulate, yet, its decision problem is in the class of NP-complete 
problems. In other words, some heuristic algorithm is required to provide good problem solutions in 
reasonable (polynomial) computational time. We applied a genetic algorithm and modified its 
parameters to yield high-quality and reliable solutions (healthy and balanced meals) that respect 
multiple weakly-correlated dietary recommendations and guidelines and include as much seasonal 
functional foods as possible. Functional foods contain physiologically active compounds that provide 
health benefits beyond their nutrient contributions. 
Povzetek: V članku predstavljamo evolucijski algoritem za reševanje problema optimalne sestave 
jedilnika.    

 

1 Introduction 
Nutrition is the process of nourishing, by which our body 
obtains nutrients and non-nutrients.  These are chemical 
substances obtained from food and used in the body to 
provide energy, structural materials, and regulating 
agents to support growth, maintenance and repair of the 
body’s tissues. Foods are composed of water and solids. 
Solid materials include carbohydrates, lipids, protein, 
vitamins, minerals and other compounds. Water, 
carbohydrates, lipids, protein, vitamins and some of the 
minerals found in foods are nutrients, while components 
of foods that contain alcohols, phytochemicals, pigments, 
aditives and others are non-nutrients. Some non-nutrients 
are beneficial (like flavonoids, isoflavones or lignans), 
some are neutral, and a few are harmful. Food choices 
influence our mental performance, emotional well-being 
and physical performance (health).  

There exist many advices (dietary recommendations 
and guidelines) for proper nutrition based on objective 
scientific medical and nutrition research that may prevent 
and control nutritional deficiencies,  infectious diseases 
and even chronic diseases [1]. They define the amounts 
of energy, nutrients and other dietary components that 
best support health. Although the intent of these advices  
may seem simple enough, they are the subject of much 
misunderstanding and controversy. Using a reliable 
nutrition software could help determine which advices 
should be applied and adjusted to meet our individual 
needs. 

In this paper we introduce the mathematical aspect of 
such a nutrition software that is used as an optimization 
tool for composing and balancing healthy meals. A 
healthy meal provides sufficient energy and enough of all 

the nutrients and beneficial non-nutrients. Balancing a 
meal involves using enough, but not too much, of each 
type of food.  

In Section 2 we provide a formulation of the problem 
of composing and balancing meals as a single-objective 
and multiconstrained fractional knapsack problem; in 
Section 3 we describe a genetic algorithm for the single-
objective and multiconstrained knapsack problem; in 
Section 4 we evaluate the method; and in Section 5 we 
list conclusions and suggest possible future work. 

2 Problem of balancing healthy 
meals 

Finding an optimal composition of foods that could be 
served as a healthy and balanced meal is a complex 
problem for two reasons: there are many problem 
constraints (advices for proper nutrition) that are weakly-
correlated, and the search space (the set of all possible 
combinations) is complex. The problem is even more 
difficult because the food quality may vary by season. 
Anyhow, solutions of the problem are trade-off solutions. 
For such solutions no improvement in any constraint is 
possible without violating at least one of other 
constraints. 

We treat the problem of composing and balancing 
healthy meals as a single-objective and multiconstrained 
(multidimensional) fractional knapsack problem (MFKP) 
that is easy to formulate, yet it can be solved efficiently 
only by using some optimization techniques. It is also 
called the multi-knapsack problem. Many practical 
problems can be formulated as a multiconstrained 
knapsack problem, for example, the capital budgeting 
problem. Other applications of the problem include 
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allocating processors in a distributed computer system, 
project selection, and cutting stock problems. In our case, 
the MFKP is defined as follows.  

Given food items of different values (qualities) and 
volumes (data about energy, nutrients, and non-
nutrients), find the most valuable (healthy-and-balanced) 
composition of foods which fit in a knapsack (meal) of 
fixed volumes. Values are defined subjectively with 
respect to food functionality, seasonal availability and 
price. Knapsack volumes are defined by weakly-
correlated dietary recommendations and guidelines, such 
as: 
– recommended intakes of energy, nutrients and non-

nutrients; 
– adequate carbohydrates : protein : fat energy ratio;  
– adequate ratio of essential fatty acids; 
– recommended consumption of fruits and 

vegetables; 
– restricted intake of fats and  dietary cholesterol; etc. 

2.1 Formal definition 
We are given a knapsack of m capacities kC  for 

mk ,...,2,1= , and n objects (food items). Each object 

has a value +∈ Iiv , 0>iv , and a set of volumes 

+∈ Rki,ω , 0, ≥kiω , one for each capacity. We would 

like to find a selection of objects ,0, ≥+∈ iIi  such that 

kC
n

i
ixki Θ

=
∑

1
,ω Θ(  can be =≤, or ),...,2,1, mk =≥  and 

for which the total value, ,
1
∑
=

n

i
ixiv  is maximized. The 

parameter iPifix =  denotes the quantity of the selected 
object, where ,Fif ∈ F={0.25,0.5,0.75,1,1.5,2,3,…,10},  

is a fraction of its portion size .0, ≥+∈ iPRiP  
The decision problem of the MFKP is NP-complete 

[2]. The only two exact algorithms that deliver optimum 
solutions to multiconstrained knapsack problems are 
based on the branch-and-bound [3] and the dynamic 
programming [4] approaches. On the other hand, 
heuristic methods for solving knapsack problems that 
have time complexity bounded by a polynomial in the 
size parameters of the problem have been known for 
many decades. A comprehensive review of the 
multiconstrained 0-1 knapsack problem and the 
associated heuristic algorithms is given by Chu and 
Beasley [5].  

3 Genetic algorithm for the MFKP 
We decided to compose and balance healthy meals in a 
heuristic way by using a genetic algorithm (GA) [6]. The 
theoretical foundations of this effective optimization 
technique were originally developed by Holland [7]. GAs 

are different from traditional optimization techniques as 
they simulate nature at a very abstract level to get 
solutions for a variety of demanding problems. They 
have been shown to be well suited for solving problems 
characterized by local minima. In recent years, a number 
of papers involving the use of GAs to solve 
multiconstrained knapsack problems have appeared.  

The basic characteristic of GAs is that they search 
through an arbitrary search space both for exploration 
and exploitation purpose. The evolutionary process of 
biological organisms in nature is simulated by taking an 
initial population of individuals and applying genetic 
operators to the selected (normally highly-fit) 
individuals. Each individual in the population is encoded 
into a string (chromosome) that represents a possible 
(candidate) solution to a given problem. The fitness of an 
individual is evaluated with respect to a given objective 
function. Highly-fit individuals are reproduced by 
exchanging genetic information with other highly-fit 
individuals. This produces new offspring solutions that 
replace either less-fit individuals or the whole 
population. This procedure is repeated until a satisfactory 
solution is found.  

Although the exploration of the search space is 
driven by random decisions, GAs are far from random 
search routines. The random decisions made in GAs can 
be modelled using Markov chain analysis. In this way, it 
can be shown that GAs will converge to globally 
optimum solutions [8].  

3.1 Direct encoding 
The first step in designing a GA is to encode the 
candidate solutions to the problem. We applied a real-
valued coding of candidate solutions to the problem. 

Because people consume several thousands of food 
items, we decided to separate n objects into G groups, 
where nG ≤  and G is few tens. Creating a composite 
meal, we select at most one item from each group. 

Hence, in our representation, a chromosome contains 'G  
pairs ),( gixgi , where gi  denotes the code of the 

selected object from a food group g and ggg iPifix ⋅=  

its quantity (Figure 1), gif being the fraction size of  

gi  and giP its default portion size. A null value 0=gi  

implies that no item is selected for a group g. Each of the 
G  food groups may be omitted or repeated within a 
chromosome. Normally, food groups  are selected with 
respect to the food guide pyramide [9], which is an 
outline of what to eat each day based on the dietary 
recommendations and guidelines. It is not a rigid 
prescription, but a general guide that let us choose 
healthful meals that are right for us. 

The number of possible solutions is approximately 
||)(

' FG
G
n , where n denotes the number of food items, G 

the number of food groups, G’ the number of food 
groups captured within a chromosome and F the set of 
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fraction sizes. Normally, n is in the range of few 
hundreds to few ten thousands, G is few tens, and || F  is 
approximately ten. 

 
g 1   G’ 

),( gig xi  1060 
milk 

0.5⋅244 … 19034 
popcorn 

5⋅8 

 
Figure 1: Description of a chromosome (candidate 

solution). 
 

In our implementation, the GA starts either with a 
random population of candidate solutions or a population 
of solutions (healthy meals) known from experience. The 
population size is few tens and remains constant over all 
populations. 

3.2 Fitness evaluation 
Each solution of the candidate population is evaluated 
using the following fitness (objective) function: 

    ,
1

)( ∑
=

=
G

g
ifivif gg

r
                                             (1) 

where higher value of giv means better food quality. The 

aim of the GA is to maximize this fitness function.  

3.3 Infeasible solutions 
A chromosome might represent an infeasible solution. 
This is a solution for which at least one knapsack 
constraint is violated. There are several ways of dealing 
with infeasible solutions in GAs [10], i.e.,  
– by penalizing infeasible solutions,  
– by incorporating a repair operator that transforms 

an infeasible solution into a feasible one, or  
– by using an order-based encoding instead of a 

direct one.  
In our case, we applied the first two approaches. 

First, we incorporated a penalty term into the fitness 
function (1) to penalize the fitness of infeasible solutions, 
without distorting the fitness landscape:  

    ).(
1

)( ip
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−
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= ∑                                (2) 

The penalty term )(ip
r

 is defined in a static way by 
adding a metric based on a number of constraints 
violated: 
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The next step was to transform a percentage of 
infeasible solutions into feasible ones by using a greedy 

repair operator. This operator consists of the following 
phases:  
1. Rank the problem constraints violated by the 

infeasible solution in the decreasing order of their 
weights { }mkk ...,,1, =Χ ; 

2. For each violated problem constraint, starting with 
the most critical one, sort food items in the 
chromosome in  
a. the increasing order of their values, and  
b. the decreasing or increasing order of their 

weights for the exceeded or deceeded 
constraints, respectively; 

3. For each food item in the sorted chromosome, 
starting with the weakest one, find an alternative 
item with better nutrient profile for a given 
constraint. The alternative is searched either in the 
item’s neighborhood or by random in a given food 
group, depending on the probability of repair. 
Namely, food items are ordered in each food group 
so that similar foods are close to each other.  

4. Repeat the local-improvement operation of Step 3 at 
a given repair rate, or until a given problem 
constraint is satisfied. 

5. Go to Step 2. 
To prevent premature convergence of the GA, some 

infeasible solutions were left unrepaired in the 
population. Allowing a small percentage of infeasible 
solutions to join the population is longed-for because 
optimum solutions frequently lie on the boundaries of 
feasible regions [11]. 

3.4 Parent selection 
To create new candidate solutions, two chromosomes 
have to be selected from the current population as 
parents. In our implementation of the GA, best-ranked 
(highly-fit) feasible solutions are more likely to be 
selected for reproduction because we apply the elitism 
strategy, where a number of least-fit members of the 
current candidate population are interchanged with an 
equal number of the best-ranked chromosomes. This 
strategy increases the performance of the GA, because it 
prevents losing the best-found feasible solutions. 

The parent selection is realized via the tournament 
approach. This is based upon an idea of forming two 
pools of candidate solutions, each consisting of the same 
number of chromosomes. Two solutions with the best 
fitness, each taken from one of the tournament pools, are 
chosen to be parents. Using a larger size of the 
tournament pools has the effect of increasing selection 
pressure on the more-fit solutions. The problem of 
getting stuck in a local-optimum solution can happen. To 
avoid this problem, we adopt the standard (binary) 
tournament selection technique and realize the elitism 
through the interchange ratio of least-fit to best-ranked 
solutions. This ratio is in the order of 4 or 6 down to 1 
chromosome per population, depending on the 
population size. 
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3.5 Crossover and mutation 
In crossover, a selected pair of chromosomes are mated 
to produce an offspring that replaces the least-fit solution 
in a given population if its fitness ranks above. This  
steady-state approach may perform better than 
generational GAs because it better retains feasible 
solutions found in the populations and may have higher 
selection pressure [12]. We apply a uniform crossover 
operator to produce a solution that preserves the genetic 
material from both parents. Each element of the 
offspring’s chromosome (a pair of the food item’s code 
and its quantity) is created by copying the corresponding 
element from one of the parents, chosen according to a 
binary random number generator [ ]1,0 . In our 
implementation of the GA, using a two-point crossover 
operator can also perform crossover. In this approach, 
copying the corresponding elements from one parent, and 
all the others by copying the corresponding elements 
from other parent, creates elements of the offspring’s 
chromosome between two points, selected by using a 
crossover probability.  

Once the offspring has been generated through the 
selection and the crossover, mutation is performed on 
few randomly selected elements of the chromosome. 
Each element is mutated in one of the following ways 
chosen at random, 
– by local-improvement operation of the greedy 

repair algorithm (Step 3, Section 3.3), i.e., the code 
of a given food item and its quantity are replaced 
with a close alternative item from the same food 
group and its recommended quantity (with the 
default fraction size of 1), respectively; 

– by multiplying the size of the food item’s portion 
by a randomly selected fraction factor from 
F={0.25, 0.5, 0.75, 1, 1.5, 2, 3, …, 10}. 

The fixed rate of mutation is set to be a small value 
(in the order of 1 or 2 elements per chromosome). 

3.6 Termination criteria 
The GA terminates its operations when the system is 
assumed to be in a stable state, i.e., an optimum feasible 
solution has been found (a wanted-solution approach), or 
a certain number of populations have been generated and 
evaluated (a time-out approach). 

4 Evaluation of the GA for the 
MFKP 

In order to evaluate the proposed evolutionary method 
for composing and balancing healthy meals, we 
optimized a set of randomly generated meals using the 
GA. We used the USDA nutrition database, Release 16 
[13], which is the major source of food composition data 
in the United States and is available free of charge. It 
includes nutrient profiles for more than 6500 food items 
that are grouped into 23 food groups. The items are 
ordered so that similar foods are grouped together. Each 
nutrient profile contains more than 30 values, such as 
macronutrients, elements, vitamins, etc. We used these 

data as weights. Values of food items were defined 
subjectivelly, considering their functionality and 
availability in a given season. Seasonal foods from the 
list of functional foods (e.g., apples, broccoli and red 
wine in automn, avocado in winter, blueberries in 
summer, etc.) were assigned the highest values. We 
considered the following representative dietary 
recommendations and guidelines for: 
– the energy value of a meal; 
– the carbohydrates : protein : fat energy ratio; 
– the intake of dietary cholesterol per meal; 
– the intake of vitamin E per meal; 
– the linoleic (omega-6) fatty acid : alpha-linoleic 

(omega-3) fatty acid ratio. 
These constraints are equality constraints, except the 

one on dietary cholesterol that is an inequality (less-than-
equal) constraint.  

We developed software that implements the GA for 
composing and balancing healthy meals using the 
Borland Delphi programming tool. It runs under the 
Microsoft Windows operating systems on a Pentium PC. 
The USDA database is used in a Microsoft Access 
format. 

4.1 Experiments and results 
After several runs of the program, the most advantageous 
settings for the GA were defined (Table1), and a set of 
good solutions to the problem of composing and 
balancing healthy meals was collected. 

 
Table1: Settings for the GA parameters. 

 
Parameter Value 
Population size 20 
Repair probability 0.5 
Repair rate 2 
Elitism ratio 05.02.0 ÷  
Tournament pool size 2 
Crossover probability 0.7 
Mutation rate 0.05 
Termination criterion 1000 evaluations 

 
It has proved that a repair operator has to be used in 

addition to the static penalty function. Otherwise, the 
search gets stuck in a local minimum without finding a 
good feasible solution before the termination happens. 
We estimated that approximately each third candidate 
solution was infeasible and required repairing. Although 
the worst-case time complexity of the repair algorithm is 

( )∑
=

⋅

'

1

G

g
mgnO , where gn  denotes the number of food 

items in a food group g and m the number of constraints, 
in practice ( )mO  steps were needed to find a close 
feasible solution. However, the most difficult task in 
greedy repair was to derive the proper constraint weights 

{ }mkk ...,,1, =Χ  because some of the constraints are 
weakly-correlated. We defined the highest weight to the 
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constraint on dietary cholesterol and the lowest to the 
constraint on the energy intake. In between were the 
second and the fourth constraints, i.e., the ratios of 
macronutrients and essential fatty acids, respectively. 

In Tables 2 and 3, a good (feasible) daily-meal 
solution generated from an initial population of random 
candidate solutions that satisfies the selected problem 
constraints and its nutritional profile are presented. In 
fact, these initial candidate solutions were all infeasible. 
In the solution, the quantities of foods were selected as 
multipliers of the portion sizes. Larger portions of more 
than 100 grams were multiplied by a fraction factor from 
{ }2,5.1,1,75.0,5.0,25.0  and smaller portions of few 
grams by a factor from { }10...,,1 , respectively. In Table 
2, selected foods are specified with a short description 
instead of a code.  

 
Table 2: A good daily-meal solution. 

 
Grams Food item 
 Breakfast 

72 ORANGE DRK,BRKFST TYPE,W/ JUC & PULP, 
FRZ CONC 

38 CEREALS,MALTEX,DRY 
 Lunch 

141 WEIGHT WATCHERS ON-THE-GO 
CHICK,BROCLI&CHDR POCKT SNDWCH,FRZ 

 Supper 
496 SOUP,TOMATO,LO NA,W/H2O 
80 FAST FOODS,POTATO,MASHED 
31 TURKEY,YOUNG HEN,SKN ONLY,CKD,RSTD 

1 GINGER,GROUND 
123 BEETS,CND,REG PK,SOL&LIQUIDS 
28 CAKE,CHERRY FUDGE W/CHOC FRSTNG 
31 ENSURE PLUS,LIQ NUTR 

 Snack 
150 BANANAS,RAW 

21,5 SOYBEANS,MATURE SEEDS,RSTD,SALTED 
 Dinner 

195 RICE,BROWN,LONG-GRAIN,CKD 
85 MACKEREL,ATLANTIC,RAW 
42 ALMOND PASTE 

 
Table 3: Nutritional profile of the daily-meal 

solution. 
. 

RESULTS Recommended Achieved 
Value )235,03( ⋅⋅≥   
Energy (Kcal) 1800 100±  1875,7 
Protein (% of energy) 1510÷  14,5 
Total lipids (% of energy) 3020÷  29,8 
Carbohydrates (% of energy) 6050÷  55,7 
Dietary cholesterol (mg) ≤ 300 120,4 
Vitamin E (mg) 15 2±  14,1 
Saturated FAs (% of energy)  ≤ 10 7,5 
ω-6 FA + ω-3 FA (g) 2)5,511( ±+  17,4 

 
In Figure 1 performance of the proposed balancing 

method, based on measurements of the number of times 
the candidate solutions were evaluated to come within a 
certain fraction of the optimum, are presented. From the 

direct comparison, it can be seen that the repair technique 
for dealing with infeasible solutions performed better 
than the penalty one. Namely, repair of infeasible 
candidate solutions assured faster generation of best-
ranked feasible solutions. 

The program takes 8 seconds to generate an initial 
population of 20 candidate solutions and 300 
milliseconds to calculate the quality, the fitness and the 
penalty of a given solution. Repair is more time 
consuming as each local-improvement operation (Steps 3 
and 4, Section 3.3) takes 8 seconds at most, replacing one 
third of objects in a given infeasible solution at the 
selected repair rate. Considering one third of infeasible 
candidate solutions in each population, the total repair 
time is approximately 1 minute per population.  
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Figure 1: Performance of the meal composing and 

balancing GA method. 

5 Conclusions 
In the paper we have presented a heuristic method for 
composing and balancing healthy meals that considers 
several constraints and the quality of foods, with the 
tendancy of including as much as seasonal functional 
foods as possible. The method is based on a steady-state 
genetic algorithm that is a particular evolutionary 
algorithm. It uses direct (real-valued) coding of problem 
solutions, the elitism and the tournament approach for 
selection of parents, uniform and two-point crossover, 
and local-improvement mutation. All the GA parameters 
are fixed for all populations and candidate solutions. 
Infeasible solutions are penalized by a static function 
based on the number of constraints violated. Some 
infeasible solutions are further repaired so that the least-
quality food items are replaced with more appropriate 
items or their quantities are modified by a multiple of the 
predefined portion size. Repair is performed in a greedy 
way. We collected the experimental results by running 
the GA from an initial population of random candidate 
solutions. From the results it has been shown that the 
problem of infeasible solutions could be solved  more 
efficiently by applying a repair operator than merely by 
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penalizing. We also proved that few infeasible solutions 
are welcome to the population. 

Including some real meals known to be healthy from 
experience into the initial population, the method could 
perform better. We could also experiment with other 
(self-adaptive) penalty functions to reduce the cost of 
repair, and with an order-based encoding of candidate 
solutions to the problem. Last but not least, the USDA 
database need to be replaced with the Slovene national 
nutritional database. 
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