
 Informatica 28 (2004) 359–364 359

Evolutionary Balancing of Healthy Meals
Barbara Koroušić Seljak
Computer Systems Department, Jožef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia
Barbara.Korousic@ijs.si

Keywords: Optimization, multiconstrained fractional knapsack problem, genetic algorithms.

Received: July 7, 2004

In this paper we present an evolutionary algorithm for solving the nutrition problem of composing and
balancing healthy meals. We treat this problem as a single-objective and multiconstrained fractional
knapsack problem that is easy to formulate, yet, its decision problem is in the class of NP-complete
problems. In other words, some heuristic algorithm is required to provide good problem solutions in
reasonable (polynomial) computational time. We applied a genetic algorithm and modified its
parameters to yield high-quality and reliable solutions (healthy and balanced meals) that respect
multiple weakly-correlated dietary recommendations and guidelines and include as much seasonal
functional foods as possible. Functional foods contain physiologically active compounds that provide
health benefits beyond their nutrient contributions.
Povzetek: V članku predstavljamo evolucijski algoritem za reševanje problema optimalne sestave
jedilnika.

1 Introduction
Nutrition is the process of nourishing, by which our body
obtains nutrients and non-nutrients. These are chemical
substances obtained from food and used in the body to
provide energy, structural materials, and regulating
agents to support growth, maintenance and repair of the
body’s tissues. Foods are composed of water and solids.
Solid materials include carbohydrates, lipids, protein,
vitamins, minerals and other compounds. Water,
carbohydrates, lipids, protein, vitamins and some of the
minerals found in foods are nutrients, while components
of foods that contain alcohols, phytochemicals, pigments,
aditives and others are non-nutrients. Some non-nutrients
are beneficial (like flavonoids, isoflavones or lignans),
some are neutral, and a few are harmful. Food choices
influence our mental performance, emotional well-being
and physical performance (health).

There exist many advices (dietary recommendations
and guidelines) for proper nutrition based on objective
scientific medical and nutrition research that may prevent
and control nutritional deficiencies, infectious diseases
and even chronic diseases [1]. They define the amounts
of energy, nutrients and other dietary components that
best support health. Although the intent of these advices
may seem simple enough, they are the subject of much
misunderstanding and controversy. Using a reliable
nutrition software could help determine which advices
should be applied and adjusted to meet our individual
needs.

In this paper we introduce the mathematical aspect of
such a nutrition software that is used as an optimization
tool for composing and balancing healthy meals. A
healthy meal provides sufficient energy and enough of all

the nutrients and beneficial non-nutrients. Balancing a
meal involves using enough, but not too much, of each
type of food.

In Section 2 we provide a formulation of the problem
of composing and balancing meals as a single-objective
and multiconstrained fractional knapsack problem; in
Section 3 we describe a genetic algorithm for the single-
objective and multiconstrained knapsack problem; in
Section 4 we evaluate the method; and in Section 5 we
list conclusions and suggest possible future work.

2 Problem of balancing healthy
meals

Finding an optimal composition of foods that could be
served as a healthy and balanced meal is a complex
problem for two reasons: there are many problem
constraints (advices for proper nutrition) that are weakly-
correlated, and the search space (the set of all possible
combinations) is complex. The problem is even more
difficult because the food quality may vary by season.
Anyhow, solutions of the problem are trade-off solutions.
For such solutions no improvement in any constraint is
possible without violating at least one of other
constraints.

We treat the problem of composing and balancing
healthy meals as a single-objective and multiconstrained
(multidimensional) fractional knapsack problem (MFKP)
that is easy to formulate, yet it can be solved efficiently
only by using some optimization techniques. It is also
called the multi-knapsack problem. Many practical
problems can be formulated as a multiconstrained
knapsack problem, for example, the capital budgeting
problem. Other applications of the problem include

360 Informatica 28 (2004) 359–364 B. Koroušić-Seljak

allocating processors in a distributed computer system,
project selection, and cutting stock problems. In our case,
the MFKP is defined as follows.

Given food items of different values (qualities) and
volumes (data about energy, nutrients, and non-
nutrients), find the most valuable (healthy-and-balanced)
composition of foods which fit in a knapsack (meal) of
fixed volumes. Values are defined subjectively with
respect to food functionality, seasonal availability and
price. Knapsack volumes are defined by weakly-
correlated dietary recommendations and guidelines, such
as:
– recommended intakes of energy, nutrients and non-

nutrients;
– adequate carbohydrates : protein : fat energy ratio;
– adequate ratio of essential fatty acids;
– recommended consumption of fruits and

vegetables;
– restricted intake of fats and dietary cholesterol; etc.

2.1 Formal definition
We are given a knapsack of m capacities kC for

mk ,...,2,1= , and n objects (food items). Each object

has a value +∈ Iiv , 0>iv , and a set of volumes

+∈ Rki,ω , 0, ≥kiω , one for each capacity. We would

like to find a selection of objects ,0, ≥+∈ iIi such that

kC
n

i
ixki Θ

=
∑

1
,ω Θ(can be =≤, or),...,2,1, mk =≥ and

for which the total value, ,
1
∑
=

n

i
ixiv is maximized. The

parameter iPifix = denotes the quantity of the selected
object, where ,Fif ∈ F={0.25,0.5,0.75,1,1.5,2,3,…,10},

is a fraction of its portion size .0, ≥+∈ iPRiP
The decision problem of the MFKP is NP-complete

[2]. The only two exact algorithms that deliver optimum
solutions to multiconstrained knapsack problems are
based on the branch-and-bound [3] and the dynamic
programming [4] approaches. On the other hand,
heuristic methods for solving knapsack problems that
have time complexity bounded by a polynomial in the
size parameters of the problem have been known for
many decades. A comprehensive review of the
multiconstrained 0-1 knapsack problem and the
associated heuristic algorithms is given by Chu and
Beasley [5].

3 Genetic algorithm for the MFKP
We decided to compose and balance healthy meals in a
heuristic way by using a genetic algorithm (GA) [6]. The
theoretical foundations of this effective optimization
technique were originally developed by Holland [7]. GAs

are different from traditional optimization techniques as
they simulate nature at a very abstract level to get
solutions for a variety of demanding problems. They
have been shown to be well suited for solving problems
characterized by local minima. In recent years, a number
of papers involving the use of GAs to solve
multiconstrained knapsack problems have appeared.

The basic characteristic of GAs is that they search
through an arbitrary search space both for exploration
and exploitation purpose. The evolutionary process of
biological organisms in nature is simulated by taking an
initial population of individuals and applying genetic
operators to the selected (normally highly-fit)
individuals. Each individual in the population is encoded
into a string (chromosome) that represents a possible
(candidate) solution to a given problem. The fitness of an
individual is evaluated with respect to a given objective
function. Highly-fit individuals are reproduced by
exchanging genetic information with other highly-fit
individuals. This produces new offspring solutions that
replace either less-fit individuals or the whole
population. This procedure is repeated until a satisfactory
solution is found.

Although the exploration of the search space is
driven by random decisions, GAs are far from random
search routines. The random decisions made in GAs can
be modelled using Markov chain analysis. In this way, it
can be shown that GAs will converge to globally
optimum solutions [8].

3.1 Direct encoding
The first step in designing a GA is to encode the
candidate solutions to the problem. We applied a real-
valued coding of candidate solutions to the problem.

Because people consume several thousands of food
items, we decided to separate n objects into G groups,
where nG ≤ and G is few tens. Creating a composite
meal, we select at most one item from each group.

Hence, in our representation, a chromosome contains 'G
pairs),(gixgi , where gi denotes the code of the

selected object from a food group g and ggg iPifix ⋅=

its quantity (Figure 1), gif being the fraction size of

gi and giP its default portion size. A null value 0=gi

implies that no item is selected for a group g. Each of the
G food groups may be omitted or repeated within a
chromosome. Normally, food groups are selected with
respect to the food guide pyramide [9], which is an
outline of what to eat each day based on the dietary
recommendations and guidelines. It is not a rigid
prescription, but a general guide that let us choose
healthful meals that are right for us.

The number of possible solutions is approximately
||)(

' FG
G
n , where n denotes the number of food items, G

the number of food groups, G’ the number of food
groups captured within a chromosome and F the set of

EVOLUTIONARY BALANCING OF HEALTHY MEALS... Informatica 28 (2004) 359–364 361

fraction sizes. Normally, n is in the range of few
hundreds to few ten thousands, G is few tens, and || F is
approximately ten.

g 1 G’

),(gig xi 1060
milk

0.5⋅244 … 19034
popcorn

5⋅8

Figure 1: Description of a chromosome (candidate

solution).

In our implementation, the GA starts either with a
random population of candidate solutions or a population
of solutions (healthy meals) known from experience. The
population size is few tens and remains constant over all
populations.

3.2 Fitness evaluation
Each solution of the candidate population is evaluated
using the following fitness (objective) function:

 ,
1

)(∑
=

=
G

g
ifivif gg

r
 (1)

where higher value of giv means better food quality. The

aim of the GA is to maximize this fitness function.

3.3 Infeasible solutions
A chromosome might represent an infeasible solution.
This is a solution for which at least one knapsack
constraint is violated. There are several ways of dealing
with infeasible solutions in GAs [10], i.e.,
– by penalizing infeasible solutions,
– by incorporating a repair operator that transforms

an infeasible solution into a feasible one, or
– by using an order-based encoding instead of a

direct one.
In our case, we applied the first two approaches.

First, we incorporated a penalty term into the fitness
function (1) to penalize the fitness of infeasible solutions,
without distorting the fitness landscape:

).(
1

)(ip
G

g
ifivif gg

rr
−

=

= ∑ (2)

The penalty term)(ip
r

 is defined in a static way by
adding a metric based on a number of constraints
violated:

 ,
1

,
)(∑

=

⋅Χ=
m

k
kikip r

r
δ (3)

. constraint a of weight theis and
 constraint a satisfies if ,0

 constraint a violates if ,1
,

 where

kk

ki

ki
ki

Χ

⎪⎩

⎪
⎨
⎧

= r

r

rδ

The next step was to transform a percentage of
infeasible solutions into feasible ones by using a greedy

repair operator. This operator consists of the following
phases:
1. Rank the problem constraints violated by the

infeasible solution in the decreasing order of their
weights { }mkk ...,,1, =Χ ;

2. For each violated problem constraint, starting with
the most critical one, sort food items in the
chromosome in
a. the increasing order of their values, and
b. the decreasing or increasing order of their

weights for the exceeded or deceeded
constraints, respectively;

3. For each food item in the sorted chromosome,
starting with the weakest one, find an alternative
item with better nutrient profile for a given
constraint. The alternative is searched either in the
item’s neighborhood or by random in a given food
group, depending on the probability of repair.
Namely, food items are ordered in each food group
so that similar foods are close to each other.

4. Repeat the local-improvement operation of Step 3 at
a given repair rate, or until a given problem
constraint is satisfied.

5. Go to Step 2.
To prevent premature convergence of the GA, some

infeasible solutions were left unrepaired in the
population. Allowing a small percentage of infeasible
solutions to join the population is longed-for because
optimum solutions frequently lie on the boundaries of
feasible regions [11].

3.4 Parent selection
To create new candidate solutions, two chromosomes
have to be selected from the current population as
parents. In our implementation of the GA, best-ranked
(highly-fit) feasible solutions are more likely to be
selected for reproduction because we apply the elitism
strategy, where a number of least-fit members of the
current candidate population are interchanged with an
equal number of the best-ranked chromosomes. This
strategy increases the performance of the GA, because it
prevents losing the best-found feasible solutions.

The parent selection is realized via the tournament
approach. This is based upon an idea of forming two
pools of candidate solutions, each consisting of the same
number of chromosomes. Two solutions with the best
fitness, each taken from one of the tournament pools, are
chosen to be parents. Using a larger size of the
tournament pools has the effect of increasing selection
pressure on the more-fit solutions. The problem of
getting stuck in a local-optimum solution can happen. To
avoid this problem, we adopt the standard (binary)
tournament selection technique and realize the elitism
through the interchange ratio of least-fit to best-ranked
solutions. This ratio is in the order of 4 or 6 down to 1
chromosome per population, depending on the
population size.

362 Informatica 28 (2004) 359–364 B. Koroušić-Seljak

3.5 Crossover and mutation
In crossover, a selected pair of chromosomes are mated
to produce an offspring that replaces the least-fit solution
in a given population if its fitness ranks above. This
steady-state approach may perform better than
generational GAs because it better retains feasible
solutions found in the populations and may have higher
selection pressure [12]. We apply a uniform crossover
operator to produce a solution that preserves the genetic
material from both parents. Each element of the
offspring’s chromosome (a pair of the food item’s code
and its quantity) is created by copying the corresponding
element from one of the parents, chosen according to a
binary random number generator []1,0 . In our
implementation of the GA, using a two-point crossover
operator can also perform crossover. In this approach,
copying the corresponding elements from one parent, and
all the others by copying the corresponding elements
from other parent, creates elements of the offspring’s
chromosome between two points, selected by using a
crossover probability.

Once the offspring has been generated through the
selection and the crossover, mutation is performed on
few randomly selected elements of the chromosome.
Each element is mutated in one of the following ways
chosen at random,
– by local-improvement operation of the greedy

repair algorithm (Step 3, Section 3.3), i.e., the code
of a given food item and its quantity are replaced
with a close alternative item from the same food
group and its recommended quantity (with the
default fraction size of 1), respectively;

– by multiplying the size of the food item’s portion
by a randomly selected fraction factor from
F={0.25, 0.5, 0.75, 1, 1.5, 2, 3, …, 10}.

The fixed rate of mutation is set to be a small value
(in the order of 1 or 2 elements per chromosome).

3.6 Termination criteria
The GA terminates its operations when the system is
assumed to be in a stable state, i.e., an optimum feasible
solution has been found (a wanted-solution approach), or
a certain number of populations have been generated and
evaluated (a time-out approach).

4 Evaluation of the GA for the
MFKP

In order to evaluate the proposed evolutionary method
for composing and balancing healthy meals, we
optimized a set of randomly generated meals using the
GA. We used the USDA nutrition database, Release 16
[13], which is the major source of food composition data
in the United States and is available free of charge. It
includes nutrient profiles for more than 6500 food items
that are grouped into 23 food groups. The items are
ordered so that similar foods are grouped together. Each
nutrient profile contains more than 30 values, such as
macronutrients, elements, vitamins, etc. We used these

data as weights. Values of food items were defined
subjectivelly, considering their functionality and
availability in a given season. Seasonal foods from the
list of functional foods (e.g., apples, broccoli and red
wine in automn, avocado in winter, blueberries in
summer, etc.) were assigned the highest values. We
considered the following representative dietary
recommendations and guidelines for:
– the energy value of a meal;
– the carbohydrates : protein : fat energy ratio;
– the intake of dietary cholesterol per meal;
– the intake of vitamin E per meal;
– the linoleic (omega-6) fatty acid : alpha-linoleic

(omega-3) fatty acid ratio.
These constraints are equality constraints, except the

one on dietary cholesterol that is an inequality (less-than-
equal) constraint.

We developed software that implements the GA for
composing and balancing healthy meals using the
Borland Delphi programming tool. It runs under the
Microsoft Windows operating systems on a Pentium PC.
The USDA database is used in a Microsoft Access
format.

4.1 Experiments and results
After several runs of the program, the most advantageous
settings for the GA were defined (Table1), and a set of
good solutions to the problem of composing and
balancing healthy meals was collected.

Table1: Settings for the GA parameters.

Parameter Value
Population size 20
Repair probability 0.5
Repair rate 2
Elitism ratio 05.02.0 ÷
Tournament pool size 2
Crossover probability 0.7
Mutation rate 0.05
Termination criterion 1000 evaluations

It has proved that a repair operator has to be used in

addition to the static penalty function. Otherwise, the
search gets stuck in a local minimum without finding a
good feasible solution before the termination happens.
We estimated that approximately each third candidate
solution was infeasible and required repairing. Although
the worst-case time complexity of the repair algorithm is

()∑
=

⋅

'

1

G

g
mgnO , where gn denotes the number of food

items in a food group g and m the number of constraints,
in practice ()mO steps were needed to find a close
feasible solution. However, the most difficult task in
greedy repair was to derive the proper constraint weights

{ }mkk ...,,1, =Χ because some of the constraints are
weakly-correlated. We defined the highest weight to the

EVOLUTIONARY BALANCING OF HEALTHY MEALS... Informatica 28 (2004) 359–364 363

constraint on dietary cholesterol and the lowest to the
constraint on the energy intake. In between were the
second and the fourth constraints, i.e., the ratios of
macronutrients and essential fatty acids, respectively.

In Tables 2 and 3, a good (feasible) daily-meal
solution generated from an initial population of random
candidate solutions that satisfies the selected problem
constraints and its nutritional profile are presented. In
fact, these initial candidate solutions were all infeasible.
In the solution, the quantities of foods were selected as
multipliers of the portion sizes. Larger portions of more
than 100 grams were multiplied by a fraction factor from
{ }2,5.1,1,75.0,5.0,25.0 and smaller portions of few
grams by a factor from { }10...,,1 , respectively. In Table
2, selected foods are specified with a short description
instead of a code.

Table 2: A good daily-meal solution.

Grams Food item
 Breakfast

72 ORANGE DRK,BRKFST TYPE,W/ JUC & PULP,
FRZ CONC

38 CEREALS,MALTEX,DRY
 Lunch

141 WEIGHT WATCHERS ON-THE-GO
CHICK,BROCLI&CHDR POCKT SNDWCH,FRZ

 Supper
496 SOUP,TOMATO,LO NA,W/H2O
80 FAST FOODS,POTATO,MASHED
31 TURKEY,YOUNG HEN,SKN ONLY,CKD,RSTD

1 GINGER,GROUND
123 BEETS,CND,REG PK,SOL&LIQUIDS
28 CAKE,CHERRY FUDGE W/CHOC FRSTNG
31 ENSURE PLUS,LIQ NUTR

 Snack
150 BANANAS,RAW

21,5 SOYBEANS,MATURE SEEDS,RSTD,SALTED
 Dinner

195 RICE,BROWN,LONG-GRAIN,CKD
85 MACKEREL,ATLANTIC,RAW
42 ALMOND PASTE

Table 3: Nutritional profile of the daily-meal

solution.
.

RESULTS Recommended Achieved
Value)235,03(⋅⋅≥
Energy (Kcal) 1800 100± 1875,7
Protein (% of energy) 1510÷ 14,5
Total lipids (% of energy) 3020÷ 29,8
Carbohydrates (% of energy) 6050÷ 55,7
Dietary cholesterol (mg) ≤ 300 120,4
Vitamin E (mg) 15 2± 14,1
Saturated FAs (% of energy) ≤ 10 7,5
ω-6 FA + ω-3 FA (g) 2)5,511(±+ 17,4

In Figure 1 performance of the proposed balancing

method, based on measurements of the number of times
the candidate solutions were evaluated to come within a
certain fraction of the optimum, are presented. From the

direct comparison, it can be seen that the repair technique
for dealing with infeasible solutions performed better
than the penalty one. Namely, repair of infeasible
candidate solutions assured faster generation of best-
ranked feasible solutions.

The program takes 8 seconds to generate an initial
population of 20 candidate solutions and 300
milliseconds to calculate the quality, the fitness and the
penalty of a given solution. Repair is more time
consuming as each local-improvement operation (Steps 3
and 4, Section 3.3) takes 8 seconds at most, replacing one
third of objects in a given infeasible solution at the
selected repair rate. Considering one third of infeasible
candidate solutions in each population, the total repair
time is approximately 1 minute per population.

0
10
20
30
40
50
60
70

1 201 401 601 801 1001

Evaluations

Fi
tn

es
s

GA_Penalty
GA_Repair

Figure 1: Performance of the meal composing and

balancing GA method.

5 Conclusions
In the paper we have presented a heuristic method for
composing and balancing healthy meals that considers
several constraints and the quality of foods, with the
tendancy of including as much as seasonal functional
foods as possible. The method is based on a steady-state
genetic algorithm that is a particular evolutionary
algorithm. It uses direct (real-valued) coding of problem
solutions, the elitism and the tournament approach for
selection of parents, uniform and two-point crossover,
and local-improvement mutation. All the GA parameters
are fixed for all populations and candidate solutions.
Infeasible solutions are penalized by a static function
based on the number of constraints violated. Some
infeasible solutions are further repaired so that the least-
quality food items are replaced with more appropriate
items or their quantities are modified by a multiple of the
predefined portion size. Repair is performed in a greedy
way. We collected the experimental results by running
the GA from an initial population of random candidate
solutions. From the results it has been shown that the
problem of infeasible solutions could be solved more
efficiently by applying a repair operator than merely by

364 Informatica 28 (2004) 359–364 B. Koroušić-Seljak

penalizing. We also proved that few infeasible solutions
are welcome to the population.

Including some real meals known to be healthy from
experience into the initial population, the method could
perform better. We could also experiment with other
(self-adaptive) penalty functions to reduce the cost of
repair, and with an order-based encoding of candidate
solutions to the problem. Last but not least, the USDA
database need to be replaced with the Slovene national
nutritional database.

Acknowledgement
The work presented in this paper has been supported by
the Slovenian Ministry of Health (project Development
of a public domain server application for food analysis
and optimization that considers modern dietary
recommendations).

References
[1] POKORN, D., Dietetika, DZS, 1999 (in Slovene).
[2] GAREY, M.R. and JOHNSON, D.S., Computers and

Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[3] GAVISH, B. and PIRKUL, H., “Efficient Algorithms for
Solving Multiconstrained Zero-One Knapsack problems to
Optimality”, Mathematical Programming 31, pp. 78-105,
1985.

[4] SOYSTER, A.L., LEV, B., and SIVKA, W., “Zero-One
Programming with Many Variables and Few Constraints”,
European Journal of Operational Research 2, pp. 195-201,
1978.

[5] CHU, P.C. and BEASLEY, J.E., "A Genetic Algorithm for
the Multidimensional Knapsack Problem", Journal of
Heuristics, 4: 63-86, 1998.

[6] GOLDBERG, D.E., Genetic Algorithms in Search,
optimization, and Machine Learning. Addison-Wesley,
1989.

[7] HOLLAND, J.H., Adaptation in Neutral and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. University of
Michigan Press, 1975.

[8] KARR, C.L., YAKUSHIN, I., and NICOLOSI, K., "Solving
inverse initial-value, boundary-value problems via genetic
algorithm", Eng. Applicat. Artif. Intell., 13(6):625-633, Dec.
2000.

[9] WHITNEY, E.N., CATALDO, C.B., and ROLFES, S.R.,
Understanding Normal and Clinical Nutrition. Wadsworth,
Thomson Learning, 2002.

[10] MICHALEWICZ, Z., Genetic Algorithms+Data
Structures=Evolution Programs. Springer Verlag, 1996.

[11] SIEDLECKI, W. and SKLANSKY, J., "Constrained
genetic optimization via dynamic reward-penalty balancing
and its use in pattern recognition". In Proc. of the Third
International Conference on Genetic Algorithms, pp.141-
150, 1989.

[12] CHAFEKAR, D., XUAN, J., and RASHEED, K.,
“Constrained Multi-Objective Optimization Using Steady
State Genetic Algorithms”. In Erick Cantú-Paz et al
(Editors): Genetic and Evolutionary Computation---
GECCO 2003, Proceedings, Part I, pp. 813--824, Springer.
Lecture Notes in Computer Science, Vol. 2723, July 2003.

[13] http://www.nal.usda.gov/fnic/foodcomp

