
https://doi.org/10.31449/inf.v45i2.3230 Informatica 45 (2021) 257–266 257

Load Balancing Mechanism Using Mobile Agents

Sarra Cherbal

University of Ferhat Abbas Setif 1, Department of Computer Science, 19000 Setif, Algeria

E-mail : sarra_cherbal@univ-setif.dz

Keywords: distributed systems, load balancing, mobile agents, agents’ technology

Received: July 8, 2020

Distributed systems need to perform load balancing on their hosts, so that the computation runs as quickly

as possible. Research in this field has seen the emergence of mobile agents’ paradigm as a promising

solution. In this present work, we use this paradigm to propose a load balancing approach that benefits

from the advantages of agent mobility, more particularly, in the information-gathering phase. In which,

we aim to have an overall system vision while reducing network communication overhead, as well as other

benefits such as fault tolerance and extensibility for large scale networks. Thus, the purpose of our

contribution is to improve the distribution of loads in a balanced way to get loads as close as possible to

the system average load. The experimental results show the efficiency of our approach on balancing the

loads and in decreasing the response time.

Povzetek: V prispevku je opisana nova agentna metoda za uravnoteženje obremenitev v porazdeljenih

sistemih.

1 Introduction
The trend of computer world towards "distributed

systems" is no longer envisaging the operation of one

single computer, without interacting or cooperating with

other computers. These systems must be designed to meet

the new requirements [1] [2] [3]. In this work, we present

two related research areas: "Mobile agents" and "load

balancing".

The technology of Mobile software agent is one of the

known technologies in the field of distributed computing.

It has emerged as an alternative to the classic "client /

server" paradigm that presents the most widely used

approach in building distributed applications [4] [5].

Mobile agent technology has interesting prospects for

various application areas, among which, we find e-

commerce, web-based information retrieval, and the

domain of load balancing (LB).

In order to achieve better performances in distributed

systems, the load balancing problem has been intensively

studied by researchers [6] [7] [8]. Balancing allows

maximum use of available resources, and this can be

achieved by distributing tasks in a smart manner.

In this work, we study the use of mobile agents in the

load-balancing domain. Based on this study, we propose

an approach that aims to balance the system load using

agent mobility by adopting three agents, and defining

tasks for each of these agents. Where, the basic idea is to

have local loads close to the system average load.

The rest paper is organized as follows. In section 2,

we present an overview of related works and we give a

corresponding discussion and the motivation of the

proposed approach. Section 3 summaries the benefits of

using mobile agents in distributed systems. The details of

the proposal are explained in Section 4. In section 5, we

present our simulation results to prove the efficiency of

the proposed techniques. Finally, Section 6 concludes the

paper.

2 Related work

2.1 Load balancing mechanisms

In [9], the authors employ a new concept of transferring

virtual loads, which allows nodes to predict the future

loads they will receive in the subsequent iterations.

Accordingly, the notified node will take into account this

predicted load when transferring a part of its actual load to

some of its neighbors.

The work of [10] introduces a resource scheduling

and a load balancing approach for efficient cloud service

provisioning. They increase the use of virtual machines,

and achieve load balancing by dynamically selecting a

request from a class using Multidimensional Queuing

Load Optimization algorithm.

The paper of [11] presents a load balancing

methodology for container loading problem in road

transportation. They propose a random-key genetic

algorithm (BRKGA), with a new fitness function that

takes static stability and load balance into account.

Authors of [12] propose a Dynamic Data Replication

Algorithms (DDRA) of three phases to improve the

information duplication under the cloud storage system.

The first two phases are to determine the adequate service

nodes to achieve the workload balance based on the nodes’

workloads. The third phase presents a scheme of a

dynamic duplication deployment proposed to realize a

higher access performance and a better load balancing. In

the first phase, for realizing the initial LB, the service

nodes with probability lower than a defined threshold are

filtered.

The authors of [13] propose a new variant of directed

diffusion routing protocol in wireless sensor networks.

This variant tries to improve the existing protocol by using

https://www.sciencedirect.com/topics/engineering/algorithm

258 Informatica 45 (2021) 257–266 C. Cherbal

a load balancing mechanism in order to balance the energy

of sensors.

2.2 Mobile agents in load balancing

Authors of [14] propose a dynamic load balancing in a

small world P2P network using mobile agents. Firstly,

they cluster the peers that have the same set of sharing

resources. Then, they balance the query loads in intra-

cluster nodes to avoid network congestion. For this

purpose, three agents are defined, Host Agent (HA),

Detection Agent (DA) and the Reconnection Agent (RA).

The DA migrates between the intra-nodes to detect node

congestions. This agent is generated and controlled by the

HA that walks through all the groups. The RA is generated

to reconnect the links between congested nodes and under-

loaded nodes of the same cluster. An attractiveness

parameter is measured for each node according to some

criteria as node degree, processing capacity and the

resources contained in the node. The DA migrates to the

node with high attractiveness parameter, when the DA

arrives, it checks if the node is overloaded or underloaded.

However, the selection algorithm chooses a partner node

that may refuse to accept the DA agent requests if it is

overloaded. In this case, the DA agent migrates to other

nodes until finding the right node. Thus, the right partner

may not be correctly chosen before migration process.

In [15] they propose two different models of load

management in large-scale distributed systems. The first

model is based on mobile agents in collecting the status of

node actual resources (RAM and CPU). To balance the

loads, they integrate a second model based on fuzzy

function. The agent system is consisting of three modules

as Agent monitoring module (AMM) to collect the

available status of current resources. The Agent Decision

module (ADM) used to make a decision of migration

when the node is overloaded if the measured probability

crosses the threshold. The Agent migration module

(AMMO) selects the destination node where to migrate,

according to some criteria like the high level of processing

and computing resources. However, in the agent’s model,

when defining the node status (overloaded/under-loaded),

the authors did not mention how the used threshold is

defined or measured. Thus, if it is a constant or a variable

value and if it is measured locally or globally according to

different node status.

In [16], load balancing is realized using mobile agents

that migrate through all nodes based on a credit value

factor. This factor is defined at initial stage to decide the

node selection for migration. The selection of the

destination node to which the agent will be migrated, is

based on comparing the local load to a threshold value. If

the destination node refuses the load reception, the agent

will be directed to the next selected node. However, how

to measure the threshold value is not defined. Besides, the

agents keep migrating until finding the right partner for

each overloaded node.

The paper of [17] presents a load balancing algorithm

for parallel virtual architectures. They use a host agent to

perform a diagnostic test to evaluate the computation

performance and latency of each node. Each parallel task

is assigned to a VPU (virtual processing unit) presented by

a mobile agent. These VPUs communicate by exchanging

messages containing data and tasks to be performed.

However, the communication between VPUs of different

nodes leads to more traffic.

The paper of [18] distinguishes five populations of

agents. The authors use the ant-colony optimization

approach to distribute the tasks between the worker agents

in a parallel way. Such as, a dispatcher agent (load

balancer agent) collects the necessary information for the

scheduling decisions, and then the ant colony approach is

used to take this decision. In the context of their research,

the scheduler is used as an ant that chooses for the current

job, the machine having the higher rate of pheromone. To

measure this pheromone probability, each worker machine

sends via its controller agent, to the dispatcher agent, the

number of tasks that it has in its queue.

In [19], the authors combine the least time of first byte

algorithm (LFB) and the mobile agent concept. Where, the

mobile agent role is monitoring the state of each server

resources. However, the authors focus on achieving a

reliable approach without taking into consideration the

system throughput and latency.

The paper of [20] presents a load balancing scheme in

heterogeneous P2P systems. They propose three agents.

The first mobile agent is for information gathering and the

second one is to decide the receiver partner for the

overloaded node. The third is a stationary agent, which

resides on each node to update its routing table. Its role is

to inform all the network nodes of the other nodes’

addresses and spread the node’s failure information in the

network. This mechanism of using messages to spread

information each time to all the nodes lead to more

overhead.

A load balancing algorithm for heterogeneous P2P

systems is proposed in [21]. In which, one type of mobile

agent is used with its essential components such as

collection, analysis and location. A utilization rate is

measured according to the load and capacity of each node.

However, to migrate the overload, the authors propose to

choose the neighbor node with the smallest utilization rate.

Thus, this one under-loaded node is going to be chosen by

the most of overloaded nodes or all of them.

Consequently, the chosen node will be overloaded or will

refuse the receiving tasks, which leads to rerun location

process and try again with other nodes, thus, more time is

wasting in location, migration and execution.

2.3 Discussion

In this section of related work, we have reviewed different

papers of load balancing approaches existing in the

literature. We can notice that this field in general still

relevant with the mentioned recent approaches. Sub-

section 2.2 concerns propositions of load balancing based

on mobile agents. According to this literature study, in our

proposed approach, we aim to avoid and improve some

existing limits or weak points, mentioned as follows.

In the selection process, it concerns selecting the

partner node to which the overload will be migrated, i.e.

selecting an under-loaded node for an overloaded node. In

Load Balancing Mechanism Using Mobile Agents Informatica 45 (2021) 257–266 259

this process, in [14], the authors propose to migrate a

mobile agent (MA) between a set of nodes until finding an

under-loaded node. When the MA arrives to a node, it

checks if this node can receive the holding overload, if it

rejects the reception, the MA will pass to another from a

sorted list [14] [15] [21] and repeat the same verification

steps. Thus, this method leads to a wasting time in

migration process especially that the MA is holding the

overload when migrating, which makes its migration

slower. Thus, the system latency is increased and it could

find a good partner but not the suitable one. Therefore, in

our work, we propose a selection process that aims to find

the suitable partner node for each overloaded node and

that before launching the load migration to avoid the

mentioned disadvantages. In other words, our migration

agent goes directly to a defined and a right node

destination. In addition, in the selection process, some

works like [21] propose to choose the node with the

smallest load to be the partner node. consequently, most

of overloaded nodes going to choose the same partner, this

partner is going to be overloaded and the next receiving

agents will be rejected and they should migrate to find

another partner. To avoid this, in our approach we propose

a method to choose one under-loaded node for each

overloaded node without causing its overload.

In general, the node state is defined as overloaded or

under loaded according to a threshold value. In some

works like [15] [16], there is no mention on how the

threshold is defined or measured. Such, if this threshold is

measured locally according to the node local information

or globally according to the system global information.

Therefore, in our approach, we measure the threshold

value according to the global overview, based on all the

states of nodes. This, in order to have almost equally states

for all the nodes, which is the main principle of load

balancing mechanism.

Unlike [19], in our approach, we are interested not

only by achieving a balanced system but also by avoiding

the increase of throughput and by reducing the latency.

Thus, we use mobile agents and their migration in a way

to avoid exchanging messages between the nodes, unlike

[17] [20].

In the next section, we summary the benefits of using

mobile agents in distributed systems.

3 Mobile agents and load balancing
Mobile agents’ technology provides a load balancing

support with three main characteristics:

• They can move from one platform to another

• They can move across platforms of heterogeneous

nature (e.g. OS, capacity of CPU, Storage, …)

• They carry the application specific code, instead of

requiring a pre-installation of this code on the

destination machine.

The two main advantages that mobile agent approach

brings to load balancing are:

• Reducing network traffic

• Migrating processes from one site to another.

4 The proposed architecture
In this section, we present our proposed contribution of

load balancing based on mobile agent paradigm.

In the following, we assume that the nodes are in a

cooperative network, which allows us to study only the

characteristics of the considered algorithm, and we

assume that the tasks are independent i.e. there is no

communication between them.

In this work, we are interested by the "dynamic" load

balancing, in which, the movement of tasks depends on

the current load of the processors. For the balancing

decision, we chose the "source-initiative" approach in

which a site called source tries to transfer its surplus

(excess) towards a weakly charged site called receiver. For

the choice of this latter, we propose a method that tries to

obtain local loads close to the average load (AL) of the

system, which is the goal of load balancing.

To determine the state of each machine, thresholds

must be defined: there are static thresholds that are

unchangeable fixed values and other dynamic thresholds

that are varied according to the evolution of the system. In

our approach, we use the second solution where the

threshold is defined according to the average load of the

system, which is more suitable to a dynamic environment.

Our contribution consists of three types of agents, a

fixed agent and two mobile agents. Each one implements

one or more load balancing policies (Figure 1):

- Observer Agent (OA): a fixed agent located on

each site of the system. It evaluates and monitors the

local load of the site and so launches the migration

process to the partner site (which is indicated by the

SMA agent).

- Supervisor Mobile Agent (SMA): a mobile agent

that moves from one site to another in order to build a

global vision of the system. It puts the collected

information (the local load value + the site identifier)

in a table. After finishing the course between the sites,

SMA calculates the average load, according to which

it builds two tables: a table of overloaded sites (in a

descending order) and other table of under loaded sites

(in an ascending order). With these two tables, SMA

determines the receiving site for each overloaded site

(section 4.2.2.).

- Transporter Mobile Agent (TMA): a mobile

agent that migrates between two unbalanced machines

in order to balance the system load. It is launched by

the OA of an overloaded site, in order to transport the

excess load (tasks) of this site to the defined partner by

SMA.

The scenario of each of these agents is explained in the

following of this section (section 4.2).

4.1 Suggestions and critics

In this sub-section, we aim to explain the benefit of each

proposed process in this approach, by showing the

different cases that can arise.

If we eliminate the concept of “tables and their ordering”

(i.e. SMA agent only calculates the average), three cases

arise:

260 Informatica 45 (2021) 257–266 C. Cherbal

Figure 1: The role of each proposed agent.

4.2 Suggestions and critics

In this sub-section, we aim to explain the benefit of each

proposed process in this approach, by showing the

different cases that can arise.

If we eliminate the concept of “tables and their ordering”

(i.e. SMA agent only calculates the average), three cases

arise:

4.2.1 First case

When an observer agent OAi detects that its site is under-

loaded, it sends a broadcast message to all other sites in

the system (including underloaded sites) to inform them

of its state. In case of an overloaded site Sj, its

corresponding OAj sends a message to OAi to see if it can

transmit its excess load. Three cases can be distinguished:

a. OAi has already accepted the offer of a site Sk, so

it will reject the offer of OAj.

b. The excess load of site Sj can cause the

overloading of Si, thereby, a refusal message will

be sent to the agent OAj,

c. The site Si accepts the offer of Sj, so an

acceptance message will be sent to Sj.

Disadvantages

A very high cost of communication, especially in case of

a large network (N sites for example). There will be:

- N-1 broadcast messages for each imbalance ,

- M messages from overloaded sites (M < N),

- M messages of refusal / acceptance.

4.2.2 Second case

TMA agent is responsible for determining the partner

node of the overloaded node Sj on which it was created.

TMA moves from one node to another while handling the

surplus of the node Sj, then, it chooses the first node that

has a less load than Sj.

Disadvantages

a. The size of TMA becomes larger when it is

handling the excess load, and it has no vision

about its destination, thus, it can go through

several overloaded sites before arriving to the

suitable one, which is not favored in a dynamic

load-balancing system. The size of TMA should

be as small as possible, in order to speed up the

load transfer before that the local loads of the

sites change again, otherwise, this transfer

becomes unnecessary.

b. This surplus can cause the overloading of the

recipient site, while it is possible to find a more

suitable recipient. This latter can receive the

surplus while still having a load close to the

system AL (which is the purpose of load

balancing).

4.2.3 Third case

If we eliminate the order of tables (ascending/descending),

the agent OAj of an overloaded site Sj will choose the

node with the lowest load to ensure effective balancing.

Disadvantage

All OAs that are on overloaded nodes will choose the same

node that is weakly loaded, thus, this latter becomes

overloaded.

4.3 Description of the proposed agents

4.3.1 Observer Agent (OA)

The aim of our algorithm is to make the system in a

balanced state, and thus having balanced machines. It is

the role of the OA to observe the machine load, on which

it is located:

a. Measuring the node local load

There are two methods to measure the load, one is on

demand, and the other is periodic:

• On demand: in this case, the OA measures the node

load when the SMA asks him to do it (i.e. when the

Load Balancing Mechanism Using Mobile Agents Informatica 45 (2021) 257–266 261

SMA arrives on this node). Thus, OA must know the

arrival time of SMA, which means that SMA must

inform OA with a signaling message. Otherwise,

SMA must wait until OA calculates the local load,

which increases the load collection time of SMA.

• Periodic: in this case, OA does not need to know the

arrival time of SMA since it measures its site local

load each period Tinfo. When SMA arrives on this

site, the OA provides him the last measured load

value. The Tinfo must be an appropriate period to

avoid system overload. If the loads change quickly,

then the Tinfo must be small. Otherwise, it is

necessary to increase the duration of Tinfo.

In our contribution, we chose to use the second method

because it is simple to implement, it does not require

remote message exchanges between SMA and OA and it

reduces the time allocated to the information collection

policy.

b. Start the migration process

When the OA of site Sj receives a message from SMA, he

gets that his site is overloaded. Therefore, this OA

launches the TMA agent, by indicating the surplus to

transport, using the average load sent by SMA. In addition,

the destination site is declared in the message of SMA.

This load transport between two unbalanced machines

makes their loads closer to the system average load, in

order to make them better balanced.

Algorithm.1: Observer Agent script

For each site Sk {

For each period Tinfo {

Measure local load Lk //Lk is the Local load of site Sk

}

Receive_info(SMA, Sr, AL); //SMA indicates the

recipient site Sr.

 //AL is the average load

If (Received_info != NULL) {

 Launch the TMA agent and send it to the site Sr

Else //Sk is not overloaded

 OA declares: “My site is lightly loaded”

OA declares: “I am waiting for the reception of transporter

agents from other sites”

}

}

4.3.2 Supervisor Mobile Agent (SMA)

The SMA moves cyclically between the various sites of

the network. For each site, SMA retrieves the site name

and its load value and put them in a table (Tab_System).

After finishing this movement, SMA makes the two next

steps.

a. Calculation of the system average load (AL)

At the arrival of the SMA agent on a site, it contacts the

OA, to retrieve the local load. Then, SMA adds this load

value to the values already collected. When the SMA

finishes its trajectory, it calculates the average load “AL”.

This AL allows to :

• Achieve a global load balancing, since each

machine load is compared to the system overall

load.

• Manage load variations that may occur in the

system, which is not the case when determining

a fixed threshold.

b. Determining the node state and building the

two tables

We use the average load (AL) as "threshold": according to

which we can distinguish 3 states:

• The site is Overloaded If its load > AL;

• The site is Underloaded If its load < AL;

• Neutral If its load = AL.

From the Tab_System table and the calculated average

load, the SMA agent builds two sub-tables:

• Tab_Less : contains underloaded sites.

• Tab_plus : contains overloaded sites.

After that, SMA will order the load values for each of

these tables:

• Tab_Less: in ascending order (from the smallest

load value to the greatest).

• Tab_Plus: in descending order.

c. Choosing the partner

After these two steps, a global vision is built, and now

SMA plays the role of a distributor. It determines for each

overloaded site, a partner (a receiver under-loaded site), in

a way that the overloaded site and its partner have the

same table index, respectively in tab_plus and tab_less.

In a detailed way, the method that we proposed to make

the choice of partner is to assign the first entry of

Tab_Less to the first entry of Tab_Plus. This, in order to

assign the site of the biggest load to the site of the smallest

load), and assign the second entry of Tab_Less to the

second entry of Tab_Plus, and so on. I.e. each underloaded

site Tab_Less [i] is the partner of the overloaded site

Tab_Plus [i].

Noting that the mobile agent have to be fast during its

move so that the system load information doesn’t change

during this movement i.e. the agent must be up to date,

thus, the size of the SMA code must be minimized.

In our architecture, we propose to use a single supervisor

agent but we can always consider multiplying the number

of these agents and this depending on the network size

(number of participating machines in the application). In

this case, it is necessary to provide a cooperation

mechanism between the different supervisory agents in

order to build a global vision on the system load.

Algorithm.2: script of Supervisor Mobile Agent

Som=0 ; AL=0 ;

For m = (from 1 to nbSites) { // nbSites is the number of

machines or nodes

Request the local load from the OA of site Sj

Add(site name Sj + Lj load) as an entry in tab_system

Som=Som+Lj // Lj: local load provided by agent OA of

site Sj

doMove (Sj, Sk) // SMA moves to the next node

}

AL = Som / nbSites ;

While Tab_Sys[i] not_empty {

 If (Tab_System [i] > AL)

262 Informatica 45 (2021) 257–266 C. Cherbal

 Add this site as an entry to tab_plus

 Else {

 If (Tab_Systeme [i] < AL)

 Add this site as an entry to tab_less

 }

i++; //next hut in tab_sys

}

Ordering Tab_Less in ascending order;

Ordering Tab_Plus in descending order;

While tab_plus [i] not_empty { //indicating partners

So = Tab_Plus[i] // source overloaded site

Su = Tab_Moins[i] //receiver underloaded site

Send_info (Sk, Sj ,AL) // SMA informs the overload site

by the receiver of its surplus load

}

4.3.3 Transporter Mobile Agent (TMA)

It is a mobile agent launched by OA agent of an

overloaded site and it represents the surplus of this latter.

The TMA purpose is to transport this surplus to the

recipient site, on which the task(s) will be executed.

It is the OA agent that indicates to the TMA the work to

handle. This work presents a set of tasks. The number of

TMA agents depends on how many tasks they can handle.

Algorithm.3: script of Transporter Mobile Agent

doMove(Sk,Sj) ;

// TMA moves from the overloaded site to the receiver site

Send (L_Plusk, Sk, Sj) ; // Sk : the source site name

 // L_Plusk : excess load of site Sk

 // Sj: the recipient site name (indicated in SMA script)

An overview of our system architecture with a scenario of

the three agents on 4 sites, is presented in Figure 2.

5 Experimental results

5.1 State of loads

To test the behavior and to evaluate the performances of

the proposed approach, our agents’ algorithms are

developed using Java eclipse IDE on top of the JADE

agent platform. We use the "FSMBehaviour" for OA and

SMA agents. This behavior serves to present complex

tasks, it responds to the needs of the compound behaviors

of these two agents. For the third TMA agent that has only

one task to perform, a simple behavior meets the need, so,

in this case it is the "OneShotBehaviour". The source code

is composed of three classes and of their sub-classes

according to the roles in Figure 1.

In order to launch our algorithm execution under Jade,

we first launch the observer agents (we implement eight

agents OA0,OA1,…), each on a container. Then, we

launch SMA agent on the main container. Next, the AMT

agent is launched by the corresponding OA agent (that of

an overloaded site).

A load ratio is assigned randomly to each container. Figure

3 presents the loads’ state in the three phases: before

applying LB, and when applying the proposed LB with

and without table approach. Where, in the third phase

(without table approach), the TMA transports the overload

to the first found under-loaded site. Figure 3 shows that in

the first phase, the loads are unbalanced (from very high

to very low loads). In the third phase, the loads start to be

balanced which shows the impact of the LB approach.

Thereafter, in the second phase, the loads are more

balanced compared to the system overall state, which

demonstrates the efficiency of the proposed table

approach in choosing the right partner to receive the

overload.

5.2 The impact of LB on response time

In distributed computing, the response time is a significant

issue and the fact of reducing it is a very important

requirement in improvement approaches. However, when

the loads are bigger, the system response time is higher. In

this type of environment, a set of tasks is distributed

between some nodes of the system. The system response

time is the time taken by all the participating nodes to

realize this set of tasks.

We measure the response time using the following

formula:

𝑇 = (𝑁𝑏𝑇𝑎𝑠𝑘𝑠 × 𝐻𝑖𝑔ℎ𝐿 × 𝑅𝑒𝑞𝐴𝑇)/100 (1)

Such that:

- NbTask is the total number of tasks,

- HighL is the higher load percentage in this

system,

- ReqAT is the required average time to execute

one task.

Figure 4 shows the change of response time in the

three phases, while increasing the number of tasks to be

executed by this system (between 200, 300, 400 & 500).

The results prove the efficiency of our proposed LB

algorithm in reducing the response time comparing to the

two other phases.

5.3 Impact of our proposed selection

technique

The main purpose of applying a LB process in a

distributed system is that all the nodes work with almost

equal workloads. In other words, minimize the difference

in workload percentage between nodes and so avoid

having a node with a high workload while another node is

under-loaded. In a distributed system, where the nodes

work in collaboration to complete a specific set of tasks,

balancing the workload and thus the effort between the

nodes is essential to reduce the execution time (or

response time) of a task and thus of all the launched tasks.

Therefore, in a system, we measure the difference of

workload rates between the most heavily loaded nodes and

the least loaded ones. Thus, the difference between the

highest and the lowest workload rate.

In the selection technique, an overloaded node (site)

selects one of the under-loaded nodes where to transmit

the overload, what we call a partner. In our approach, we

Load Balancing Mechanism Using Mobile Agents Informatica 45 (2021) 257–266 263

propose a selection technique based on a defined table as

explained earlier in this paper.

To prove the efficiency of our proposal, in this sub

section, we compare it to the selection technique proposed

in [14] and in [21] in terms of workload differences and

response time.

The selection technique of [14] is based on sorting the

under-loaded nodes in a list, according to an attractiveness

parameter and in [21] the list is sorted according to the

utilization rate. Then, each overloaded node uses this list

to find the least charged node to transmit him the overload.

When the migration agent arrives to the selected node, it

checks if this node is overloaded so it accepts the received

overload or reject it if it is under-loaded. In case of

rejection, the migration agent moves to the next node from

the sorted list.

Figure 5 presents the difference of workload rates

between the most heavily loaded site (node) and least

loaded site in each simulation (case). This parameter is

compared in three phases, the first phase is before

applying LB, the second is when applying our proposed

approach and the third is when applying LB with the

Figure 2: Architecture of the proposed system.

264 Informatica 45 (2021) 257–266 C. Cherbal

selection techniques of [14][21]. A workload rate is

assigned to each node in a random manner, and we have

launched eight simulations (8 cases). The results in Figure

5 show that the differences in workload rates are more

reduced after applying a LB approach and then are much

reduced when applying our proposed approach. These

results prove the efficiency of our proposed selection

technique compared to existing techniques in selecting the

Figure 3: State of loads in the three phases.

Figure 4: Response time as function of number of tasks.

Load Balancing Mechanism Using Mobile Agents Informatica 45 (2021) 257–266 265

most suitable under-loaded node for each overloaded node

and thus all the nodes work with almost equal workload

rates.

Figure 5: Differences in workload rates between most

heavily loaded sites and least loaded sites

Figure 6 shows the impact of the used selection

technique on the Response time while changing the

number of tasks from 200, 300, 400 to 500. In sub-section

5.2, we explain the signification of response time and we

define formula (1) to measure it. The results presented in

Figure 6 correspond to three launched simulations with

different random workloads. Figure 6 shows that the

response time increases with the increase of number of

tasks with more workloads to perform. Besides, our

proposed approach presents the most reduced response

time in three launched simulations. This proves the

efficiency of our selection technique in choosing the

partner node and thus all the nodes participate with almost

same effort to finish a task, and then the set of tasks

achievement is done faster.

6 Conclusion
Load balancing is one of the keystones for the

improvement of system performances. Its main objectives

are to improve the execution time of tasks and to take

advantage of the maximum system resources.

In this work, we are interested in the use of mobile

agent technology in the field of load balancing. One of the

important motivations of this paradigm is the

minimization of remote communications thus saving the

bandwidth consumption, which is favorable for an

efficient load balancing system. For this reason, we have

integrated in our proposed solution a mobile agent whose

role is to collect the loads information to build a global

vision on the system load, which reduces the

communication cost compared to the classic collection

method. In addition, the stationary agents must be aware

of the global load so they can detect the machine balance

state and so select the tasks to be migrated. In our solution,

the mobile supervisory agent only informs overloaded

hosts which conducts in a traffic reduction compared to

those approaches that inform all the hosts of the system.

Other benefits of mobile agents are robustness and

fault tolerance, which are necessary in a load balancing

system so that it can continue to operate when one of the

members is disconnected. Mobile agents also offer the

advantage of scalability, they adapt well to small networks

as to large-scale networks. These benefits conduct us to

use mobile agents in our solution, to have an extensible

and a robust load balancing system.

In a large-scale network, increasing the number of

supervisory agents is possible to reduce the agent

Figure 6: Impact of selection technique in response time as function of number of tasks.

266 Informatica 45 (2021) 257–266 C. Cherbal

migration time and to avoid increasing the agent code size.

This allows an improvement in load balancing. However,

we find that determining the number of agents needs

another study. Furthermore, we have implemented our

proposal on Jade platform. By a comparative evaluation,

the results showed the efficiency of the load balancing

approach. Besides, we have shown its impact on reducing

the execution time latency, which is an important factor in

distributed systems. In addition, we have shown the

impact of our proposed selection techniques compared to

existing selection techniques in balancing the workloads

and in reducing the system response time.

As a perspective, we aim to implement the proposal

architecture on mobile nodes to show the effect on energy

consumption.

References
[1] Van Steen M, Tanenbaum AS (2016) A brief

introduction to distributed systems. Computing. vol.

98, no. 10, pp. 967-1009.

https://doi.org/10.1007/s00607-016-0508-7

[2] Anjomshoa MF, Salleh M, Kermani MP (2015) A

Taxonomy and Survey of Distributed Computing

Systems. Journal of Applied Sciences, Vol. 15, pp.

46-57. DOI: 10.3923/jas.2015.46.57

[3] Samolej S. and Rak T. (2009) Simulation and

Performance Analysis of Distributed Internet

Systems Using TCPNs, Informatica, vol. 33, pp. 405-

415.

[4] Hakansson A, Hartung R (2013) Book: Agent and

Multi-Agent Systems in Distributed Systems - Digital

Economy and E-Commerce. Publisher: Springer-

Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-

35208-9

[5] Hajduk M, Sukop M, Haun M (2019) Cognitive

Multi-agent Systems : Structures, Strategies and

Applications to Mobile Robotics and Robosoccer. In

Series of Studies in Systems, Decision and Control.

DOI: 10.1007/978-3-319-93687-1

[6] Wided A. and Okba K. (2019) A novel Agent Based

Load Balancing Model for maximizing resource

utilization in Grid Computing, Informatica, vol. 43,

no. 3. https://doi.org/10.31449/inf.v43i3.2944

[7] M. A. Salehi, H. Deldari, and B. M. Dorri (2009)

Balancing load in a computational grid applying

adaptive, intelligent colonies of ants, Informatica,

vol. 33, no. 2, pp. 159–168.

[8] Aghdashi A, Mirtaheri SL (2019) A Survey on Load

Balancing in Cloud Systems for Big Data

Applications. In: Grandinetti L., Mirtaheri S.,

Shahbazian R. (eds) High-Performance Computing

and Big Data Analysis. TopHPC 2019.

Communications in Computer and Information

Science, vol 891. Springer, Cham.

DOI: https://doi.org/10.1007/978-3-030-33495-6_13

[9] Couturier R, Giersch A, Hakem M (2018) Best effort

strategy and virtual load for asynchronous iterative

load balancing. Journal of Computational Science.

Vol. 26, Pages 118-127.

DOI: https://doi.org/10.1016/j.jocs.2018.04.002

[10] Priya V, Kumar CS, Kannan R (2019) Resource

scheduling algorithm with load balancing for cloud

service provisioning. Appl Soft Comput Vol. 76, pp.

416–424. https://doi.org/10.1016/j.asoc.2018.12.021

[11] Ramos AG, Silva E, Oliveira JF (2018) A new load

balance methodology for container loading problem

in road transportation. European Journal of

Operational Research, Vol. 266(3), pp. 1140–1152.

https://doi.org/10.1016/j.ejor.2017.10.050

[12] Hsieh H, Chiang M (2019) The Incremental Load

Balance Cloud Algorithm by Using Dynamic Data

Deployment. J Grid Computing Vol. 17, pp. 553–

575. https://doi.org/10.1007/s10723-019-09474-2

[13] Semchedine F, Bouallouche-Medjkoune L, Tamert

M, Mahfoud F, Aïssani D (2015) Load balancing

mechanism for data-centric routing in wireless sensor

networks. J. Comput. Electrical Eng. Vol. 41, pp.

395–406.

https://doi.org/10.1016/j.compeleceng.2014.03.005

[14] Shen X-J et al (2014) Achieving dynamic load

balancing through mobile agents in small world P2P

networks, Comput. Netw., vol. 75, pp. 134-148, Dec.

https://doi.org/10.1016/j.comnet.2014.05.003

[15] Ali M, Bagchi S (2019) Design and analysis of

distributed load management: Mobile agent. based

probabilistic model and fuzzy integrated model. Appl

Intell, Vol. 49, pp. 3464-3489.

https://doi.org/10.1007/s10489-019-01454-z

[16] Metawei MA, Ghoneim SA, Haggag SM, Nassar SM

(2012) Load balancing in distributed multi-agent

computing systems, Ain Shams Engineering Journal,

Vol. 3, pp. 237-249, May 2012.

https://doi.org/10.1016/j.asej.2012.03.001

[17] Youssfi M, Bouattane O, Bensalah, M (2015)

Efficient Load Balancing Algorithm for Distributed

Systems Using Mobile Agents , Advanced Studies in

Theoretical Physics Vol. 9, no. 5, pp.245 – 253.

DOI:10.12988/ASTP.2015.5110

[18] Younes H, Bouattane O, Youssfi M, Illoussamen E

(2017) New load balancing framework based on

mobile AGENT and ant-colony optimization

technique. Intelligent Systems and Computer Vision

(ISCV), Fez, 2017, pp. 1-6.

DOI: 10.1109/ISACV.2017.8054961

[19] Afriansyah MF, Somantri M, Riyadi MA (2017)

Model of load balancing using reliable algorithm with

multi-agent system. IOP Conference Series: Materials

Science and Engineering, Volume 190, conference 1.

doi: 10.1088/1757-899X/190/1/012033

[20] Nehra N, Patel RB, Bhat VK (2008) Load Balancing

in Heterogeneous P2P Systems using Mobile Agents.

International Journal of Electrical and Computer

Engineering Vol:2, No:8, pp. 2740-2745.

[21] Li H (2011) Load Balancing Algorithm for

Heterogeneous P2P Systems Based on Mobile Agent.

in IJCA Proceedings on International Conference on

Electronics, Information and Communication

Engineering (ICEICE) (Foundation of Computer

Science, New York, 2011), pp. 1446–1449.

DOI: 10.1109/ICEICE.2011.5777758

https://doi.org/10.1007/s00607-016-0508-7
https://dx.doi.org/10.3923/jas.2015.46.57
https://link.springer.com/book/10.1007/978-3-642-35208-9
https://link.springer.com/book/10.1007/978-3-642-35208-9
https://www.springer.com/series/13304
https://link.springer.com/book/10.1007%2F978-3-319-93687-1
https://doi.org/10.31449/inf.v43i3.2944
doi:%20https://doi.org/10.1007/978-3-030-33495-6_13
https://www.sciencedirect.com/science/article/pii/S1877750317313893#!
https://www.sciencedirect.com/science/article/pii/S1877750317313893#!
https://www.sciencedirect.com/science/article/pii/S1877750317313893#!
https://www.sciencedirect.com/science/journal/18777503
https://www.sciencedirect.com/science/journal/18777503/26/supp/C
https://doi.org/10.1016/j.jocs.2018.04.002
https://doi.org/10.1016/j.ejor.2017.10.050
https://doi.org/10.1007/s10723-019-09474-2
https://doi.org/10.1007/s10489-019-01454-z
http://www.m-hikari.com/astp/astp2015/astp5-8-2015/5110.html
https://doi.org/10.1109/ISACV.2017.8054961
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/190
https://iopscience.iop.org/article/10.1088/1757-899X/190/1/012033
https://doi.org/10.1109/ICEICE.2011.5777758

