
International workshop on

COMPUTATIONAL APPROACHES IN NANOSCIENCES

"COMPinNANO"

Ljubljana, 2nd and 3rd October 2015

PROCEEDINGS/ZBORNIK PREDSTAVITEV

International workshop/Mednarodni sestanek COMPUTATIONAL APPROACHES IN NANOSCIENCES: "COMPinNANO"

Ljubljana, 2nd and 3rd October 2015

ZBORNIK PREDSTAVITEV/PRESENTATIONS

Založnik in organizator/Publisher and organizer: Biotehniška Fakulteta, Oddelek za Biologijo, Večna pot 111, 1000 Ljubljana

Uredniki in recenzenti/Editors and reviewers: Anita Jemec (Slovenija), Damjana Drobne (Slovenija), Alok Dhawan (India), Rishi Shanker (India)

Organizacijski odbor:/Organisational committee: Anita Jemec, Barbara Drašler, Neža Rugelj, Veno Kononenko, Monika Kos, Sara Novak, Damjana Drobne

Oblikovanje/Design: Barbara Drašler and Anita Jemec

Kraj in leto izdaje/Place and date of issue: Ljubljana, 2015 Brezplačen izvod/Free copy Dostopno/Available: http://www.bionanoteam.com

Financed by: EU FP7 project NanoValid (grant no. 263147); NanoMILE (grant no. 320451)

Zaščita dokumenta/Copyright © 2015 Biotehniška Fakulteta, Oddelek za Biologijo

Vse pravice pridržane. Reprodukcija po delih ali v celoti na kakršenkoli način in v kateremkoli mediju ni dovoljena brez pisnega dovoljenja avtorja. Kršitve se sankcionirajo v skladu z avtorsko pravno in kazensko zakonodajo.

 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana

004.6:620.3(082)

INTERNATIONAL Workshop on Computational Approaches in Nanosciences (2015; Ljubljana)
 Proceedings [Elektronski vir] = Zbornik predstavitev / International Workshop on Computational
 Approaches in Nanosciences - COMPinNANO, Ljubljana, 2nd and 3rd October 2015; [uredniki Anita
 Jemec ... et al.]. - El. knjiga. - Ljubljana : Biotehniška fakulteta, Oddelek za biologijo, 2015

ISBN 978-961-6822-33-6 (pdf) 1. Jemec, Anita 283801856

Foreword

The production of nanomaterials has led to growing public and regulatory concern about their safety. The aim of a number of ongoing or past EU projects has been to address innovative, safe and sustainable nano-enabled products. The NanoValid project, as one of them, has developed a set of reliable reference methods and materials for their fabrication, physicochemical characterization, hazard identification and exposure assessment. However, since the experimental toxicological testing of nanomaterials is costly and time-consuming, it is necessary to develop a new approach based on knowledge, methods and tools to reach the goal of predictive nanotoxicology.

The workshop "Computational approaches in Nanosciences" hosted the participants from three large scale EU FP7 projects NanoValid, NanoMile, and Modern in order to disseminate the results on computational methods for NP hazard characterisation and exchange ideas with representatives from regulatory bodies and industry. Modellers, computational scientists, experimental (eco)toxicologists and experts form different fields of nanoscience discussed the future of *Computational Approaches in Nanosciences*.

The participants agreed that the most crucial points in the data sharing among academia, industry and regulatory bodies are (i) the organisation of data in large data sets and synchronised communication between different fields and sectors. Calibration and validation of computational models is impossible without utilizing high quality experimental data. Therefore, close collaboration between the computational chemists and experimentalists from different areas (i.e. toxicologists, specialists on characterization) would be crucial for the success.

The NanoValid project has significantly contributed toward defining the quality of nanotoxicity data and harmonization of test. In the future they have to be integrated into datebases and shared. Namely, new approaches for the data gap filling are needed which have to be dynamic and consider scientific aspects and new developments in nano-sciences. The participants concluded that the future of nanosafety will rely on both, experimental data and computational methods but we have to adopt successful communication strategies.

prof. dr. Damjana Drobne and assist. prof. Anita Jemec Ljubljana, 6.11.2015 16.15 – 16.30 Welcome speach & Introduction to the workshop
 Prof. Dr. Damjana Drobne, Assist. Prof. Anita Jemec

TOPIC 1: ORGANISATION OF LARGE DATA SETS FOR MODELLING IN GENERAL

The topic will deal with the organisation of large data sets using different statistical approaches.

^{16.30–17.00} Assist. Prof. Ddr. David Bogataj, The Mediterranean Institute for Advanced Studies: "Reproducible Research"

17.00 - 17.30

Assist. Prof. Dr. Cene Fišer, Biotechnical Faculty University of Ljubljana, Slovenia: "Web-databases in systematics and taxonomy"

17.30 - 18.00

COFFEE BREAK

TOPIC 2: DATA SHARING-Academia, Industry and Regulatory bodies

The stakeholders will present their view on the nanoscience data sharing.

18.00 - 18.30

- Mag. Vladimir Vrečko, Cinkarna Celje (TiO₂ producers), Slovenia:
- "The importance of data interpretation and dissemination for the future of nanotechnology."

Dr. Mojca Kos Durjava, National Laboratory of Health, Environment and Food and **Mag. Karmen Krajnc**, Chemical Office of the Republic of Slovenia, Slovenia: "Chalenges of Regulation and Risk Assessment of Nanomaterials"

Saturday, 3rd October

TOPIC 3: QUANTITATIVE NANOSTRUCTURE-ACTIVITY (PROPERTY) RELATIONSHIPS (QNAR, QNPR) MODELLING

- 9.00 9.30 **Prof. Dr. Marjan Vračko**, National Institute of Chemistry, Slovenia: "Chemometric analysis and QSAR modelling in NANO-toxicology"
- 9.30 10.00
 Dr. Villem Aruoja, National Institute of Chemical Physics and Biophysics, Estonia: "Toxicity of metal oxide nanoparticles to algae, bacteria and protozoa: FP7 project MODERN"

10.00 - 10.30

COFFEE BREAK and poster session

TOPIC 4: MODELLING OF INTERACTIONS BETWEEN NANOMATERIALS AND BIOLOGICAL MODELS

Presentation of different databases aimed to collect information about Nanosafety related topics.

10.30 - 11.00	Prof. Dr. Alok Dhawan , CSIR-Indian Institute of Toxicology Research, Lucknow, India: "Toxicity of Nanomaterials: The need for Novel Computational Tools and Approaches in Safety Assessment"					
11.00 - 11.30	Dr. Lokesh Baweja , Institute of Life Sciences, Ahmedabad, Gujarat, India: "Computational approaches to understand the interaction of nanomaterials with biomolecules"					
11.30 - 12.00 12.00 - 12.30	Dr. Fabrice Carnal , Institut F.A. Forel, University of Geneva, Switzerland: "Monte Carlo Modelling of Interaction Processes between Nanoparticles and Biomacromolecules of Variable Hydrophobicity"					
	Maja Sopotnik and Prof. Dr. Kristina Sepčić, Biotechnical Faculty, University of Ljubljana, Slovenia: "Interaction of carbon-based nanomaterials with cholinesterases and serum proteins"					
12.30 - 13.30	LUNCH BREAK and poster session					

0

13.30 - 14.00	Prof. Dr. Rishi Shanker , Institute of Life Sciences, Ahmedabad, Gujarat, India: "Tracking Nano-footprints in microbial food chain: Observations, Data & Challenges"
14.00 - 14.30	Dr. Ashutosh Kumar , Institute of Life Sciences, Ahmedabad, Gujarat, India: "Importance of <i>in silico</i> approaches in understanding the interactions of nanoparticles with biological membrane"
14.30 - 15.00	Assist. Prof. Dr. Anita Jemec , Biotechnical Faculty, University of Ljubljana, Slovenia: "Quality of nanotoxicity data and the importance of harmonization"
15.00 - 16.00	COFFEE BREAK, poster session and open discussion

REPRODUCIBLE RESEARCH

ddr. David Bogataj MEDIFAS

Reproducible research

Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them.

The goal of reproducible research is to tie specific instructions to data analysis and experimental data so that scholarship can be recreated, better understood and verified.

In the instructions the complex of conditions should be described precisely.

Replication

The ultimate standard for strengthening scientific evidence is replication of findings and conducting studies with independent:

- Investigators
- Data
- Analytical methods
- Instruments

Replication

 Replication is particularly important in studies that can impact broad policy or regulation decisions

What is Reproducible research?

- Scientific Question
- Research Protocol
- Nature (complex of conditions, entities and their relations)
- 1. Measured data (dataset regarding realization of an experiment raw data)
 - Data processing code
- 2. Analytic data (cleansed data)
 - Analytical code
- Computational results
 - Presentation code (figures, tables, Numerical Summaries)
- Published article (text)

Up to now in published articles only short overview of data and code (1 and 2) is presented which is not enough.

What problem does Reproducibility solve

Black Box Problem

- Transparency
- Data Availability
- Software/Methods Availability
- Improved Transfer of Knowledge

Reproducibility

- The premise of reproducible research is that with data/code available, researchers can check each other and the whole system is selfcorrecting
- Addresses the most "downstream" aspect of the research process – post-publication
- Assumes everyone plays by the same rules and wants to achieve the same goals (i.e scientific discovery)

Who Reproduces Research?

For reproducibility to be effective as means to check validity, someone needs to do something

- Re-run analysis; chech if resulta match
- Check the code for bugs/errors
- Try alternate aproaches/check sensitivity

Validation of the data analysis

Availability:

- Description of complex of conditions in which the experiment run
- Data
- Algorithems

Reasons:

 Other people can run the same algorithms on the sama data and can come to the same conclusions as the researcher

What you do not have

- Independent data
- Independent method

Impact of new technologies

- Allow us to collect data at much higher throughput
- We can get very complex high dimensional datasets almost instantaneously
- Computing power that allows us to merge databases in even bigger "megadatabases"

Minimum standards

- Experiment(observation) should be described in exactly known complex of conditions.
- If the complex of conditions is changed (environment), realization of the experiment can give different results.
- It could lead to different conclusions.

Problems

- Authors must undertake considerable effort to put data/results on the web
- Readers must download data/results individually and piece together which data go with which code section, etc
- Authors/readers must manually interact with websites
- There is no single document to integrate data analysis with textual representations; data, code, and text are not linked

Simplify the process

Put the data and the code together in the same document

- People can execute code in the rights order
- Data are read at the right times

Document integrates data analysis with all the textual representations (descriptions) that everythings is linked together

How do I Make My Work Reproducible

- Decide to do it (ideally from the start)
- Keep track of things, perhaps with versioning control system to track snapshots/changes
- Use statistical software whose operation can be coded (R)
- Don't save output (store raw dataset)
- Save raw data and the process that get you there
- Save data in non-proprietary formats (ASCII)

Single research report document

- To document the analysis and
- to have the code of the analysis in the same document

Documentation of total observation and research process

- Documentation preparation system description of research process including metadata (LaTex)
- Description of complex of conditions in which the experiment run
- Raw data dataset
- Code Programing Language (R) for data analysis, statistics, forecasting, optimization, sensitivity analysis and simulations.

Literate Statistical Programming with knitr (R)

- Text and code all in one place, logical order
- Data where results of observations are automatically updated that reflect external changes
- Code is live you need to run code. When error appears it needs to be resolved.

CONCLUSION

1.- Reproducibility brings transparency (wrt code+data) and increases transfer of knowledge. Therefore complex of conditions which describe the environment for observation procedures have to be very clearly described.

2.- Important currant discussion is about how to convince researchers to share data. The owners of data should have <u>incentives</u> to publish the dataset, metadata and code

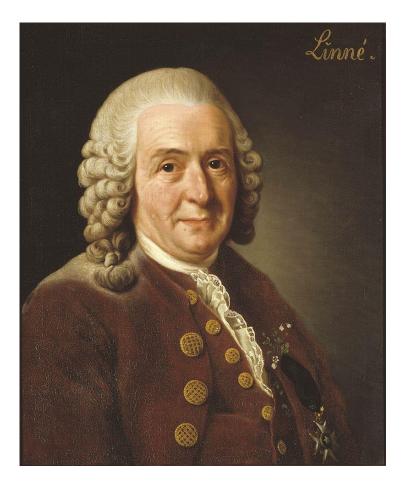
-by the system similar as IF evaluation (citation index) of their publications and

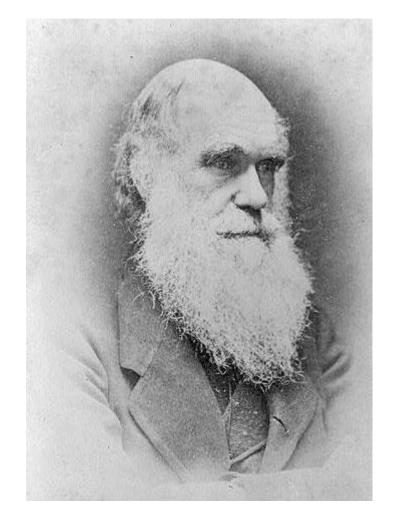
- market system like available by ScienceDirect, Springer and others where the databases are able to buy or sell if there is not obligatory open system.

- The founder of a research should <u>clearly determine which data</u> <u>should be publicly available</u> and which are available on the data market - for sale.

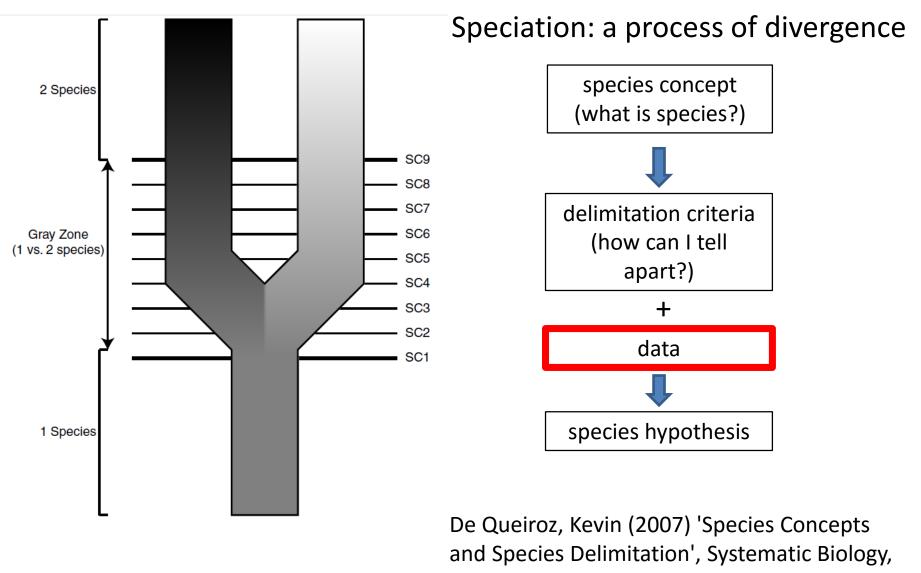
Web-databases in systematics and taxonomy

Cene Fišer SubBio Lab Odd. za Biologijo Biotehniška Fakulteta Univerza v Ljubljani

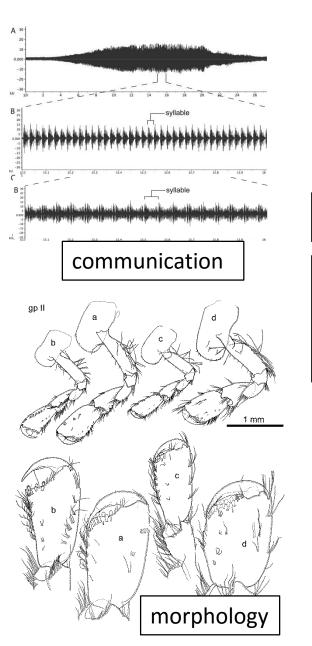

Univerza v Ljubljani


Ljubljana, 2.10.2015

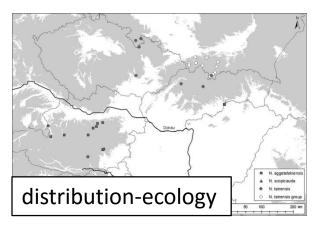
taxonomy-systematics?


- 1. Taxonomy in a narrow sense: describing and naming species.
- Taxonomy in a broad sense: species identification, research of species biology, distribution and conservation.
- 3. Systematics: inference of species relatedness and hierarchical categorization of species in higher taxonomic categories.

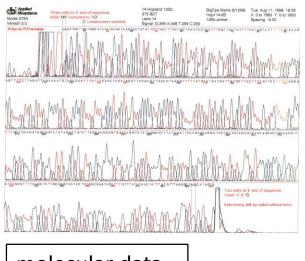
an ancient science?



Modern synthesis: grounded in evolutionary theory....


56:6, 879 - 886

.....interdisciplinary science


TYPE: NO LIMITS

LIMITS IN DATA DEPOSITION AND RETRIVAL

mating behavior

molecular data

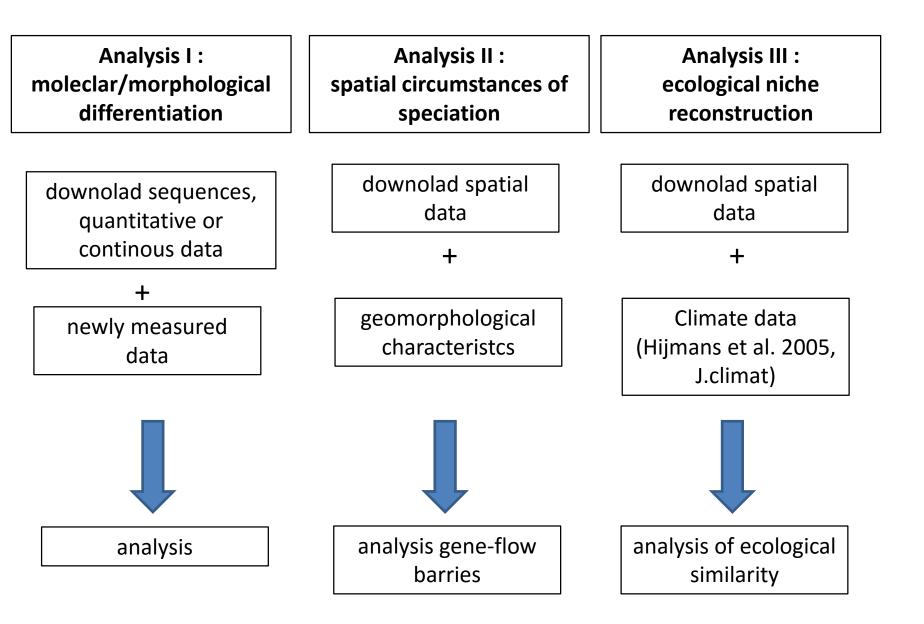
Challenges for taxonomy

The discipline will have to reinvent itself if it is to

survive and flourish.

This discipline is made for the web: it is information-rich and often requires copious illustrations.

Godfray, H.C.J. 2002 **Challenges for taxonomy.** *Nature 417, 17-19* (Commentary; reply to correspondence arising: "Towards taxonomy's 'glorious revolution'"


Taxon specialized websites: not necesserily databases

Make your own website: Scratchpads: <u>http://scratchpads.eu/</u>

Scratch	hanz		Q
biodiversity online		⑥ Search this site ○ Search across Scr	atchpad
Home News Explore	Support Develop Abo	ut us	
Why choose Scratchpads Create your own site Publish your data online Contribute to biodiversity knowledge Collaborate with your	Scra	blish your data online tchpads are an easy and effective way to present y online.	our
peers Concept Policies	Whether you just want to publis manuscript, Scratchpads are ab	h on the web, construct a database or assemble a forma le to help!	I
	Overview of features:		
Partner projects Sponsors Resources	Overview of features:	Description	
Sponsors		Scratchpad lets you connect with your	
Sponsors Resources Team	Feature	Scratchpad lets you connect with your	A A
Sponsors Resources Team	Feature Share your data across comun	Scratchpad lets you connect with your community. All Scratchpads sites are search engine friendly. Scratchpads sites usually rank on top in Google search results when relevant taxa and keywords	

S bio						(1) Search this alt	 O Search across Scratche
Home	News	Explore	Support	Develop	About us		
Why cho	ose S	cratchpa	ads?				
Create your o lite	own P	ublish your (nline	data Contrib biodive knowle	rsity	laborate with your peer		NON COM
				w	hether you want to prepare a create a reference collection		
		William .			reate your own Scratchpad!		102-1
Join the	comr	nunity!		Ca	ase studies		
Create	a Scrate	thpad		DE	ST	The over the set	6
+ Join a S	Scratchp	bad			Distributed European School of		AL
🗢 Registe	r for tra	ining		kne	onomy (DEST) aims at transferri wledge between current and futu	re internetion	126.43
Try our	sandbo	×			crations of taxonomists by provid lity education and prepare studen		
_		tchpads ami			re taxonomic careers. DEST is u stehpads as a coordination and	aing	
S Develo;			e code		emination platform.	inter standard	
Read al	bout our	r policies		<u>V15</u>	T THIS SCRATCHPAD		
Feeds				So	ratchpads arour	nd the world	
News	y	Twitter		0 5	Scratchpads by 0 active	users covering 0 taxa	in O pages.
				Ou	r 26 Scratchpads ambas	ssadors are located ac	ross the globe:
		78.	┽ eMa	onocot			
Home Contact us			News		Support Introduction	About us	choose Scratchpads?
Explore			Twitter		 Training FAQ 	- Con - Pole	tept
 Summary S Scratchped 		G	Develop Extending	Scratchpads	Help Wiki C Issues queue C		ner projects
 Sites list 			 Hosting Testing P 		 Issues queue (* Sandbox Apply for a training 	 Resc 	urces

...moving to level of an individual : increase in strength of analyses

Taxon specific interactive database

SubBio Database: interactive database of subterranean fauna

P → C 🥖 SubBio Lab - SubBioDataba... > 🞒 Web Slice Gallery 🔻 🧃 Tabs 🖲 🕼 🥏 SubBioLab Home Publications Resources Research SubBioDatabase Subterranean Biodiversity Database SubBioDatabase is an integrative database on distribution of subterranean SHORT DESCRIPTION OF THE taxa from various habitats (caves, springs, interstitial...), with spatially SURRIODATARASEdefined localities. It incorporates distribution records from literature and own field studies, with addition of molecular and/or morphological Number of all records (taxoncharacteristics of taxa. Such an extensive database presents a unique and locality-source): 30.300 nowerful tool for research and conservation of subterranean fauna Number of localities: 7500 Distribution of species can be presented with its occurrence in guadrats of Number of taxa: 4800 equal size, covering the whole study region. Here you can investigate the distribution of certain taxa, as revealed by the data in SubBioDatabase. MAP QUERY: taxon name or %partial% Map for Proteus anguinus:

Three main sources of data:

- species lists
- distributional data
- DNA sequences

Sources of data:

- published sources
- own data

Quantity:

- number of records: 30.300
- number of localites : 7.500
- number of taxa: 4.800

Taxon specific interactive database

SubBio Database: interactive database of subterranean fauna

http://subbio.net/		×		☆ ☆
🙀 🚺 Fiser, Cene - Outlook Web	👂 Suggested Sites 🔻 🧃 Web Slice Gallery 🔻 🗿 Tabs			
🚱 SubBiol	Database <i>access</i>			
Search:	Tabele / Polja			
Locality V Search	Literatura	Lokaliteta	Popis	
Advanced DB Query: DB-QUERY Add: + New Locality + New Literature + Multiple DNA entries	ID leceture Krata coraka literature Podrobna oznaka literature Autorji Leto objave Našlov Revija / Knjiga Voj / Issue S Opombe Oznaka - fasoiki	0 Diskalitete ime lokalitete Kraj ob Večji kraj Drugo ime / Sinonimi Država Geog. Jana (WSS_X) Geog. Jana (WSS_Y) Societa (WSS_Y) Nadmorska višina UTM kvadrant Izvor koordinat Natančnost 1 Natančnost 1 Katastina števlika jame	ID popias (ntern) St. popinace (ntern) St. popinace a lisa Popiovalo Datum popia Qombe (opazanja ob obisku lokalitete) Trajanje - OD Visuper Visuper Visuper Visuper Visuper Visuper Visuper Posti (vzorčenje s pastmi)	^ v
View:				
Multi-Survey	Sistem	Voucherji / DNA	Opaženi taksoni / Zbirka	
Log in /log out Eait profile	Talson ID Celotro ine taksona Sinonimi Podrvsta Vrsta Podrod Rođ Poddružina Družina Red Razed Avtor - ime Avtor - ieto	Voucher: ID Voucher: stara koda Voucher: stara koda Stramba voucherskeau osebka Opombe k voucherskeau osebku DNA ID Datum izolacije Shramba DNA Gen Fivd Fiv	 PopiDarjaji (D Laroma dočkev (Takson_original) Locus typicus Določevale St. ozačenio osektov St. vzelio osektov V vodi / Na kopnem Microholtar Microholtar Opombe (za posamezen opažen takson) 	
	Dodaj izbrana polja 🔶 Odstrani — 🗆 tzvrši poizvedbo	Unernix		
🚱 [🤤 💽	6 5 8		SL 🕐 🗘 🖌 😌	20:53 🕨 att 🔥 1.10.2015

Taxon specific interactive database

SubBio Database: interactive database of subterranean fauna

X

P

S

0

] 🛃 🧐 マ (ལ マ ╤ File Home Insert Pagel	Layout Formulas Data	Review View		rapiaigu	is_DNABaza_23ma	uju+ - iviici	ioson excer								ē
			Clear				# ??		- EE +	Show Detail					_
		$\frac{\text{actions}}{\text{tries}}$	Reapply				- 3	13 13	<u> </u>	Hide Detail					
	Existing Refresh	Z Sort Filte		Text to Remove		onsolidate		Group Ungroup	Subtotal						
	All			olumns Duplicat			Analysis *	* *		-					
Get External Data	Connection	s Sort &	Fliter		Data Tools				Dutline	Fa					_
B3 🔻 (**	<i>f</i> _x 1531														
A	B C	D E	F	G	н	1	J	К	L	М	N	0	Р	Q	
Celotno_ime	DNA_id Datum_izolaci	je created voucher_id	shramba	gen	fwd re	ev F	PCR	sekvenca	acc_num	dnevnik	Lokalit_ime	Drzava	WGS_Xdd	WGS_Ydd	
Microniphargus leruthi	1532 15/05/2011	0 NA741	stiroporna ška	t						Laboratorijski	velika Britanija	UK			
Microniphargus sp.	1531 15/05/2011	0 NA740	stiroporna ška	t						Laboratorijski	Jama Sweetwater	Great Britain	n -3,535975282	50,62151447	1
Microniphargus sp.	1524 03/12/2010	0 NA649	stiroporna ška	t		r	neuspešno			Laboratorijski	Borehole at Wine	Great Britain	n -2,376686748	50,72602791	
Microniphargus sp.	1528 22/02/2011	0 NA713	stiroporna ška								Borehole at Wine				
Microniphargus sp.	1670 26/07/2012	0 NB090	stiroporna ška								Grotte de Combla	-	5,57481		
Microniphargus sp.	1525 22/02/2011	0 NA710	stiroporna ška								Abime de Combla	-	5,57481		
Microniphargus sp.	1526 22/02/2011	0 NA711	stiroporna ška								Abime de Combla	-	5,57481		
Microniphargus sp.	1527 22/02/2011	0 NA712	stiroporna ška							Laboratorijski	Abime de Combla	-	5,57481		
Niphargus aberrans	1229	1309432543 NA025		28S			ОК	AAGGCTTCAGTA			Sneberje, freatsk		14,57311944		
Niphargus aberrans	1230	1309432543 NA025		H3			PONOVNO V				Sneberje, freatsk		14,57311944		
Niphargus aberrans	1228	1309432543 NA025		285			ОК	GAAAAGCACTCT	EF617260		Sneberje, freatsk		14,57311944		
Niphargus aggtelekiensis	1298	1309432543 NA501		28S			ок	AAGGCTTCAGTA			Gesause ET2B	Austria	14,587258		
1 Niphargus aggtelekiensis	1297	1309432543 NA501		285			ок	GAAAAGCACTCT			Gesause ET2B	Austria	14,587258		
5 Niphargus aggtelekiensis	1299	1309432543 NA501		H3	H3aF2 H3	3aR2 (ОК	TGCTCGGAAATC	KJ566722		Gesause ET2B	Austria	14,587258		
5 Niphargus aggtelekiensis	2119 12.08.2013	1376490795 NB541	skrinja na hod							dnevnik Dorott	Rakoczi 1 cave	Hungary	20,74886667		
7 Niphargus aggtelekiensis	2120 12.08.2013	1376491015 NB542	skrinja na hod							dnevnik Dorott	Baradla-also Ca		20,54401667	48,4831	
8 Niphargus alpinus	1003	1309432543 NA019		28S			ОК	GAAAAGCACTCT			Ramsauer Tal, N	NEM	12,900112		
9 Niphargus alpinus	1002	1309432543 NA109		285			ок	AAGGCTTCAGTA			Schapbach sprin	•	12,95833333		
0 Niphargus alpinus	1001	1309432543 NA109		28S			ОК	GAAAAGCACTCT			Schapbach sprin	1	12,95833333		
1 Niphargus ambulator	1290	1309432543 NA504		285			ОК	GAAAAGCACTCT	KJ566699		Buco del Piombo		9,198473		
2 Niphargus ambulator	1291	1309432543 NA504		H3			ОК	CGCTCGTAAGTC	KJ566723		Buco del Piombo		9,198473		
3 Niphargus angelieri	1218	1309432543 NA200		28S			NE DELA					FRA	3,028236		
4 Niphargus angelieri	1220	1309432543 NA200		H3			ОК	CGCTCGCAAGTC			Grotte des Fees		3,028236		
5 Niphargus angelieri	1219	1309432543 NA200		285			PONOVNO V					FRA	3,028236		
5 Niphargus aquilex	1214	1309432543 NA020		285			OK	CTCTGAAGAGAG	EF617255		Wavreille, well 4		5,248482		
7 Niphargus aquilex	1215	1309432543 NA020		285			OK	AAGGCTTCAGCA			Wavreille, well 4		5,248482		
8 Niphargus aquilex	1216	1309432543 NA020		H3			OK	CGCTCGTAAGTC			Wavreille, well 4		5,248482		
9 Niphargus aquilex	1217	1309432543 NA020		COI			OK	GGAGCTTGAGC1			Wavreille, well 4		5,248482		
0 Niphargus aquilex	1213	1309432543 NA029		H3			OK	CGCTCGCAAGTC			Marden območje		-0,855519		
l Niphargus aquilex	1212	1309432543 NA029		285			OK	CTCTGAAGAGAG			Marden območje		-0,855519		
Niphargus aquilex	1511	1309432543 NA194		285			NE DELA				Littlebourne	UK	1,168921		
Niphargus aquilex	1512	1309432543 NA205		285			NE DELA				Littlebourne	UK	1,168921		
1 Niphargus arbiter	672 14/08/2002	1309432543 NA052		285			ОК	CTCTGAAGAGAG			Tounjčica špilja		15,32633388		
5 Niphargus arbiter	674	1309432543 NA052		H3				TGCTCGCAAGTC			Tounjčica špilja		15,32633388		
Niphargus arbiter	676	1309432543 NA052		125	2 2		OK	GCTTTTATATTAA			Touničica špilia	Croatia	15 32633388	45 24872352	

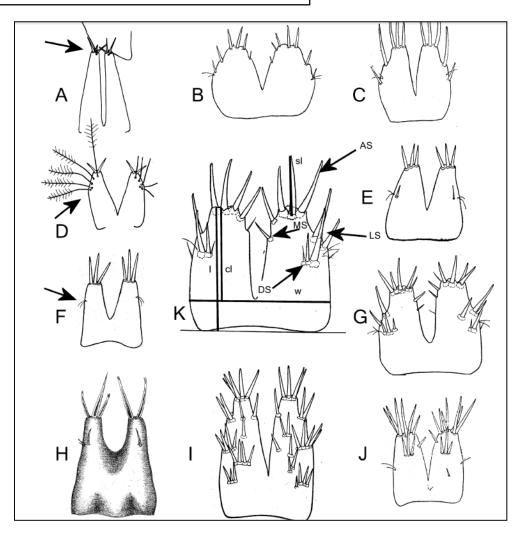
SL 😨 🛱 🎻 🔺 🐯 🖿 aill 🐚 🙎

Web-database as a collaborative tool?

Morphology: deposition of figures – deposition of measurements Quantitative data: MYSQL Form - taxa and characters Niphargus home Submit form! Clear all! Select taxa Select characters 1 🗌 Niphargus aquilex 1 🗹 body length up to [mm] 2 🗸 rostrum 2 Vioharous arbiter 3 Niphargus balcanicus 3 head length [of body length] 4 Vipharous bilecanus 4 pereonites I-VI with up to [setae] 5 pereonite VII with 5 Niphargus brachytelson 6 Niphargus carniolicus 6 pereonite VII with [postero-ventral setae] 7 Niphargus costozzae 7 pleonites I-III with up to [setae] 8 Niphargus croaticus 8 pleonites I-III with 9 epimera II and III, posterior margins with [setae] 9 Niphargus dabarensis 10 Niphargus dalmatinus 10 epimeral plate II postero-ventral corner Niphargus home Back 11 epimeral plate II, posterior margin 11 Niphargus dimorphopus body length up to [mm] rostrum 12 Niphargus danconai 12 epimeral plate II, ventral margin 13 Niphargus dolichopus 13 epimeral plate II, postero-ventral corner Niphargus arbiter 31 absent 14 Niphargus elegans 14 epimeral plate II with [strong spine-like setae along ventral margin] Niphargus bilecanus 29 absent

Web-database as a collaborative tool?

Morphology: deposition of figures – deposition of measurements


Quantitative data: MYSQL

SEVERAL IMPEDIMENT:

- taxon specific
- requires pre-defined protocols
- individual level
- unintentionally limits exploration

A CHALLENGE:

making links with other
 databases (GeneBank, spatial
 data)

Taxon specific interactive database

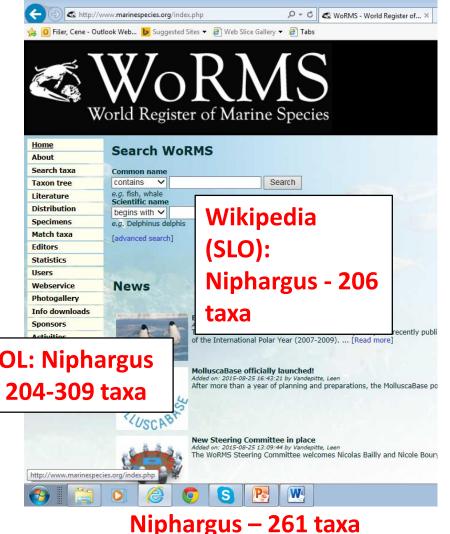
Strenghts:

- precise, a possibility to correct errors
- standardized protocols
- different properties linked with voucher specimens
- eases team work

Weakness:

 nature of characters may limit extent of the database (few taxa)

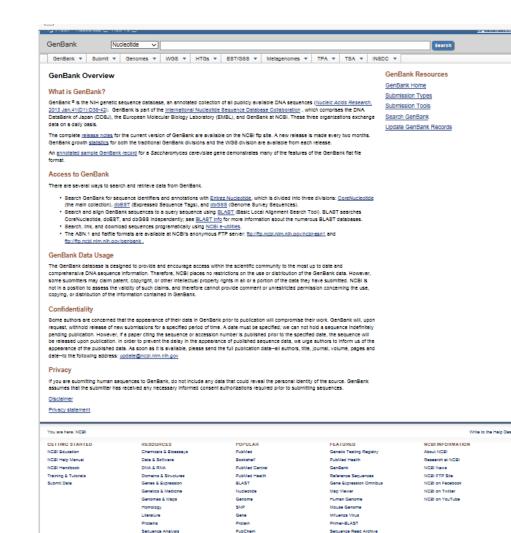
Species names on a web: a chaos


AUNA EUROPAEA a services focal point network update 29 August 2013 versio	1	contact citation, copyright, priv:	acy & disclaimer				
Database	Name search	species higher taxa vernac	ular 🧿				
Name Search	Scientific Name						
Advanced Search	(Sub) genus	is 🗸					
Taxon Tree Distribution	(Sub) species	is 🗸					
Statistics	Search Reset						
S Experts	The scientific names of one authoritative databa	European land and freshwater animals e.	brought together in				
References Taxonomic Resources	For European marine sp (ERMS).	ies please go to the European Register	of Marine Species				
Other on-line databases	For European plant spec	s please go to Euro+Med PlantBase (E+	+M).				
Acknowledgments	For the integrated pan-	ropean checklist please go to the PESI	portal.				
in LinkedIn							
Fauna Europae	a was supported by the le Support for Research 1	phargus 8 ropean Commission under the Fifth frastructures work programme with uropaea is powered by MfN	Framework Programme				

W

Po

S


Niphargus – 295 taxa

GeneBank: respository of sequences

http://www.ncbi.nlm.nih.gov/genbank/

Main impediment: species id

J. USA.gov

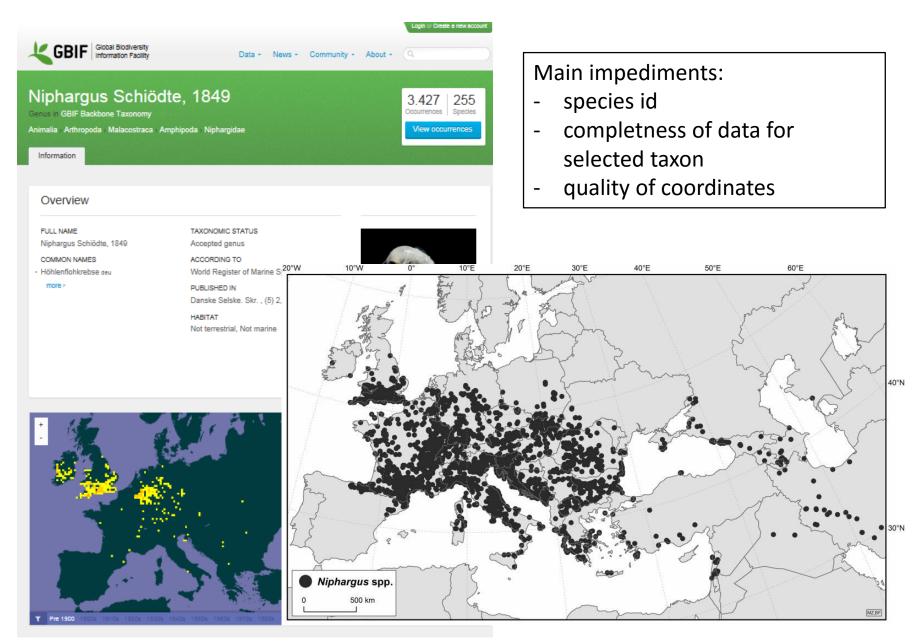
Last updated: 2015-08-07T14:49:55-04:00

Texonomy Variation National Canlar for Biolechnology Information, U.S. National Library of Medicina

5500 Rockville Pike, Betheads MD, 20594 USA

Policies and Guidelines I Contact

GBIF's vision: "A world in which biodiversity information is freely and universally available for science, society and a sustainable future." <u>http://www.gbif.org/</u>


W

S

Pe

- It provides a single point of access (through this portal and its web services) to more than **570,000,000 records**, shared freely by hundreds of institutions worldwide, making it the biggest biodiversity database on the Internet.
- The data accessible through GBIF relate to evidence about more than **1.6 million species**, collected over three centuries of natural history exploration and including current observations from citizen scientists, researchers and automated monitoring programmes.
- More than **1,400 peer-reviewed research publications have cited GBIF** as a source of data, in studies spanning the impacts of climate change, the spread of pests and diseases, priority areas for conservation and food security. **About one such paper is published each day**.
- Many GBIF Participant countries have set up national portals using tools, codes and data freely available through GBIF to better inform their citizens and policy makers about their own biodiversity.

🔅 🗈 🖬 🔥

Strenghts:

 different taxa in one place, a promising source of information for ecology and evolutionary biology

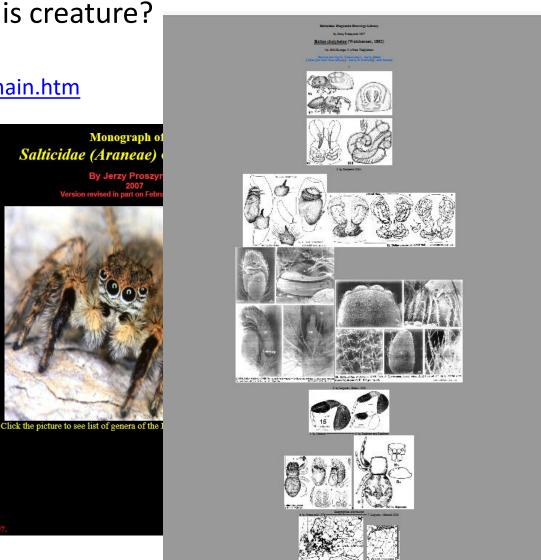
Weakness:

- difficult or impossible to revise errors
- poor connection
 between databases
 dealing with different
 types of characters

Global issues

- 1. Quality of database-quality of data.
- Linking the taxon oriented databases with character oriented databases: increase of accuracy and number of taxa.
- 3. Promotion database publishing:
 - Citation problem
 - Rewarding in funding agencies
 - Role of journals
- 4. Collaborative network stimulating collaborators

Thanks...


Maja Zagmajster

Martin Turjak

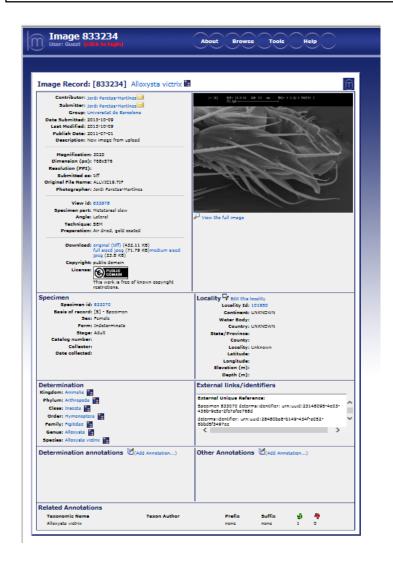
Roman Luštrik

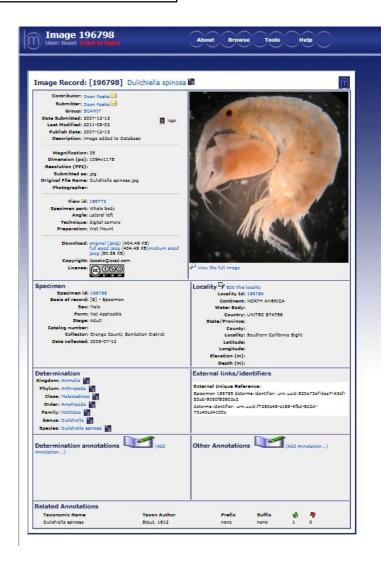
The rest of SubBio lab team

Taxon specialized websites: not necesserily databases

What is the name of this creature?

Salticid spiders http://salticidae.org/salticid/main.htm


OF THE Salticidae OF THE WORLD ART III.

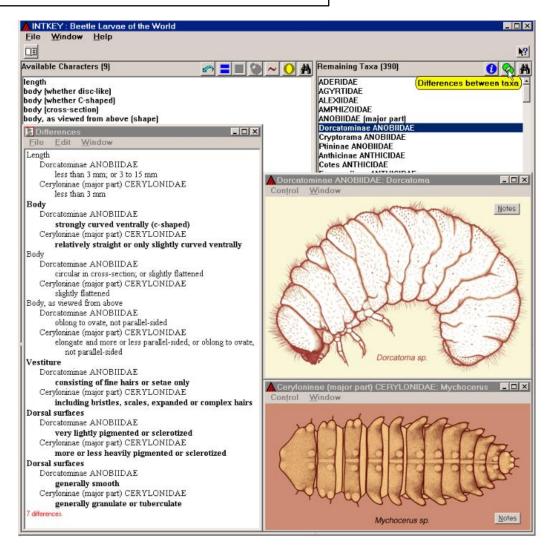

ial features: Pictorial Indexes, Keys and Taxono

Morphology: deposition of figures – deposition of measurements

Featured from 381962 images	News and Updates
	Morphbank move to new servers The Morphbank system at FSU has moved to the Sky server farm at the FSU Research Computing System and the Nolestor storage system. These new systems (Posted:07-2 will keep Morphbank running into the future
MorphBank	Filtered Push plugin in process The Filtered Push group have created a Morphbank plugin that extracts annotations from the Morphbank database and pushes them into the FP annotation services (Posted:11-0 14)
http://www.morphbank.net/	Morphbank in DINA Project The DINA project develops an open-source Web-based information management system for natural history data. At the core of the system is support for assembling, managing and sharing data associated with natural history collections and their curation ("collection management"). Target collections include zoological, botanical, geological and paleontological collections, living collections, biodiversity inventories, (Posted: 11-0 14)
click images below to browse new uploads and collections	Troy University Herbarium Online The Troy University Herbarium images from the Deep South Plant Specimen Imaging Project are now available. Search for "Michael Woods" to see the images and specimens (Posted:11-0 14)

Morphology: deposition of figures – deposition of measurements

Beginnings of the databases...

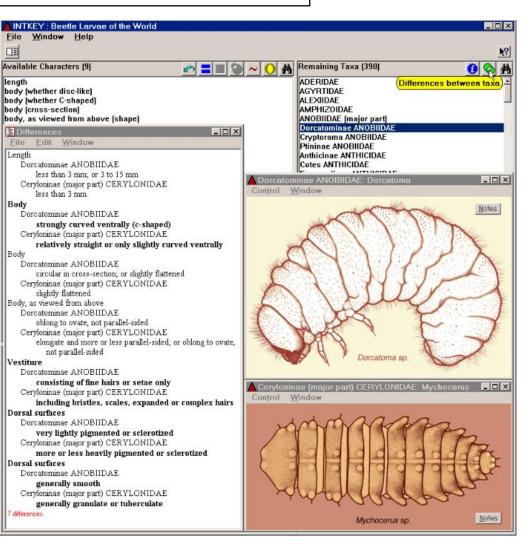

Special software packages: DELTA, Lucid

Description Language for Taxonomy (DELTA) <u>http://delta-intkey.com/</u>

A TOOL FOR:

- descriptions
- identifcation keys (different types)
- files for phylogenetic/phenetic analysis
- comparison of taxa

MAIN IMPEDIMENT: limited analytic frame, species – population level


Beginnings of the databases...

Special software packages: DELTA, Lucid

Description Language for Taxonomy (DELTA) <u>http://delta-intkey.com/</u>

SOURCE OF INFORMATION THAT CAN BE INCLUDED:

- discrete and continous morphological characters
- illustrations and photos
- sonograms
- videoclips

The importance of data interpretation and dissemination for the future of nanotechnology

Mag. Vladimir Vrečko

Future of nanotechnology

Public point of view

- Yet another potentialy dangerous technology.
- Industry pursues its own interests and can not be trusted.
- Research which is funded by private funds can not be trusted.
- Even scientists don't agree with each other, so there is obviously something wrong.
- Public media informs us of the research results that prove nanotechnology is dangerous.
- We don't want the technology untill we are sure it is safe.

Scientists point of view – Material scientists

- We have discovered numerous new materials and developed their applications.
- Everyone would benefit from their use.
- We don't see, why industry does not recognise the potential and finance us extensively.
- If we could just get money, we would have immediate success on market (everyone would buy our products).
- The potential risks, costs, availability of the materials and public opinion are not our concern.
- Yet another proof that we are not understood and appropriately valued.

Scientists point of view – Risk Assessment groups

- We got financed to reveal the safety risks.
- Public expects us to prove we are independent.
- To prove that nano materials are dangerous is therefore a success and worth publishing.
- Such findings are great for PR (ensures headlines and recognition of the research group).
- If the material or technology does not manifest risky properties, it is a disapointment and not worth mentioning.
- Only if we reveal new safety risks will we have a chance for future funding of our research.

Industry point of view

- We are interested in new technologies, but we take decisions based on economy.
- We can manage the costs, however market is still underdeveloped because the risks and legal frameworks are not yet sufficiently defined.
- Public opinion is very sceptical and media are not in favour, publishing frightening stories.
- Customers and investors don't want to take premature financial risks.
- Can it happen to nanotechnology that it will follow the footsteps of GMOs?

How about that:

Scientific research title:

Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice.

Title in newspaper:

Scientists say nanoparticles cause DNA damage.

Implications for the customers: Be aware of the products that contain nanoparticles. Demand that all products containing nanoparticles shall be labeled (as dangerous?). Don't buy such products as they can damage your DNA (scientist have said so).

What is needed?

- Industry needs stable and known market conditions and legal boundaries.
- It is willing to take reasonable precautonary measures, but doesn't want unpredictable environment for investments.
- Scientists should be aware of their responsibility at shaping public opinion.
- They should publish also the results in which they confirm that some nanomaterials do not pose safety risks.
- Market will grow only if all the stakeholders will feel secure.

What is needed?

- Scientist shall pursue balanced and objective approach and help regulatory bodies at designing legal frameworks.
- Scientists shall not forget that they are after all financed from the money which is mainly created by the industry.
- Scientists and industry shall join forces and through public media present nanotechnology as mature technology, which has many advantages. And, normaly, some potential risks, which we can however control through joint activities of researchers, legal bodies and manufacturers.

What is needed?

We shall persuade all stakeholders that they have nothing to be affraid of.

How shall we act?

So?

Or so?

Hope to see you in bright future!

Chalenges of Regulation and Risk Assessment of Nanomaterials Part 2: ECHA - NMWG

Dr. Mojca Kos Durjava

COMPinNANO, Ljubljana, 2.-3.10.2015

Risk Assessment of Nanomaterials

EC and OECD - Risk assessment of nanomaterials can be managed through existing regulatory frameworks, adapted to take into account the specific properties of manufactured nanomaterials.

REACH, CLP - EC is modifying some of the technical provisions in the REACH Annexes - amendments in 2016

Biocides – Biocidal Products Regulation (BPR), 2013: contains a definition of nanomaterial.

Risk Assessment of Nanomaterials

EC launched a comprehensive REACH Implementation Project on Nanomaterials (RIPoN) in 2009:

- RIPON1 : Substance Identity
- RIPON2 : Information Requirements
- RIPON3 : Chemical Safety Assessment

CARACAL is an expert group which advises the European Commission and ECHA on questions related to REACH and CLP.

CASG nano - Competent Authority Subgroup on Nanomaterials

- Nanomaterials in REACH
- Classification, Labelling and Packaging of Nanomaterials in REACH and CLP.

OECD - WPMN

Working Party on Manufactured Nanomaterials - WPMN

• is linked to the implementation of REACH - TG and guidance.

OECD and WPMN SG on Risk Assessment and Regulatory Mitigation SG-AP

- SG on Exposure and Exposure Mitigation Exp. Mitigation
- SG on the Environmentally Sustainable use of Nanomaterials LCA
- SG on Testing Assessment of Manufactured Nanomaterials SG-TA:
 - TG update
 - Assessment of data
 - In vitro work
 - Alternative methods (e.g. read-across)

ECHA - NMWG

NMWG – Nanomaterials Working Group

The aim – to discuss topical scientific and technical issues relevant to the implementation of REACH, CLP and Biocidal Product Regulation in relation to nanomaterials.

From 2013, 7th meeting in November 2015, chair Frank Le Curieux from ECHA

50 or more participants at meetings, twice a year:

- MSCA Member States Competent Authorities
- European Commission (DG ENT and DG ENV)
- DG Joint Research Centre
- ECHA-NMWG Accredited Stakeholders Observers (ASO)
- ECHA representatives
- Invited speakers from industry, science

ECHA - NMWG

NMWG – Nanomaterials Working Group

- ECHA presentations on their work on NM
- Industry presentations of dossiers of registered NM
 (10 NM cerium oxide, calcium carbonate, zinc oxide, multi-wall nanotubes, titanium dioxide,...)
- Scientists presentations on their research in the field of NM (NanoREG, NanoValid, Marina,...)
- Other presentations

Discussion, working in groups.

ECHA guidance on RA of NM

Already developed by ECHA: a technical manual on how to include information on nanomaterial in a IUCLID dossier which is an integral part of every REACH registration.

REACH amendments of Annexes (VII-X) for nanomaterials \downarrow

ECHA guidance on RA of NM before 2018 registration deadline

- ECHA guidance (updating)
- Practical guides/examples

Advice and expertise from the NMWG.

IUCLID 6

IUCLID is is a software application to capture, store, maintain and exchange data on intrinsic and hazard properties of chemical substances. Report generator for Chemical Safety Report - CSR.

"Assessment entity" concept – a feature for IUCLID 6

• Enable transparent reporting of hazard, use and exposure information for NM.

Multiple composition or multiple forms of the same substance.

Many constituents within the substance.

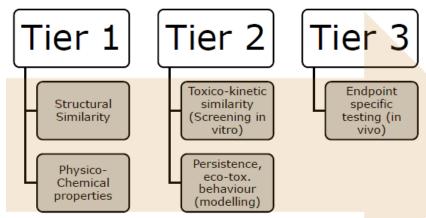
Variable composition of the substance.

Forming of tranformation products on use.

Read across and grouping of NM

Colaboration of ECHA, JRC, NanoREG and RIVM.

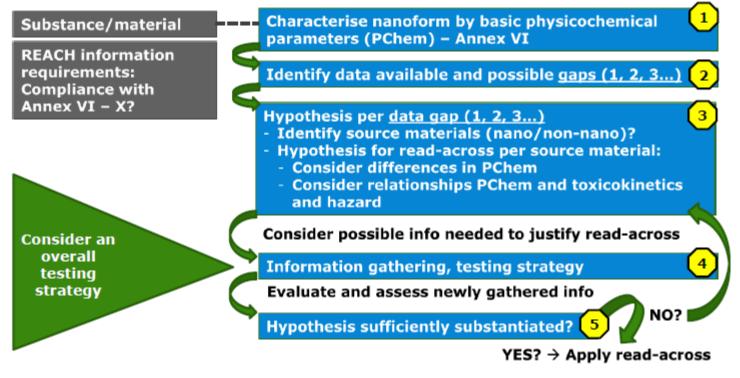
Many nanoforms on the market:


- Are studies from one form applicable to other nanoforms?
- How and when can data be used on nanoforms or beetwen non-nano and nanoforms?

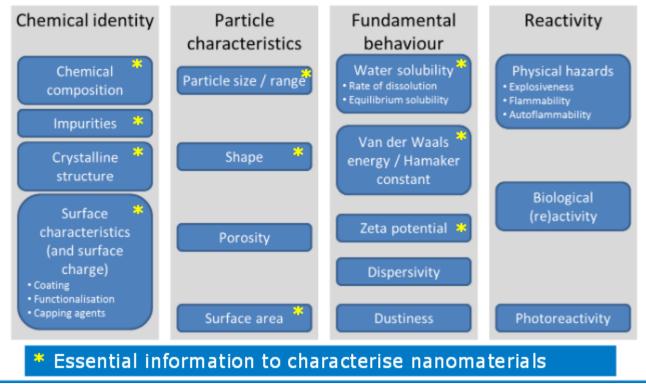
Case studies presented;

Develop a decision framework;

Link to the OECD discussion;

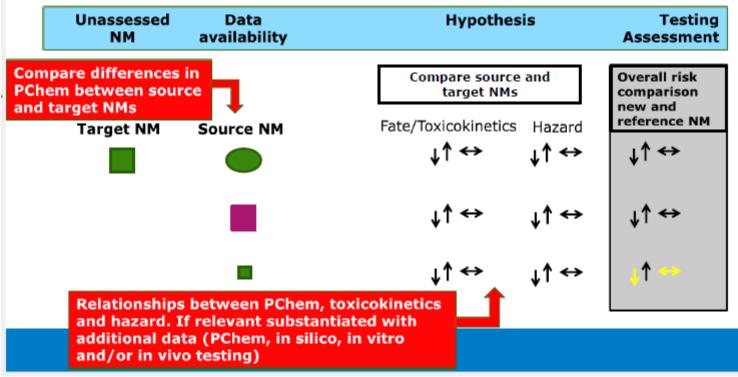

Template for reporting on read – across.

Read across and grouping of NM


Strategy for read-across of nanomaterials

Read across and grouping of NM

Parameters influencing nanomaterial behaviour:



Read across and grouping of NM

Hypothesis on read across per data point

- Find source materials with information for same exposure route
- Assess:

Read across and grouping of NM

- The focus of the framework is on Pchem data as well as their relation to the different steps in the life cycle and biological pathway (exposure, kinetics, hazard).
- Identify Pchem that matter and provide strategy for systematic assessment.
- Needs to be validated in practice.
- Future implementation of growing experience and understanding on behaviour, fate, toxicokinetics and toxicity.

ECHA guidance will be developed on read across.

NMWG group

• until guidances for REACH and CLP are developed.

National Laboratory of Health, Environment and Food Dr. Mojca Kos Durjava mojca.durjava@nlzoh.si +386 24500 234

Challenges of Regulation and Risk Assesment of Nanomaterials

part.1

Karmen Krajnc, M.Sc. Chemicals Office of the Republic of Slovenia

EU – strategic documents

Towards a European Strategy for Nanotechnology 2004

- European Nanotechnology Action Plan 2005-2009
 - Implementation Reports 2007, 2009

Code of conduct for nanotechnology research 2008

 Communication from the Commission to the European Parliament, THE Council and the European Economic and Social Committee
 2008 (first regulatory review)
 2012 (second regulatory review)

http://ec.europa.eu/research/industrial_technologies/pdf/policy/communication-from-the-__commissionsecond-regulatory-review-on-nanomaterials_en.pdf

Definition

(Commission Recommendation 2011/696)

- 'Nanomaterial' means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm.
- In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50 % may be replaced by a threshold between 1 and 50 %.
- By derogation, fullerenes, graphene flakes and single wall carbon nanotubes with one or more external dimensions below 1 nm should be considered as nanomaterials.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:en:PDF

• Consideration of possible changes to this definition

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/towards-review-ecrecommendation-definition-term-nanomaterial-part-3-scientific-technical

Cosmetic regulation(1223/2009)

- definition: 'nanomaterial' means an insoluble or biopersistant and intentionally manufactured material with one or more external dimensions, or an internal structure, on the scale from 1 to 100 nm.
- colorants, preservatives and UV-filters must be authorized (positive lists: Annexes IV, V and VI)
 - titanium dioxide (nano), zinc oxide (nano), tris-biphenyl triazine (nano) and carbon black (nano) shall be added shortly
- notifications of safety information for nano substances(art.16)
- o labeling: "nano"

4

Biocidal regulation (528/2012)

- specific approval of nano form of biocidal substance (art. 4(4))
- labeling obligation for treated articles, art. 58(3): the name followed by the word 'nano' in brackets

nano-definition

REACH-nanomaterials registered

- Carbon black
- Cerium dioxide
- Calcium carbonate
- Zinc oxide
- Silver
- MWNT (multi-wall nanotubes)
- MWNT as a form of graphite
- Titanium dioxide
- Silicate(2-), hexafluoro-, disodium, reaction products with lithium magnesium sodium silicate

Substance evaluation

- Substances selected for CoRAP (Community rolling action plan) based on initial grounds of concern: evaluated by member states, coordinated by ECHA
 - Silicon dioxide (synthetic amorphous silica SAS) the Netherlands, 2012

http://echa.europa.eu/documents/10162/a94c8df7-81c5-4946-80ae-dfa9275897e1

• Silver – the Netherlands, 2012 (ongoing)

• **Titanium dioxide** – France, 2015 (not started yet)

7

OECD Working Party on Nanomaterials

TESTING PROGRAMME ON MANUFACTURED NANOMATERIAL <u>http://www.oecd.org/chemicalsafety/nanosafety/testing-programme-manufactured-nanomaterials.htm</u>

- Cerium oxide
- Multi-walled carbon nanotubes (MWCNTs)
- Single-walled carbon nanotubes (SWCNTs)
- Dendrimers
- Nanoclays
- Fullerenes (C60)
- Silicon dioxide
- Gold nanoparticles
- Silver nanoparticles
- Titanium dioxide, Zinc oxide (not publicly available yet)

REACH NANO legislative challenges

• Definition of "nanomaterial"

• REACH Annexes (registration purposes)

• Discussion on possible EU NANO DATABASE

Chemicals Office of the RSnano activities

Nanoportal

- Identified 30 companies (producers, users of nanosubstances)
 - Ag, Zn, Al, TiO2, soot, ZnO, SiO2, Fe.H2SO4, Si, Al2O3, graphite-C, SiC,Cu, CdS, FeCl3, B, Fe, Cr, CuO, MoSi, MoS2, Wox
 - Coatings/Surface modification,
 - Pigments,
 - Polymers/Composits,
 - Cosmetic,
 - Medical devices & Medicinal products,
 - Textiles,
 - Electronics.
- Awareness raising

Nanoportal <u>http://www.uk.gov.si/</u>

11

AKTUALNO

Nanoportal

Z namenom okrepitve povezav med slovensko industrijo in številnimi priznanimi slovenskimi znanstveniki, ki se pri nas ukvarjajo s posameznimi vidiki nanomaterialov in nanovarnosti, smo v sodelovanju z slovenskimi raziskovalci, pripravili NANOPORTAL.

Portal je sestavljen iz dveh delov:

Splošna predstavitev področja, skupaj s koristnimi povezavami. Seznam več kot 100 slovenskih raziskovalcev, vključno z navedbo področja njihovega delovanja.

Načrtujemo, da se bo portal sproti dopolnjeval, vse morebitne predloge za spremembe lahko posredujete na URSK, mag. Karmen Krajnc (tel: 478 6054, mail: <u>karmen.krajnc(at)gov.si</u>)

Elektronsko sporočanje podatkov o kemikalijah

Zavezancem za sporočanje podatkov o kemikalijah na podlagi 35. člena Zakona o kemikalijah in Pravilnika o sporočanju podatkov o kemikalijah je na voljo spletna aplikacija ISK za elektronsko sporočanje podatkov. Aplikacija ISK omogoča pregled, vnos, spreminjanje in ukinjanje sporočil o kemikalijah ter pregled in vnos letnih količin o kemikalijah. Več o elektronskem sporočanju podatkov, pogojih za uporabo aplikacije, načinu registracije uporabnikov in uporabi aplikacije naidete na zavihku e-sporočanje.

NOVICE

22. 9. 2015 <u>Objava prostega delovnega mesta</u> projektnega svetovalca Twinning projekta v Beogradu

3. 9. 2015 Javni posvet gleđe identifikacije snovi, ki vzbujajo veliko zaskrbljenost (SVHC)

2. 9. 2015 Registracija za uporabnike anhidrida ocetne kisline

Več⊧

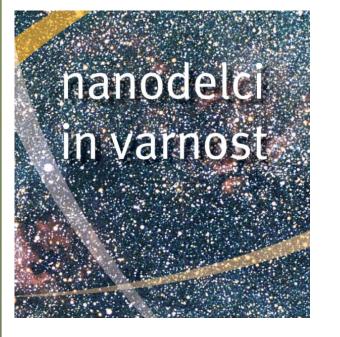
DOGODKI

27. 5. 2015 <u>Predstavitve s seminarja "Strokovno</u> <u>srečanje svetovalcev za kemikalije"</u>, 20.05.2015

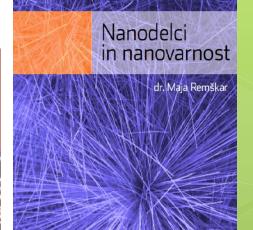
13. 4. 2015 Strokovno srečanje svetovalcev za kemikalije, 20.05.2015

DRUGE VSEBINE

Registracija, evalvacija,


Razvrščanje, pakiranje in

Biocidni proizvodi


2. 4. 2015 Biocidni simpozij 2015

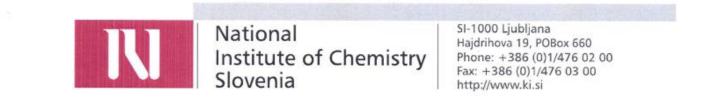
Odiozisce is Pisava is	POIdVIIdVd	12 STEALIO	13
A21 🝷 📄 🏂 Institut "Jožef Stefan	l"		
A	В	С	D
Raziskovalna organizacija	Kontaktna oseba	E-mail	Nanomateriali
Cinkarna Celje	Dejan Verhovšek	dejan.verhovsek(at)cinkarna.si	TiO2
Cinkarna Celje	Nika Veronovski	nika.veronovski(at)cinkarna.si	TiO2
Helios	Znoj Bogdan	bogdan.znoj(at)helios.si	nanoclay
Industrijski razvojni center slovenske predilne industrije	Žlabravec Verica	vera.zlabravec(at)litija.com	nanodelci na tekstilu
Institut "Jožef Stefan"	Bernik Slavko	slavko.bernik(at)ijs.si	ZnO
Institut "Jožef Stefan"	Gyergyek Sašo	saso.gyergyek(at)ijs.si	magnetni nanodelci
Institut "Jožef Stefan"	Jesih Adolf	adolf.jesih(at)ijs.si	Molx
Institut "Jožef Stefan"	Kobe Spomenka	spomenka.kobe(at)ijs.si	SiC
Institut "Jožef Stefan"	Kralj Slavko	slavko.kralj(at)ijs.si	magnetni nanodelci
1 Institut "Jožef Stefan"	Kutnjak Zdravko	zdravko.kutnjak(at)ijs.si	MoS2
2 Institut "Jožef Stefan"	Lisjak Darja	darja.lisjak(at)ijs.si	feriti
Institut "Jožef Stefan"	Makovec Darko	darko.makovec(at)ijs.si	magnetni nanodelci
4 Institut "Jožef Stefan"	Milošev Ingrid	ingrid.milosev(at)ijs.si	nanodelci kovinskih implantov
5 Institut "Jožef Stefan"	Mozetič Miran	miran.mozetic(at)ijs.si	FeOx, NbOx
5 Institut "Jožef Stefan"	Mrzel Aleš	ales.mrzel(at)ijs.si	MoSI
7 Institut "Jožef Stefan"	Muševič Igor	igor.musevic(at)ijs.si	SiO2
Institut "Jožef Stefan"	Novak Saša	sasa.novak(at)ijs.si	SiC
Institut "Jožef Stefan"	Panjan Peter	peter.panjan(at)ijs.si	TiAIN/CrN
Institut "Jožef Stefan"	Pribošič Irena	irena.pribosic(at)ijs.si	KNbO3
Institut "Jožef Stefan"	Remškar Maja	maja.remskar(at)ijs.si	MoS2
2 Inštitut "Jožef Stefan"	Suvorov Danilo	danilo.suvorov(at)ijs.si	funkcionalni in bio nanodelci - ele
Institut "Jožef Stefan"	Škapin D. Srečo	sreco.skapin(at)ijs.si	poly(d,1-lactide-co-glycolide)/hy
Institut "Jožef Stefan"	Štrancar Janez	janez.strancar(at)ijs.si	TiO2
5 Institut "Jožef Stefan"	Vaupotič Janja	janja.vaupotic(at)ijs.si	detekcija aerosolov (5-1100 nm)
5 Institut "Jožef Stefan"	Vesel Alenka	alenka.vesel(at)ijs.si	Fe2O3
7 Institut "Jožef Stefan"	Vukomanović Marija	marija.vukomanovic(at)ijs.si	Au
Inštitut za kovinske materiale in tehnologije	Jenko Monika	monika.jenko(at)imt.si	FeOx
Kemijski inštitut	Bele Marjan	marjan.bele(at)ki.si	Carbon NP , TiO2, SiO2, LiMPO4 (N
Kemijski inštitut	Crnjak Orel Zorica	zorica.crnjak.orel(at)ki.si	Cu/ZnO, CuO/ZnO, Pd/CuO/ZnO,
1 Kemijski inštitut	Dominko Robert	robert.dominko(at)ki.si	LiMPO4 (M=Mn,Fe) Li2FeSiO4, Ca
2 Kemijski inštitut	Dražić Goran	goran.drazic(at)ki.si	TiO2
3 Kemijski inštitut	Gaberšček Miran	miran.gaberscek(at)ki.si	Carbon NP , TiO2, SiO2, LiMPO4 (N

Awareness raising

OGNJEMETI in druga zabavna PIROTEHNIKA ZASTRUPLJAJO OZRAČJE

o http://www.kemijskovaren.si/files/nano_knjiga.pdf

Additional links:


- http://ec.europa.eu/nanotechnology/index_en.html,
- <u>http://ec.europa.eu/environment/chemicals/nanotech/index_en.</u>
 <u>htm</u>
- http://echa.europa.eu/regulations/nanomaterials
- <u>https://ec.europa.eu/jrc/en/scientific-tool/jrc-web-platform-nanomaterials</u>
- <u>https://ec.europa.eu/jrc/en/scientific-tool/nanohub</u>
- http://ec.europa.eu/health/nanotechnology/policy/index_en.htm

Thank you for your attention

http://www.uk.gov.si/ karmen.krajnc@gov.si

tel:01/478 6051

Chemometric analysis and QSAR modelling in NANO-toxicology

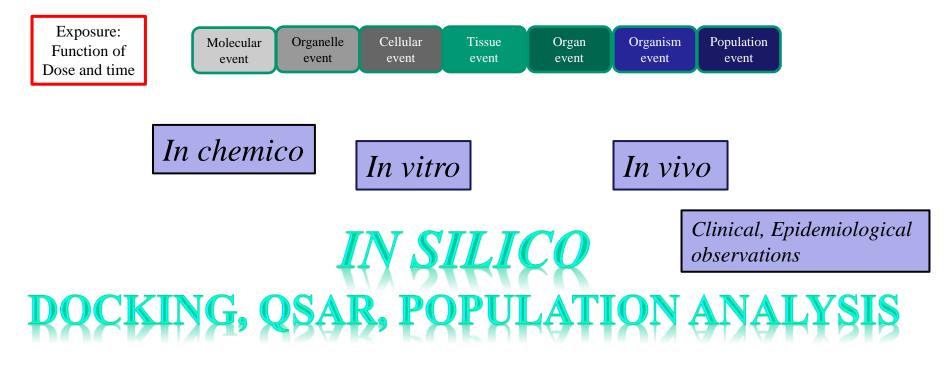
Marjan Vračko National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, marjan.vracko@ki.si

Chemometric analysis and QSAR modelling in NANO-toxicology

Outline

Introduction

National


Slovenia

- New toxicological paradigm 2.
- QSAR (Qantitative Structure-Activity Relationship) working sheme and strategy 3.
- NANO-descriptors 4.
- Chemometrical analysis of proteomic data 5.

New paradigm in toxicology...

Adverse Outcome Pathways

Is a sequential chain of causally related events leading to the toxic effect...

OECD document... Adverse Outcome Pathway (AOP)

$\langle \mathfrak{S} \rangle \rangle$	OECD.org	Data	Publications	More sites	T	News	Job vacancies	
BETTER POL	OECD					> A to Z Searc	h oecd.org	
OECD I	Home About	Countries 🧹	Topics ~				> Français	

Testing of chemicals	Adverse	Outcome	Pathways	s, Molecul	ar Scree	ening an	d Tox	icoge	enom	ics	
Assessment of chemicals											
Risk management of chemicals	Documents How to ma	ke a project proposa	12								
Chemical accident prevention, eparedness and response	Process for	the development of ects on the AOP dev	AOP at OECD	ime workplan							
Pollutant release and transfer gister		ities on Molecular So	reening and Toxic	cogenomics							
Safety of manufactured anomaterials	In 2012, the O	Adverse Outc ECD launched a new a sequential chain o	v programme on ti	he development of /							
Agricultural pesticides and ocides	figure). AOPs	are the central eleme	ent of a toxicologic	al knowledge frame	work being buil	It to support che	mical risk	assessm	ent based (
Biosafety - BioTrack	Figure: schem	atic representation o	f the Adverse Out	come Pathway (AO	P) illustrated wi	th reference to	a number o	of pathwa	ys.		
	Toxicant	Macro-Molecular Interactions	Cellular Responses	Organ Responses	Organism Responses	Population Responses					
	Chemical Properties	Receptor/Ligand Interaction	Gene activation Protein	Altered Physiolgy Disrupted	Lethality Impaired	Structure Extinction					
		DBA Binding Protein Oxidation	Production Altered Signaling	Altered tissue development/	Development Impaired Reproduction						
				function	[
	the OECD	lopment programme Test Guidelines Proc QSAR Project for the Hazard Assessment	gramme for the ide e identification of t activities for the	entification of new <i>ir</i>	ers for grouping	chemicals, and					egrated Testir
		for defined hazard e	ndpoints.								
	Strategies,			PCS work on Mode	<u>of Action,</u> as th	e AOP concept	and the M	lode of Ac	tion are clo	osely related.	
	Strategies,	for defined hazard e ordinates its activitie		PCS work on Mode	<u>of Action,</u> as th	e AOP concept	and the M	lode of Ac	tion are clo	osely related.	

Example: skin sensitization (chemicals)...

ENV/JM/MONO(2012)10/PART1

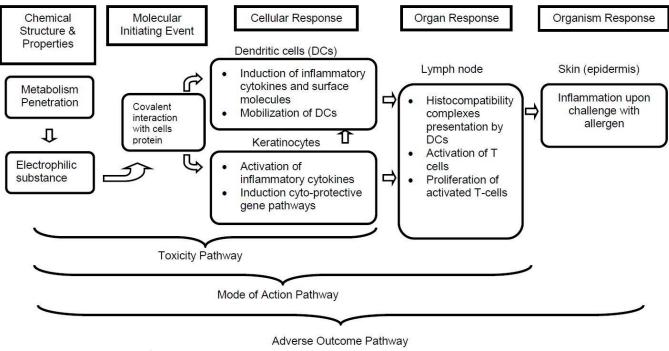


Figure 3. Flow diagram of the pathways associated with skin sensitisation.

In silico methods...

- *In silico* methods are important to aquire the data for AOP scheme...
- Under term *In silico* we understand different computational modelling approaches; molecular mechanics, dynamics, QSAR, modeling of ADME properties, and also chemometrical analysis of (proteomics, genomics, metabonomics) data,...
- MOLECULES NANO particles?

QSAR, Read accross (grouping) in REACH and ECHA

NANO and EU

Brussels, 3.10.2012 SWD(2012) 288 final

COMMISSION STAFF WORKING PAPER

Types and uses of nanomaterials, including safety aspects

Accompanying the

Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee

on the Second Regulatory Review on Nanomaterials

{COM(2012) 572 final}

Scheme of QSAR - strategy How to extract the <u>hidden knowledge</u> from DATA SET

DATA BASE Information about molecules Information on toxicity and properties Different details about experiments

Molecular structures

•Experimental (X-ray, NMR...)•Optimized (different approximations)

Physical/chemical properties (logP,MW)

Descriptors

Uniformly presented <u>toxicity or property</u> •dose

Affiliation to toxicity class, mode of action,

QSAR Model is mathematical relationship between descriptors and <u>toxicity (property</u>)

QSAR model must be VALIDATED!

Workshop on COMPUTATIONAL APPROACHES IN NANOSCIENCES

"COMPinNANO", Ljubljana, 2. - 3. October 2015

Scheme of QSAR – strategy How to extract the <u>hidden knowledge</u> from DATA SET?

QSAR hypothesis: The property is a function of chemical structure!

The validated QSAR model can be used to <u>predict</u> the property for a 'new - hypothetical' compound.

ONLY FOR THE PROPERTY FOR WHICH IT WAS TRAINED.

Two main application areas of QSAR models

Active substances (drug) research:

- 1. Searching for new lead compounds
- 2. Searching for better analogues

Regulatory assessment:

- 1. Predicting of 'missing' values for risk assessment
- 2. Categorisation of compounds for labeling
- 3. Priority setting

NANO: Scheme of QSAR – strategy How to extract the <u>hidden knowledge</u> from DATA SET

DATA BASE

Information about molecules Information on toxicity and properties Different details about experiments

Molecular structures

•Experimental (X-ray, NMR...)
•Optimized (different approximations)
Physical/chemical properties (logP,MW)

Uniformly presented <u>toxicity or property</u> •dose

•Affiliation to toxicity class, mode of action, ..

QSAR Model is mathematical relationship between descriptors and <u>toxicity (property)</u>

QSAR model must be VALIDATED!

Molecules – NANO particles ??

The properties of NANO particles (strongly) depend on their the size and the shape. An accent is placed is on *descriptors*.

> Gold nanoparticles are red to black. Red glass (Wikipedia):

First produced in late Roman Empire.

The knowledge was lost and rediscovered in the 17th century by either Johann Kunckel in Potsdam or by the Florentine glassmaker Antonio Neri in Italy. Chemist and winner of the 1925 Nobel Prize in Chemistry Richard Adolf Zsigmondy was able to

understand and explain that small colloids of gold were responsible for the red colour.

Representation of a molecule - How to apply for NANO?

Different levels of the representation of molecules:

- 1D Information on constituents (which atoms, or which groups of atoms)
- 2D Structural formula gives information on atoms and bonds between atoms, but no information on metrical parameters (distances between atoms, angles between bonds)
- 3D Coordinates of all atoms (information on all metrical properties)
- Quantum chemical descriptors are calculated from QC results they describe the electronic properties
- Structure can be described by fragments
- Etc.

1D descriptors

Molecules (constitutional):

Information on constituents:

- Number of atoms
- Number of particular atom groups (fragments)

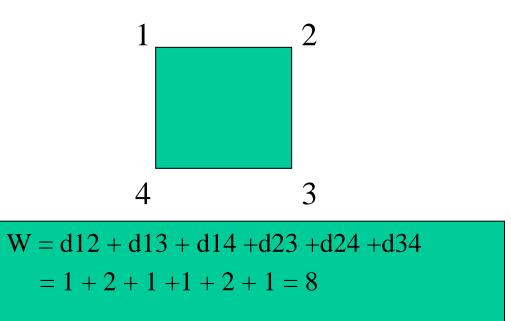
• ...

NANO particles:

- Size
- Shape
- Chemical constitution
- ...

2D descriptors - Topological indices

Topological indices are numbers deduced from structural formula of a molecule (2D representation).


NANO particles:

- Shape indices
- Analysis from electron microscopy pictures.

Ghorbani, Modjtaba. Computing Wiener index of C-24 fulleren. Journal Of Computational And Theoretical Nanoscience, 2015,12, 1847-1851.

Example: Wiener index (name proposed by H. Hosoya) is an integer number deduced from structural formula (graph).

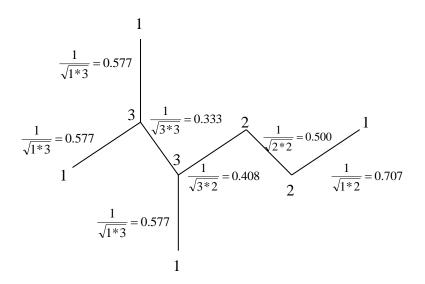
Wiener index for cyclobutane:

Molecule	W
Methane	0
Propan	4
Cyclopropane	3
N-butane	10
Isobutane	9
Cyclobutane	8

Wiener index has a high degeneracy: different non-isomorfic graphs have the same W.

Atempts to lower the degree of degeneration:

- Hyper-Wiener index
- Szeged index
- Three-dimensional Wiener index
- Hosoya's index Z


Second generation topology indices

They are real numbers deduced from graphs. One of the most successful is molecular connectivity index c proposed by Randic: $\chi = S_{ij}(v_iv_j)^{-1/2}$

Sum runs over edges (bonds), v is the vertex degree on the endpoints.

Calculation of connectivity index for 3-methylheptane

$$\chi = \Sigma_{ij} (v_i v_j)^{-1/2}$$

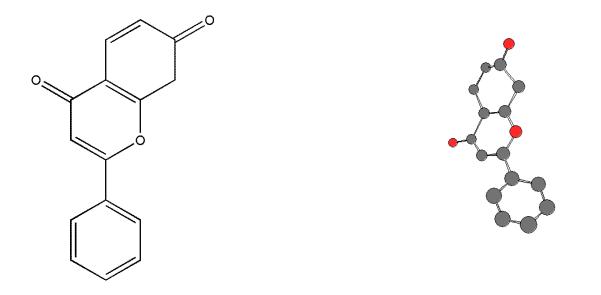
 $\chi = 3 * 0.577 + 0.333 + 0.408 + 0.500 + 0.707 = 3.679$

3D descriptors

Three-dimensional structure of molecules is not unanimously defined.
Rigid molecules are rare, most of the molecules are flexible.
A molecule can have a different 3D structure *in vacuo*, in crystaline form, in water environment, or in protein environment.

Experimental determinations:

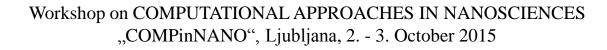
- X ray diffraction measurements
- 2D-NMR measurements method enables determination of ligandreceptor geometry


Theoretical determination:

- Quantum chemical optimization
- Molecular dynamics

Result (3D structure) depends on the selected method.

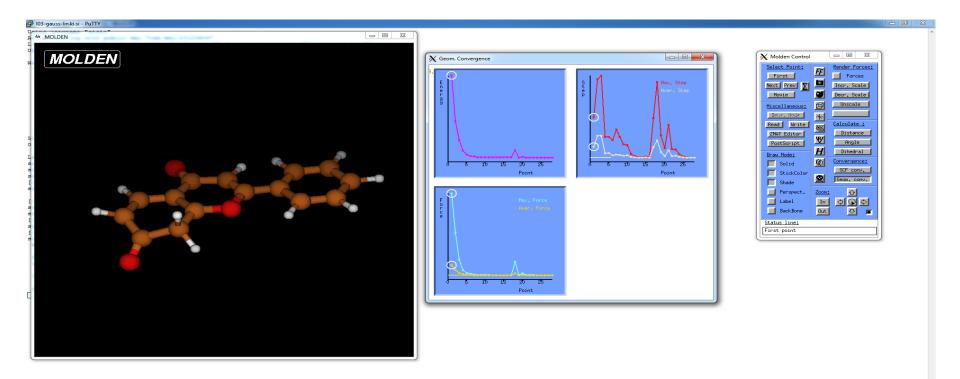
A Flavonoid derivate: 3D structure determinated with rule based generator


Tautomer of 7-hydroxy-2-phenyl-4-benzopyrone C1(=CC=CC=C1)C3=CC(C2=C(CC(C =C2)=O)O3)=O

A Flavonoid derivate: 3D structure determinated with rule based generator or with Molecular Mechanics Optimization

Rule based system

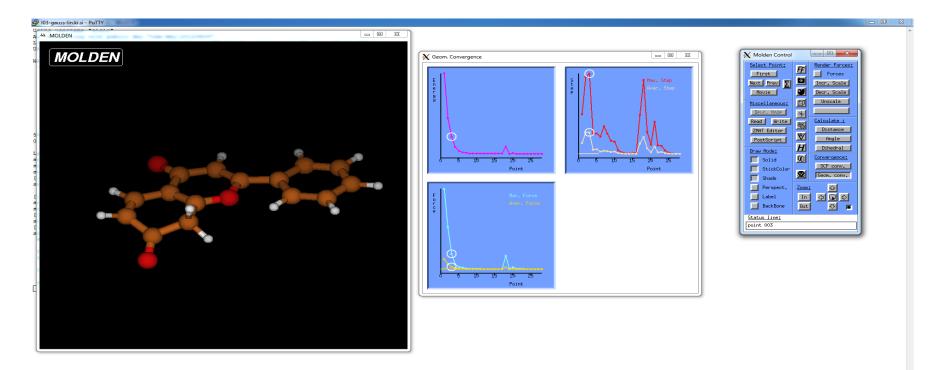
MM optimization


A Flavonoid derivate: 3D structure determinated with rule based generator or with QC program GAUSSIAN (HF-6-31g approximation) Input

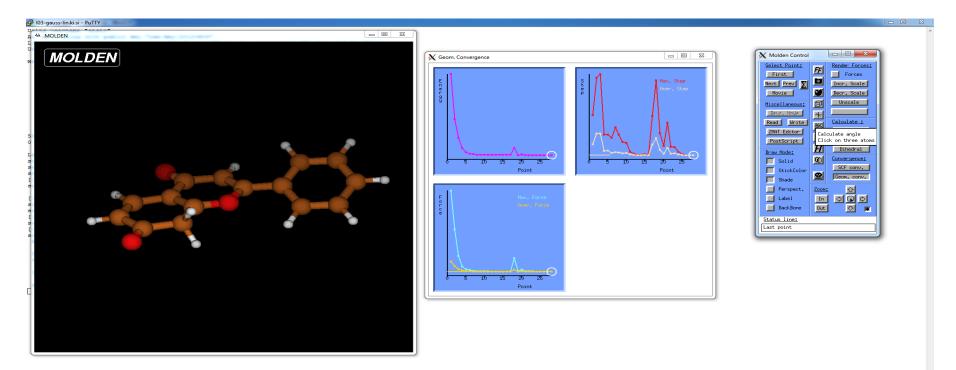
HF/6-31G(d) opt

Test1

01			
C 0	-0.809889	-2.481124	0.027570
C 0	-0.809889	-3.818124	0.027570
C 0	0.347987	-4.486624	0.027570
C 0	1.505863	-3.818124	0.027570
C 0	1.505863	-2.481124	0.027570
C 0	0.347987	-1.812624	0.027570
C 0	0.347987	-0.475624	0.027570
O 0	-0.853279	0.151261	0.027570
C 0	-0.722044	1.499890	0.027570
C 0	0.450229	2.142809	0.027570
C 0	1.574749	1.394039	0.027570
C 0	1.371375	0.058435	0.027570
C 0	-2.020291	2.245149	0.039936
C 0	-1.793136	3.659064	-0.435801
C 0	-0.663327	4.173114	0.051266
C 0	0.479580	3.479435	0.039418
O 0	2.679662	1.882333	0.027570
O 0	-2.545154	4.254249	-1.170300
H 0	-1.762517	-1.931124	0.027570
H 0	-1.762517	-4.368124	0.027570
H 0	0.347987	-5.586624	0.027570
H 0	2.458491	-4.368124	0.027570
H 0	2.458491	-1.931124	0.027570
H 0	2.266345	-0.581120	0.027570
H 0	-2.427220	2.263510	1.075717
H 0	-2.745599	1.738385	-0.635258
H 0	-0.671772	5.189531	0.471773
H 0	1.444041	4.008410	0.039418


A Flavonoid derivate: 3D structure determinated with rule based generator or with QC program GAUSSIAN (HF-6-31g approximation) Original

Workshop on COMPUTATIONAL APPROACHES IN NANOSCIENCES "COMPinNANO", Ljubljana, 2. - 3. October 2015


SL 🔺 🏴 😭 🍁 9:55 AM

A Flavonoid derivate: 3D structure determinated with rule based generator or with QC program GAUSSIAN (HF-6-31g approximation) Midle point

💿 ⋵ 📋 🖸 🛝 🛃 💥 🛷

A Flavonoid derivate: 3D structure determinated with rule based generator or with QC program GAUSSIAN (HF-6-31g approximation) Final

🗐 💪 📋 🗖 📲 🛃 🚿

Quantum chemical descriptors

HF calculations are time consuming. For our molecule from Gaussian output:

ON A TOMBSTONE, "HERE LIES LESTER MOORE, FOUR SLUGS FROM A 44, NO LES, NO MORE". Job cpu time: 0 days 1 hours 26 minutes 23.4 seconds. File lengths (MBytes): RWF= 58 Int= 0 D2E= 0 Chk= 6 Scr= 1 Normal termination of Gaussian 09 at Thu Jun 28 17:48:11 2012.

Approximations to HF (semiempirical methods) : AM1, CNDO, MINDO, etc.

Quantum chemical descriptors

They are calculated from eigenvalues and eigenvectors of Hartree-Fock equation, or alternatively, from an approximation to it (AM1, CNDO, MINDO, etc.)

Eigenvalues are molecular orbital energies. According Koopmans' theorem: Ionisation potential = $-E_{HOMO}$ Electron affinity = $-E_{LUMO}$ Gap = E_{LUMO} - E_{HOMO}

Eigenvalues are used to calculate the charge distribution and descriptors related to it (dipole moment and higher moments).

Example: CODESSA calculates about 300 quantum chemical descriptors.

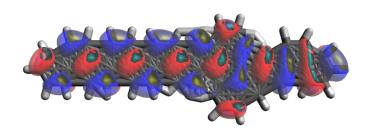
Quantum chemical descriptors Gaussian output

2. E _H 3. Mu Electronic s Charge=	otimized geometry	27. 27. 27. 27. 27. 27. 27. 27. 27. 27.	0 = 0.06510 Hartree 5332.5111				
X=	5.2339 Y=	-1.4411 Z			5.4293		
	e moment (field-inde				5.4295		
XX=	-101.3395	YY=	-116.5999	77=	-103.6957		
XX = XY =	-7.8858	XZ=	1.5863	YZ=	4.5278		
			lent basis, Debye-Ang):		4.5276		
	~ 1	· •	• •		2 51 (0		
XX=	5.8722	YY=	-9.3882	ZZ=	3.5160		
XY=	-7.8858	XZ=	1.5863	YZ=	4.5278		
-	noment (field-indepe						
XXX=	127.9448	YYY=	-41.1843	ZZZ=	1.2466	XYY=	66.4476
XXY=	59.6734	XXZ=	2.9705	XZZ=	-14.6642	YZZ=	-3.5759
YYZ=	-1.1079	XYZ=	6.4639				
Hexadecap	ole moment (field-ir	dependent bas	is, Debye-Ang**3):				
XXXX=	-5387.5410	YYYY=	-1605.9836	ZZZZ=	-157.2575	XXXY=	-384.5756
XXXZ=	75.5886	YYYX=	-15.4537	YYYZ	<i>z</i> = 32.9132	ZZZX=	-3.2400
ZZZY=	-4.7132	XXYY=	-1293.9863	XXZZ	-1012.2994	YYZZ=	-250.1014
XXYZ=	57.5382	YYXZ=	-5.9352	ZZXY			

Etc.

Quantum chemical descriptors in NANO

A promised area in NANO QSAR, possible descriptors:


- gaps,
- proton, electron affinity,
- surface charges,
- electronic properties related to reactivity (formation of metal cations).

Problems:

• NANO particles are large, poorley defined systems. *Ab initio* calculations require large scale computer abilities.

I. Lynch et al. A strategy for grouping of nanomaterials based on key physicochemical descriptors as a basis for safer-by-design NMs. Nano Today, 2014, 9, 266-270.

Electron distribution of graphene

Descriptors - résumé

- Descriptors are parameters, which represent the molecular structure in QSAR model
- Different chemical and physical parameters can be used as descriptors (logP, solubility, etc.)
- Thousands of descriptors can be calculated from chemical structures
- Dozens of programs are available (commercial and free) to calculate the descriptors (DRAGON, CODESSA, POLLY, MDL, PETRA......)
- We are far from clear NANO-QSAR concept....
- Far from NANO particle design (hypothetical NP ?)

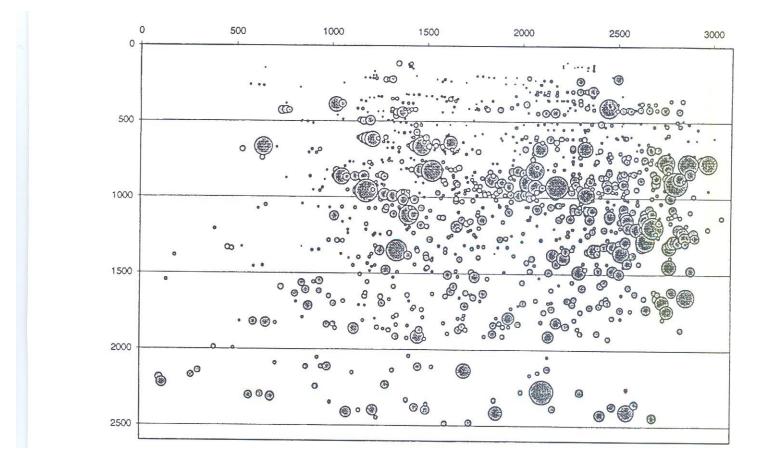
E. Burello, A. Worth. Predicting toxicity of nanoparticles. Nature Nanotechnology, 2011, 6, 138-139.

NANO data bases relevant for toxicity assessment N. Jeliazkova et al. The eNanoMapper database for nanomaterial safety information. *Beilstein J. Nanotechnology*, 2015, 6, 1609-1634.

Data bases relevant for toxicity assessment:

- <u>http://www.nanomaterialregistry.org</u>
- <u>http://www.nanoparticlelibrary.net</u>
- <u>http://nbi.oregonstate.org</u>
- <u>http://cananolab.nci.nih.gov/caNanoLab/</u>
- <u>http://www.internano.org</u>
- <u>http://icon.rice.edu/report.cfm</u>
- <u>http://ncl.cancer.gov</u>
- <u>http://www.napira.eu</u>
- <u>http://nanopartikel.info</u>
- <u>http://nanowerk.com</u>
- <u>http://www.nanosafetycluster.eu/</u>

Chemometrical analysis of -omic data..


In vitro study:

- 1. Cells are treated with different NANO particles...
- 2. The -omic status is measured (ca 3000 proteins pro measurements)
- 3. Statistical relevant -omics are selected?

Pilot study 1: Biodescriptors-2D proteomic maps Study :

M. Vracko, S. C. Basak. Similarity study of proteomic maps. *Chemometrics and Intelligent* Laboratory Systems 70 (2004) 33–38

Data from:

N.L. Anderson, R. Esquer-Blasco, F. Richardson, P. Foxworthy, P. Eacho, The effects of peroxisome proliferators on protein abundances in mouse liver, Toxicol. Appl. Pharmacol. 135 (1996) 75–89.

Similarity indices between control map and treated maps are reported:

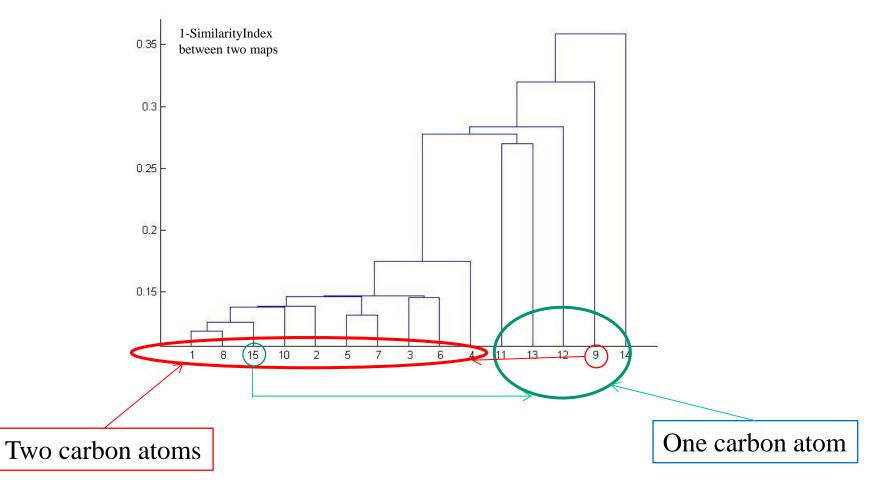
Fig. 2. Similarity index dependent on administrated dose of LY171883. On spots the right side show similarity index for 5 and 35 days exposures.

Study 2:Information on biological status of cells biodescriptors, proteomics

M. Vracko, S. C. Basak, K. Geiss, F. Witzmann. Proteomic Maps-Toxicity Relationship of Halocarbons Studied with Similarity Index and Genetic Algorithm. *J. Chem. Inf. Model*. 2006, 46, 130-136.

- The comparison of proteomic maps obtained from hepatocytes, which were treated 14 halocarbons.
- Six biological endpoints were determined *in vitro*: $EC50_{MIT}$, LEC_{ROS} , $EC20_{SH}$, $EC50_{LDH}$, LEC_{LP} , LEC_{CAT}
- From each map 263 spots were taken to study the similarity among maps.
- The similarity between two maps was expressed with similarity index.
- The clustering structure is graphycally presented with hierarchical clustering method
- With genetic algorithm we selected proteins related to endpoints.

Information on biological status of cells biodescriptors, proteomics


The similarity index: s^a.

$$z^{b} = \frac{1}{N} \sum_{i=1}^{N} \frac{z_{i}^{a} z_{i}^{b}}{\max(z_{i}^{a}, z_{i}^{b})^{2}}$$

	control	111- C2Cl3H3	112- C2Br3H3	112- C2Cl3H3	12-C2Br2H4	12- C2BrCIH4	12-C2Cl2H4	C2CI3H	C2Cl4	C2Cl4H2	CBr2H2	CBrCIH2	CCI2H2	CCI3H	CHBr3
control	1.0000	0.8614	0.8529	0.7890	0.8323	0.8380	0.8540	0.8816	0.6426	0.8438	0.6850	0.6972	0.7220	0.5177	0.8748
111- C2Cl3H3	0.8614	1.0000	0.8270	0.7762	0.8128	0.8419	0.8426	0.8576	0.6685	0.8577	0.6715	0.6736	0.6914	0.5205	0.8498
112- C2Br3H3	0.8529	0.8270	1.0000	0.7812	0.7699	0.8542	0.8209	0.8413	0.6458	0.8484	0.6553	0.6751	0.6890	0.5081	0.8451
112- C2Cl3H3	0.7890	0.7762	0.7812	1.0000	0.8091	0.7777	0.8251	0.7521	0.6801	0.7607	0.6718	0.6585	0.6685	0.5404	0.7637
12- C2Br2H4	0.8323	0.8128	0.7699	0.8091	1.0000	0.7866	0.8688	0.7926	0.6483	0.7842	0.6822	0.6725	0.6737	0.5431	0.7865
12- C2BrClH4	0.8380	0.8419	0.8542	0.7777	0.7866	1.0000	0.8279	0.8409	0.6287	0.8400	0.6383	0.6489	0.6489	0.5007	0.8300
12- C2Cl2H4	0.8540	0.8426	0.8209	0.8251	0.8688	0.8279	1.0000	0.8081	0.6620	0.8208	0.6839	0.6851	0.6847	0.5269	0.8195
C2CI3H	0.8816	0.8576	0.8413	0.7521	0.7926	0.8409	0.8081	1.0000	0.6281	0.8332	0.6618	0.6900	0.7025	0.5050	0.8746
C2Cl4	0.6426	0.6685	0.6458	0.6801	0.6483	0.6287	0.6620	0.6281	1.0000	0.6473	0.6390	0.6243	0.6187	0.5812	0.6519
C2Cl4H2	0.8438	0.8577	0.8484	0.7607	0.7842	0.8400	0.8208	0.8332	0.6473	1.0000	0.6328	0.6694	0.6837	0.5008	0.8619
CBr2H2	0.6850	0.6715	0.6553	0.6718	0.6822	0.6383	0.6839	0.6618	0.6390	0.6328	1.0000	0.6712	0.7298	0.6413	0.6657
CBrCIH2	0.6972	0.6736	0.6751	0.6585	0.6725	0.6489	0.6851	0.6900	0.6243	0.6694	0.6712	1.0000	0.7162	0.5275	0.6750
CCI2H2	0.7220	0.6914	0.6890	0.6685	0.6737	0.6489	0.6847	0.7025	0.6187	0.6837	0.7298	0.7162	1.0000	0.5355	0.7084
CCI3H	0.5177	0.5205	0.5081	0.5404	0.5431	0.5007	0.5269	0.5050	0.5812	0.5008	0.6413	0.5275	0.5355	1.0000	0.5048
CHBr3	0.8748	0.8498	0.8451	0.7637	0.7865	0.8300	0.8195	0.8746	0.6519	0.8619	0.6657	0.6750	0.7084	0.5048	1.0000

Hierarchical clustering of 14 halocarbons + control

N

M. Vracko, S. C. Basak, K. Geiss, F. Witzmann. Proteomic Maps-Toxicity Relationship of Halocarbons Studied with Similarity Index and Genetic Algorithm. J. Chem. Inf. Model. 2006, 46, 130-136.

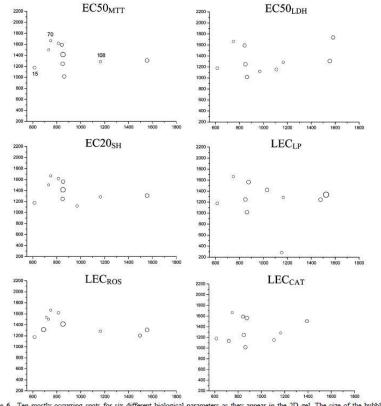


Figure 6. Ten mostly occurring spots for six different biological parameters as they appear in the 2D gel. The size of the bubbles is proportional to the logarithm of intensity. (The integrated intensity of protein spots was calculated by the image analysis software, PDQuest.) In the first picture (EC50_{MTT}) the spots 15, 70, and 108 are labeled.

National Institute of Chemistry Slovenia SI-1000 Ljubljana Hajdrihova 19, POBox 660 Phone: +386 (0)1/476 02 00 Fax: +386 (0)1/476 03 00 http://www.ki.si

Laboratory for chemometrics

Thank you for your attention!

Researchers

- •Marjana Novič
- •Marjan Tušar
- •Natalja Fjodorova
- •Marjan Vračko
- •Špela Župerl
- •Viki Drgan
- •Nikola Minovski
- •Katja Venko

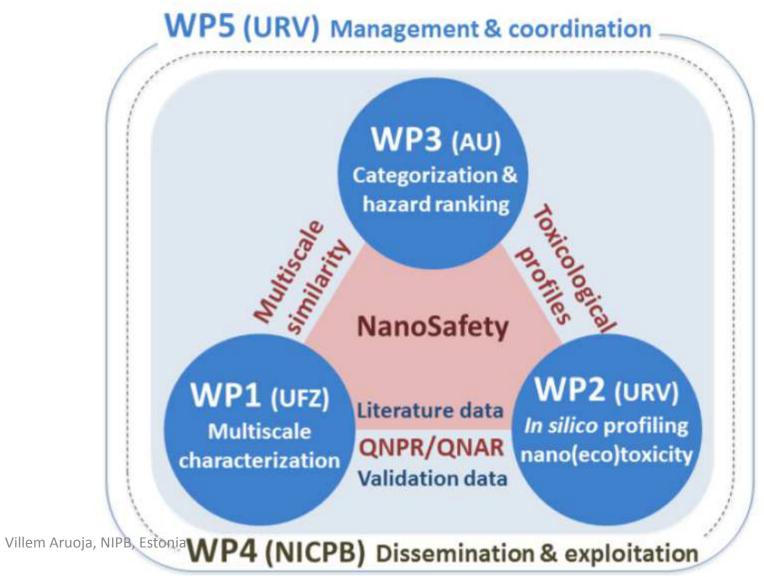
Young researchers

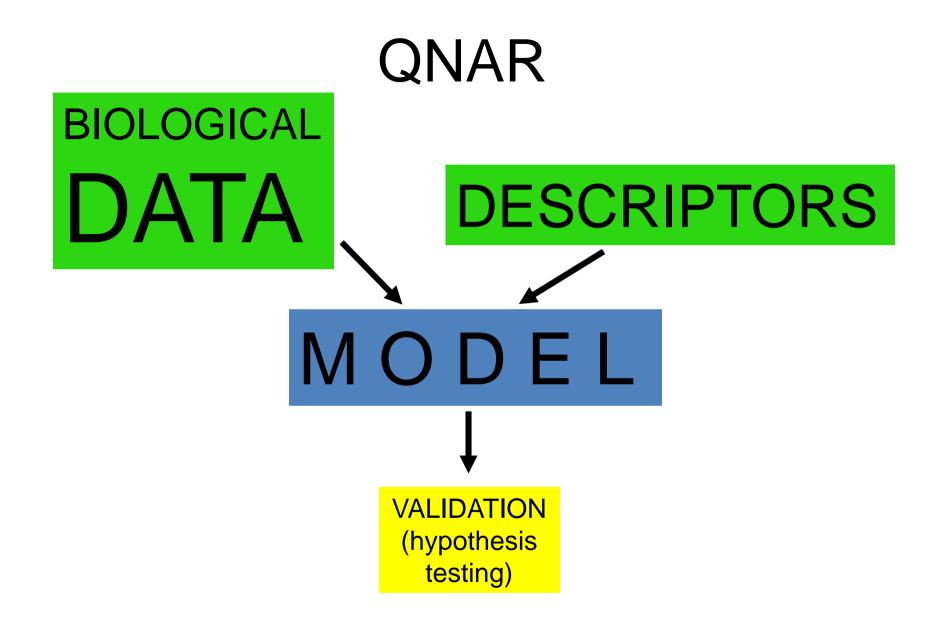
- •Alja Plošnik
- •Jure Borišek
- •Lidija Avsenik

Emeritus

Prof. Jure Zupan Prof. Milan Randić

Toxicity of metal oxide nanoparticles: **FP7** project MODERN


ODELING NANOTOXICIT

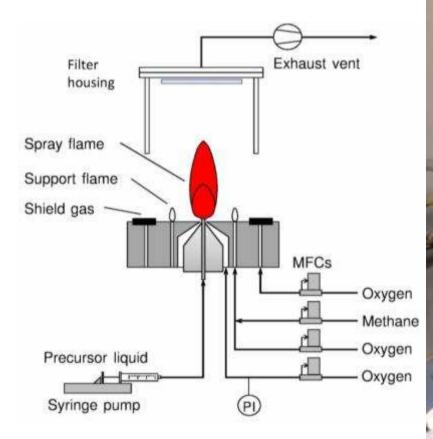

Villem Aruoja, PhD Laborartory of Environmental Toxicology, National Institute of Chemical Physics and Biobphysics, Tallinn, Estonia

Our zoo

Pa	rticle ingest	ers	"Particle-proof"				
	Euł	Proka	ryotes				
T			2 2 2 0 2 2 2 0 0 2 2 2 0 2 2 2 2				
Cru	stacea	Protozoa	Algae	Yeast	Bacteria		
Daphnia magna	Themnocephalus platyurus	Tetrahymena thermophila	Pseudo- kirchneriella subcapitata	Saccharomyces cerevisiae	Vibrio fischeri	Escherichia coli	
	Consumers		Primary producers		Decompose	ers	
(huma	human and an alveolar epi I colorectal ce NIPB, Estoria	Slide	e by Anne Kahru				

MODeling the EnviRonmental and human health effects of Nanomaterials

Villem Aruoja, NIPB, Estonia


Data?

- Literature?
- Industry?

Andre Nel*: "You have 2,5 years left, start generating data now!"

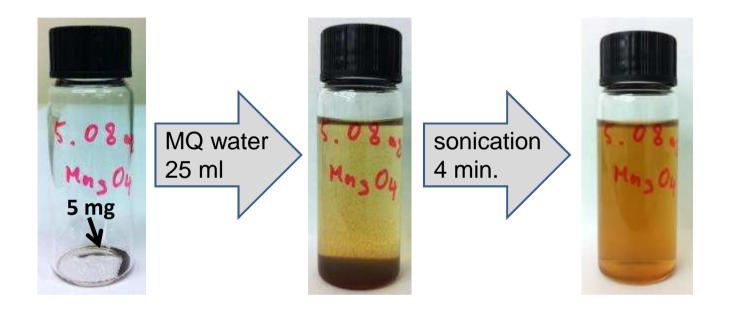
* Director of University of California's Center for Environmental Implications of Nanotechnology

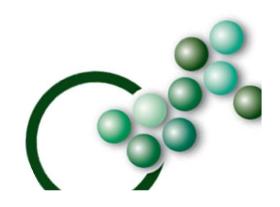
Flame Spray Pyrolysis

Villem Aruoja, NIPB, Estonia

Selection of nanoparticles

 CuO, Co₃O₄, Sb₂O₃, TiO₂, WO₃, ZnO, Mn₃O₄, Fe₃O₄, MgO, Al₂O₃, SiO₂, Pd (Initial subset in project description: 23 metal oxides: ZnO, CuO, Co₃O₄, Fe₃O₄, Sb₂O₃, TiO₂, WO₃, Al₂O₃, CeO₂, Y₂O₃, CoO, Ni₂O₃, Cr₂O₃, Fe₂O₃, HfO₂, In₂O₃, SnO₂, ZrO₂, Gd₂O₃, La₂O₃, Mn₂O₃, NiO, Yb₂O₃ and Ag, Au, Pt)


FSP – small and crystalline NPs

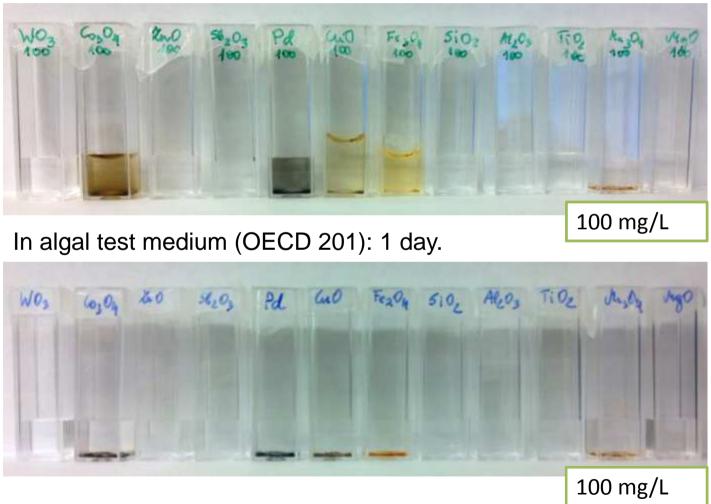


Villem Aruoja, NIPB, Estonia

Aruoja et al. Env Sci: Nano, 2015, DOI: 10.1039/C5EN00057B

Preparation of MOx NPs suspensions

Villem Aruoja, NIPB, Estonia


Size, hydrodynamic size

Sample	Specific surface area (SSA); m2/g	BET size (d _{BET})	DI water					Algal growth medium (pH=8.0)			
				Metal solubility				Metal solubility			ubility
		nm	z-average hydrodynamic size, nm	ζ-potential, mV	рН	% at 10 mg/l (AAS or ICP- MS*)	% at 200 mg/l (TXRF)	z-average hydrodynamic size, nm	ζ- potential, mV	% at 10 mg/l (AAS or ICP- MS*)	% at 100 mg/l (TXRF)
ZnO	53	20.4	171	16.4	6.6	56.1*	5.0	696	-13.1	25.7	3.18
Pd	33	15.1	127	-27.8	6.1	<0.5	NA	151	-18.6	0.24	NA
CuO	72	13.1	130	17	6.2	5.14	0.88	769	-6.2	1.16	0.26
Co_3O_4	85	11.5	99	23	6.1	1.25	6.8	916	10.7	0.18	0.82
TiO ₂	123	12.2	171	-13.6	6.2	<0.83	0.10	717	-15.1	0.42	0.01
Mn_3O_4	81	15.2	395	-14.4	7.0	11.1	4.8	920	-9.8	9.45	6.62
Fe_3O_4	120	9.7	128	22.2	5.9	<1.38	7.1	1005	-12.1	1.66	0.17
AI_2O_3	134	11.4	95	39.2	6.0	0.40*	NA	1232	8.9	0.42	NA
SiO ₂	289	7.8	148	-33.2	6.0	NA	NA	154	-19.8	NA	NA
WO ₃	79	10.6	63	-45.3	5.0	63.2*	2.3	191	-20.4	66.7	75.7
MgO	123	13.6	1964	6.9	9.6	38.1	NA	1581	6.4	87.9 [†]	NA
Sb_2O_3	56	20.5	125	-24.3	4.2	56.3	NA	414	-15.9	21.2	NA

Stability of suspensions in MQ water vs algal test medium

In MQ water: 1 week

Villem Aruoja, NIPB, Estonia

Composition of the algal test medium.

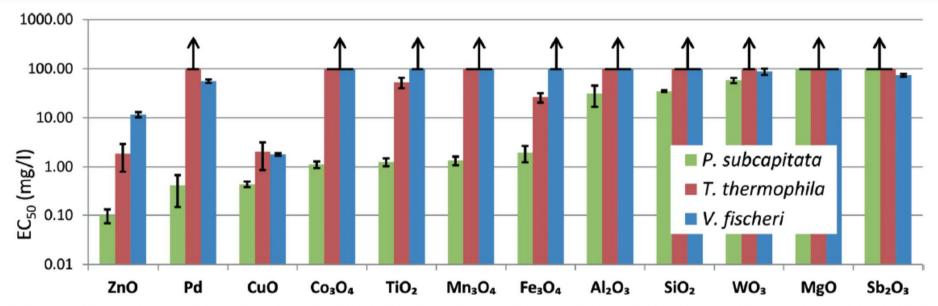
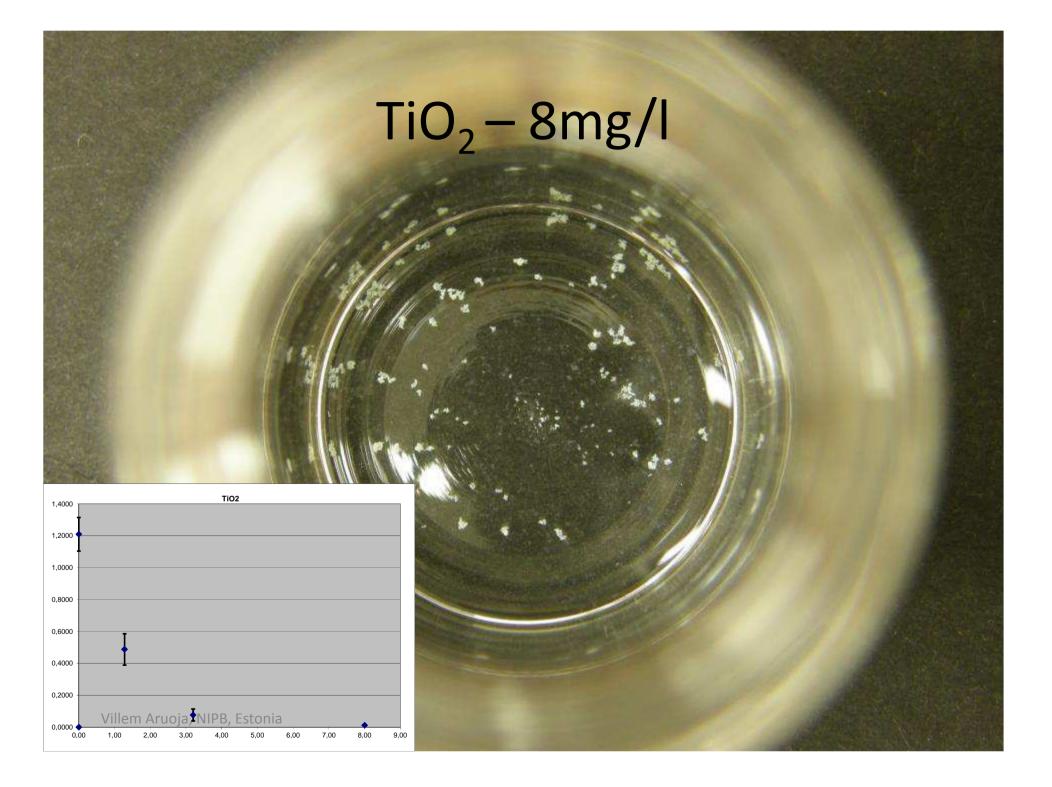
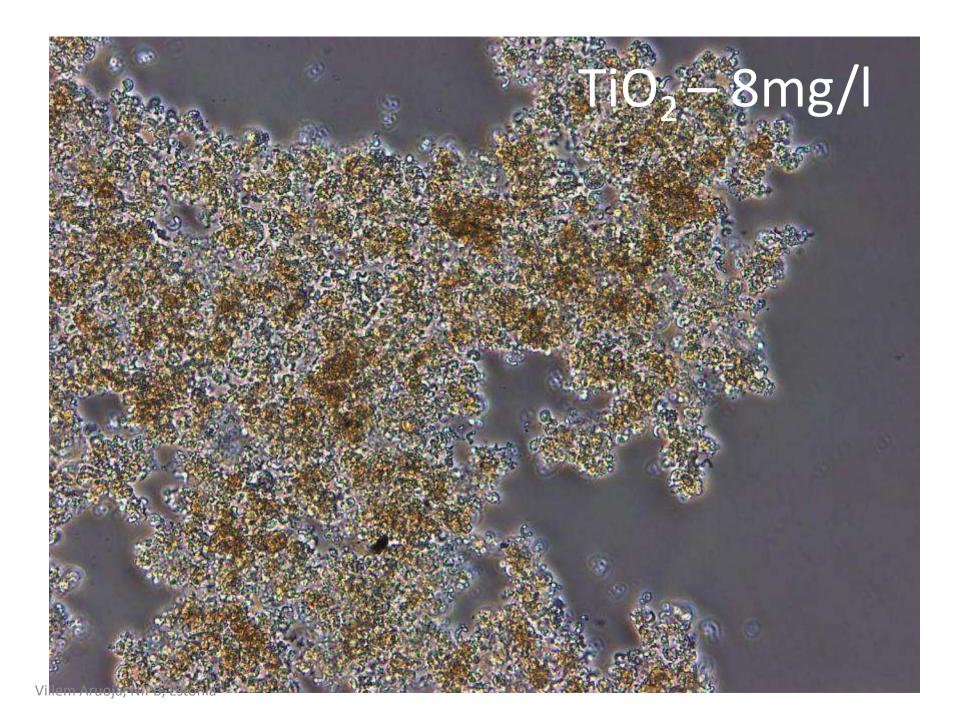
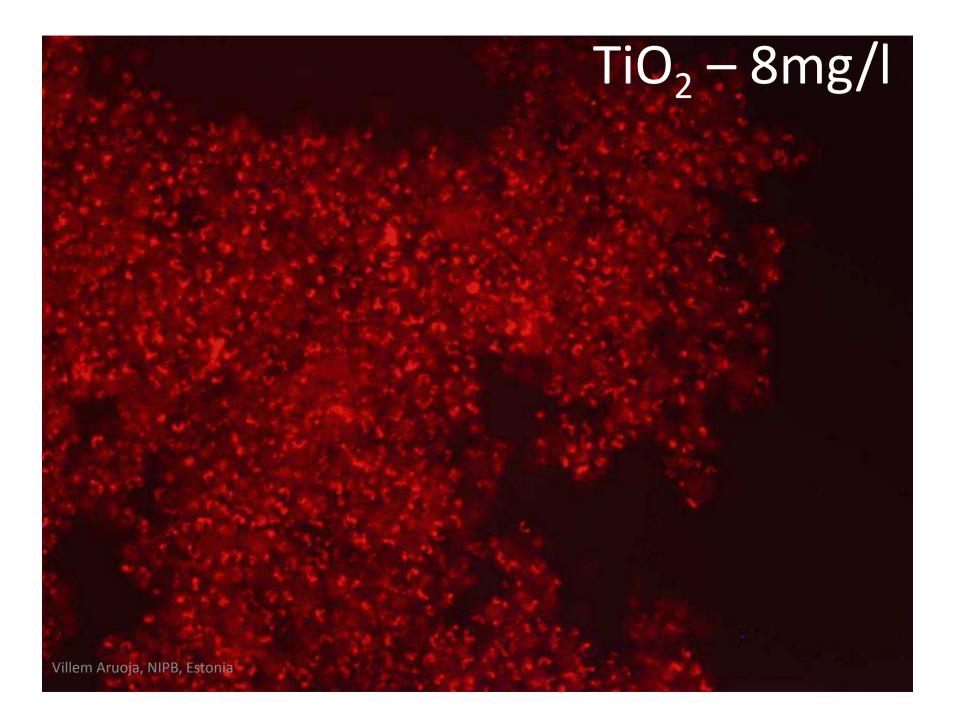
			Component	mg/L
Pd Gold Fezon 510, Aleon Til	12 Milly MgO	1	NH ₄ Cl	15
ra me and stor more the	5 ard all	2	MgCl ₂ *6H ₂ O	12
	ndy, American Million	3	CaCl ₂ *2H ₂ O	18
		4	MgSO ₄ *7H ₂ O	15
the second s		5	KH ₂ PO ₄	1,6
CARL AND AND AND AND AND AND		6	NaHCO ₃	50
		7	Na ₂ EDTA*2H ₂ 0	0,1
		8	FeCl ₃ *6H ₂ O	0,08
	And Income Statements	9	H ₃ BO ₃	0,185
A REAL PROPERTY AND A REAL	A PARTY OF A PARTY OF	10	MnCl ₂ *4H ₂ O	0,415
	100 mg/L	11	ZnCl ₂	0,003
		12	CoCl ₂ *6H ₂ O	0,0015
Aruoja et al. Env Sci: Nano, 2015, DOI: 10.10	13	Na ₂ MoO ₄ *2H ₂ O	0,007	
	14	CuCl ₂ *2H ₂ O	0,00001	

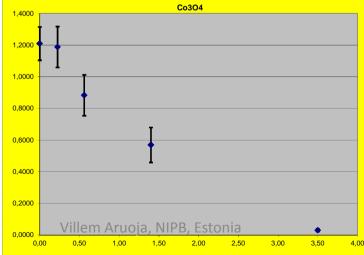
Algal growh inhibition assay (OECD 201)

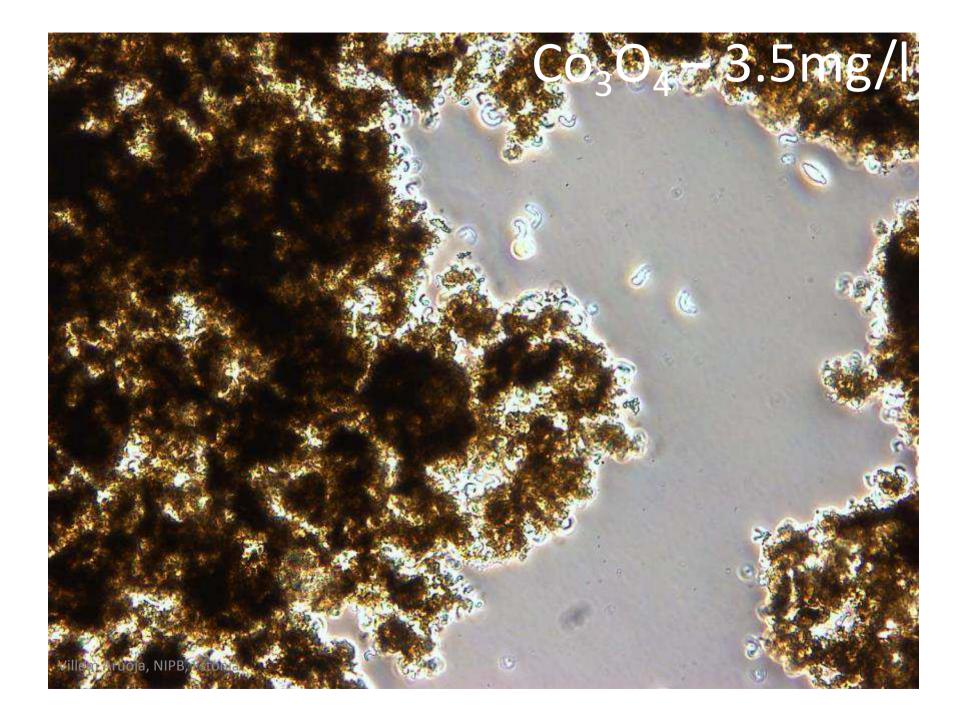
- Primary producers
- Sensitive to toxicants
- Very sensitive to heavy metals

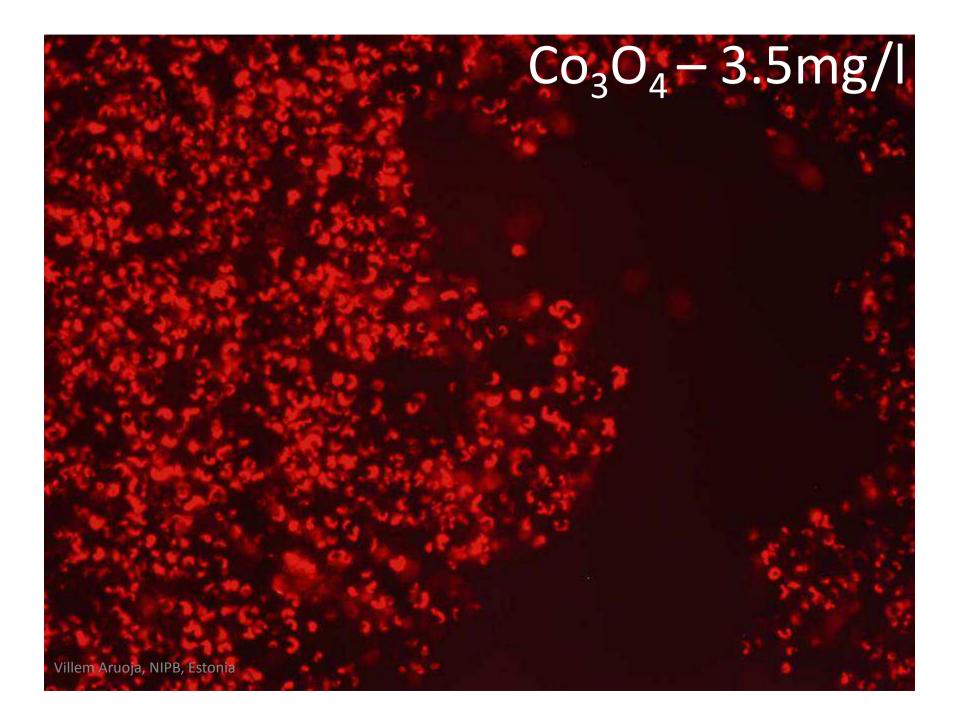
100 µm

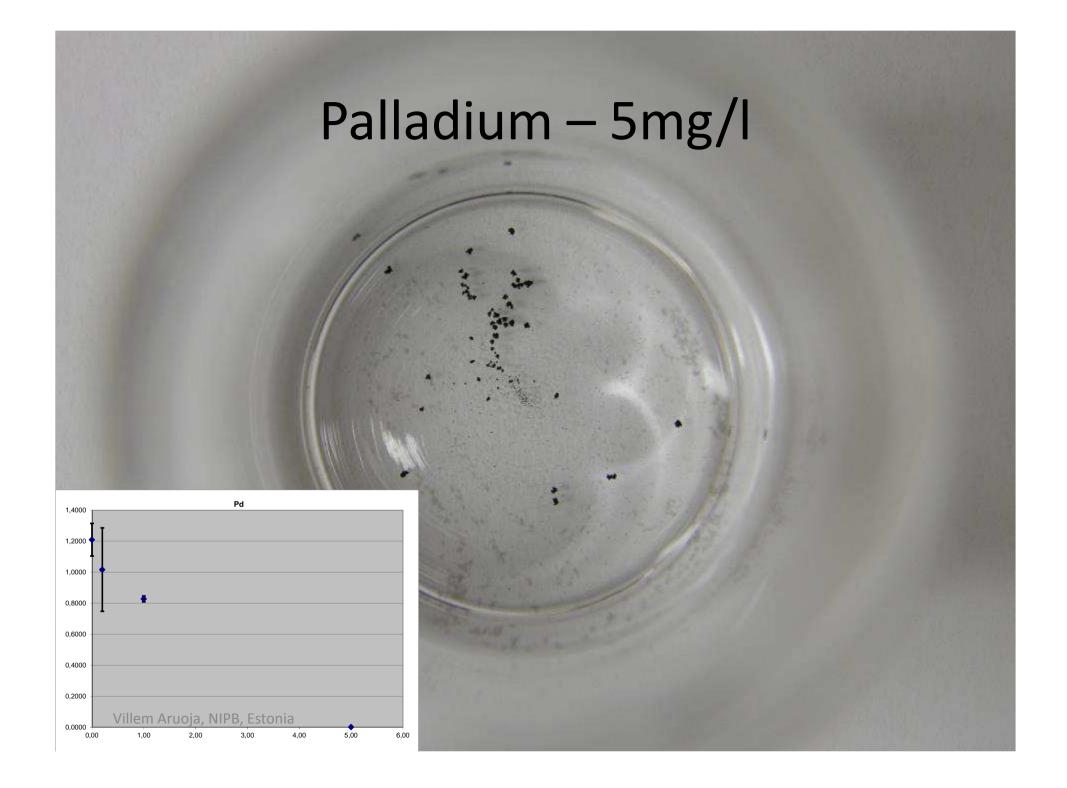
EC₅₀

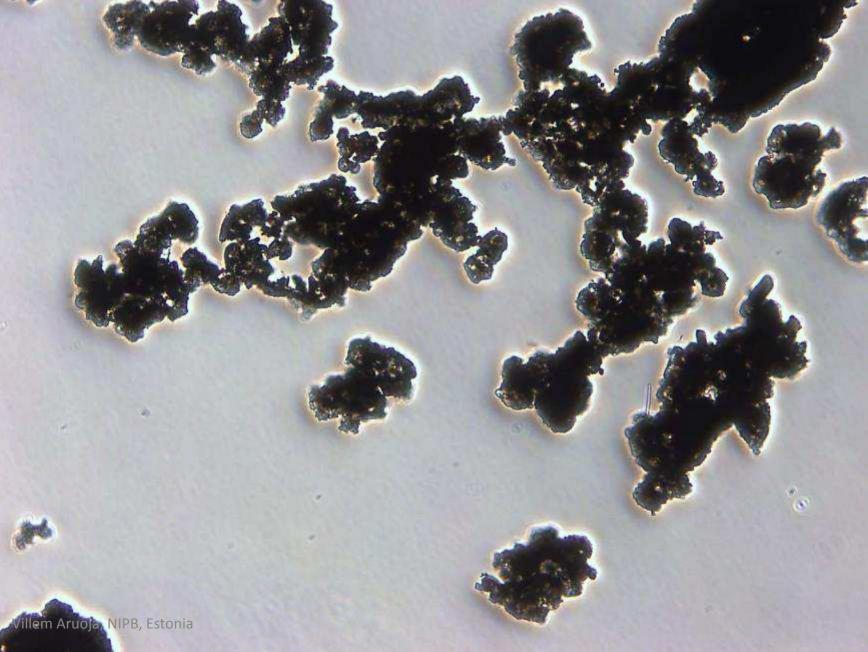





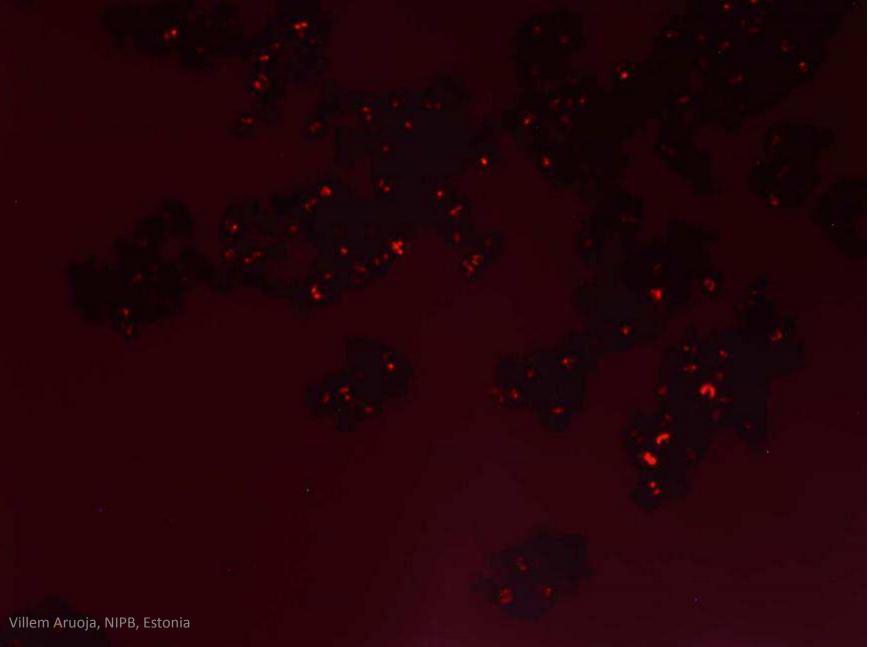

Fig. 2 Toxicity of 12 nanoparticles to alga *Pseudokirchneriella subcapitata*, protozoa *Tetrahymena thermophila* and bacterium *Vibrio fischeri*. EC_{50} values were obtained from 72 h algal growth inhibition assay, 24 h *T. thermophila* viability assay and 30 min *V. fischeri* luminescence inhibition assay (Table S3†). Arrows indicate EC_{50} values above 100 mg l⁻¹. Concentrations are nominal.

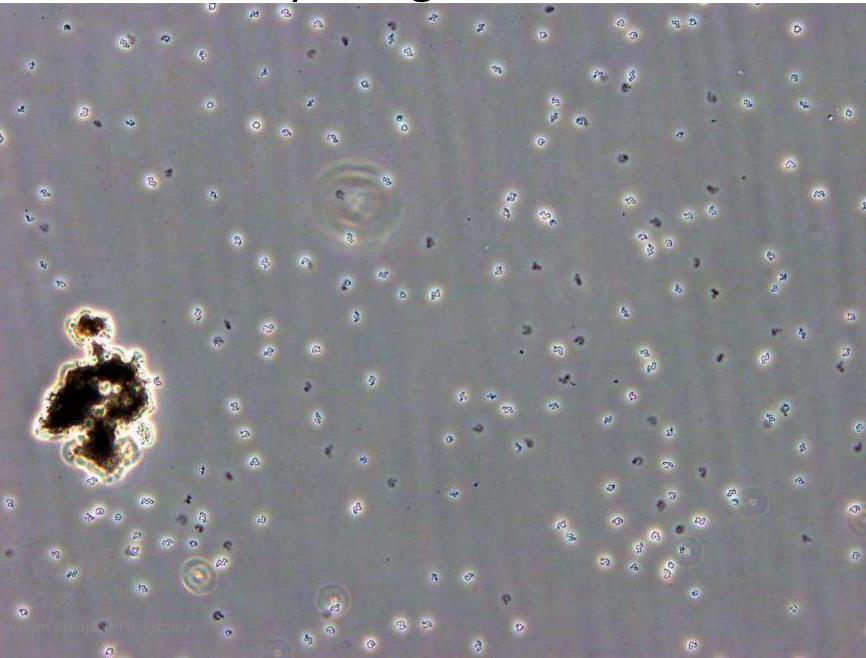





$Co_{3}O_{4} - 3.5mg/l$






Palladium – 5mg/l

Palladium – 5mg/l

Palladium – passage to clean medium

'Spot'-test

Inoculation	Bacterial growth to log phase	Washing with MQ water	Exposure to MOx NPs	4-48h spot
Bacterial colonies from Petri dish are transferred to 3ml liquid LB growth media and grown overnight in 14 mL round-bottom polypropylene culture tube at 30 °C on a shaker (200 rpm).	Dilution (1:50) of the overnight culture in 20 mL of fresh medium (in 100 mL culture flask) and further cultivation at 30 °C on a shaker at 200 rpm for 4-4.5 hours until bacteria reach mid-exponential growth phase (OD _{600nm} ~0.6).	centrifuge tubes. After that the cells were washed twice with MQ water and	pipetted into the 96-well microplates. MQ water without test chemicals was inoculated with test strains in parallel and served as a control culture (not	After 4 h or 24 h of exposure, 5 µL of the cell culture from each well (treated or not treated) was pipetted ("spotted") onto the LB agar medium plates and incubated at 30 °C for 24 h. The growth of bacteria (formation of colonies) was evaluated visually on LB agar.

Cells + MOx NPs in MQ $(100\mu l + 100\mu l)$

Resuspension in MQ water to OD₆₀₀=0,1 (~10⁷ CFU/mL)

Exposure for 4-48 hours at 30 °C in the dark

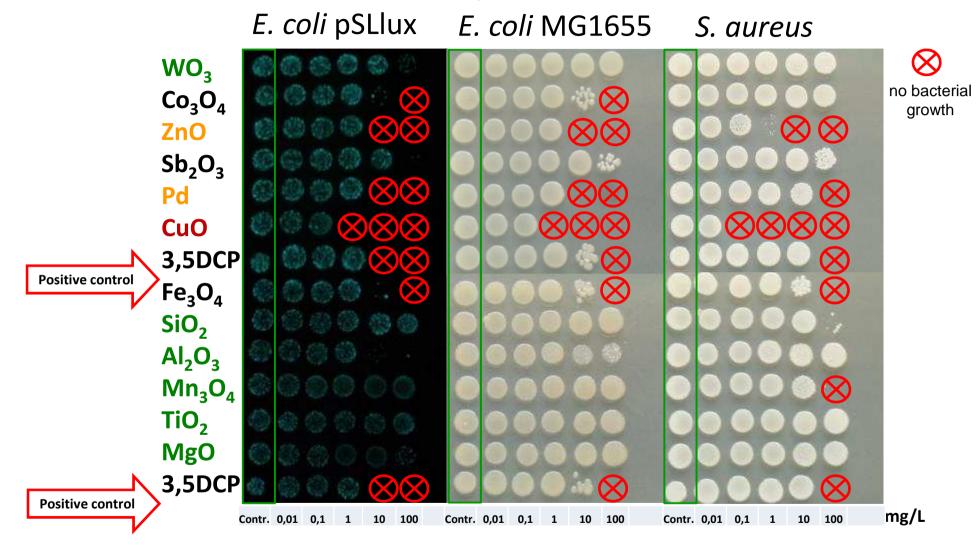
dish and overnight growing at 30°C in LB media

Colonies from Petri Further cultivation in 100 mL flask until mid-exponential growth phase

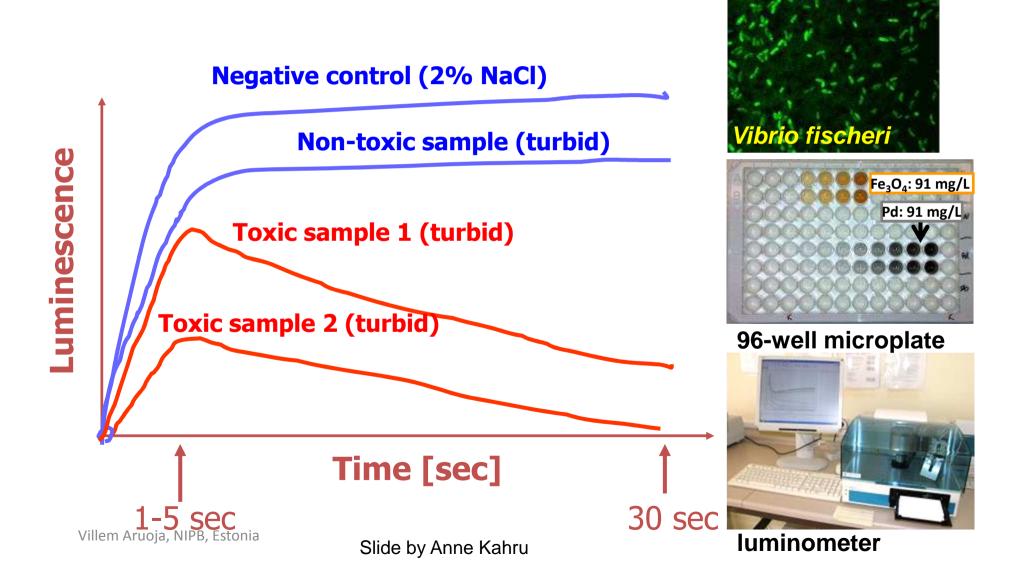
Centrifugation and washing with MQ water

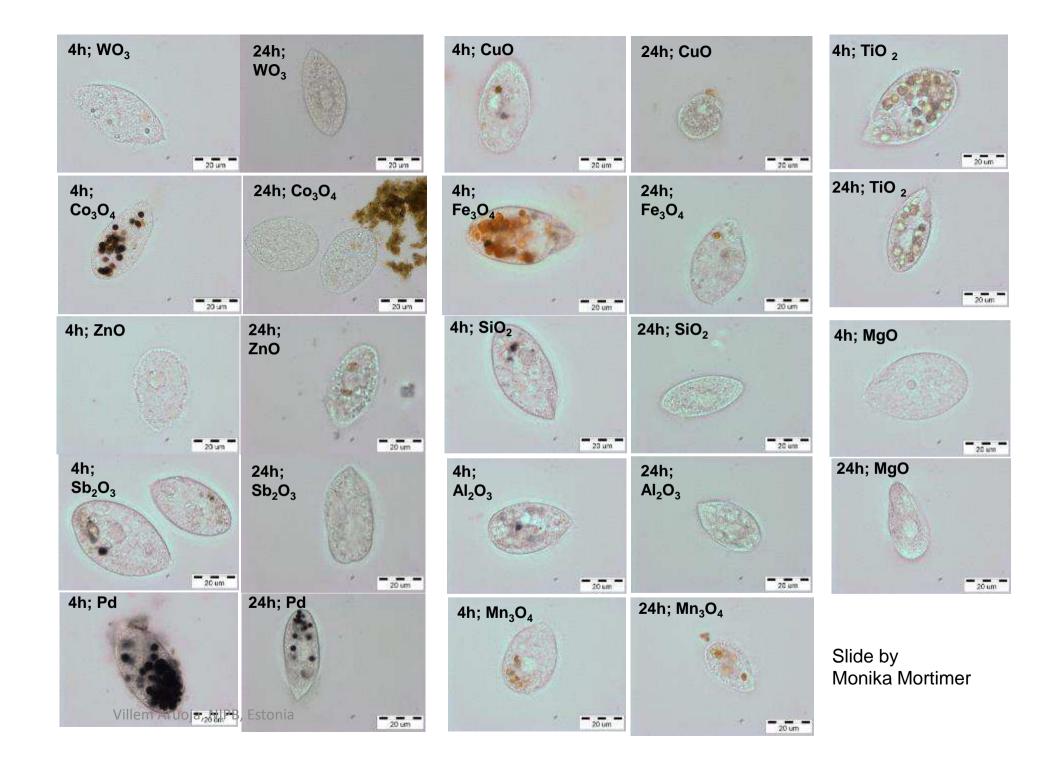
00000

5µL spots to the agar medium plates 4h-48h


"Spot test"

Algal cells after 24h incubation with NPs in deionized water


concentration, mg/l 30 100 101 Co Zn Ti Pd 0 Cu Si Mn Fe


Suppi et al., J Haz Mat 2015; 286: 75-84

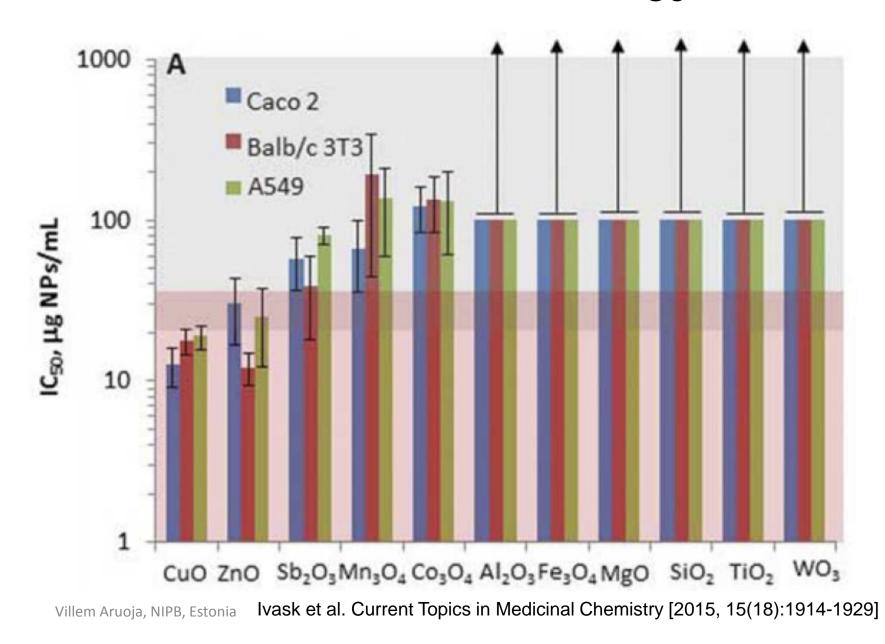
Results from 24-h 'spot'-test with bacteria

 \rightarrow Co₃O₄, CuO, ZnO, Fe₃O₄ and Mn₃O₄ inhibited bacterial colony Villforming ability in the 'spot'-test at concentrations \leq 100 mg/L. Environmental Science: Nano, 2015, DOI: 10.1039/C5EN00057B Kinetic bioluminescence inhibition test with Vibrio fischeri (ISO 21338:2010)

Table 1. Toxicity of metal oxide and Pd nanoparticles to protozoa (*Tetrahymena thermophila*) and bacteria (*Vibrio fischeri, Escherichia coli, Staphylococcus aureus*). The presented toxicity values are based on nominal initial exposure concentrations used in testing.

NPs	24-h EC50 ¹ T. termophila	30-min EC50 ¹ V. fischeri (gram –)	24-h MBC ² <i>E. coli</i> pSLux (gram –)	24-h MBC ² <i>E. coli</i> MG1655 (gram –)	24-h MBC ² S. aureus (gram +)					
	mg/L (compound)									
CuO	2.0	1.8	1	1	0.1					
ZnO	1.8	11.6	10	10	10					
Fe ₃ O ₄	20.1	>100	100	100	100					
Mn ₃ O ₄	22.0	>100	>100	>100	100					
Al ₂ O ₃	61.3	>100	100	>100	>100					
TiO ₂	69.1	>100	>100	>100	>100					
Pd	>100	56.3	10	10	100					
Co ₃ O ₄	>100	>100	100	100	>100					
Sb ₂ O ₃	>100	74.5	>100	>100	>100					
WO ₃	>100	92.8	>100	>100	>100					
SiO2	>100	>100	>100	>100	>100					
MgO	>100	>100	>100	>100	>100					

¹EC50 - half effective concentration; ²MBC - minimum bactericidal concentration. The lowest tested concentration that completely inhibited the visible growth of bacteria on the agarized test medium at 30% csin the dark after 24-h of incubation to MOx NPs. Colour code: ≤0.1 mg/L (); >0.1–10 mg/L (); 10–50 mg/L (); 50–100 mg/L (); =100 () mg/L; >100 mg/L ().


Mechanism: solubility, ROS

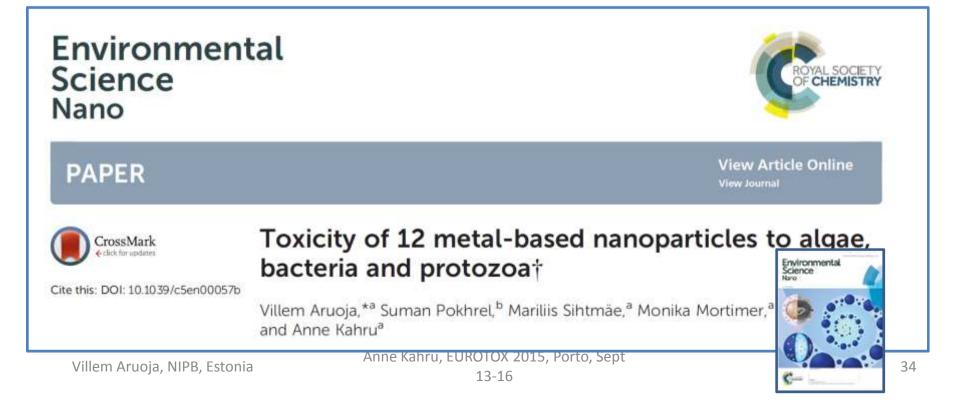
	Trophic le	vel		Primary	Consumer	Degrader		
				producer				
	Cell type			Eukaryote	Eukaryote	Prokaryote		
	Internalize	es nanopa	rticles	No?	Yes	No?		
				Algal 72 h	Protozoan	Bacterium		
Nano-	Solubility	ROS	ROS	growth	24 h viability	30 min. lumi-	Mechanism of	Classification [†]
$particle^{*}$	$(\%)^{\$}$	$(HPF)^{s}$	$(\text{DCF})^+$	inhibition		nescence	toxicity	Classification
				OECD 201		ISO 21338		
ZnO	56.1	-	-	< 1.0	12	10 50	Zn ions	(¥)
Pd	< 0.5	+	++	< 1.0	>100	10 50	ROS	Acute
CuO	5.14	+++*	-	< 1.0	12	12	Cu ions & ROS	aquatic hazard
Co ₃ O ₄	1.25	+	+	12	>100	>100	ROS	
TiO ₂	< 0.83	+++	+	12	10 50	>100	ROS	¥
Mn ₃ O ₄	11.1	-	+++	12	>100	>100	ROS	Acute
Fe ₃ O ₄	<1.38	+*	-	12	10 50	>100	ROS	aquatic hazard?
Al ₂ O ₃	0.40	+	-	10 50	>100	>100		
SiO ₂	NA	-	-	10 50	>100	>100		
WO ₃	63.2	-	-	10 50	>100	50100		
MgO	38.1	-	-	>100	>100	>100		
Sb ₂ O ₃	56.3	+	-	>100	>100	50100		

Villem Aruoja, NIPB, Estonia

Aruoja et al. Env Sci: Nano, 2015, DOI: 10.1039/C5EN00057B

Cell cultures, EC₅₀

TEM images **EDX** spectra Endo-cytosis (A) Control (no nanoparticles) Spectrum 2 N Spectrum 2 ⁴ keV ⁵ 3 6 7 2 8 n 1 (B) CO3O4 (87,9 µg Co/ml) و **Co** Spectrum 1 Spectrum 2 Spectrum 2 11 0 Cu Spectrum Co Si Co Cu CI ⁴ keV ⁵ 1 2 3 6 7 8 0 (C) CuO (4 µg Cu/ml) Spectrum 1 Spectrum 2 Ν 0 0 Spectrum 1 📩 Ivask et al. Current **Topics in Medicinal** Chemistry [2015, Spectrum 2 🗖 15(18):1914-1929] 8 5 7 1 2 3 4 6 9 0 keV - 1 2 um



Send Orders for Print-Reprints and e-prints to reprints@benthamscience.ae

Current Topics in Medicinal Chemistry, 2015, 15, 1-16

Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types *In vitro*

Angela Ivask^{1,2,*}, Tiina Titma^{1,3}, Meeri Visnapuu^{1,4}, Heiki Vija¹, Aleksandr Käkinen¹, Mariliis Sihtmäe¹, Suman Pokhrel⁵, Lutz Mädler⁵, Margit Heinlaan¹, Vambola Kisand⁴, Ruth Shimmo³ and Anne Kahru¹

Monte Carlo Modelling of Interaction Processes between Nanoparticles and Biomacromolecules of Variable Hydrophobicity

October 3rd, 2015

CompinNano, Ljubljana

FACULTÉ DES SCIENCES

Table of Contents

- I. Introduction
- II. Simulation method and model

III. Results

Simplified protein structure

- pH
- Chain hydrophobicity
- Presence of nanoparticle

BSA protein

- Parametrization
- pH
- Nanoparticle surface charge density
- **IV.** Conclusions and perspectives

Introduction

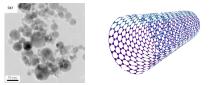
I. Introduction

Polyelectrolytes

Charged polymers

Functional groups are dissociated to charged monomers and counterions (weak polyelectrolyte charge varies in function of pH)

Nanoparticles


Objects constituted by tens or hundreds of atoms which have structure sizes comprised between 1 to 100 nm in at least one dimension

> Spherical, tubes, needle-like, etc.

Organic nanoparticles

Inorganic nanoparticles

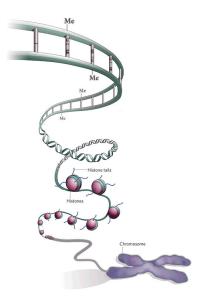
High specific surface \rightarrow High reactivity

I. Introduction

Electrostatic interactions in polyelectrolyte systems

Self-assembled complexes between polyelectrolytes and nanoparticles, dendrimers, flat surfaces, biomacromolecules, charged polymers

Biology


DNA packaging in eukaryote cells

Biomedical

Contrast improvement in Magnetic Resonance Imaging Cancer therapy by accumulation of active drug

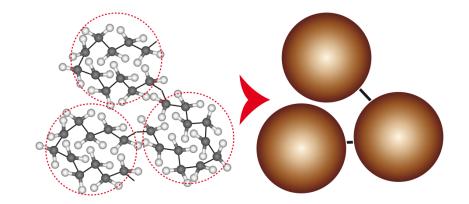
Environment


Wastewater treatment

I. Introduction

Goal

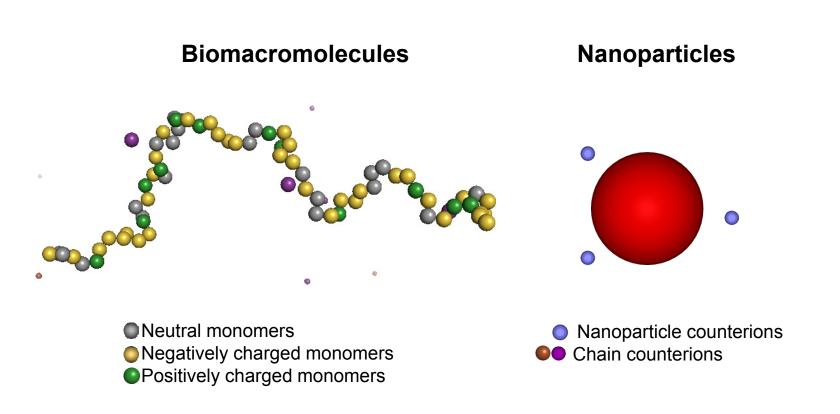
How the chain hydrophobicity is playing a role on the conformational properties of biomacromolecules and on the formation of complexes with nanoparticles.



Simulation method and model

Polyelectrolytes

- Several thousands of atoms !
- CPU consuming



Atomistic details (bond length, vibrations, etc.) are omited

 \mathbf{v}

Group of atoms \rightarrow effective monomer

- Each object is represented by a hard sphere
- > The solvent (water) treated implicitly as a dielectric medium
- Monomer charge varies depending on the solution pH

Potentials

1) Electrostatic

Each charged objects interact via a full Coulomb electrostatic potential and excluded volume potential

$$U_{el}\left(r_{ij}\right) = \begin{cases} \infty, & r_{ij} < R_i + R_j \\ \frac{z_i z_j e^2}{4\pi\varepsilon_r \varepsilon_0} \frac{1}{r_{ij}}, & r_{ij} \ge R_i + R_j \end{cases}$$

 $\begin{array}{lll} \mathcal{C} & \text{Elementary charge} & r_{ij} & \text{Distance between two particles} \\ \mathcal{E}_0 & \text{Permittivity of the vacuum} & \mathcal{R} & \text{Particle radius} \\ \mathcal{E}_r & \text{Water dielectric constant} & \mathcal{I} & \text{Particle charge} \end{array}$

2) Lennard-Jones

Lennard-Jones potential is used to take into account hydrophobic interactions between monomers

$$U_{\rm vdW}\left(r_{ij}\right) = vdW \left[\left(\frac{r_0}{r_{ij}}\right)^{12} - 2\left(\frac{r_0}{r_{ij}}\right)^6 \right]$$

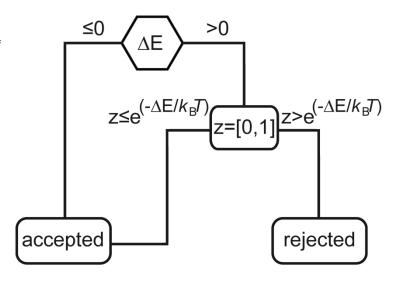
 r_0 Usually $R_i + R_j$ vdW Minimum depth of the potential curve located at a distance r_0

Minimum energy investigation

Monte Carlo Metropolis

Random conformation

→ System energy calculation $E_{initial} = \sum_{ii} U_{ij}$

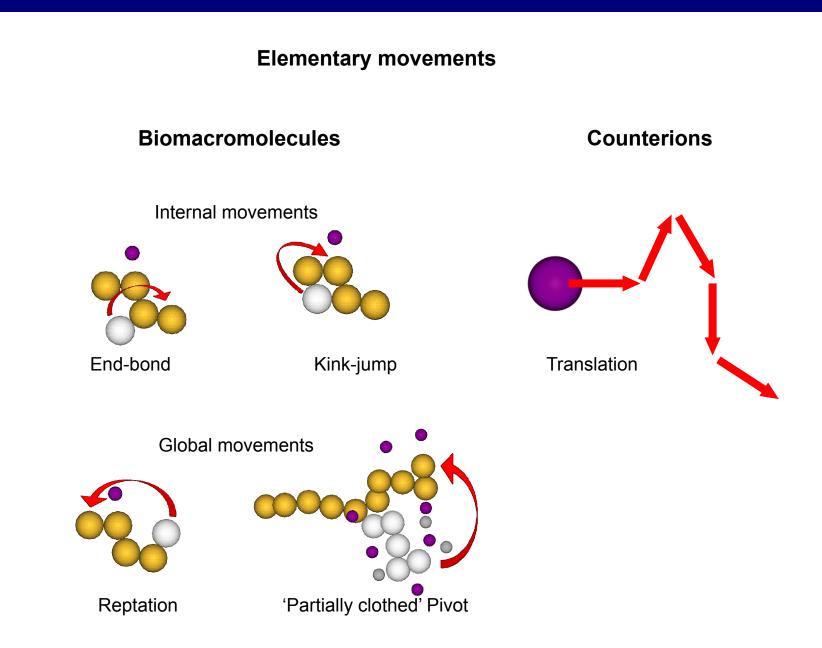

Elementary Movements

 \rightarrow System energy calculation E_{final}

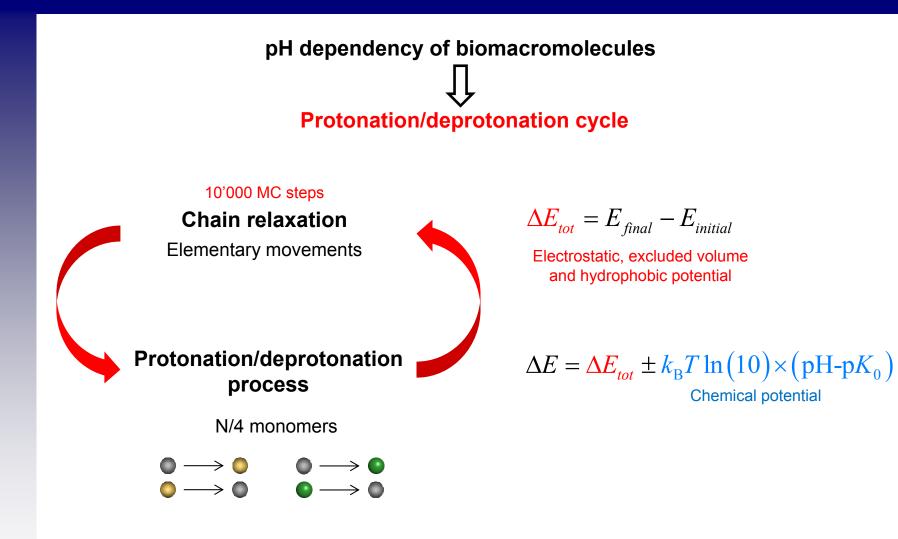
Energy difference

$$\Delta E = E_{final} - E_{initial}$$

Metropolis test

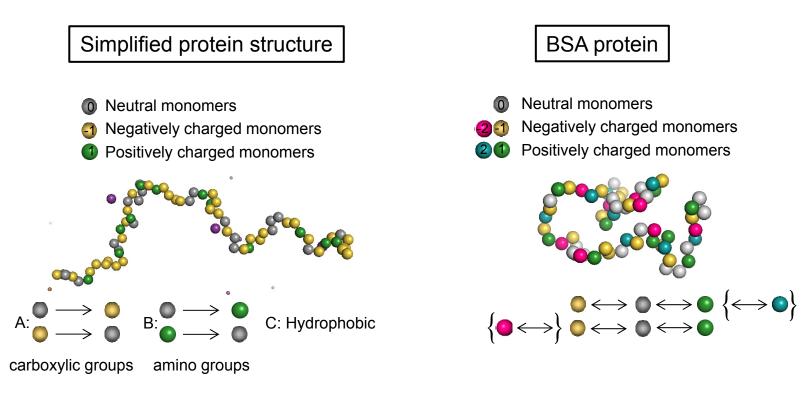


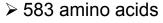
Several thousands successive trials to achieve equilibrium state


Û

Recording of observables (macroscopic properties) \rightarrow average values

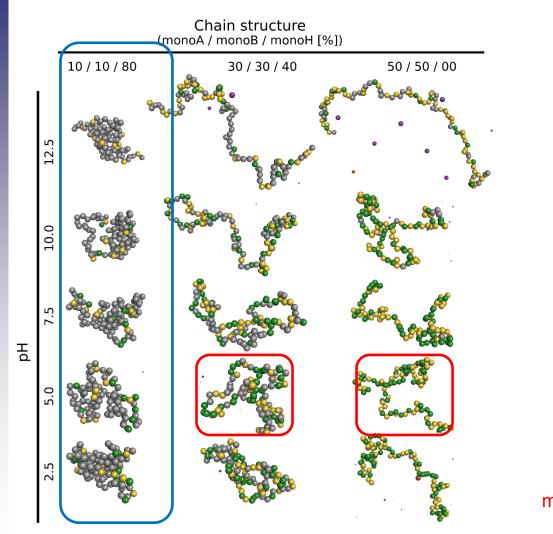
II. Simulation method and model

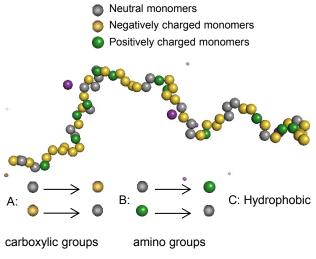

II. Simulation method and model

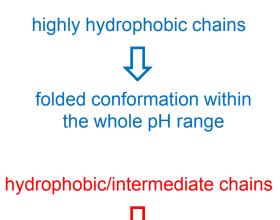

Several million MC steps to obtain a reasonable sampling of low energy conformations

II. Simulation method and model

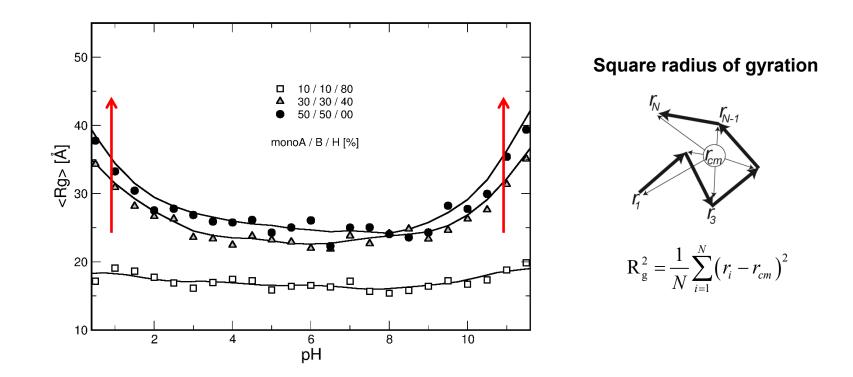
- ➤ 100 monomers
- sequence of monomers randomly determined in the beginning of the simulation
- $> pK_A = 2.17 / pK_B = 9.53$


- sequence of amino acids known (x-ray structure)
- each amino acid can be neutral, positively and negatively charged
- > pK_A , pK_B and pK_C (if present) different for each amino acid

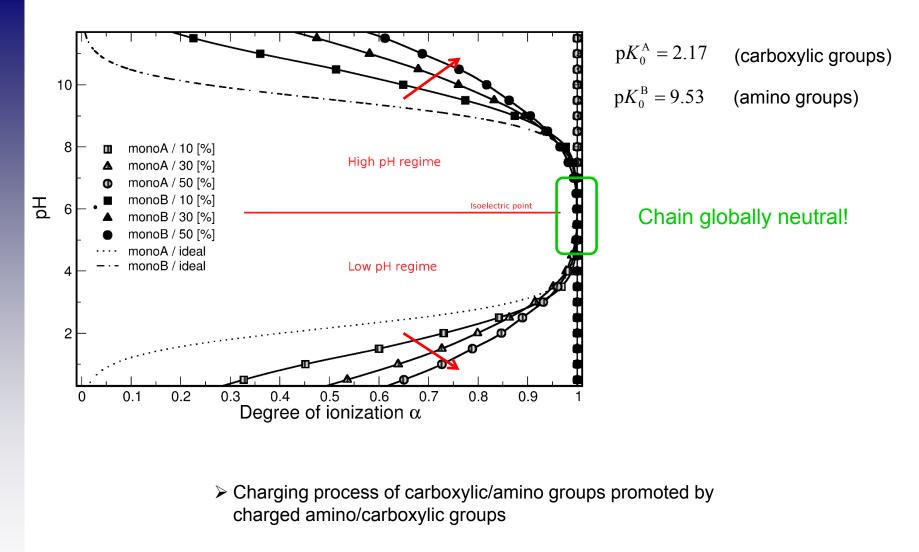

Results

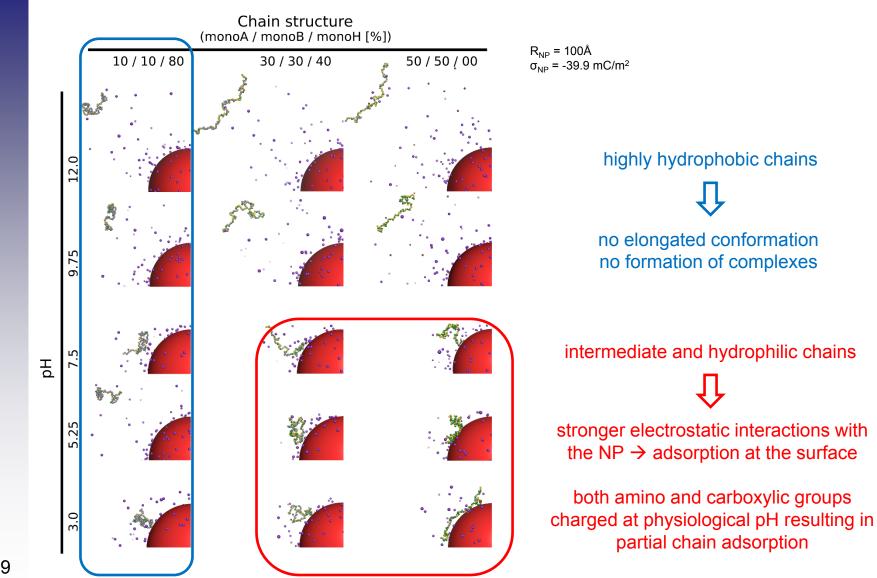

Simplified protein structure

- pH
- Chain hydrophobicity
- Presence of nanoparticle

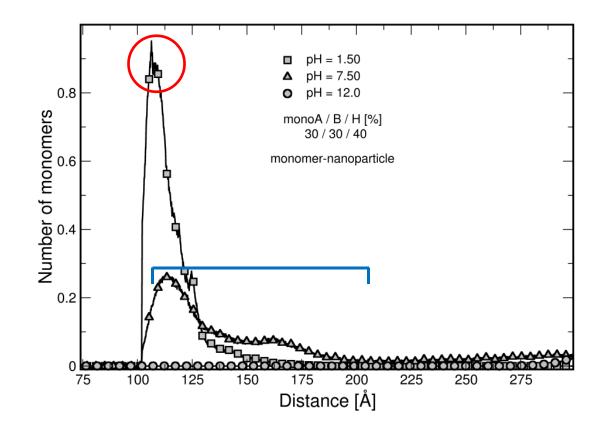


16

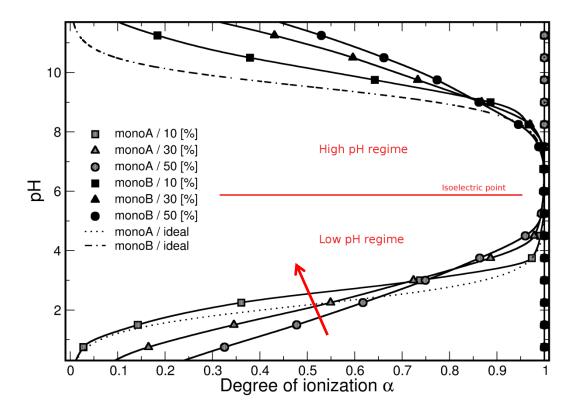



more folded conformations when the global chain charge is neutral

- Extended conformations at low and high pH in the case of hydrophilic and intermediate chains
- Strong repulsive monomer-monomer electrostatic interactions favorise less compact conformations



Attractive electrostatic interactions weaker for hydrophobic chains resulting in a less efficient charging process


F. Carnal, A. Clavier and S. Stoll, Environmental Science: Nano, vol. 2, 2015, p. 327

19

> Strong adsorption at low pH \rightarrow high peak

At physiological pH, local adsorption resulting in a larger monomer distribution

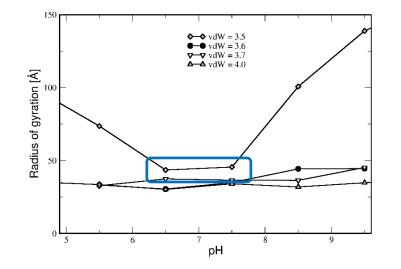
> Lost of symmetry at low pH \rightarrow intersection with the ideal curve

Modification of the apparent pKa hence promoting the protonation of carboxylic groups

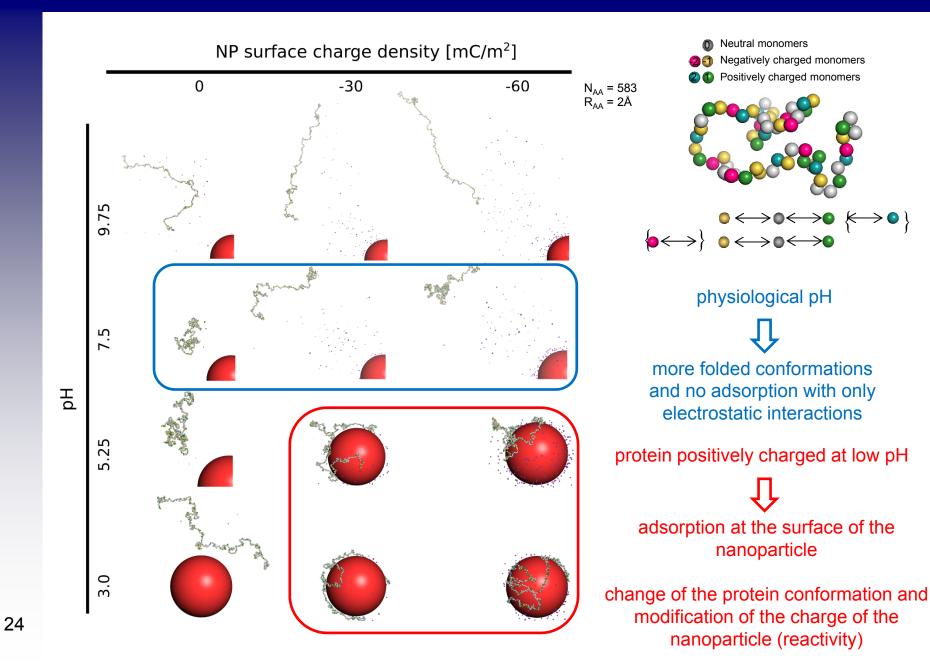
Ш

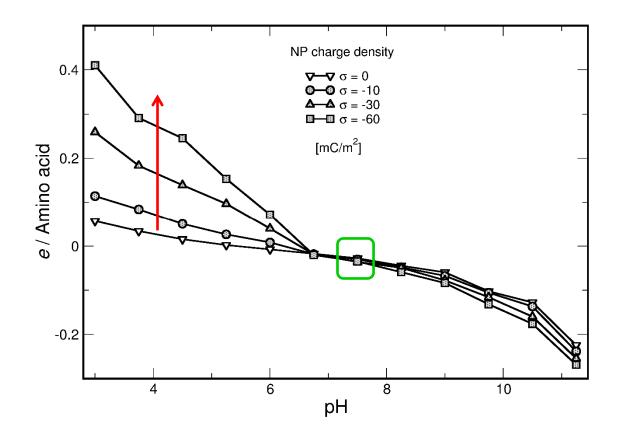
Results

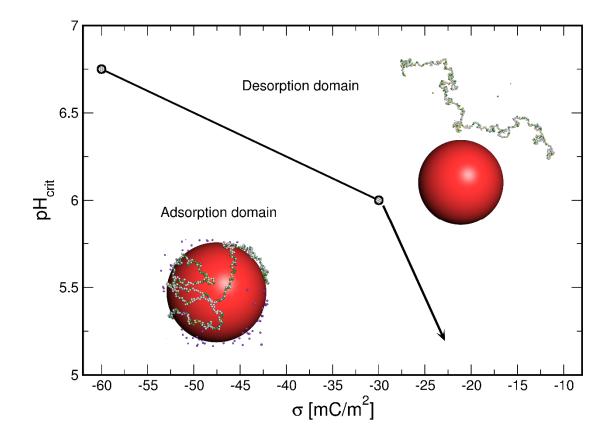
BSA protein


- Parametrization
- pH
- Nanoparticle surface charge density

BSA x-ray structure


Parameters


- In length and contour size of the protein
- ➤ amino acid distribution
- $> pK_a$, pK_b and pK_c values


$$U_{\rm vdW}\left(r_{ij}\right) = vdW \left[\left(\frac{r_0}{r_{ij}}\right)^{12} - 2\left(\frac{r_0}{r_{ij}}\right)^6\right]$$

- ➢ hydrophobic interactions between amino acids not too strong to observe conformational changes (denaturation) → vdW = 3.5 K_BT
- hydrophobic amino acids: Ala, Met, Leu, Val, Ile, Phe

- Global charge of the protein is slightly negative at physiological pH
- Presence of the nanoparticle significantly influences the charging process of the protein

 $R_{_{NP}}\text{+}R_{_{AA}} \leq Ads_{_{L}} \leq R_{_{NP}}\text{+}3R_{_{AA}}$

Adsorption criterion

One amino acid situated in the adsorption layer (Ads_L) more than 50% of Monte Carlo steps

Adsorption domain increases with the nanoparticle surface charge density

Prediction of the reactivity of nanoparticles!

IV

Conclusions and perspectives

IV. Conclusions et perspectives

- Structure of strong hydrophobic chains not dependent on pH
 Denaturation and reactivity limited
- The nanoparticle modifies the acid/base properties of chains, and thus the charging process

BSA protein

- BSA conformations strongly modified at extrem pH and with the adsorption at the nanoparticle surface
 - → Denaturation
- No BSA adsorption at physiological pH considering only electrostatic interactions
 - → Importance of hydrophobic and structural interactions between the nanoparticle and BSA

Work in progress

- Improvement of the interactions between the protein and nanoparticle
- Parametrization and **validation** of the model based on experimental data provided by the University of Ljubljana

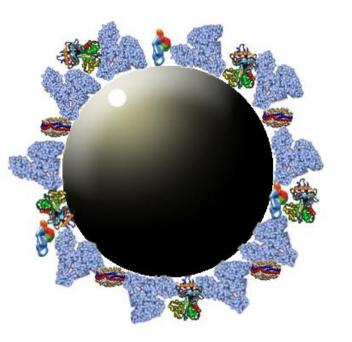
for your attention !

Computational Approaches in Nanosciences Workshop

Interaction of carbon-based nanomaterials with cholinesterases and serum proteins

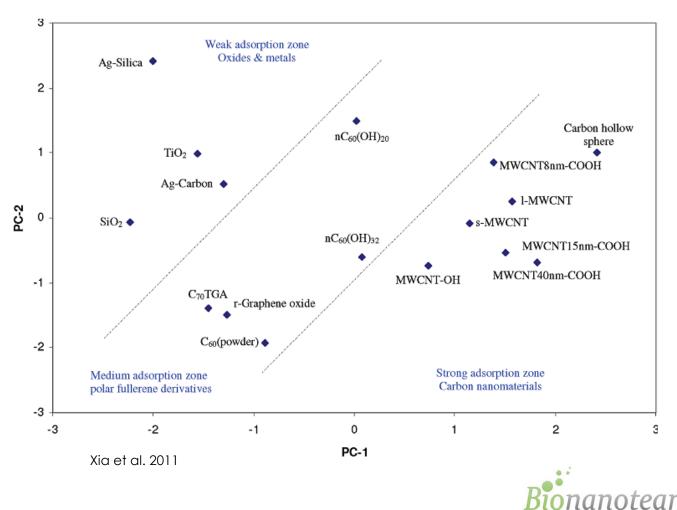
Maja Sopotnik

October 3rd, 2015



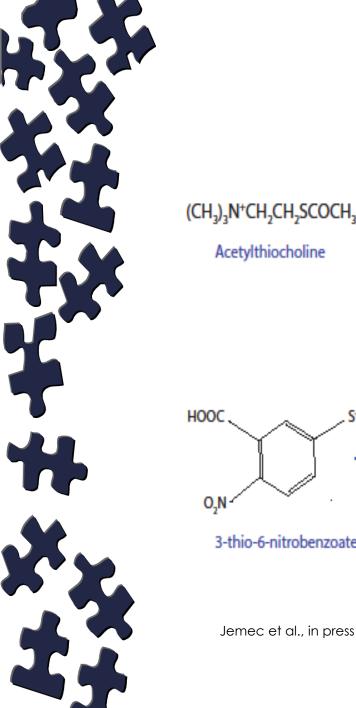
NM in biological media

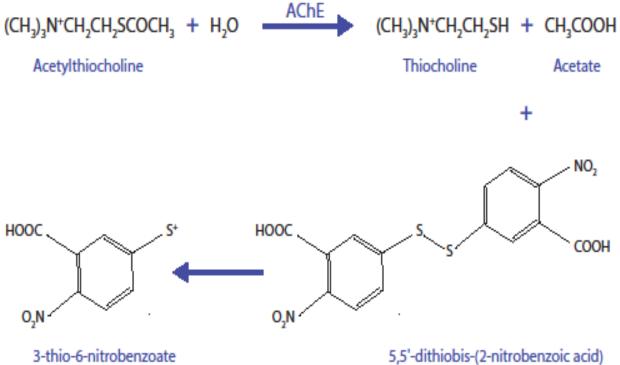
- Adsorption of biological molecules on the surface of the NM
- > Protein corona
 - depends on the properites of the NM and the proteins
- Change in NM characteristics and behaviour
- The need for biological characterisation of NM



Carbon NM are highly sorptive

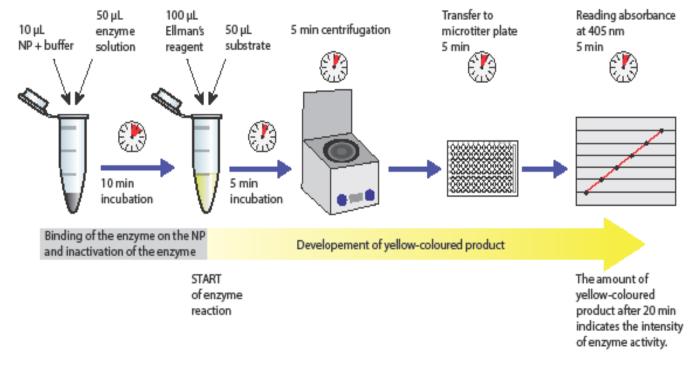
> Surface adsorption index, 5 nanodescriptors


Nanobiology & Nanotoxicology Research

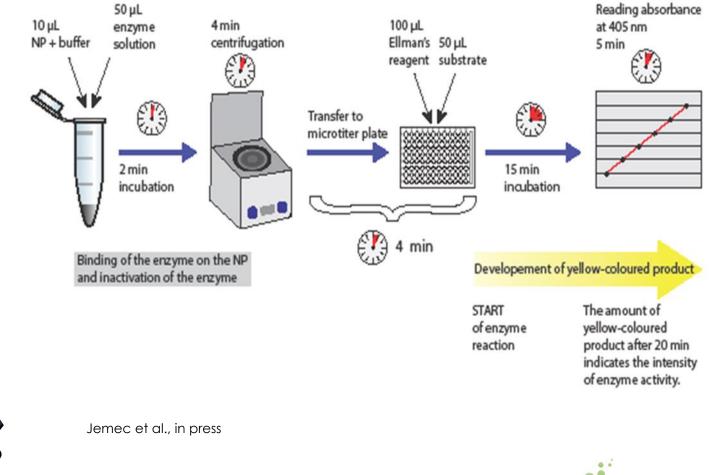


Cholinesterases

- Acetylcholinesterase
 Neurotransmitter acetylcholine degradation
- Butyrylcholinesterase
 - Backup system in the blood
- Convenient optical method of measuring the amount of the reaction product – Ellman's method

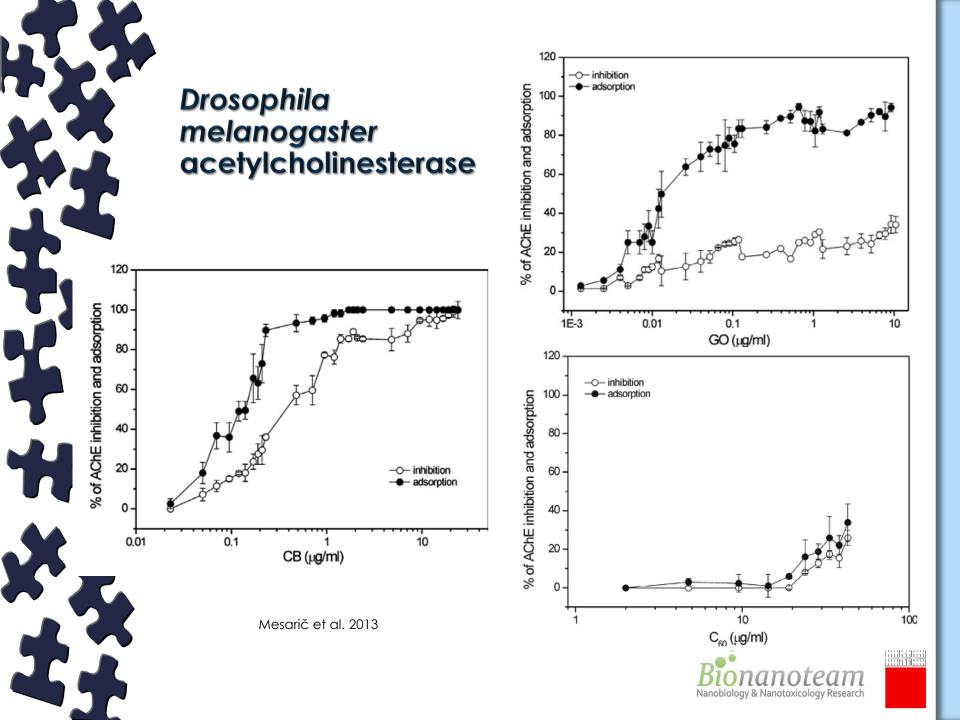


Measuring the inhibition of enzyme activity by the NM


Jemec et al., in press

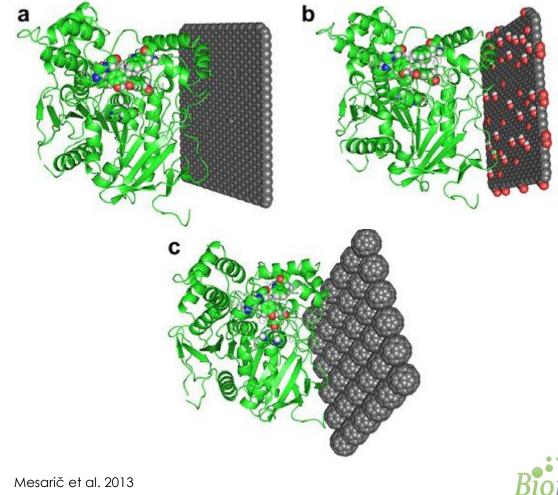
Measuring the adsorption of the enzyme on the NM

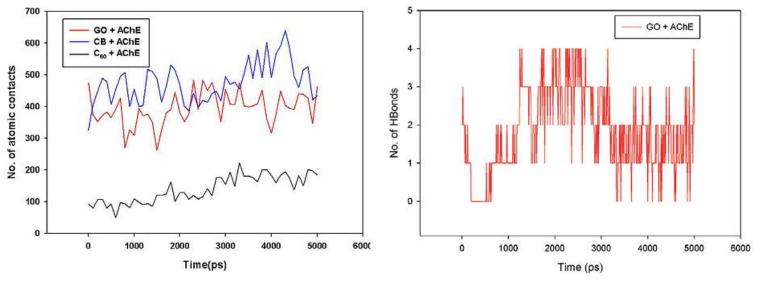
Nanobiology & Nanotoxicology Research



Comparison of different carbon NM

- > Graphene oxide
- > Carbon black
- > C₆₀ fullerenes
- Multi-walled carbon nanotubes

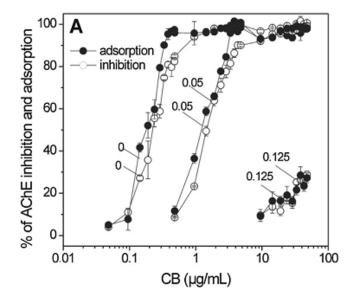


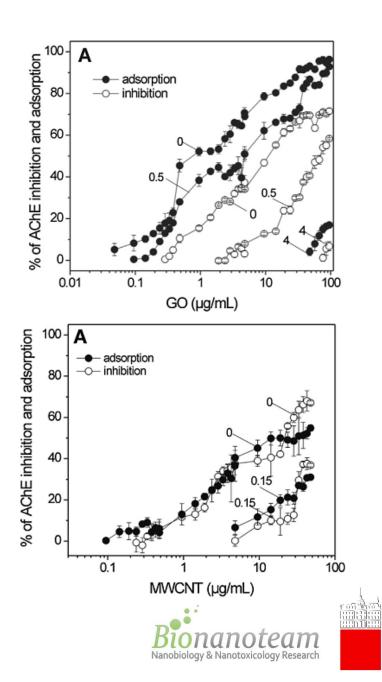

Molecular dynamics simulations

Molecular dynamics simulations

Atomic contacts

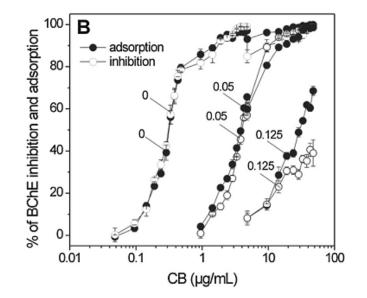
Mesarič et al. 2013

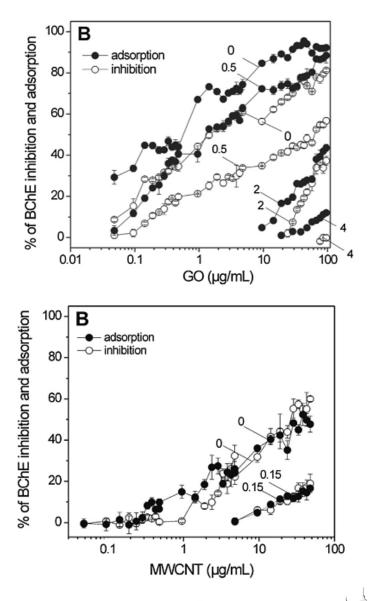




Electrophorus electricus acetylcholinesterase

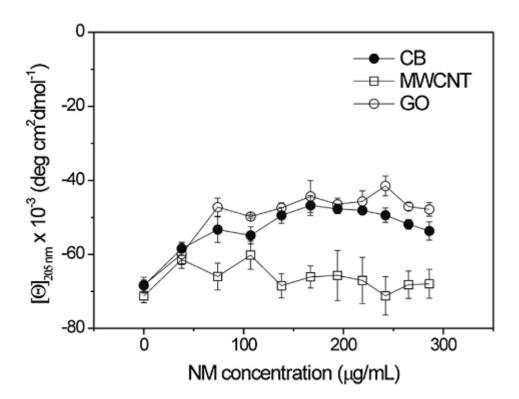
> Pre-coating with BSA



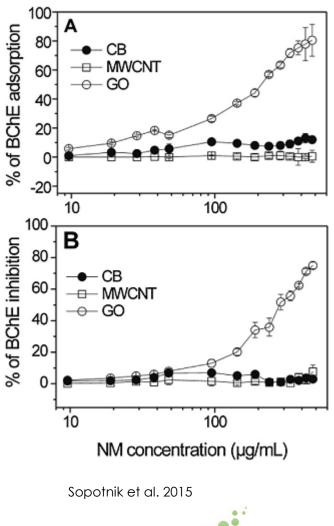


Equine serum butyrylcholinesterase

> Pre-coating with BSA

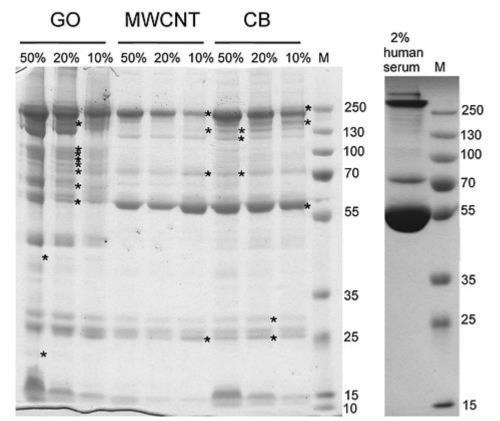


CD-measurements



Human serum

- > 0,4 % human serum
- > Intrinsic BChE



Human serum

- > Transport proteins
 - Serum albumin
 - Seroransferrin
 - Apolipoprotein A-I
 - Apolipoprotein E
- > Immune system
 - Complement C3
 - Complement C4-A
 - Copmlement C1q
 - Immunoglobulins

Conclusions

- > AChE inhibition: CB>GO>MWCNT>C₆₀
- > GO : AChE adsorption >> AChE inhibition
- Binding affinity of NMs for serum albumin was similar in pure albumin solution and in the whole serum
- CB and MWCNT have a strong affinity for serum albumin
- GO has a weaker affinity for serum albumin but stronger for other serum proteins, including BChE; is less specific
- Carbon NM corona is enriched with complement factors and apolipoproteins

Literature:

- Xia, X. R., Monteiro-Riviere, N A., Mathur, S., Song, X., Xiao, L., Oldenberg, S. J., Fadeel, B. & J. E. Riviere, 2011. Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano 5(11): 9074-9081.
- > Jemec, A., Mesarič, T., Sopotnik, M., Sepčić, K. & d. Drobne. Biological characterization of nanomaterials. In press.
- Mesarič, T., Baweja L., Drašler, B., Drobne, D., Makovec, D., Dušak, P., Dhawan, A. & K. Sepčić, 2013. Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon 62: 222-232.
- Sopotnik, M., Leonardi, A., Križaj, I., Dušak, P., Makovec, D., Mesarič, T., Poklar Ulrih, N., Junkar, I., Sepčić, K. & D. Drobne, 2015. Comparative study of serum protein binding to three different carbon-based nanomaterials. Carbon 95: 560-572.

www.nanovalid.eu

Quality of nanotoxicity data and the importance of harmonization

Dr. Anita Jemec

University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 263147

What is quality of nanotoxicity data and why we need quality data?

Developing Reference Methods for Nanomaterials

Angewandte Reviews

H.F. Krug

Nanotoxicology

DOI: 10.1002/anie.201403367

Nanosafety Research—Are We on the Right Track? Harald F. Krug*

Krug et al., 2014.

Screen the nanotoxicity literature of the last 10-15 years >10 000 publications.

Conclusion:

" Most of these studies, do not offer any kind of clear statement on the safety of nanomaterials. On the contrary, most of them are either selfcontradictory or arrive at completely erroneous conclusions.....

© 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angese Chem. Int. Ed 2014, 53, 12304-12319

Multiplicity of variables- an example for in vitro testing

Table 1: Variables in the in vitro toxicity tests during the investigation of ENMs (modified according to Ref. [35]).

alid

Nano

Variables associated with the nano- material	Variables associated with the tox assay	Variables associated with the biological model
sample purification for the removal of biologically relevant trace ele- ments	selection of the correct test system regarding the biological end points	selection of the biologi- cal system
sample characterization of the raw material: composition and purity size shape agglomeration status etc.	different test systems for the same biological end point	cell lines: selection criteria identification age and storage number of passages etc.
sample characterization regarding biological impurities: endotoxins etc.	controls: adapted negative controls adapted positive controls comparison to reference materials	primary cells/organ systems: donor dependency donor variability culture conditions
dispersion in biological media under relevant conditions: temperature humidity gas concentrations (O ₂ , CO ₂) salinity etc.	testing of possible interferences of the ENM with the biological test system binding of indicator molecules light absorption or fluorescence of the materials etc.	culture conditions during the experiments: temperature humidity gas concentrations (O ₂ , CO ₂) salinity etc.
sample characterization in biological media: size and shape agglomeration status protein corona etc.	measurement uncertainty not con- sidered: round robins calibration with standards or refer- ence material	biological parameter: cell density volume of the medium serum content of the medium compatibility of the sol- vent or dispersion medium

CRITERIA FOR quality of nanotoxicity data

NanoValid aimed to develop criteria for good quality nanotoxicity data to be used for RA and LCA

In order to provide a list of criteria three web-based initiatives, one authority document, one list developed with NanoValid, and two scientific papers (Stefaniak et al., 2013, using various sources, Mills et al., 2014) were used a basis.

- 1. MinChar initiative, providing minimal material characterization recommendations for nanotoxicology studies (http://characterizationmatters.org/parameters/), see Annex 1
- DaNa critera checklist, providing a list to evaluate nanotoxicity studies regarding their scientific value (<u>http://www.nanopartikel.info/cms/lang/en/Wissensbasis/kriterienkatalog</u>), (Kühnel et al., 2014))
- 3. The Nanomaterial Registry's Minimal Information About Nanomaterials (MIAN), <u>https://www.nanomaterialregistry.org/about/MinimalInformationStandards.aspx</u> (Mills et al., 2014), see Annex 4
- 4. Standard information required for Nanomaterials manufactured or imported (REACH) "Nanomaterials and REACH – Background paper on the position of the German competent authorities", (UBA, 2013)
- 5. List of issues and parameters to be specified for ENPs used in toxicological tests under NanoValid, see Annex 3
- 6. List of relevant nanomaterials properties provided by Stefaniak et al. (2013, see Table 2, page 1329), see Annex 5

UNIFICATION OF CRITERIA NEEDED!

NANOVALID CRITERIA FOR quality data

Developing Reference Methods for Nanomaterials

Physical and chemical properties

- Name of substance (or CAS-No)
- Aggregation / Agglomeration State
- Shape
- Particle Size / Size Distribution (including type of dispersion medium and additives)
- form of delivery (powder, suspension)
- Composition (including chemical composition, elements, element distribution and crystal structure)
- Purity (including levels of impurities)
- Surface Chemistry (including functionalization, reactivity, hydrophobicity)
- Solubility
- Surface Area
- Porosity
- Density
- Defect density
- Surface Charge
- Stability
- Conductivity
- Magnetic properties
- Surface Reactivity
- Consideration of surface modification: exact characterization

Sample preparation

- Adequate characterization of sample: Dissolution for soluble (ion releasing) nanomaterials
- Suitable preparation of the sample: Detailed description of the dispersing procedure
- Determine size in processed sample, do not rely on producer information
- Aggregation / Agglomeration in respective media
- Dispersibility
- Consider age / storage periods of NM powders /
- suspensions for subsequent testing

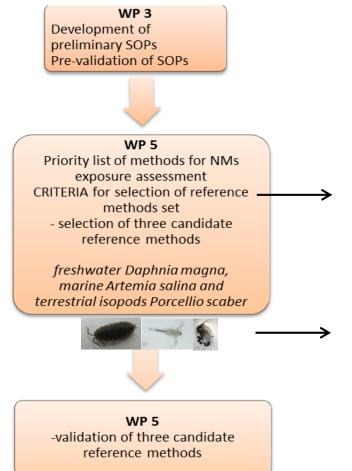
Toxicity testing

- Determination of exposure concentration (real vs. nominal)
- Stability—how do material properties change with time, storage, handling, preparation, delivery (aging)
- Behaviour in exposure media over test duration solubility, and the rate of material release through dissolution
- Aggregation / Agglomeration in respective media
- Dose metrics used (mass, surface-area and number concentration in μg/ml, μg/cm2; N (particle)/cell or pg/cell)
- Controls (positive and negative controls)
- Interferences with test system
- Appropriate methods / endpoints
- Use of reference material

Nano

General aspects

Appropiate data evaluation / statistics Standardisation criteria (SOPs used, OECD guidelines, decison trees)


Further questions regarding the scientific validity of the data:

- 1) Are raw data provided by the data source?
- 2) Were proper controls used and reported?
- 3) Was the instrument within calibration?
- 4) How many replicates were performed?
- 5) Was the measurement protocol reported?
- 6) Was there a citation to the protocol?
- 7) Were there modifications made to the cited protocol?
- 8) Are there specifications regarding the age of the NM?

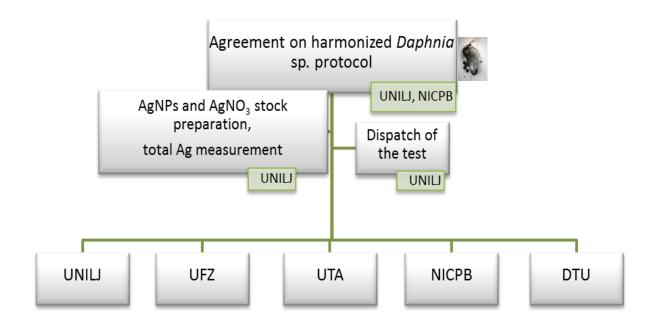
STEPS in Establishing reference methods

CRITERIA for reference method:

- sensitive to demonstrate exposure to NPs
- the signal to noise ratio have to be high enough
- the exposure should be linked to effects,
- the test should exhibit good reproducibility, ease of performance, and robustness.

CHOICE:

Daphnia magna Artemia franciscana Porcellio scaber


VALIDATION

waterflea Daphnia magna

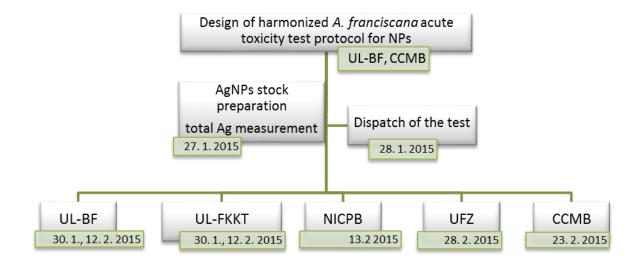
Organization of inter-laboratory comparison study

University of Ljubljana (UNILJ, Biotechnical Faculty, Slovenia) (reference laboratory), National Institute of Chemical Physics and Biophysics (NICPB, Estonia), The Helmholtz Centre for Environmental Research (UFZ, Germany) Technical University of Denmark (DTU, Denmark)

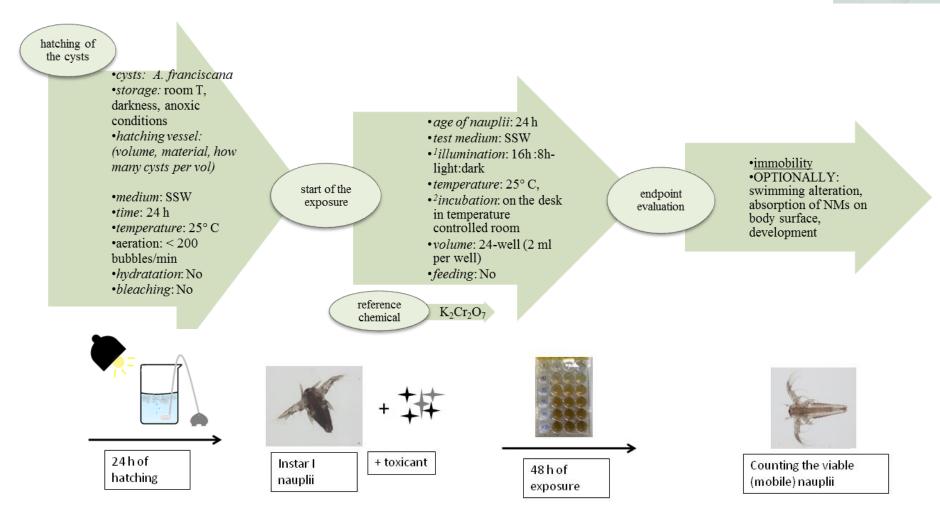
RESULTS: Daphnia magna

Exactly after SOP developed by NICPB (OECD 2004: No. 202)

PARTNER	48h EC50, AgNPs μg/L	48h EC50, Ag⁺ μg/L
1: NICPB reference laboratory	2.50	1.00
2: UNILJ	5.37	3.69
3: UFZ	2.39	1.28
4: DTU	4.081	3.21
5: UTA	18.85	2.02



brineshrimp Artemia franciscana



Organization of inter-laboratory comparison study

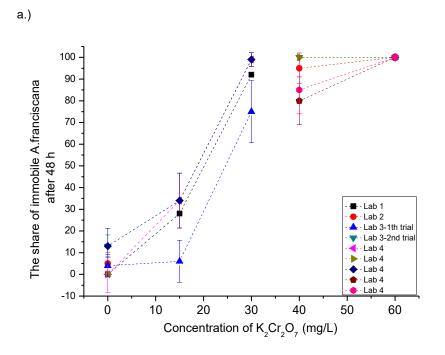
University of Ljubljana (UNILJ, Biotechnical Faculty, Slovenia) (reference laboratory), National Institute of Chemical Physics and Biophysics (NICPB, Estonia), The Centre for Cellular & Molecular Biology (CCMB, India), The Helmholtz Centre for Environmental Research (UFZ, Germany) and Faculty of Chemistry and Chemical Technology (FKKT, UNILJ Slovenia)

First the harmonised protocol was developed-literature review and experimentation

NanoValid

Experimental set-up.

Nega mediu		control	I: ASW
Test	cor	mpounds	AgNPs
(mg/L	.):		
	25		
	50		
	75		
	100)	
	125	5	
Positi	ve	control;	$K_2Cr_2O_7$
(mg/L	.)		
	15		
	30		
	60		



RESULTS: POTASIUM DICHROMATE

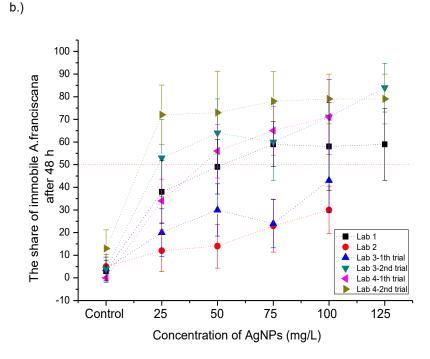
Data of the intercalibration study on $K_2Cr_2O_7$.

Each data point represents mean \pm SD (10 repetitions were done for each concentration).

CONCLUSIONS:

- 1 partner invalid results-high control mortality (inappropriate cysts storage, prolonged hatching)
- LOW Intra-laboratory variation (UNILJ) (relative coefficient of variation): 9.6 %.
- LOW Inter-laboratory variation: 17%

GOOD REPEATABILITY WITH CHROMIUM



RESULTS: SILVER NANOPARTICLES

Data of the intercalibration study on **AgNPs**

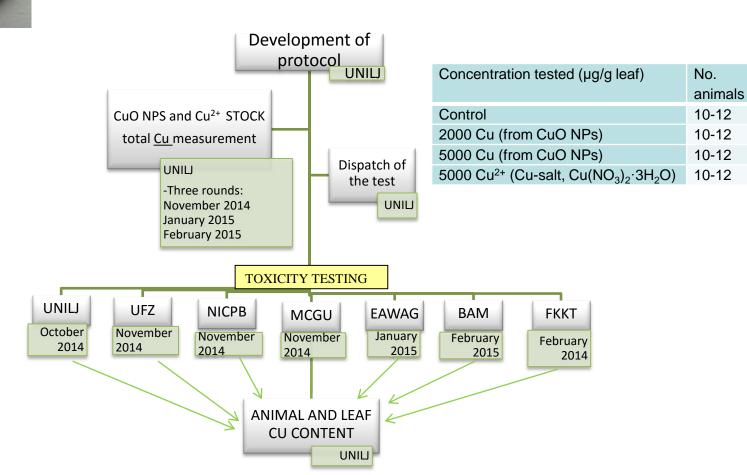
CONCLUSIONS:

- 1 partner invalid results-high control mortality (inappropriate cysts storage, prolonged hatching)
- High Inter-laboratory variation (relative coefficient of variation): 37 % 48h EC50 value was 36,48 mg/L

NOT REPEATABLE. SOURCES OF VARIABILITY?

Each data point represents mean \pm SD (10 repetitions were done for each concentration).

IDENTIFICATION OF SOURCES OF VARIABILTY


- hatching conditions
- test plate incubation
- illumination regime
- Special AgNPs properties
- -light dependent Ag⁺ speciation

	Source of variability	Actions taken to diminish the variability	Previous practises in nanotoxicity assays			
HATCHING PHASE	Species of Artemia	Defined species, A. franciscana	Commonly undefined,			
			mostly Artemia sp. or A. salina			
	Origin of Artemia	° Producer, which supplies A.	Very variable sources, commonly			
	cysts	<i>franciscana</i> , Great Salt Lake, USA	undefined			
		 Further suggestion: use of certified cysts 				
H.	Hatching medium	Defined composition, artificial salt	Undefined composition: sea water or			
		water (SSW) [*]	Instant Ocean®, Red Sea Salt®,			
Ň			Synthetica Sea salts®, Tropic			
Ή			Marin [®] – a synthetic sea salt mix			
TC	Illumination	Continuous light	Continuous light, or not reported			
A E	Temperature	Defined temperature: 25 °C	25-30 °C, often not reported			
Ţ	Duration	Defined duration: 24 h	24 h or 48 h			
	Aeration	Defined rate: < 200 bubbles/min,	Not defined			
		partners reported that hatching was				
		unsuccessful at very high rates				
	Hydratation/bleaching	Not applied, hatching was successful without this step	Various practises, but ussulally not applied			
	Test medium	Defined composition, synthetic salt	Undefined composition: sea water or			
		water (SSW) [*]	Instant Ocean®, Red Sea Salt®,			
ST			Synthetica Sea salts®, Tropic			
TOXICITY TEST			Marin [®] – a synthetic sea salt mix			
	Age of cysts	Additional experiments done, 24 h	Various practises:			
TI		old nauplii (stage I) ensure sufficient	24 h, 30 h, 48 h, not reported			
IC		survival of controls during 48 h				
XC		exposure				
)T	Illumination	Additional experiments done,	Often not reported, Various			
		illumination is extremely important	1 1 1			
		in nanotoxicity studies, we suggest	regime			

isopods Porcellio scaber

alid

Nano

Organization of inter-laboratory comparison study

16

of

RESULTS: Porcellio scaber

Detailed instructions, video/audio material

Animal Cu content- Bioaccumulation Leaf Cu content

Conclusions

- Internationally recognized toxicity test assay the "Feeding assay with *Daphnia magna*" fulfils the criteria for the reference nanomaterial exposure and effect method.
- The assay with Artemia franciscana has a number of advantages as a test organism and fulfils a number of criteria as a reference method. The reproducibility of the assay with the reference chemical K₂Cr₂O₇ was good, but this was not the case with AgNPs. We attribute this to specific properties if these NPs.
- The "Feeding assay with isopod *Porcellio scaber*" has proved to be a reliable and reproducible assay and we therefore suggest it as reference method for terrestrial nanomaterial exposure and effect. We therefore suggest further steps to standardise the protocol.

GOOD PRACTISE EXAMPLE:

Information about nanomaterials and their safety assessment

http://www.nanoobjects.info/en/

ACKNOWLEDGEMENTS

To All NanoValid partners involved in round robin. Monika Kos for Artemia assay validation All Bionanoteam for support in analytic and toxicity testing

EU FP7 project NanoValid (Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials; grant no. 263147)