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Scope and topics 

Advances	in	Production	Engineering	&	Management	 (APEM	journal)	 is	an	 interdisciplinary	refer‐
eed	 international	academic	 journal	published	quarterly	by	the	Production	Engineering	Institute	
at	the	University	of	Maribor.	The	main	goal	of	the	APEM	journal	is	to	present	original,	high	quality,	
theoretical	and	application‐oriented	research	developments	in	all	areas	of	production	engineer‐
ing	and	production	management	to	a	broad	audience	of	academics	and	practitioners.	In	order	to	
bridge	 the	 gap	between	 theory	 and	 practice,	 applications	 based	 on	 advanced	 theory	 and	 case	
studies	are	particularly	welcome.	For	theoretical	papers,	their	originality	and	research	contribu‐
tions	are	the	main	factors	in	the	evaluation	process.	General	approaches,	formalisms,	algorithms	
or	techniques	should	be	illustrated	with	significant	applications	that	demonstrate	their	applica‐
bility	 to	 real‐world	 problems.	 Although	 the	APEM	 journal	 main	 goal	 is	 to	 publish	 original	 re‐
search	papers,	review	articles	and	professional	papers	are	occasionally	published.	
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A B S T R A C T	   A R T I C L E   I N F O	

In	the	present	work,	surface	roughness	prediction model	in cylindrical	grind‐
ing	 of	 LM25/SiC/4p	 metal	 matrix	 composites	 (MMC)	 was	 developed	 using	
artificial	neural	network	(ANN)	methodology.	The	independent	input	machin‐
ing	parameters	 considered	 in	 the	modeling	were	wheel	 velocity,	 feed,	work	
piece	velocity	and	depth	of	cut.	The	neural	network	architecture	4‐12‐1	with	
logsig	 transfer	 function	was	 found	 optimum	with	 94.20	%	model	 accuracy.	
The	analysis	of	variance	 (ANOVA)	was	carried	 to	study	 influence	of	 the	ma‐
chining	parameters	on	surface	roughness.	The	study	revealed	higher	F‐ratio	
for	wheel	velocity	and	it	 found	to	be	the	most	 influencing	parameter	 in	pre‐
diction	of	surface	roughness.	The	percentage	of	contribution	for	wheel	veloci‐
ty	was	32.47	%,	feed	was	26.50	%	and	work	piece	velocity	was	25.08	%.	The	
depth	of	cut	was	found	to	have	least	effect	on	surface	roughness	with	13.22	%	
contribution.	The	independent	and	combined	effect	of	process	parameters	on	
predicted	 value	 of	 surface	 roughness	 was	 studied	 using	 two‐dimensional	
graphs	and	surface	plots.	The	study	showed	that	surface	roughness	increases	
as	 feed	 increases	while	 it	 decreases	with	 increase	 in	wheel	 velocity.	 It	was	
also	observed	 that	minimum	surface	 finish	 could	be	obtained	at	high	wheel	
and	work	piece	velocities,	and	low	feed	and	depth	of	cut.	

©	2014	PEI,	University	of	Maribor.	All	rights	reserved.	
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1. Introduction 

Metal	matrix	composites	(MMC)	having	aluminium	(Al)	in	the	matrix	phase	and	silicon	carbide	
particles	(SiCp)	in	reinforcement	phase,	i.e.	Al‐SiCp	type	MMC,	have	gained	popularity	in	the	re‐
cent	past.	 In	 this	 competitive	age,	manufacturing	 industries	 strive	 to	produce	 superior	quality	
products	at	reasonable	price.	This	is	possible	by	achieving	higher	productivity	while	performing	
machining	 at	 optimum	 combinations	 of	 process	 variables.	 The	 low	weight	 and	 high	 strength	
MMC	are	 found	suitable	 for	variety	of	components	demanding	high	performance,	especially	 in	
the	automotive,	aerospace,	military,	and	medical	applications	[1].	The	MMC	provide	advantages	
of	higher	specific	strength	and	modulus	over	monolithic	metals	(steels	and	aluminium).	Though	
the	MMC	can	be	produced	to	net‐near	shape,	subsequent	machining	is	found	essential	to	bring	
them	to	the	desired	shape	and	size	with	proper	surface	integrity	[2].	This	is	achieved	by	either	of	
the	machining	processes	viz.	turning,	milling	or	grinding.	However,	due	to	the	hard	and	abrasive	
reinforcement	used,	MMC	exhibit	poor	machinability	resulting	in	accelerated	tool	wear	and	in‐
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creased	manufacturing	cost.	Thus,	higher	machining	cost	has	remained	a	major	concern	which	
has	impeded	significant	use	of	MMC	components	[3,	4].	
	 Surface	roughness	(Ra)	is	one	of	the	main	attributes	of	a	machined	component	that	character‐
izes	 surface	 topography.	 It	 is	 evidently	 influenced	 by	 cutting	 parameters,	 work‐tool	material,	
tool	geometry	and	statistical	variation	during	machining.	Surface	roughness	predominantly	de‐
scribes	the	quality	of	finish	and	plays	a	crucial	role	in	various	engineering	applications.	Reason‐
able	surface	finish	is	always	desirable	to	improve	tribological	aspects	and	aesthetic	appearance	
where	as	excessive	surface	 finish	 involves	higher	machining	cost.	Surface	 finish	of	a	machined	
component	is	defined	as	the	degree	of	smoothness	of	surface	as	a	result	of	roughness,	waviness	
and	 flaws	 generated	due	 to	machining.	Among	 various	methods	 available,	 center	 line	 average	
(CLA)	method	is	most	commonly	used	for	the	measurement	of	surface	roughness.	In	this	meth‐
od,	surface	roughness	is	measured	as	the	average	deviation	from	the	nominal	surface	and	math‐
ematically	expressed	as	in	Eq.	1.	
	

ܴ௔ ൌ
1
ܮ
න|ܻሺݔሻ|

௅

0

(1) ݔ݀

	
where,	Ra	is	arithmetic	average	deviation	from	the	mean	line,	L	is	sampling	length,	and	Y	is	ordi‐
nate	of	the	roughness	profile.	

Modeling	 of	 surface	 roughness	 prediction	 has	 been	 attempted	 using	 multiple	 regression	
analysis,	 response	 surface	methodology	 (RSM),	 fuzzy	 logic	 (FL),	 and	 artificial	 neural	 network	
(ANN).	The	study	of	influence	of	cutting	parameters	on	surface	roughness	in	MMC	machining	has	
been	the	focused	area	in	academia.	The	soft	computing	techniques	viz.	ANN	and	FL	found	effec‐
tive	to	model	machining	processes	which	are	complex	in	nature.	

Among	the	gamut	of	soft	computing	techniques,	ANN	and	FL	are	the	two	important	methods	
effectively	applied	for	modelling	and	optimization	of	machining	processes.	Number	of	research‐
ers	 has	 used	 these	 tools	 to	 develop	 predictive	models	 in	 various	machining	 processes.	 In	 the	
area	of	machining,	ANN	modelling	 techniques	have	been	commonly	used	 for	 the	prediction	of	
surface	 roughness,	 cutting	 forces,	 tool	wear,	 tool	 life	 and	 dimensional	 deviation	 [5].	 Recently,	
gravitational	search	algorithm	(GSA)	was	applied	for	modelling	of	a	turning	process	with	multi‐
ple	responses	(main	cutting	force,	surface	roughness	and	tool	life)	by	Hrelja	et	al.	[6].	The	coeffi‐
cients	of	the	polynomial	model	for	each	of	the	responses	were	optimized	iteratively	using	PSO	
algorithm.	The	optimized	model	for	cutting	force	was	reported	to	be	most	accurate	with	1.75	%	
average	error	(maximum	error:	6.3	%)	followed	by	prediction	model	for	surface	roughness	(av‐
erage	error:	5.85	%,	maximum	error:	43	%)	and	tool	life	(average	error:	24.5	%,	maximum	er‐
ror:	60	%).	The	higher	values	of	error	were	attributed	to	fewer	datasets	used	in	the	knowledge	
base	during	 the	 learning	phase.	The	ANN	and	FL	 techniques	were	used	 to	develop	knowledge	
based	system	for	prediction	of	surface	roughness	in	turning	process	[7].	The	knowledge	based	
system	consisted	of	a	ANN	module	which	is	used	to	generate	large	data	set	to	form	if‐then	rules	
of	 the	 fuzzy	model.	A	methodology	 that	 requires	 small	 size	data	 set	 for	ANN	modeling	 is	pre‐
sented	by	Kohli	and	Dixit	[8].	Risbood	et	al.	[9]	developed	a	multilayer	perceptron	(MLP)	model	
for	prediction	of	multiple	responses	(surface	roughness	and	dimensional	deviation)	in	wet	turn‐
ing	of	steel	with	HSS	tool	with	four	input	parameters.	The	error	in	surface	roughness	prediction	
was	reported	nearly	20	%.	

Routara	et	al.	[10]	applied	RMS	to	develop	the	second	order	mathematical	models	for	surface	
roughness	prediction.	The	models	were	further	optimized	by	genetic	algorithm	(GA)	to	find	the	
optimum	cutting	parameters.		

Sonar	et	al.	 [11]	used	radial	basis	function	neural	network	(RBFN)	for	prediction	of	surface	
roughness	in	turning	process	with	same	accuracy	in	shorter	computational	time.	Contrarily,	the	
surface	roughness	prediction	using	neural	network	(NN)	model	was	found	less	accurate	than	FL	
and	regression	models	in	hard	turning	of	AISI	4140	steel	[12].	The	RBFN	found	more	accurate	
than	multi	variable	regression	analysis	in	the	prediction	of	thrust	force	and	surface	roughness	in	
drilling	 of	 carbon	 fiber	 reinforced	 polymer	 (CFRP)	 composite	materials	 [13].	 The	 NN	 and	 FL	
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models	reported	to	predict	multiple	responses,	 i.e.	material	removal	rate,	 tool	wear	and	radial	
over	cut	with	agreeable	accuracy	(prediction	error	4.94‐16.22	%)	in	electrical	discharge	machin‐
ing	of	AISI	D2	steel	[14].	Optimization	of	machining	parameters	using	ANN	was	found	effective	
in	comparison	with	analysis	of	variance	(ANOVA)	by	Muthukrishan	and	Davim	[15]	in	turning	of	
Al‐SiCp	MMC.	The	influence	of	machining	parameters	on	surface	roughness	in	drilling	[16]	and	in	
end	milling	[17]	of	Al‐SiCp	MMC	has	been	studied	using	RSM.	The	surface	roughness	is	predomi‐
nantly	influenced	by	feed	rate	and	cutting	speed.	The	depth	of	cut	reported	to	have	least	effect.		
	 Thiagarajan	et	al.	[18]	have	carried	out	experimental	investigation	of	surface	integrity	during	
cylindrical	grinding	of	LM25/SiCp	MMC	and	reported	that	wheel	velocity,	 job	velocity	and	feed	
are	the	main	influencing	factors.	The	NN	prediction	models	based	on	two	different	training	algo‐
rithms	viz.,	scaled	conjugate	gradient	(SCG)	and	Levenberg‐Marquardt	(LM)	compared	with	mul‐
tiple	regression	models	 in	turning	of	AISI	1040	steel	[19].	Both	the	NN	models	found	better	 in	
prediction	than	regression	model.	A	similar	work	was	carried	out	by	Pare	et	al.	[20]	for	cutting	
force	prediction	in	turning	of	titanium	alloy.	The	ANN	model	prediction	found	superior	to	RSM.	
Edwin	Raja	Dhas	 and	Somasundaram	 [21]	 found	ANN	 technique	 and	 fuzzy	 logic	 to	 accurately	
predict	weld	residual	stress.	Devarasiddappa	et	al.	[22]	developed	ANN	model	for	predicting	the	
surface	roughness	in	end	milling	of	Al‐SiCp	MMC	using	small	set	of	experimental	data	sets.	The	
predictive	performance	of	the	model	was	found	highly	encouraging	with	average	error	of	0.31	%	
as	against	0.53	%	for	the	RSM	published	result.	
	 Number	of	researchers	has	carried	out	the	experimental	study	and	modeling	of	different	ma‐
chining	processes	by	employing	both	conventional	and	soft	computing	based	methodology.	Re‐
cently,	ANN	is	used	as	popular	and	promising	technique	for	prediction	surface	roughness	in	ma‐
chining	process.	Though,	a	large	number	of	research	publications	are	available	on	MMC	machin‐
ing,	 few	publications	are	available	 in	MMC	grinding.	 In	 this	paper,	development	of	ANN	based	
model	for	prediction	of	surface	roughness	during	cylindrical	grinding	of	Al‐SiCp	MMC	has	been	
attempted.	 The	 various	machining	 parameters	 and	 their	 influences	 on	 job	 surface	 roughness	
were	studied.	The	development	of	ANN	predictive	model	and	analysis	of	process	parameters	is	
detailed	out	in	subsequent	sections.	

2. Development of surface roughness prediction model 

In	order	to	improve	machining	process,	surface	roughness	prediction	model	is	developed.	There	
are	four	common	techniques	for	the	development	of	a	prediction	model:	1)	multiple	regressions,	
2)	physics	based	modeling,	3)	ANN,	and	4)	FL	based	models.	ANN	is	one	of	the	most	widely	used	
artificial	intelligent	techniques	and	has	been	successfully	employed	by	researchers.	It	has	ability	
to	learn	the	mapping	between	a	set	of	input	and	output	values. 

2.1 Artificial neural network modeling  

The	ANN	is	a	data	processing	system	consisting	of	a	large	number	of	simple	and	highly	intercon‐
nected	 processing	 elements	 resembling	 biological	 neural	 system.	 It	 can	 be	 effectively	 used	 to	
determine	the	input‐output	relationship	of	a	complex	process	and	is	considered	as	a	tool	in	non‐
linear	statistical	data	modeling.	A	multilayer	NN	that	works	on	back	propagation	learning	algo‐
rithm	was	used	 in	 the	present	work.	The	ANN	model	was	 trained	 initially	using	experimental	
data	so	as	to	predict	response	variable(s)	for	unknown	input	datasets	within	reasonable	accuracy.		
	 In	the	present	work,	ANN	model	was	developed	for	predicting	surface	roughness	in	cylindri‐
cal	 grinding	 of	Al‐SiCp	MMC	 (i.e.,	 LM25/SiC/4p)	 using	 vitrified‐bonded	white	 aluminium	oxide	
grinding	 wheel.	 The	 independent	 input	 machining	 parameters	 considered	 were	 (a)	 cutting	
speed	of	 the	grinding	wheel,	Vs	 (m/min),	 (b)	 cutting	 speed	of	 the	work	piece,	Vw	 (m/min),	 (c)	
feed,	f	(m/min),	and	(d)	depth	of	cut,	d	(µm).	For	training	the	neural	network,	real	life	datasets	
obtained	through	machining	experimentation	from	experimental	result	of	Thiagarajan	et	al.	[19]	
were	 used.	 The	 four	 process	 parameters	 at	 three	 different	 levels	were	 considered	 for	 experi‐
mentation.	The	level	of	the	parameters	considered	is	given	in	Table	1.	
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Table	1		Levels	of	parameters	used	for	experimentation	
Parameters	 Level	1 Level	2 Level	3
Vs	(m/min)	 1414 2026 2639	
Vw	(m/min)	 6.11 12.72 26.72	
f	(m/min)	 0.06 0.09 0.17	
d	(µm)	 10 20 30	

2.2 Network architecture and training  

A	typical	multilayer	ANN	model	consists	of	 input,	hidden	and	output	layers.	The	ANN	architec‐
ture	 consisting	 of	 an	 input	 layer	with	 four	neurons	 each	 representing	one	 input	 variable,	 one	
hidden	layer	(12	neurons)	and	an	output	layer	with	one	neuron	having	purelin	processing	func‐
tion	was	employed	in	the	present	work.	The	model	was	trained	using	20	experimental	datasets	
given	 in	Table	2	 including	corner	datasets	of	 each	variable.	The	 five	datasets	given	 in	Table	3	
were	used	for	testing	the	model	during	training.	The	source	code	was	written	in	MATLAB	ver‐
sion	7.8.	
	

Table	2		Experimental	datasets	used	for	ANN	model	training	

Sl.	No	
Vs	 Vw f d Ra	

(m/min)	 (m/min) (m/min) (µm)	 (µm)
1	 1414	 6.11 0.06 10 0.40
2	 1414	 6.11 0.06 30 0.58
3	 1414	 6.11 0.17 10 0.67
4	 1414	 12.72 0.06 10 0.34
5	 1414	 12.72 0.09 30 0.72
6	 1414	 12.72 0.17 20 0.78
7	 1414	 12.72 0.17 30 0.86
8	 1414	 26.72 0.06 10 0.25
9	 2026	 6.11 0.09 10 0.46
10	 2026	 6.11 0.17 30 0.80
11	 2026	 12.72 0.09 20 0.43
12	 2026	 26.72 0.06 10 0.19
13	 2026	 26.72 0.09 20 0.34
14	 2026	 26.72 0.17 30 0.42
15	 2639	 6.11 0.09 20 0.43
16	 2639	 6.11 0.17 30 0.52
17	 2639	 12.72 0.06 30 0.29
18	 2639	 26.72 0.06 10 0.18
19	 2639	 26.72 0.17 10 0.19
20	 2639	 26.72 0.17 30 0.38

	

	 The	Fig.	1	depicts	the	two	layer	feed	forward	NN	used	in	this	work.	The	input	layer	consists	of	
4	neurons	as	wheel	speed,	workpiece	speed,	feed	and	depth	of	cut	being	the	control	parameters.	
The	output	layer	consists	of	one	neuron	having	purelin	processing	function.	The	NN	training	was	
performed	for	desired	error	goal	of	0.0001	by	varying	hidden	layer	neurons	from	5‐20	for	two	
different	transfer	functions	–	tansig	and	logsig.		
	 The	number	of	neurons	in	the	hidden	layer	plays	a	vital	role	in	deciding	the	optimal	architec‐
ture	of	 the	model.	 If	 less	number	of	neurons	are	taken,	 the	network	may	not	be	able	 learn	the	
input‐output	 relationship	 properly	 and	 the	 error	 in	 prediction	 will	 be	 higher.	 Increasing	 the	
number	of	 neurons	 in	 the	hidden	 layer	 gives	more	 flexibility	 to	 the	network	because	 the	net‐
work	has	more	parameters	it	can	optimize	and	hence	learning	can	be	more	accurate.	
	

Table	3		Testing	datasets	used	for	ANN	model	development	

Sl.	No	 Vs	 Vw F d Ra	
(m/min)	 (m/min) (m/min) (µm)	 (µm)

1	 1414	 6.11 0.09 20 0.69
2	 1414	 6.11 0.17 20 0.80
3	 1414	 12.72 0.06 30 0.48
4	 1414	 26.72 0.09 10 0.33
5	 2639	 26.72 0.06 30 0.23
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Fig.	1		Typical	two	layer	NN	architecture	used	

	
	 However,	if	the	hidden	layer	neurons	are	too	large,	it	might	cause	the	problem	to	be	under‐
characterized	since	the	network	has	to	optimize	more	parameters	than	there	are	data	vectors	to	
constrain	these	parameters.	Thus	the	generalization	capability	of	the	network	and	hence	its	per‐
formance	 is	 compromised	with	 large	number	of	 neurons	 in	 the	hidden	 layer.	The	 selection	of	
suitable	transfer	function	is	also	equally	important.	The	transfer	function	is	used	to	calculate	the	
output	from	the	input	parameters.	In	the	present	work,	the	log	sigmoid	(logsig)	transfer	function	
found	 suitable	 for	 the	hidden	 layer.	The	Eq.	 2	 and	Eq.	 3	 represent	 logsig	 and	purelin	 transfer	
functions,	respectively,	
	

ܽ ൌ ݃݅ݏ݃݋݈ ሺ݊ሻ ൌ
1

1൅ ݁ି௡
 (2)

	

ܽ ൌ ݈݊݅݁ݎݑ݌ ሺ݊ሻ ൌ ݊ (3)

	

where	n	is	net	weighted	input	to	the	neuron.	
The	 neural	 network	 was	 trained	 with	 different	 number	 of	 neurons	 (varying	 from	 five	 to	

twenty)	 and	different	 transfer	 functions	 in	 the	hidden	 layer.	The	maximum	number	of	 epochs	
allowed	in	each	run	is	25000.	The	code	was	run	five	times	at	each	network	topology	with	differ‐
ent	initial	random	weights.	The	network	configurations	giving	average	percentage	error	in	train‐
ing	and	testing	data	set	within	15	%	were	recorded.	A	properly	 trained	NN	gives	nearly	equal	
training	and	testing	error.	A	network	having	smaller	training	error	exhibits	poor	generalization	
capability	and	thus	predicts	poorly	for	new	datasets.	The	detail	of	training	and	testing	error	for	
different	network	topology	is	presented	in	Table	4	and	its	graphical	representation	is	depicted	in	
Fig.	2.	

	

	
Table	4		Network	training	result	for	different	architectures	

Sl.	No.	 NN	architecture	
Average	percentage	error

Effective	error	(%)	
Training Testing

1	 4‐6‐1	(tansig)	 8.66 12.12 3.46	
2	 4‐15‐1	(logsig)	 11.93 8.53 3.40	
3	 4‐17‐1	(tansig)	 11.32 14.59 3.27	
4	 4‐18‐1	(logsig)	 11.79 14.38 2.59	
5	 4‐11‐1	(tansig)	 3.83 5.73 1.90	
6	 4‐12‐1	(logsig)	 10.55 9.35 1.20	
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Fig.	2		Selection	of	optimal	NN	architecture	

	
	 The	NN	was	trained	using	trainbr	(Bayesian	regulation	back	propagation)	 training	 function	
which	uses	Bayesian	regularization.	The	training	datasets	of	the	converged	network	are	given	in	
Table	2.	The	testing	datasets	of	 the	converged	network	are	presented	 in	Table	3.	The	network	
was	trained	with	a	different	data	set	(80	%)	each	time,	which	were	randomly	selected.	The	test‐
ing	 datasets	 (20	%)	were	 also	 selected	 randomly.	 The	network	 converged	 at	 362nd	 iteration.	
The	weights	and	biases	as	well	as	sum	squared	weights	of	converged	network	remains	constant.	
The	sum	squared	error	(SSE)	during	testing	recorded	approximately	0.1311	and	remained	con‐
stant.	The	SSE	during	training	was	found	to	be	0.4269.	The	mean	squared	error	in	training	and	
testing	datasets	of	the	converged	NN	model	was	found	to	be	0.0025	and	0.0031	respectively.	
	 The	optimum	number	of	neurons	and	the	selected	transfer	 function	that	produce	minimum	
effective	 error	 found	 as	 best	 network	 architecture.	 The	 ANN	 architecture	 4‐12‐1	 with	 logsig	
transfer	function	giving	effective	error	of	1.20	%	was	found	optimum	in	this	work.	At	optimum	
network,	weights	and	bias	were	saved	and	used	to	predict	surface	roughness	for	unknown	da‐
tasets.	

2.3 Network prediction performance 

Accuracy	of	the	NN	predictive	model	was	tested	for	10	randomly	selected	experimental	datasets.	
The	model	predicted	Ra	values	were	compared	with	experimental	values	and	percentage	error	
was	calculated.	The	results	are	presented	in	Table	5.	

The	maximum	and	minimum	percentage	error	recorded	as	14.71	%	and	0.0	%,	respectively.	
The	average	percentage	error	(APE)	and	mean	squared	error	(MSE)	was	computed	using	Eq.	4	
and	Eq.	5,	respectively,	

	

ܧܲܣ ൌ
1
݊
෍ቆ

௜ݐ| െ |௜ݕ

௜ݐ
ቇ

௡

௜ୀଵ

ൈ 100 (4)

	

݁ݏ݉ ൌ
1
݊
෍ሺݐ௜ െ ௜ሻଶݕ
௡

௜ୀଵ

 (5)

	
where	ti	is	target	value	for	data	set	i,	yi	is	predicted	value	for	data	set	i,	and	n	is	the	total	number	
of	data	sets.	
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Table	5		Validation	result	of	neural	network	model	

Sl.	No.	
Datasets	used	 Ra (μm) Procentage	

error	
Prediction	
accuracy	Vs	

(m/min)	
Vw	

(m/min)	
f	

(m/min)	
d

(µm)	
Exp.	 ANN	

1	 1414	 6.11	 0.06 20 0.54 0.51 5.56	 94.44
2	 1414	 6.11	 0.09 10 0.52 0.57 9.62	 90.38
3	 1414	 6.11	 0.17 30 0.88 0.89 1.14	 98.86
4	 1414	 26.72	 0.09 30 0.5 0.46 8.00	 92.00
5	 2026	 12.72	 0.06 20 0.34 0.31 8.82	 91.18
6	 2026	 26.72	 0.06 30 0.29 0.29 0.00	 100.00
7	 2026	 26.72	 0.09 30 0.34 0.39 14.71	 85.29
8	 2639	 6.11	 0.06 20 0.34 0.36 5.88	 94.12
9	 2639	 12.72	 0.17 30 0.52 0.51 1.92	 98.08
10	 2026	 6.11	 0.06 20 0.42 0.41 2.38	 97.62

	
	

	

Fig.	3		Validation	result	of	NN	model	

The	average	percentage	error	and	MSE	was	found	to	be	5.80	%	and	0.00091	respectively.	The	
graphical	representation	of	the	NN	prediction	for	validation	data	set	is	depicted	in	Fig.	3.		
	 Model	 accuracy	 (MA)	was	 computed	as	 the	average	of	 individual	 accuracy	on	 confirmation	
data	set	[23].	It	is	expressed	by	Eq.	6.	The	model	accuracy	of	the	developed	model	based	on	its	
predictive	capability	was	found	to	be	94.20	%.	

	

ܣܯ ൌ
1
݊
෍ቆ1 െ

௜ݐ| െ |௜ݕ

௜ݐ
ቇ

௡

௜ୀଵ

ൈ 100 (6)

3. Analysis of process parameters 

The	NN	predicted	surface	roughness	values	were	analysed	to	study	the	effect	of	process	parame‐
ters.	ANOVA	technique	was	used	to	determine	the	significant	control	parameters	affecting	sur‐
face	roughness.	

3.1 Analysis of variance  

ANOVA	is	a	method	of	portioning	variability	into	identifiable	sources	of	variation	and	the	asso‐
ciated	degree	of	freedom	in	the	model.	Four	control	parameters	were	considered	in	the	present	
study.	Each	factor	affects	the	response	to	a	varying	degree.	There	were	3	levels	(low,	medium,	
and	 high)	 on	 four	 control	 parameters	 having	 34	 factorial	 designs	 of	 81	 experimental	 cutting	
conditions	(datasets).	The	surface	roughness	for	these	datasets	was	predicted	from	the	devel‐
oped	NN	model.		
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ANOVA	is	used	to	decompose	the	total	variability	to	quantify	the	effect	machining	parameters	
on	 surface	 roughness.	 The	 percentage	 contribution	 of	 machining	 parameters	 was	 estimated	
based	on	the	sum	of	squares	of	responses.	The	grand	total	sum	of	squares	(SSgrand)	was	evaluated	
using	the	Eq.	7.	

	

ܵ ௚ܵ௥௔௡ௗ ൌ෍ܴ௔௜
ଶ

଼ଵ

௜ୀଵ

 (7)

	

	 The	SSgrand	is	decomposed	into	sum	of	squares	due	to	mean	(SSmean)	and	total	sum	of	squares	
(SStotal)	using	Eq.	8	and	Eq.	9,	respectively,	

	

ܵܵ௠௘௔௡ ൌ 81 ൈ ܴ௔௠ଶ  (8)
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௜ୀଵ

 (9)

	
where	Ram	is	mean	of	responses.	The	sum	of	squares	due	to	a	factor	is	equal	to	its	total	squared	
deviation	from	the	overall	mean.	In	the	present	study,	there	were	27	experiments	for	each	factor	
at	each	level.	The	sum	of	squares	due	to	factor	A	(SSA)	was	computed	using	the	Eq.	10,	

	

ܵ ஺ܵ ൌ 27ሺܴ௔஺ଵ െ ܴ௔௠ሻଶ ൅ 27ሺܴ௔஺ଶ െ ܴ௔௠ሻଶ ൅ 27ሺܴ௔஺ଷ െ ܴ௔௠ሻଶ (10)

	

where,	RaA1,	RaA2,	and	RaA3	are	the	mean	of	Ra	at	the	level	1,	2,	and	3	of	the	factor	A,	respectively.	
The	relative	importance	of	factor	A	influencing	the	surface	roughness	was	computed	as	the	per‐
centage	contribution	(PCA)	using	Eq.	11.	
	

஺ܥܲ ൌ
ܵ ஺ܵ

ܵܵ௧௢௧௔௟
ൈ 100 (11)

	

	 Similarly,	the	total	sum	of	squares	due	to	factor	B	(SSB),	C	(SSC)	and	D	(SSD)	and	their	respec‐
tive	percentage	contribution	PCB,	PCC,	and	PCD	were	computed	as	detailed	above.	Table	6	shows	
the	results	of	ANOVA	for	surface	roughness.	The	degrees	of	freedom	(DF),	sum	of	squares	(SS),	
mean	of	squares	(MS),	F‐ratio	and	PC	associated	with	each	factor	is	also	presented.	This	analysis	
was	carried	out	at	5	%	significance	level,	i.e.	at	95	%	confidence	level.	
	 The	 calculated	 values	 of	 the	F‐ratio	 showed	 high	 influence	 of	 the	wheel	 velocity,	 feed	 and	
work	 piece	 velocity	 on	 surface	 roughness.	 The	 contributions	 of	 all	 the	 control	 parameters	 in‐
cluding	error	are	presented	pictorially	in	the	pie	chart	shown	in	Fig.	4.		
	 The	cutting	speed	of	the	grinding	wheel	has	the	highest	influence	both	in	NN	model	as	well	as	
statistically	 on	 the	 surface	 roughness.	 Feed	 and	 cutting	 speed	 of	work	piece	has	 almost	 equal	
influence	on	the	surface	roughness.	However,	the	value	of	surface	roughness	is	inversely	propor‐
tional	to	work	piece	velocity	but	directly	proportional	to	the	feed.	The	error	associated	with	the	
ANOVA	analysis	found	minimum	as	2.73	%.	

Table	6		Result	of	ANOVA	
Control	factors	 DF	 SS MS F‐ratio	 PC
A:	Wheel	velocity		 2	 71.77 35.88 358.88	 32.47
B:	Job	velocity	 2	 55.44 27.72 277.2	 25.08

C:	Feed	 2	 5858 29.29 292.9	 26.50
D:	Depth	of	cut	 2	 29.20 14.60 146.0	 13.22

E:	Error	 72	 6.03 0.1 2.73
Total	 80	 221.02 100.00
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Fig	4		Contribution	of	control	parameters	

	

3.2 Study on influence of process parameters  

The	 performance	 of	 the	NN	based	 predictive	model	 for	 predicting	 the	 surface	 roughness	was	
found	very	encouraging	with	5.80	%	average	percentage	error	when	compared	with	the	experi‐
mental	results.	Based	on	model	prediction,	 the	 influence	of	 the	process	parameters	on	surface	
roughness	was	studied.	The	effect	of	these	parameters	was	plotted	graphically	and	is	shown	in	
Fig.	5a	and	Fig.	5b.	The	increase	in	wheel	speed	and	workpiece	speed	improves	the	surface	finish	
(i.e.	surface	roughness	value	reduces)	of	the	job.	The	value	of	surface	finish	deteriorates	as	work	
feed	 increases.	The	surface	 finish	 improves	at	 lower	depth	of	cut	as	 the	cutting	 load	 lowers	at	
low	feed	and	low	depth	of	cut.	
	

	
a.	Effect	of	Vs	on	Ra	

	

	
b.	Effect	of	f	on	Ra	

Fig	5		Effect	of	process	parameters	on	surface	roughness	
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a.	Surface	plot	of	Ra	with	f	and	Vs	

	

	
b.	Surface	plot	of	Ra	with	d	and	f	

Fig.	6	Surface	plots	for	combined	effect	of	process	parameters	on	Ra	
	
	 The	Fig.	6a	shows	the	surface	plot	of	surface	roughness	with	 feed	and	wheel	velocity	when	
work	piece	velocity	and	depth	of	cut	are	kept	constant.	The	increase	in	wheel	velocity	reduces	
the	surface	roughness	value.	On	the	other	hand,	in	case	of	 feed,	the	value	of	surface	roughness	
increases	as	feed	increases.	The	plot	shows	the	effect	these	parameters	for	the	workpiece	veloci‐
ty	of	12.72	m/min	and	depth	of	machining	of	20	μm.	The	same	effect	was	seen	on	work	piece	
velocity	 and	 feed	 verses	 surface	 roughness.	 The	minimum	 surface	 roughness	was	 obtained	 at	
low	depth	of	cut.	The	Fig.	6b	depicts	the	surface	plot	of	surface	roughness	with	feed	and	depth	of	
cut	when	wheel	 velocity	 and	work	 piece	 velocity	 are	 held	 constant.	 The	 plot	 reveals	 that	 the	
minimum	surface	roughness	value	can	be	obtained	at	 low	feed	and	 low	depth	of	cut.	With	the	
combination	of	all	parameters	improved	surface	finish	was	obtained	at	high	wheel	velocity	and	
work	 piece	 velocity.	 However,	 in	 case	 of	 feed	 and	 depth	 cut,	 the	 improved	 surface	 finish	 ob‐
tained	at	low	feed	and	depth	of	cut	due	to	reduced	cutting	load.	

4. Conclusion  

In	the	present	work,	the	ANN	model	for	prediction	of	surface	roughness	in	cylindrical	grinding	of	
Al‐SiCp	MMC	was	developed.	For	NN	modeling,	 the	datasets	were	obtained	 from	experimental	
result	presented	 in	 [18].	The	surface	roughness	value	 for	different	combination	of	process	pa‐
rameters	was	obtained	and	analyzed.	The	wheel	velocity,	work	piece	velocity,	feed	and	depth	of	
cut	were	 considered	as	process	parameters.	The	ANN	architecture	4‐12‐1	with	 logsig	 transfer	
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function giving effective error of 1.20 % was found optimum in the present work. The predictive 
model was validated with confirmation datasets. Based on NN prediction model and analysis of 
the parameters, the following conclusions were drawn.  

• The proposed neural network modeling was found easy and promising technique to de-
velop predictive model for mapping input and output parameters. The developed model 
predicted surface roughness accurately for unseen data with 94.20 % model accuracy. 

• The result of ANOVA showed highest F-ratio for wheel velocity and is the most significant 
influencing parameter for prediction of surface roughness. The percentage of contribution 
for wheel velocity was 32.47 %, feed was 26.50 %, and work piece velocity was 25.08 %. 
The depth of cut was found have least effect on surface roughness with 13.22 % contribu-
tion. 

• The investigations on this study indicate that the process parameters wheel velocity, work 
piece velocity, feed and depth of cut are the primary influencing factors which affect the 
surface roughness of ground MMC component. 

• The NN prediction revealed that better surface finish could be obtained at high wheel ve-
locity and high work piece velocity. This is due to development of low grinding force at 
high speed of operation. The surface finish deteriorates at high feed and depth of cut as it 
increases the grinding load. The minimum surface finish was obtained with the combina-
tion of high wheel and workpiece velocity and low feed and depth of cut. The neural net-
work predicted 0.16 μm being the minimum surface roughness at Vs = 2639 m/min, Vw = 
26.72 m/min, f = 0.06 m/min and d = 10 μm. 

 The proposed methodology could be effectively employed for prediction of responses in vari-
ety of machining processes on different material combinations. The detailed ANOVA presented 
in this paper could be extended to study the influence of input variables on the response(s) in 
any of the machining processes effectively. The modeling technique discussed can be integrated 
with optimization algorithms.  

Acknowledgement 
The authors acknowledge the financial support received from NERIST, Arunachal Pradesh in carrying out the research 
and preparation of the manuscript. Also the authors are thankful to the anonymous reviewers for their useful com-
ments and suggestions to improve the quality of the manuscript. 

References 
[1] Chinmaya, R., Dandekar, D.R., Shin, Y.C. (2011). Molecular dynamics based cohesive zone law for describing Al-

SiC interface mechanics, Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 4, 355-363, doi: 
10.1016/j.compositesa.2010.12.005. 

[2] Hung, N.P., Zhong, C.H. (1996). Cumulative tool wear in machining metal matrix composites Part I: Modelling, 
Journal of Materials Processing Technology, Vol. 58, No. 1, 109-113, doi: 10.1016/0924-0136(95)02114-0.  

[3] Lin, J.T., Bhattacharyya, D., Kecman, V. (2003). Multiple regression and neural networks analyses in composites 
machining, Composites Science and Technology, Vol. 63, No. 3-4, 539-548, doi: 10.1016/S0266-3538(02)00232-4. 

[4] Cramer, D.R., Taggart, D.F. (2002). Design and manufacture of an affordable advanced-composite automotive 
body structure, In: Proceedings of 19th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & 
Exhibition, Busan, Korea, 1-12. 

[5] Chandrasekaran, M., Muralidhar, M., Murali Krishna, C., Dixit., U.S. (2010). Application of soft computing tech-
niques in machining performance prediction and optimization: a literature review, The International Journal of 
Advanced Manufacturing Technology, Vol. 46, No. 5-8, 445-464, doi: 10.1007/s00170-009-2104-x. 

[6] Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Jurkovic, Z., Balic, J., Brezocnik, M. (2014). Particle swarm optimiza-
tion approach for modelling a turning process, Advances in Production Engineering & Management, Vol. 9, No. 1, 
21-30, doi: 10.14743/apem2014.1.173. 

[7] Abburi, N.R., Dixit, U.S. (2006). A knowledge-based system for the prediction of surface roughness in turning 
process, Robotics and Computer-Integrated Manufacturing, Vol. 22, No. 4, 363-372, doi: 10.1016/j.rcim. 2005. 
08.002. 

[8] Kohli, A., Dixit, U.S. (2005). A neural-network-based methodology for the surface roughness in a turning process, 
The International Journal of Advanced Manufacturing Technology, Vol. 25, No. 1-2, 118-129, doi: 10.1007/ 
s00170-00 3-1810-z. 

Advances in Production Engineering & Management 9(2) 2014 69 
 

http://dx.doi.org/10.1016/j.compositesa.2010.12.005
http://dx.doi.org/10.1016/j.compositesa.2010.12.005
http://dx.doi.org/10.1016/0924-0136(95)02114-0
http://dx.doi.org/10.1016/S0266-3538(02)00232-4
http://dx.doi.org/10.1007/s00170-009-2104-x
http://dx.doi.org/10.14743/apem2014.1.173
http://dx.doi.org/10.1016/j.rcim.2005.08.002
http://dx.doi.org/10.1016/j.rcim.2005.08.002
http://dx.doi.org/10.1007/s00170-003-1810-z
http://dx.doi.org/10.1007/s00170-003-1810-z


Chandrasekaran, Devarasiddappa 
 

[9] Risbood, K.A., Dixit, U.S., Sahasrabudhe, A.D. (2003). Prediction of surface roughness and dimensional deviation 
by measuring cutting forces and vibrations in turning process, Journal of Materials Processing Technology, Vol. 
132, No. 1-3, 203-214, doi: 10.1016/s0924-0136(02)00920-2. 

[10] Routara, B.C, Sahoo, A.K., Parida, A.K., Padhi, P.C. (2012). Response surface methodology and genetic algorithm 
used to optimize the cutting condition for surface roughness parameters in CNC turning, Procedia Engineering, 
Vol. 38, 1893-1904, doi: 10.1016/j.proeng.2012.06.232.  

[11] Sonar, D.K., Dixit, U.S., Ojha, D.K. (2006). The application of radial basis function for predicting the surface 
roughness in a turning process, The International Journal of Advanced Manufacturing Technology, Vol. 27, No. 7-8, 
661-666, doi: 10.1007/s00170-004-2258-5. 

[12] Akkuş, H., Asilturk, İ. (2011). Predicting surface roughness of AISI 4140 steel in hard turning process through 
artificial neural network, fuzzy logic and regression models, Scientific Research and Essays, Vol. 6, No. 13, 2729-
2736. 

[13] Tsao, C.C., Hocheng, H. (2008). Evaluation of thrust force and surface roughness in drilling composite material 
using Taguchi analysis and neural network, Journal of Material Processing Technology, Vol. 203, No. 1-3, 342-348, 
doi: 10.1016/j.jmatprotec.2006.04.126. 

[14] Pradhan, M.K., Biswas, C.K. (2010). Neuro-fuzzy and neural network-based prediction of various responses in 
electrical discharge machining of AISI D2 steel, The International Journal of Advanced Manufacturing Technology, 
Vol. 50, No. 5-8, 591-610, doi: 10.1007/s00170-010-2531-8. 

[15] Muthukrishan, N., Paulo Davim, J. (2009). Optimization of machining parameters of Al-SiC MMC with ANOVA and 
ANN analysis, Journal of Materials Processing Technology, Vol. 209, No. 1, 225-232, doi: 0.1016/j.jmatprotec. 
2008. 01. 041. 

[16] Basavarajappa, S., Chandramohan, G., Prabu, M., Mukund, K., Ashwin, M. (2007). Drilling of hybrid metal matrix 
composites—Workpiece surface integrity, International Journal of Machine Tools Manufacturing, Vol. 47, No. 1, 
92-96, doi: 10.1016/j.ijmachtools.2006.02.008. 

[17] Arokiadass, R., Palaniradja, K., Alagumoorthi, N. (2011). Predictive modeling of surface roughness in end milling 
of Al/SiCp metal matrix composite, Archives of Applied Science Research, Vol. 3, No. 2, 228-236. 

[18] Thiagarajan, C., Sivaramakrishan, R., Somasundaram, S. (2011). Cylindrical grinding of SiC particles reinforced 
aluminium metal matrix composites, ARPN Journal of Engineering and Applied Sciences, Vol. 6, No. 1, 14-20. 

[19] Korkut, I., Acır, A., Boy, M. (2011). Application of regression and artificial neural network analysis in modeling of 
tool-chip interface temperature in machining, Expert Systems with Applications, Vol. 38, No. 9, 11651-11656, doi: 
10.1016/j.eswa.2011.03.044. 

[20] Pare, V., Agnihotri, G., A., Krishna, C.M. (2011). Optimization of cutting conditions in end milling process with the 
approach of particle swarm optimization, International Journal of Mechanical and Industrial Engineering, Vol. 1, 
No. 2, 21-25. 

[21] Edwin Raja Dhas, J., Somasundaram, K. (2013). Weld residual stress prediction using artificial neural network 
and fuzzy logic modeling, Indian Journal of Engineering & Materials Sciences, Vol. 18, 351-360. 

[22] Devarasiddappa, D., Chandrasekaran, M., Mandal, A. (2012). Artificial neural network modelling for predicting 
surface roughness in end milling of Al-SiCp metal matrix composites and its evaluation, Journal of Applied Scienc-
es, Vol. 12, No. 10, 955-962, doi: 10.3923/jas.2012.955.962. 

[23] Jaya, A.S.M., Hashim, S.Z.M., Rahman, Md.N.A. (2010). Fuzzy logic-based for predicting roughness performance of 
TiAIN coating, In: Proceedings of 10th International Conference on Intelligent Systems Design and Applications, Ma-
laysia, 91-96. 

70 Advances in Production Engineering & Management 9(2) 2014 
 

http://dx.doi.org/10.1016/s0924-0136(02)00920-2
http://dx.doi.org/10.1016/j.proeng.2012.06.232
http://dx.doi.org/10.1007/s00170-004-2258-5
http://dx.doi.org/10.1016/j.jmatprotec.2006.04.126
http://dx.doi.org/10.1007/s00170-010-2531-8
http://dx.doi.org/10.1016/j.jmatprotec.2008.01.041
http://dx.doi.org/10.1016/j.jmatprotec.2008.01.041
http://dx.doi.org/10.1016/j.ijmachtools.2006.02.008
http://dx.doi.org/10.1016/j.eswa.2011.03.044
http://dx.doi.org/10.1016/j.eswa.2011.03.044
http://dx.doi.org/10.3923/jas.2012.955.962


 

 

 

   

71 
 

	

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	9	|	Number	2	|	June	2014	|	pp	71–82	 Journal	home:	apem‐journal.org	

http://dx.doi.org/10.14743/apem2014.2.177 Original	scientific	paper	

 
 

Determining the optimal area‐dependent blank holder forces 
in deep drawing using the response surface method 

Volk, M.a,*, Nardin, B.a, Dolsak, B.b 
aGorenje Orodjarna, d.o.o., Velenje, Slovenia 
bUniversity of Maribor, Faculty of Mechanical Engineering, Maribor, Slovenia 
 
 

A B S T R A C T	   A R T I C L E   I N F O	

Metal	 forming	processes	are	often	currently	highly	automated	mass	produc‐
tion	processes	 for	manufacturing	a	wide	variety	of	metal	parts	 from	various	
industries.	 Maximizing	 product	 quality	 and	 consequently	 minimizing	 waste	
and	 production	 costs	 are	major	 goals	 for	 those	 companies	 exploiting	metal	
forming	processes.	On	 the	other	hand,	sheet	metal	parts	become	more	com‐
plex	especially	because	of	complex	product	designs	and	the	usages	of	higher	
strength	steels	that	have	less	formability.	Therefore,	metal	forming	processes	
need	 to	 be	 optimized.	 This	 research	 study	 demonstrates	 an	 optimization	
system	 for	optimizing	 the	 sheet	metal	 forming	process	using	 the	Finite	Ele‐
ment	Method	(FEM)	combined	with	the	Response	Surface	Method	(RSM).	The	
proposed	optimization	system	was	tested	on	an	industrial	example	from	the	
household	appliances	industry.	In	this	study,	 it	 is	described	as	to	how	to	de‐
termine	optimal	area‐dependent	blank‐holder	forces	in	deep	drawing	process	
in	order	to	obtain	the	best	possible	quality	of	the	drawing	part.	The	optimiza‐
tion	system	consists	of	three	main	steps:	modeling,	screening,	and	optimiza‐
tion.	 The	 results	 showed	 that	 with	 better	 preferences	 regarding	 the	 blank‐
holder	forces,	better	results	can	be	achieved.	Forming	and	spring‐back	criteria	
were	taken	into	account.	The	number	of	required	numerical	simulations	using
the	RSM	 combined	with	 the	Design	 of	 Experiment	was	 not	 critical	 and	was
much	smaller	than	using	other	conventional	optimization	methods.	Therefore,
reasonably	accurate	results	can	be	achieved	in	a	relativity	short	time,	which	is	
one	of	the	main	advantages	of	this	method.	
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1. Introduction 

Despite	 all	 of	 the	 new	 technologies	 and	 improvements	 in	 sheet	metal	 forming	 processes,	 the	
forming	tools	 for	deep	drawing	have	not	significantly	changed.	The	production	tools	and	deep	
drawing	processes	are	very	rigid,	therefore	it	is	very	hard	to	improve	the	quality	of	the	products	
without	extra	expenses.	On	 the	other	hand,	deep	drawn	products	become	more	complex,	 thus	
creating	additional	problems	 for	 the	 toolmakers.	Basically,	 the	only	 (and	 the	most	 influenced)	
parameter	which	 can	 be	 optimized	without	 encroaching	 into	 the	 tool,	 and	which	 can	 be	 con‐
trolled,	is	a	blank	holder	force	(BHF)	[1].	
	 Many	researchers	used	BHF	for	improving	the	quality	of	the	drawing	parts	[1‐16]	and	most	of	
them	described	BHF	with	the	technological	window	(Fig.	1).	An	excessive	value	of	BHF	causes	
fracture,	whilst	an	insufficient	value	of	BHF	will	result	in	wrinkles	[4,	5].	
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Fig.	1		Technological	window	[4]	
	
Beside	wrinkles	and	fractures,	one	of	the	most	important	problems	is	spring‐back	[10,	12]	and	
the	BHF	has	a	large	influence	on	it	[9,	13].	Spring‐back	in	sheet‐metal	forming	can	be	described	
as	the	change	in	the	sheet‐metal's	shape	compared	with	the	shapes	of	the	tools	after	the	forming	
process	[8].	We	differentiate	the	following	types	of	spring‐back	when	considering	the	geometry	
of	a	product:	angular	change,	sidewall	curl,	and	twist	(Fig.	2).	
	
	

	
Fig.	2		Types	of	spring‐back	[10]	

	
	 Because	BHF	 seems	 to	be	one	of	 the	most	 important	parameters	 in	 sheet	metal	 forming,	 a	
new	holding	system	with	segment	inserts	was	developed.	This	holding	system	is	described	in	[9,	
13]	and	belongs	 to	holding	systems	which	can	provide	variable	BHFs	to	 the	sheet	metal	 [5‐8].	
While	using	 this	holding	system,	 the	stamping	process	 is	more	controlled,	 the	processing	win‐
dow	is	wider,	and	the	process	is	more	stable	[9].	However,	finding	the	optimal	configuration	of	
blank	holder	forces	is	critical	and	requires	several	experimental	tests	when	using	conventional	
optimization	methods	[5,	9,	15,	16].		
	 This	research	study	presents	a	method	for	finding	the	optimal	configuration	of	blank	holder	
forces.	 The	mathematical	 approximation	 algorithm	 called	 the	 response	 surface	method	 (RSM)	
and	results	of	finite	element	numerical	simulations	were	used.	Design	Expert	8.0	and	Pam‐stamp	
2011	software	packages	were	also	used	in	this	research	study.	The	presented	method	was	tested	
on	the	deep	drawing	process	but	could	be	used	for	other	applications	as	well.	

2. Used methods 

In	 this	 research	 study,	 the	 response	 surface	method	 (RSM)	with	 the	 combination	of	 finite	ele‐
ment	method	results	was	used.	The	response	surface	methodology	is	a	collection	of	mathemati‐
cal	 and	 statistical	 techniques	 useful	 for	 the	modeling	 and	 analysis	 of	 problems	 in	which	 a	 re‐
sponse	 of	 interest	 is	 influenced	 by	 several	 variables,	 and	 the	 objective	 is	 to	 optimize	 this	 re‐
sponse	[17].	
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Fig.	3		Mathematical	optimization	[17]	

	
	 In	general,	the	optimization	method	could	be	described	as	a	mathematical	problem	in	which	
we	 are	 seeking	 to	minimize	 or	 to	maximize	 a	 certain	 function	 by	 systematically	 choosing	 the	
values	of	certain	variables	which	are	allowed	to	be	adopted	[18].	Figure	3	presents	a	function	f	
that	needs	to	be	minimized	by	adopting	the	variable	x.	The	results	of	mathematical	optimization	
is	the	optimum	xu*	where	function	f	reaches	minimum	value.	However,	in	many	practical	prob‐
lems,	certain	restrictions	g	or	unwanted	areas	(the	shaded	area	in	the	Fig.	3)	are	present.	If	we	
also	take	into	consideration	those	restrictions,	then	the	optimum	of	the	mathematical	optimiza‐
tion	is	not	at	xu*	anymore,	but	at	xc*.	
	 The	success	of	the	prediction	and	optimization	critically	depends	on	the	ability	to	develop	a	
suitable	approximation	for	the	actual	response	 f	of	the	system.	With	the	RSM	the	response	 f	 is	
predicted	by	polynomial	models.		
	 A	first	order	polynomial	model	is	given	by	Eq.	1	[16]	
	

ݕ ൌ ଴ߚ ൅෍ߚ௜ݔ௜ ൅ ߝ

௞

௜ୀଵ

	 (1)

	
	 A	second	order	polynomial	model	also	called	as	quadratic	model	is	given	by	Eq.	2	[17]	
	

ݕ ൌ ଴ߚ ൅෍ߚ௜ݔ௜ ൅෍ߚ௜௜ݔ௜
ଶ ൅෍෍ߚ௜௝ݔ௜ݔ௝ ൅ ߳

௜ழ௝

௞

௜ୀଵ

௞

௜ୀଵ

	 (2)

	
where	݇	is	the	number	of	design	variables,	ݔ௜	is	the	set	of	design	variables,	ߚ	are	polynomial	co‐
efficients	and	∈	is	minor	error.	
	 For	many	RSM	problems,	either	first	or	second	order	models	are	used.	Higher	ordered	mod‐
els	are	not	desired	due	the	high	amount	of	experimental	data	needed	 for	 the	prediction	of	 the	
response	f.	
	 Nowadays,	RSM	is	used	in	many	applications	for	solving	complex	problems	which	normally	
requires	substantial	testing	data.	In	the	past,	it	was	also	used	in	some	experimental	cases	of	op‐
timizing	sheet	metal	forming	processes	[19‐21].	

3. Description of the proposed system 

The	proposed	optimization	system	consists	of	3	main	steps:	modeling,	screening,	and	optimiza‐
tion	(Fig.	4).		
	 The	optimization	system	was	developed	for	deep	drawing	optimization	problems	but	could	
also	be	used	for	other	problems.	Some	steps	can	differ	or	can	be	skipped	in	these	cases.	In	the	
following	 sections,	 the	optimization	 system	 is	 going	 to	be	 shown,	 especially	 for	deep	drawing	
processes.	
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Fig.	4		Proposed	optimization	system	

	

3.1 Modeling  

Modeling	 is	 the	 first	 step	 of	 this	 optimization	 procedure.	 In	 the	modeling	 step	 responses,	 the	
input	variables	and	restrictions	have	to	be	defined.	This	step	depends	mostly	on	the	optimiza‐
tion	problem	which	we	are	going	to	solve.	

Defining responses 

In	practice,	it	is	common	that	problems	have	more	than	one	response.	In	this	research	study,	we	
defined	responses	based	on	faults	which	can	happen	during	the	deep	drawing	processes.	Many	
of	those	faults	can	be	described	as	forming	faults	(FF)	and	faults	due	to	spring‐back	(FSB),	Table	
1.	Among	FF	we	can	include	cracks,	wrinkles,	insufficient	stretching	and	excessive	thinning,	and	
into	FSB	we	can	count	deviations	of	shape,	angular	change	and	twist	(Fig.	1	and	Fig.	2).		
	 Most	of	the	FF	can	be	well	defined	based	on	the	forming	limit	diagram	(Fig.	5).	The	finite	ele‐
ment	(FE)	nodes	which	lay	in	area	V	and	VI	mean	that	the	product	will	wrinkle;	those	which	lay	
in	area	III	will	crack	and	those	in	IV	are	safe.	Areas	I	and	II	are	also	not	desirable	because	of	biax‐
ial	 tension	deformation	which	can	 lead	 to	excessive	 thinning.	Therefore,	 a	 thinning	parameter	
can	be	used	for	avoiding	areas	I,	II,	and	III.	
	

Table	1		Responses	
	 Fault	 Goal	 Fault Goal Fault Goal Fault	 Goal

FF	
Wrinkling	
trend	(%)	

0	%	 Crack	(%)	 0	%	
Insufficient	

stretching	(%)	
0	%	 Thinning	(mm)	 Minimum	

FSB	
Angular	

change	α	(°)	 0°	
Angular	

change	β	(°)	
0°	 Twist	(°)	 0°	

Maximum		
deviation	(mm)	

Minimum	

	
	

Modeling
1. Defining responses
2. Defining input variables
3. Defining restrictions

Screening
1. Defining type of design for experiments   linear responses
2. Experiments   numerical simulations
3. Analyzing of the results (ANOVA)
4. Screening input variables

–
–

Optimization

1. Defining type of design for experiments   higher order responses
2. Experiments   numerical simulations
3. Analyzing of the results (ANOVA)
4. Optimization
5. Prediction

–
–

Design of experiment

Reduced model

Optimal solution
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Fig.	5		Forming	limit	diagram	
	
	 Among	the	FSB	we	can	count	angular	change,	twist,	and	deviations	from	the	reference	shape	
of	the	drawing	part.	For	this	particular	part,	the	angular	change	was	measured	in	3	sections	(Fig.	
6).	The	sections	are	equally	divided;	 section	1	 is	on	 the	symmetry	plane,	 section	2	 is	150	mm	
from	the	symmetry	plane	and	section	3	is	300	mm	from	the	symmetry	plane.	The	twist	was	cal‐
culated	as	the	angle	between	plane	normal	at	section	1	and	section	3.	On	the	other	hand,	devia‐
tions	are	 represented	as	 the	deviation	between	nodes	before	and	after	 spring‐back.	Maximum	
deviations	were	taken	into	consideration.	
	

	
	

Fig.	6		Spring‐back	–	angular	change	α	and	β	
	
	

Defining input variables 

In	 this	 research	study,	 the	main	goal	 is	 to	optimize	 the	area‐dependent	BHFs	 to	maximize	 the	
part	quality	of	the	deep	drawing	part	(Fig.	7).	Taking	into	account	the	symmetry,	the	BHF	is	di‐
vided	into	6	different	areas	BHF1,	BHF2,	BHF3,	BHF8,	BHF9,	and	BHF10	which	were	selected	as	
input	variables.	In	total,	this	optimization	problem	therefore	consists	of	6	different	input	varia‐
bles.	
	

	

Fig.	7		Input	variables	–	blank	holder	forces	
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Defining restrictions 

The	range	of	BHFs	was	determined	based	on	press	capability	and	previous	experience.	Minimal	
BHF	 for	each	segment	was	20	kN	and	maximal	BHF	was	60	kN.	All	 ranges	and	 levels	of	 input	
variables	in	this	study	are	presented	in	Table	2.	
	

Table	2		Input	variables	and	their	ranges	and	levels	
Factor	 Variable	 Unit Min Mean	 Max

A	 BHF1	 kN 20 40 60	
B	 BHF2	 kN 20 40 60	
C	 BHF3	 kN 20 40 60	
D	 BHF8	 kN 20 40 60	
E	 BHF9	 kN 20 40 60	
F	 BHF10	 kN 20 40 60	

 

3.2 Screening 

In	this	research	study,	the	main	goal	was	to	optimize	the	BHFs.	Including	the	symmetry	plane,	
we	had	to	optimize	6	different	BHFs.	The	main	purpose	of	the	screening	stage	is	to	minimize	the	
number	of	input	variables.	However,	there	is	no	need	for	that	in	this	case	because	the	system	is	
already	reduced	to	only	6	input	variables;	the	number	of	experimental	data	is	not	significantly	
large	 and	 time	 for	 numerical	 simulations	 is	 not	 critical.	 Therefore,	 the	 screening	 stage	 was	
skipped.	As	this	stage	was	not	necessary,	it	is	also	marked	differently	on	Fig.	4.	This	stage	seems	
to	be	increasingly	useful	when	the	complexity	of	the	system	grows.	The	reasonable	limit	for	the	
RSM	is	around	8	input	variables.	If	the	system	consists	of	more	than	8	input	variables,	then	it	is	
advisable	to	use	a	screening	stage.		
	 The	 screening	 stage	 procedure	 is	 very	 similar	 to	 the	 optimization	 step	with	 the	 difference	
that	the	screening	stage	results	are	analysed	on	simple	linear	responses.	However,	for	the	opti‐
mization	higher	order	polynomials	are	usually	needed.	With	this	simplification,	the	experimental	
plans	 have	 less	 data	 and	 therefore	more	 input	 variables	 can	 be	 analysed	 in	 a	 relatively	 short	
time,	even	 if	 the	results	are	not	always	accurate.	However,	 they	are	still	adequate	enough	that	
the	trend	and	the	influence	of	the	input	variable	can	be	noticed.		

3.3 Optimization 

Optimization	was	 done	 based	 on	 RSM.	 Firstly,	 the	 experimental	 plan	was	made.	 It	was	made	
based	on	the	central	composite	design	(CCD)	which	gives	a	good	approximation	for	the	second	
order	polynomial.	The	experimental	plan	made	with	CCD	consists	of	ܰ ൌ 2௞ ൅ 2݇ ൅ ௖ܰ	experi‐
ments,	where	k	 is	the	number	of	input	variables	and	 ஼ܰ	 is	number	of	central	points.	In	case	in	
which	the	results	of	numerical	simulations	are	used,	 the	central	points	don’t	have	to	be	multi‐
plied,	therefore	the	total	number	of	central	point	is	1.	The	reason	for	this	is	that	numerical	simu‐
lations	 with	 the	 same	 input	 parameters	 will	 always	 give	 the	 same	 result.	 The	 whole	 experi‐
mental	plan	can	be	found	in	[22]	and	count	to	a	total	of	77	experiments	for	6	input	variables.	
	 The	next	step	is	to	analyse	the	results	based	on	Analysis	of	Variance	(ANOVA)	[23].	This	step	
is	covered	in	section	5.1.	
	 The	last	step	of	the	optimization	is	to	find	the	optimum	input	variables	 in	order	to	increase	
the	quality	of	the	deep	drawing	part.	This	can	be	done	using	criteria	function	D	(Eq.	3)	
	

ܦ ൌ ሺܦଵ
௥ଵ ൈ ଶܦ

௥ଶ ൈ …ൈ ௡௥௜ሻܦ
ଵ
∑௥௜ 	 (3)

	
where	ܦ௡	is	a	criterion	function	for	each	response,	and	ݎ௜	is	the	importance	of	the	response.	With	
this	optimization	method	we	get	a	list	of	solutions,	and	the	solution	with	the	highest	number	is	
the	best	solution.	The	value	of	D	can	be	in	the	range	from	0	to	1.	Results	with	ܦ ൌ 1	are	the	solu‐
tions	which	satisfy	our	goals.	
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4. Method verification on industry case 

The	presented	method	 for	optimization	has	been	verified	on	an	 industry	case	 from	the	house‐
hold	appliances	industry.	The	main	goal	in	this	case	was	to	optimize	the	quality	of	the	front	pan‐
el	product	(Fig.	8).	For	this	purpose,	a	testing	die	was	made	with	blank	holder	with	10	segments	
inserts	(Fig.	7	and	Fig.	9).	The	part	is	symmetrical	in	one	plane	and	therefore	only	half	of	the	part	
was	taken	for	the	investigation.	
	

	
Fig.	8		Front	panel	

	

	

Fig.	9		Testing	die	

Material properties 

A	commercially‐available	DC04	sheet	metal	with	a	nominal	thickness	of	0.7	mm	was	used	for	the	
sheet	material.	
	 The	material	characteristics	of	the	sheet	metal	have	been	conducted	by	uniaxial	tensile	tests.	
Tensile	 tests	 have	been	 carried	out	 on	 a	 Zwick/Roell	 1474	machine	based	on	 SIST	 standards.	
The	specimens	have	been	cut	at	angles	0°,	45°,	and	90°	with	respect	to	the	rolling	direction	and	
for	each	direction	five	tensile	tests	have	been	performed.	For	the	numerical	calculations,	Hill48	
with	orthotropic	anisotropy	was	used.	The	material	model’s	 coefficients	were	 identified	based	
on	stress‐strain	curves	(Table	3).	
	

Table	3		Material	properties	of	sheet	metal	
Blank	material DC04	

Nominal	thickness	 0.7	mm	
Yield	strength 188.9	N/mm2	

Tensile	strength	 298.4	N/mm2	
Strength	coefficient	 558.8	N/mm2	
Hardening	exponent	 0.22	

Coefficient	of	anisotropy	 	
0° 1.67	
45° 1.45	
90° 1.818	
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	 The	strain‐stress	hardening	curve	has	been	defined	by	tensile	test	and	extrapolated	with	Hol‐
lomon's	hardening	law	given	by	Eq.	4	(Fig.	10)	
	

௙ߪ ൌ ܥ ൈ ௡	 (4)

where	σf	is	yield	stress,	C	is	strength	coefficient,		is	true	strain,	and	n	is	hardening	exponent.		
	

	 		
	

Fig.	10		Strain‐stress	curve	
	

	 The	 forming	 limit	curve	 (FLC)	 in	Fig.	11	was	calculated	by	 the	predictive	method	[24].	The	
main	 advantage	 of	 this	method	 is	 that	 it	 accurately	 predicts	 FLC	with	 the	 help	 of	mechanical	
properties	 A80	 which	 are	 obtained	 with	 the	 uniaxial	 tensile	 test,	 the	 r‐values	 and	 the	 sheet	
thickness.	No	other	data	is	needed.	

	

	
Fig.	11		Forming	limit	diagram	

5. Results and discussion 

The	results	were	evaluated	 to	suit	 the	requirements	of	 the	selected	design	of	experiments.	All	
the	numerical	results	were	analysed	through	RSM.	For	this	purpose,	the	quadratic	models	were	
mainly	 used	 to	 explain	 the	 mathematical	 relationship	 between	 input	 variables	 and	 objective	
functions.	Quadratic	polynomial	equation	for	one	objective	function	“thinning”	was:	
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݄ܶ݅݊݊݅݊݃ ൌ ହିܧ ൈ ሺ18459 ൅ ܣ16.8 െ ܤ68.5 െ ܥ450 െ ܦ27.9 ൅ ܧ135.5 ൅ ܨ316.8 െ ܦܣ2.48 ൅ ܨܣ2.48 െ
ܥܤ2.96																								 ൅ ܦܥ1.94 ൅ ܧܥ2.99 െ ܨܥ2.9 ൅ ܧܦ1.5 െ ܨܦ3.92 ൅ ଶܤ1.9 ൅ ଶܥ6.26 ൅ ଶܦ4.04 െ 		ଶሻܧ1.89

(5)

5.1 ANOVA 

The	 results	 of	 ANOVA	presented	 in	 this	 section	 are	 presented	 for	 only	 one	 objective	 function	
“thinning”.	The	results	for	this	objective	function	are	shown	in	Table	4	and	indicate	that	the	pre‐
dictability	of	the	model	for	thinning	is	in	99%	confidential	interval.	The	predicted	responses	fit	
well	with	those	of	the	numerically	obtained	results.	The	coefficients	of	determination	(R2)	values	
close	 to	 1	 indicate	 that	polynomial	 approximation	 (Eq.	 5)	 is	 highly	 reliable.	F‐value	 is	 greater	
than	that	of	the	tabular	F0.01	[15]	and	p‐value	is	 low	which	suggest	that	the	model	influence	on	
the	objective	function	is	statistically	significant.	
	

Table	4		ANOVA	result	for	the	“thinning”	objective	function	in	reduced	quadratic	model	

Sum	of	
squares	

Number	of	
factors	

Standard	
deviation	 F‐value	 p‐value	

Model	 0.032921	 18	 0.001829	 21.6705	 <	0.0001	
A‐BHF1	 8.37E‐06	 1	 8.37E‐06	 0.099115	 0.7540	
B‐BHF2	 0.000754	 1	 0.000754	 8.939431	 0.0041	
C‐BHF3	 0.006624	 1	 0.006624	 78.48896	 <	0.0001	
D‐BHF8	 0.008627	 1	 0.008627	 102.221	 <	0.0001	
E‐BHF9	 0.000914	 1	 0.000914	 10.83443	 0.0017	
F‐BHF10	 0.005354	 1	 0.005354	 63.44184	 <	0.0001	

AD	 0.000327	 1	 0.000327	 3.875955	 0.0538	
AF	 0.000159	 1	 0.000159	 1.879241	 0.1757	
BC	 0.000964	 1	 0.000964	 11.4271	 0.0013	
CD	 0.00034	 1	 0.00034	 4.029295	 0.0494	
CE	 0.000917	 1	 0.000917	 10.86932	 0.0017	
CF	 0.000436	 1	 0.000436	 5.171731	 0.0267	
DE	 0.000229	 1	 0.000229	 2.709674	 0.1052	
DF	 0.000785	 1	 0.000785	 9.305206	 0.0034	
B^2	 0.000254	 1	 0.000254	 3.004378	 0.0884	
C^2	 0.002791	 1	 0.002791	 33.07372	 <	0.0001	
D^2	 0.001108	 1	 0.001108	 13.12282	 0.0006	
E^2	 0.000225	 1	 0.000225	 2.66841	 0.1078	

R2=0.870555665;	Adj.	R2=0.830383285;	pred.	R2=0.776865668	

 

5.2 Optimization 

Optimization	is	made	based	on	the	results	which	are	predicted	by	the	polynomial.	The	optimiza‐
tion	 system	 predicts	 a	 set	 of	 solutions	with	 different	 BHFs	 and	 belonging	 values	 of	 objective	
functions.	All	results	can	be	presented	graphically	with	the	response	surface	(Fig.	12).	This	Fig‐
ure	presents	results	based	on	BHF4,	BH6	and	desirability	which	 is	a	parameter	describing	the	
achievement	of	our	goals.	It	is	calculated	by	Eq.	2.	The	solution	on	the	top	of	the	surface	presents	
the	best	solution	with	a	highest	value	of	D.	All	input	parameters	for	these	solutions	are	shown	in	
Table	5.	
	

Table	5		Best	solution	chosen	based	on	desirability		
Variable	 BHF1	 BHF2	 BHF3 BHF8 BHF9 BHF10
Value	(kN)	 43	 54	 35 48 60 30	
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Fig.	12		Response	surface	of	all	solutions	

	

5.3 Comparing with FEM results 

At	the	end	of	this	research	study,	we	checked	if	the	optimal	solution	is	really	better	than	the	pre‐
vious	one.	We	 checked	 this	by	 comparing	numerical	 results	made	with	BHFs	before	and	after	
this	optimization.	This	comparison	is	described	in	Fig.	13	and	in	Table	6.	The	results	showed	a	
significant	 improvement	 of	 all	 quality	 parameters.	 This	 has	 proven	 the	 usefulness	 of	 the	 pre‐
sented	method,	and	its	great	potential	for	the	optimization	of	sheet	metal	forming	processes.	
	

Fig.	13		Comparison	of	the	results	before	and	after	optimisation	
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Table 6  Comparing numerical results before and after optimisation 
Objective 
function 

Wrinkling  
trend  Crack Insufficient  

stretching  Thinning  Maximum  
deviation  

Before optimization 2.27 % 0.02 % 24.08 % 21.5 % 2.94 
After optimization 0.42 % 0 % 0 % 20.9 % 1.33 

Improvements +82 % - +100 % +3 % +55 % 
 
 Fig 13. graphically shows improvement in the part quality. The upper two figures show that 
more area which represents safe area (FE nodes which lay in area IV on Fig 5.) is present on the 
right part. The lower two figures show deviations between FE nodes before and after spring-
back. The right optimized part has fewer deviations.  
 Even better improvements can be seen in Table 6. The improvements shown are significant. 
For the quality parameter “crack” the improvements in % is not calculated because the defect 
after optimization is 0 % and even before optimization the % was very low. 
 Reported results show that by using this optimization system, reasonably good results and 
improvements can be achieved in a relatively short time. This optimization can be done during 
the development of the manufacturing method for the part, which could be a substantial benefit 
later in the production. The accuracy of the results strongly depends on the accuracy of the nu-
merical models. However, numerical simulations are becoming increasingly reliable; therefore, 
this optimization system will become even more valuable. 

6. Conclusion 
This research study presents the newly developed optimization system for optimising deep 
drawing parameters in order to get better part quality. The optimization system consists of 
three steps: modeling, screening and optimization. The methodology incorporates RSM and the 
results of FEM; the optimum area-dependent BHFs are determined with FEM and RSM by opti-
mizing the objective function related with variables that are very difficult to determine during 
try-outs, as well as very time consuming. 
 At the end of this research study, the optimization system was tested on the industrial exam-
ple from the household appliances industry. It took into account the most important input varia-
bles and unwanted output properties (as objective functions) of the part. Results showed that 
with optimization of the process and area-dependent BHF, that it is possible to achieve the bet-
ter part quality. The optimization system was developed for deep drawing optimization prob-
lems, but could also be used for other problems in various fields. 
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A B S T R A C T	   A R T I C L E   I N F O	

In	 this	 research,	 Imprecise	 Data	 Envelopment	 Analysis	 (IDEA)	 model	 was
utilized	to	 improve	 fuzzy	multiple	responses	 in	robust	design.	The	combina‐
tion	of	process	factor	levels	at	each	experiment	was	considered	as	a	Decision	
Making	 Unit	 (DMU)	 with	 responses	 treated	 as	 inputs	 and	 outputs	 for	 all	
DMUs.	 The	 Fuzzy	 C‐Means	 Clustering	 (FCMC)	 technique	 is	 used	 to	 fit	 the	
response	fuzziness	by	clustering	the	average	values,	relative	to	each	response,
into	 a	 suitable	number	 of	 clusters	with	 triangular	 /	 trapezoidal	membership	
functions.	IDEA	models	were	used	to	estimate	the	fuzzy	triangular	/	trapezoi‐
dal	efficiency	values	for	each	DMU.	Finally,	the	preference	degree‐based	rank‐
ing	 approach	was	 used	 to	 discriminate	 between	 the	 fuzzy	 efficiency	 values	
and	 identifying	 the	 best	 combination	 of	 factors	 levels	 that	 would	 improve	
fuzzy	multiple	responses.	Two	case	studies	are	utilized	 to	 illustrate	 the	pro‐
posed	approach,	including	optimizing	wire	electrical	discharge	machining	and	
sputtering	 process	 parameters.	 The	 results	 showed	 that	 the	 proposed	 ap‐
proach	 provides	 better	 anticipated	 improvements	 than	 the	 fuzzy	 multiple	
regression	 based	 approach.	 This	 approach	would	 provide	 great	 assistant	 to	
process	 engineers	 in	 improving	 process	 performance	 with	 fuzzy	 multiple	
responses	over	a	wide	range	of	business	applications.	
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1. Introduction 

To	 survive	 in	 today’s	 competitive	markets,	manufacturers	produce	 their	 products	 considering	
multiple	quality	responses	of	main	customer	interest.	Therefore,	engineers	aim	to	determine	the	
best	 combination	 of	 process	 settings	 that	 reduces	 the	 variability	 of	 the	 quality	 responses	 and	
simultaneously	shift	the	mean	to	the	desired	target	[1].	For	this	reason,	several	approaches	are	
proposed	to	optimize	product/process	performance	with	multiple	responses	[2‐8].		
	 In	reality,	dealing	with	response	fuzziness	becomes	a	challenging	task	for	process	engineers.	
The	 fuzzy	 responses	 are	 captured	 as	 an	 imprecise	 value	 rather	 than	 crisp	 one.	 The	 imprecise	
value	could	be	interval,	triangular,	trapezoidal,	or	even	linguistic.	Conceptually,	response	fuzzi‐
ness	can	be	justified	by	four	reasons	[9,	10].	The	first	reason	is	the	vague	and	complex	process	
behaviour	which	may	be	explained	by	the	nondiscretionary	factors.	The	second	is	the	inability	to	
fix	the	process	settings	at	precise	values	or	in	words	the	fuzziness	inherent	in	the	settings	physi‐
cal	values.	The	third	is	the	qualitative	nature	of	the	response	itself.	Finally,	the	fuzziness	occurs	
due	 to	customer	preference.	Several	approaches	are	proposed	 to	deal	with	response	 fuzziness	
problem	in	robust	design	[9‐16].	
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	 The	Taguchi	method	utilizes	an	orthogonal	array	to	provide	experimental	 format.	Let	DMUj	
denotes	the	combination	of	factor	settings	at	each	experiment	in	Taguchi’s	orthogonal	array.	For	
DMUj,	 the	 fuzzy	inputs	and	outputs	are	denoted	by	ݕതෘ௜௝	and		ݕതෘ௥௝,	respectively.	 In	fuzzy	goal	pro‐
gramming	(FGP),	the	fuzzy	efficiency	value,	ܧෘ௝,	of	each	DMUj	is	calculated	as	follows.	For	a	fuzzy	
triangular	inputs,	ݕതෘ௜௝,	and	outputs,	ݕതෘ௥௝,	values,	the	relative	efficiency	value	of	each	DMUj	 is	also	
considered	as	a	fuzzy	triangular	value	with	three	parameters,	ܧ௝

௅	, ௝ܧ
ெ, and	ܧ௝

௎,	which	represent	
the	lower,	nominal,	and	the	upper	efficiency	values,	respectively.	That	is,		ܧ෩௝ ൌ ሺܧ௝

௅, ௝ܧ
ெ, ௝ܧ

௎)	and	
is	formulated	as	shown	in	Eq.	1:	
	

෨௝ܧ ൌ 	

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
∑ ௥ݑ
௦
௥ୀ1 ௥௝ݕ

௅

∑ ௠݅ݒ
௜ୀ1 ௜௝ݕ

௎

∑ ௥ݑ
௦
௥ୀ1 ௥௝ݕ

ெ

∑ ௜ݒ
௠
௜ୀ1 ௜௝ݕ

ெ

∑ ௥ݑ
௦
௥ୀଵ ௥௝ݕ

௎

∑ ௜ݒ
௠
௜ୀଵ ௥௝ݕ

௅

					 (1)

	

where	s	and	m	denote	the	number	of	outputs	and	inputs,	respectively.	Let	the	lower	and	upper	
inputs	values	are	denoted	by	ݕ௜௝

௅ 	and	ݕ௜௝
௎,	respectively.	Also,	the	lower	and	upper	outputs	values	

are	expressed	as	ݕ௥௝
௅ 	and	ݕ௥௝

௎ ,	respectively.	For	a	DMU,	ܷܯܦ௞∈௝,	under	consideration,	 the	upper	
desired	efficiency	value,	ܧ௞

௎,	is	calculated	by	using	Model	1.	
	
Model	1	is:	
	

௞ܧ
௎ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௎ 	 (2)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
௅ ൌ 1	 (3)

	

෍ݑ௥ݕ௥௞
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௅

௠

௜ୀଵ

൑ 0 	 (4)

	

෍ݑ௥ݕ௥௝
௅

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௎

௠

௜ୀ1

൑ 0, ∀ ݆ ് ݇	 (5)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (6)
	

where	 ur,	 and	 vi,	 are	 the	 weights	 assigned	 to	 the	 outputs	 and	 inputs,	 and	 ε	 is	 the	 non‐
Archimedean	value.	In	model	1,	the	objective	function	seeks	to	maximize	the	upper	relative	effi‐
ciency	 for	each	DMUk	under	the	most	 favorable	situation.	The	first	constraint	keeps	the	 inputs	
weighted	sum	of	the	DMUk	equals	one.	The	second	and	the	third	constraints	represent	the	most	
favorable	condition	for	DMUk,	where	the	highest	score	of	the	upper	efficiency	value	is	attained	by	
settings	the	relative	interval	outputs	at	their	upper	bounds	and	the	interval	inputs	at	their	lower	
bounds.	Meanwhile,	the	outputs	of	all	other	DMUj≠k	reach	their	corresponding	lower	bounds	and	
the	interval	inputs	reach	their	corresponding	upper	bounds.	The	last	constraint	keeps	the	inputs	
and	outputs	weights	larger	than	a	small	positive	value.	Similarly,	the	lower	efficiency	value	ܧ௞

௅,	is	
calculated	by	using	Model	2.	
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Model	2	is:	
	

௞ܧ
௅ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௅ 	 (7)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
௎ ൌ 1	 (8)

	

෍ݑ௥ݕ௥௞
௅

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௎

௠

௜ୀଵ

൑ 0 	 (9)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ∀ ݆ ് ݇	 (10)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅	 (11)
	

	 In	Model	2,	the	objective	function	seeks	to	maximize	the	lower	relative	efficiency	ܧ௞
௅,	for	each	

DMUk	under	the	least	favorable	situation.	The	first	constraint	keeps	the	upper	weighted	sum	of	
the	DMUk	inputs	equals	one.	The	second	and	the	third	constraints	represent	the	least	favorable	
condition	for	DMUk,	where	the	highest	score	of	the	relative	efficiency	value	is	attained	by	setting	
the	relative	interval	outputs	at	their	lower	bounds	and	the	interval	inputs	at	the	upper	bounds,	
while	the	interval	outputs	of	all	other	DMUj≠k	reach	their	relative	upper	bounds	and	the	interval	
inputs	reach	their	corresponding	lower	bounds.	The	last	constraint	keeps	the	inputs	and	outputs	
weights	larger	than	a	small	positive	value.	
	 Further,	 let	 the	middle	 inputs	 and	outputs	 values	 are	denoted	by	ݕ௜௝

ெ	and	ݕ௥௝
ெ	,	 respectively.	

Then,	for	DMUk	the	nominal	efficiency	value,	ܧ௞
ெ,	is	calculated	by	using	Model	3	as	follows:	

	
Model	3	is:	
	

௞ܧ
ெ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
ெ 	 (12)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
ெ ൌ 1	 (13)

	

෍ݑ௥ݕ௥௞
ெ

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
ெ

௠

௜ୀଵ

൑ 0, ݆ ൌ ݇ 	 (14)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ∀ ݆ ് ݇	 (15)

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (16)
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	 The	objective	function	in	Model	3	seeks	the	optimal	setting	of	outputs	and	inputs	weights,	ur	
and	vi,	that	maximize	the	nominal	efficiency	value,	ܧ௞

ெ,	for	each	DMUk.	The	second	and	the	third	
constraints	keep	the	input	weighted	sum	for	each	DMUk	constant	and	at	the	same	time	the	rela‐
tive	efficiency	value	less	than	one.	The	fourth	constraint	represents	the	nominal	desired	condi‐
tion	for	each	DMUk	such	that	the	nominal	efficiency	value	is	achieved	when	its	relative	outputs	
and	inputs	values	reach	their	middle	level,	while	the	outputs	reach	their	corresponding	higher	
levels	and	the	inputs	reach	their	corresponding	lower	levels	for	DMUj≠k.	The	last	constraint	keeps	
the	values	of	the	inputs	and	outputs	weights	more	than	a	small	non	Archimedean	variable.		
	 On	the	other	hand,	for	a	fuzzy	trapezoidal	inputs,	ݕതෘ௜௝	and	outputs	ݕതෘ௥௝,	values	the	relative	effi‐
ciency	 value	 of	 each	DMUj	 have	 four	 parameters,	 ௝ܧ

௅	, ௝ܧ
௅ெ, ௝ܧ

௎ெ, and	ܧ௝
௎	 which	 represent	 the	

lower,	lower	mid,	upper	mid,	and	the	upper	efficiency	values,	respectively.	The	fuzzy	trapezoidal	
efficiency	value	of	each	DMUj	can	be	written	as	ܧ෨௝ ൌ ሺܧ௝

௅, ௝ܧ
௅ெ, ௝ܧ

௎ெ, ௝ܧ
௎ሻ	which	is	shown	in	Eq.	17.	

	

෩௝ܧ	 ൌ 	

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
∑ ௥ݑ
௦
௥ୀଵ ௥௝ݕ

௅

∑ ௜௠ݒ
௜ୀଵ ௜௝ݕ

௎

∑ ௥ݑ
௦
௥ୀଵ ௥௝ݕ

௅ெ

∑ ௜ݒ
௠
௜ୀଵ ௜௝ݕ

௅ெ

∑ ௥ݑ
௦
௥ୀଵ ௥௝ݕ

௎ெ

∑ ௜ݒ
௠
௜ୀଵ ௜௝ݕ

௎ெ

∑ ௥ݑ
௦
௥ୀଵ ௥௝ݕ

௎

∑ ௥ݒ
௠
௜ୀଵ ௥௝ݕ

௅

			

	

(17)

	

	 Then,	Model	1	and	Model	2	are	used	to	calculate	the	upper	and	lower	relative	efficiencies	for	
each	DMUj,	respectively.	The	lower	mid	efficiency	value,	ܧ௝

௅ெ,	is	calculated	as	follows:	
	
Model	4	is:	
	

௞ܧ
௅ெ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௅ெ	 (18)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
௅ெ ൌ 1	 (19)

	

෍ݑ௥ݕ௥௞
௅ெ

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௅ெ

௠

௜ୀଵ

൑ 0, 	 (20)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ݆ ് ݇	 (21)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (22)

	 In	Model	4,	the	lower	mid	values	of	the	inputs	are	set	as	ݕത௜௝
௅ெ,	while	the	lower	mid	values	of	

the	outputs	are	set	as	ݕത௥௝
௅ெ.	The	objective	function	seeks	the	optimal	setting	of	outputs	and	inputs	
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weights	ur,	vi	that	maximize	the	relative	efficiency	value,	ܧ௞
௅ெ,	for	each	DMUk.	The	second	and	the	

third	constraints	keep	the	lower	mid	efficiency	value	for	each	DMUk	less	than	one	and	the	input	
weighted	sum	equal	to	one.	The	fourth	constraint	represents	the	lower	mid	desired	condition	for	
each	DMUk	 such	 that	 the	 lower	mid	 efficiency	 value	 is	 achieved	when	 its	 relative	outputs	 and	
inputs	values	are	at	 their	 lower	mid‐level,	while	the	outputs	and	inputs	 for	DMUj≠k	are	at	 their	
corresponding	higher	and	lower	relative	levels	respectively.	The	last	constraint	keeps	the	values	
of	the	inputs	and	outputs	weights	larger	than	a	small	non	Archimedean	variable	[17].	
	 By	the	same	way,	the	upper	mid	efficiency	value,	ܧ௞

௎ெ,	is	calculated	by	using	Model	5	as	fol‐
lows.	
	
Model	5	is:	
	

௞ܧ
௎ெ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௎ெ	 (23)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
௎ெ ൌ 1	 (24)

	

෍ݑ௥ݕ௥௞
௎ெ

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௎ெ

௠

௜ୀଵ

൑ 0, 	 (25)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ݆ ് ݇	 (26)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (27)

	
	 Utilizing	the	Models	1	to	5,	the	optimal	factor	settings	can	then	be	determined.	Therefore,	this	
research	proposes	an	extension	 to	ongoing	research	by	proposing	a	procedure	 for	 solving	 the	
fuzzy	multiple	responses	problem	in	robust	design	using	DEA	approaches.	The	remaining	of	this	
research	including	introduction	is	organized	as	follows.	Section	two	presents	the	proposed	ap‐
proach.	Section	three	illustrates	the	proposed	approach	using	two	cases.	Section	four	compares	
the	results.	Finally,	section	four	highlights	the	research	conclusions.	

2. The proposed approach 

In	robust	design	method,	several	combinations	of	process	factor	levels	are	conducted	to	deter‐
mine	 the	 best	 combination	 that	 improves	multiple	 responses	 of	main	 concern.	 The	 proposed	
approach	for	solving	the	multiple	fuzzy	quality	characteristics	is	outlined	in	the	following	steps:		

Step	1:	Let	yqj	denotes	the	value	of	the	q‐th	response	at	the	j	experiment.	Then,	the	combination	
of	factor	levels	at	each	experiment	is	treated	as	a	DMUj.	Let	ݕത௤௝		be	the	response	average	of	the‐
smaller‐the‐better	(STB),	the‐larger‐the‐better	(LTB)	response	or	the	quality	loss	value	for	the‐
nominal‐the‐best	 (NTB)	 response	 to	 a	 number	 of	 triangular	 or	 trapezoidal	membership	 func‐
tions.		

Step	2:	The	FCMC	technique	is	used	to	cluster	the	average	values	of		ݕഥ௤௝	into	a	number	of	classes,	
d,	each	 is	 treated	either	as	a	 triangular	or	 trapezoidal	membership	 function.	The	parameter	of	
each	membership	function	is	determined	such	that,	the	class	center,	cqd,	for	the	triangular	mem‐
bership	function	is	considered	as	the	most	likely	value,	ݕത௤ௗ

ெ .	The	upper,	ݕത௤ௗ
௎ ,	and	lower,	ݕത௤ௗ

௅ ,	pa‐
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rameters	are	determined	by	the	centers	of	the	neighbor	classes	or	the	DMU	with	least	consider‐
able	membership	value.	For	the	trapezoidal	membership	function,	the	lower	mid,	ݕത௤ௗ

௅ெ,	and	the	
upper	mid,	ݕത௤ௗ

௎ெ,	of	each	class	are	considered	as	the	DMUs	of	the	largest	membership	value	rela‐
tive	to	the	same	class.	The	upper	and	lower	parameters	ݕത௤ௗ

௎ 	and	ݕത௤ௗ
௅ ,	are	determined	by	the	cen‐

ters	of	the	neighbor	classes	or	the	DMU	with	least	considerable	membership	value.	

Step	3:	The	fuzzy	efficiency	values	are	computed	by	using	models	1	to	5.	The	upper	mid	values	
inputs	are	set	as	ݕ௜௝

௎ெ	and	the	upper	mid	outputs	are	set	ݕ௥௝
௎ெ	in	Model	5,	which	has	similar	to	

that	of	Model	4	except	the	fourth	constraint	represents	the	upper	mid	desired	condition	for	each	
DMUk	where	the	upper	mid	efficiency	value	is	achieved	when	its	relative	outputs	and	inputs	val‐
ues	are	at	their	upper	mid‐level,	while	the	outputs	and	inputs	reach	their	corresponding	higher	
and	lower	levels	respectively	for	DMUj≠k.	

Step	4:	The	preference	degree	based	ranking	approach	[18]	is	used	for	clear‐cut	discrimination	
among	the	DMUs.	In	this	regard,	the	complete	ranking	order	for	n	fuzzy	efficiency	values	can	be	
obtained	as	(1)	the	triangular	efficiency	values	and	(2)	the	trapezoidal	efficiency	values.	

(1)	For	the	triangular	efficiency	values:	

In	the	preference	degree	based	ranking	approach,	let		ܧ෨௞ ൌ ሺܧ௞
௅, ௞ܧ

ெ, ௞ܧ
௎)	and	ܧ෨௝ஷ௞ ൌ ሺܧ௝

௅, ௝ܧ
ெ, ௝ܧ

௎),	
are	two	fuzzy	triangular	efficiency	values.	According	to	fuzzy	arithmetic,	there	are	four	possible	
relationships	to	compare	ܧ෨௞	with	ܧ෨௝ஷ௞	as	shown	in	Eq.	28.	
	

ܲ൫ܧ෨௞ ൐ ෨௝ஷ௞൯ܧ ൌ	
	

ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ 1,												 IF ሺܧ௞

௅ ൒ ௝ஷ௞ܧ
௎ ሻ

0,																																							IF	ሺܧ௞
௎ ൑ ௝ஷ௞ܧ	

௅ ሻ,

	
൫ܧ௞

௎ െ	ܧ௝ஷ௞
௅ ൯

ଶ

൫ܧ௞
௎ െ	ܧ௝ஷ௞

௅ ൅ ௝ஷ௞ܧ
ெ െ ௞ܧ

ெ൯൫ܧ௞
௎ െ ௞ܧ

௅൅ܧ௝ஷ௞
௎ െ ௝ஷ௞ܧ

௅ 	൯
, IF	ሺܧ௞

௎ ൐ ௝ஷ௞ܧ	
௅ ሻ ∩ ሺܧ௞

ெ ൑ ௝ஷ௞ܧ	
ெ ሻ,						

൫Ejஷk
U െ	Ek

L൯
2

൫ܧ௝ஷ௞
௎ െ	ܧ௞

௅ ൅ ௞ܧ
ெ െ ௝ஷ௞ܧ

ெ ൯൫ܧ௞
௎ െ ௞ܧ

௅൅ܧ௝ஷ௞
௎ െ ௝ஷ௞ܧ

௅ ൯
, IF ሺܧ௞

௅ ൏ ௝ஷ௞ܧ
௎ ሻ ∩ ሺܧ௞

ெ ൐ ௝ஷ௞ܧ	
ெ ሻ.

(28)

	 	
The	preference	matrix	Pk,j	is	calculated	as	follows:	
	

࢐,࢑ࡼ ൌ 	

ۏ
ێ
ێ
ێ
ۍ ௞,௝݌ ෘ௝ୀଵܧ ෨௝ୀ௞ܧ ෨௝ୀ௡ܧ
෨௝ୀଵܧ 0.5 ଵ,௞݌ ଵ,௡݌
෨௝ୀ௞ܧ … 0.5 ௞,௡݌
෨௃ୀ௡ܧ … … 0.5 ے

ۑ
ۑ
ۑ
ې

	 (29)

	
where	Pk,j	is	the	preference	matrix	for	all	DMUs.	Find	a	row	from	the	matrix,	Pk,j,	whose	elements	
except	the	diagonal	are	larger	than	or	equal	to	0.5.	If	this	row	corresponds	to	ܧ෨௞,	then	DMUk	 is	
considered	as	the	most	efficient	DMU	and	its	relative	settings	are	the	best.	The	kth	row	is	elimi‐
nated	from	the	matrix.	In	the	reduced	matrix,	if	ܧ෨௛ஷ௞	stands	out	with	the	largest	preference	val‐
ues	compared	to	the	remaining	efficiency	values,	then	ܧ෨௛ஷ௞	is	ranked	in	the	second	place.	Repeat	
this	step	until	all	of	the	fuzzy	efficiency	values	are	properly	ranked.	

(2)	For	the	trapezoidal	efficiency	values:		

Let	ܧ෨kሺܧ௞
௅, ௞ܧ

௅ெ, ௞ܧ
௎ெ, ௞ܧ

௎ሻ	and	ܧ෨௝ஷ௞ሺܧ௝ஷ௞
௟ , ௝ஷ௞ܧ

௅ெ , ௝ஷ௞ܧ
௎ெ, ௝ஷ௞ܧ

௎ ሻ	be	two	fuzzy	trapezoidal	efficiency	val‐
ues.	According	to	fuzzy	arithmetic,	there	are	five	possible	relationships	to	compare	ܧ෨௞	with	ܧ෨௝ஷ௞,	
which	are	stated	in	Eq.	(30).	
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ܲ൫ܧ෨௞ ൐ ෨௝ஷ௞൯ܧ ൌ
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	 The	preference	matrix,	Pk,j,	is	calculated	using	Eq.	(30):	
	

࢐,࢑ࡼ ൌ 	

ۏ
ێ
ێ
ێ
ۍ ௞,௝݌ ෘ௝ୀଵܧ ෨௝ୀ௞ܧ ෨௝ୀ௡ܧ
෨௝ୀଵܧ 0.5 ଵ,௞݌ ଵ,୬݌
෨௝ୀ௞ܧ … 0.5 ௞,௡݌
෨௃ୀ௡ܧ … … 0.5 ے

ۑ
ۑ
ۑ
ې

	 (31)

	
where	Pk,j	is	the	preference	matrix	for	all	DMUs.	Repeat	until	all	of	the	fuzzy	efficiency	values	are	
properly	ranked.		

Step	5:	The	anticipated	improvements	are	calculated	by	using	the	proposed	approach,	then	the	
improvements	gained	by	the	proposed	approach	are	compared	to	fuzzy	multiple	regression	ap‐
proach	(FMRA).	

3. Two cases for illustration 

Two	 cases	 adopted	 in	 the	 literature	 are	 applied	 to	 illustrate	 the	proposed	 approach.	The	 first	
case	 deals	 with	 response	 fuzziness	 that	 is	 best	 fit	 by	 fuzzy	 triangular	 membership	 function,	
whereas	the	second	case	considers	trapezoidal	membership	function	as	the	best	fit	to	response	
fuzziness.	

3.1 Case I: Optimization of Inconel on machining of CNC WEDM process 

Al‐Refaie	et	al.	[8]	conducted	nine	experiments	utilizing	Taguchi's	L9	array	to	optimize	the	multi	
quality	responses	of	 Inconel	718	on	machining	of	CNC	WEDM	process	using	fuzzy	multiple	re‐
gression	approach	(FMRA).	The	two	quality	responses	are	surface	roughness	(SR),	y1,	which	is	a	
STB	type	response	and	material	removal	rate	(MRR),	y2,	which	is	a	LTB	type	response.	Table	1	
shows	the	four	process	factors	considered	which	are:	pulse	in	time	(A),	delay	time	(B),	wire	feed	
speed	 (C),	 ignition	 current	 (D)	 as	well	 as	 the	 corresponding	 levels.	 The	 combination	 of	 factor	
settings	at	each	experiment	is	treated	as	DMUj,	where	the	average	values	of	SR,	ݕതଵ௝,	are	consid‐
ered	as	inputs,	while	the	average	values	of	MRR,	ݕതଶ௝,	are	the	outputs	for	DMUs.	Table	1	displays	
the	experimental	results.		
	

Table	1		Experimental	data	for	WEDM	process	optimization	

DMUj	
Process	factors	 	 Inputs	 Outputs	

A	 B	 C	 D	 	 തଵ௝ݕ തଶ௝ݕ 	

DMU1	 1	 1	 1	 1	 	 3.15	 46.00	
DMU2	 1	 2	 2	 2	 	 3.25	 47.50	
DMU3	 1	 3	 3	 3	 	 3.30	 41.50	
DMU4	 2	 1	 2	 3	 	 3.75	 55.50	
DMU5	 2	 2	 3	 1	 	 3.45	 49.50	
DMU6	 2	 3	 1	 2	 	 3.25	 52.50	
DMU7	 3	 1	 3	 2	 	 4.10	 70.50	
DMU8	 3	 2	 1	 3	 	 3.65	 73.50	
DMU9	 3	 3	 2	 1	 	 3.35	 64.00	
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Table	2		The	center	values	for	the	three	triangular	membership	functions	

Class	
																	Membership	function	center

c1d c2d	
݀௤௟௢௪	 3.15	 47	

݀௤௠௘ௗ௜௨௠	 3.65	 57	

݀௤
ு௜௚௛	 4.00	 67	

	
	 Then,	the	Fuzzy	C‐Means	Clustering	(FCMC)	technique	is	used	to	determine	the	center	values	
for	the	three	triangular	membership	functions	which	are	listed	in	Table	2.	Each	defined	class	is	
considered	as	a	triangular	membership	function,	whose	parameters	are	tuned	such	that	the	cen‐
ter	of	the	relative	class	is	considered	as	the	most	likely	parameter,	ݕത௤ௗ

ெ ,	while	the	centers	of	the	
neighbor	classes	are	considered	as	the	upper,	ݕത௤ௗ

௎ ,	and	lower,	ݕത௤ௗ
௅ ,	parameters.	Consequently,	the	

experiments	results	shown	in	Table	1	are	transformed	into	the	fuzzy	triangular	numbers	shown	
in	Table	3.	
	 Model	1	is	used	to	calculate	the	upper	efficiency	values,	ܧ௝

௎	for	all	DMUs.	Similarly,	Model	2	is	
used	to	calculate	 the	 lower	efficiency	values,	ܧ௝

௅	 for	all	DMUs.	Model	3	 is	used	to	calculate	 the	
nominal	efficiency	values,	ܧ௝

௎for	all	DMUs.	Models	1,	2,	and	3	are	solved	and	the	fuzzy	triangular	
relative	efficiency	values	are	shown	in	Table	3.	
	

Table	3		Fuzzy	efficiency	values	for	WEDM	process	optimization	

DMUj	 	തෘଵ௝ݕ 	തෘଶ௝ݕ 	෨௞ܧ
DMU1	 3.15	≈	(3.15,3.15,3.65)low 46.0	≈	(40,47,57)low (0.460,	0.625,	1.000)
DMU2	 3.25	≈	(3.15,3.15,3.65)low 47.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU3	 3.30	≈	(3.15,3.15,3.65)low 41.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU4	 3.75	≈	(3.4,3.65,4.0)medium 55.5 ≈ (47,57,67)medium (0.550,	0.640,	1.000)
DMU5	 3.45	≈	(3.15,3.15,3.65)low 49.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU6	 3.25	≈	(3.15,3.15,3.65)low 52.5 ≈ (47,57,67)medium (0.587,	0.731,	1.000)
DMU7	 4.1	≈	(3.65	,4.2,4.2)high 70.5 ≈ (57,67,74)high (0.555,	0.565,	1.000)
DMU8	 3.65	≈	(3.4,3.65,3.8)medium 73.5 ≈ (57,67,74)high (0.606,	0.752,	1.000)
DMU9	 3.35	≈	(3.15,3.15,3.65)low 64.0 ≈ (57,67,74)high (0.636,	0.864,	1.000)

	
	 Then,	 the	preference	degree	based	ranking	approach	 is	used	 for	more	clear‐cut	discrimina‐
tion	among	 the	DMUs.	Eq.(28)	 is	used	 to	calculate	 the	preference	matrix	as	 shown	 in	Table	4,	
where	it	is	found	that	DMUj=9	has	the	largest	value	in	each	column.	The	minimum	of	these	nine	
largest	values	is	0.609.	Hence,	it	is	the	most	preferred	DMU.	
	

Table	4		Preference	matrix	for	WEDM	process	optimization	

DMUj	
Preference	value	P൫E෩୩ ൐ E෩୨ஷ୩൯	 Rank	

1	 2 3	 4 5 6 7 8	 9	
DMU1	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU2	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU3	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU4	 0.539	 0.539	 0.539	 0.500 0.539 0.383 0.491 0.327	 0.240	 4
DMU5	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU6	 0.643	 0.643	 0.643	 0.617 0.643 0.500 0.589 0.435	 0.328	 3
DMU7	 0.542	 0.542	 0.542	 0.509 0.542 0.411 0.500 0.359	 0.359	 4
DMU8	 0.694	 0.694	 0.694	 0.673 0.694 0.565 0.640 0.500	 0.390	 2
DMU9	 0.773	 0.773	 0.773	 0.759 0.773 0.672 0.719 0.609	 0.500	 1

	

3.2 Case II: Optimizing of the sputtering process parameters 

Al‐Refaie	 et	 al.	 [8]	 conducted	 eighteen	 experiments	 utilizing	 L18	 array	 to	 optimize	 sputtering	
process	parameters	using	fuzzy	multiple	regression	based	method.	Five	process	factors	consid‐
ered,	including:	the	R.F.	power	(P),	the	sputtering	pressure	(Q),	the	deposition	time	(R),	the	sub‐
strate	temperature	(S),	and	the	post‐annealing	temperature	(T).	Further,	three	quality	responses	
were	 considered	 including	 the	electrical	 resistivity	 (ER),	y1,	which	 is	 a	STB	 type	 response,	 the	
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deposition	rate	(DR),	y2,	which	is	also	a	STB	type	response	and	the	optical	transmittance	(OT),	y3,	
which	is	a	LTB	type	response.	The	experimental	results	are	shown	in	Table	5	in	term	of	the	re‐
sponses	average	values,	ݕത௤௝.	In	Table	5,	the	average	values	of	ER	quality	response	ݕതଵ,	are	consid‐
ered	as	inputs,	while	the	outputs	are	considered	as	the	average	values	of	DR,	ݕതଶ,	and	OT,	ݕതଷ.	The	
FCMC	technique	is	employed	to	categorize	each	response	average	values	into	three	clusters.	The	
class	center	value,	ܿ௤ௗ	with	respect	to	each	class	are	calculated	and	listed	in	Table	6.	The	trape‐
zoidal	membership	functions	for	all	responses	are	shown	in	Table	7.	Further,	the	fuzzy	trapezoi‐
dal	efficiency	values	and	preference	degree	matrix	for	sputtering	process	are	listed	in	Tables	8	
and	9,	respectively.	
	

Table	5		Experimental	data	for	sputtering	process	optimization	

Exp.	No.	
Process	factors Responses	

P	 Q	 R	 S	 T	 	 yതଵ௝ yതଶ௝	 yതଷ௝
1	 50.00	 0.13	 30.00 25.00 0.00 15.10 4.60	 88.40
2	 50.00	 0.67	 60.00 50.00 100.00 9.75 5.60	 87.70
3	 50.00	 1.33	 90.00 100.00 200.00 7.85 4.95	 88.10
4	 100.00	 0.13	 30.00 50.00 100.00 5.50 9.45	 89.25
5	 100.00	 0.67	 60.00 100.00 200.00 4.45 11.20	 87.05
6	 100.00	 1.33	 90.00 25.00 0.00 6.55 10.00	 84.70
7	 200.00	 0.13	 60.00 25.00 200.00 1.65 20.00	 86.60
8	 200.00	 0.67	 90.00 50.00 0.00 1.95 21.60	 82.35
9	 200.00	 1.33	 30.00 100.00 100.00 1.70 20.90	 85.45
10	 50.00	 0.13	 90.00 100.00 100.00 7.15 4.70	 87.60
11	 50.00	 0.67	 30.00 25.00 200.00 7.00 4.95	 89.10
12	 50.00	 1.33	 60.00 50.00 0.00 7.75 4.85	 87.40
13	 100.0	 0.13	 60.00 100.00 0.00 6.00 9.70	 87.00
14	 100.00	 0.67	 90.00 25.00 100.00 5.90 11.35	 83.70
15	 100.00	 1.33	 30.00 25.00 200.00 5.60 10.75	 88.35
16	 200.00	 0.13	 90.00 50.00 200.00 1.05 19.45	 83.10
17	 200.00	 0.67	 30.00 100.00 0.00 1.25 22.05	 85.70
18	 200.00	 1.33	 60.00 25.00 100.00 1.35 20.50	 83.80

	
	

Table	6		The	center	values	for	the	three	triangular	membership	functions	

Class	
Membership	function	center

c1d c2d c3d	
Low	(dlow)	 1.57 4.95 83.50	

Medium	(dmedium)	 6.70 10.50 86.50	
High	(dhigh)	 14.80 21.00 88.40	

	
	

Table	7		Fuzzy	trapezoidal	experimental	data	for	sputtering	process	

DMUj	 	തଵ௝ݕ തଶ௝ݕ 	തଷ௝ݕ
DMU1	 15.10	≈	(6.7,14.8,15.1,15.1)H 4.60	≈ (4.6,4.6,4.95,10.5)L 88.40	≈	(86.5,88.4,90,90)H
DMU2	 9.75	≈	(6.7,14.8,15.1,15.1)H 5.60	≈ (4.95,9.7,11.35,21)M 87.70	≈	(86.5,88.4,90,90)H
DMU3	 7.85	≈ (1.57,6,7.3,14.8)M	 4.95 ≈ (4.6,4.6,4.95,10.5)L 88.10	≈	(86.5,88.4,90,90)H
DMU4	 5.50	≈ (1.57,6,7.3,14.8)M	 9.45	≈ (4.95,9.7,11.35,21)M 89.25	≈	(86.5,88.4,90,90)H
DMU5	 4.45	≈ (1.57,6,7.3,14.8)M	 11.20	≈ (4.95,9.7,11.35,21)M 87.05	≈	(86.5,88.4,90,90)H
DMU6	 6.55	≈ (1.57,6,7.3,14.8)M	 10.00	≈ (4.95,9.7,11.35,21)M 84.70	≈	(83.5,86,87,88.4)M
DMU7	 1.65 ≈ (1,1,1.95,5.5)L	 20.00	≈ (10.5,19,22,22)H 86.60	≈	(83.5,86,87,88.4)M
DMU8	 1.95	≈ (1,1.57,1.95,6.7)L	 21.60	≈ (12,19,22,22)H 82.35	≈	(82,82,83.5,86.5)L
DMU9	 1.70	≈ (1,1.57,1.95,6.7)L	 20.90 ≈ (10.5,19,22,22)H 85.45	≈	(83.5,86,87,88.4)M
DMU10	 7.15	≈ (1.57,6,7.3,14.8)M	 4.70	≈ (4.6,4.6,4.95,10.5)L 87.6	≈	(83.5,86,87,88.4)M
DMU11	 7.00	≈ (1.57,6,7.3,14.8)M	 4.95	≈ (4.6,4.6,4.95,10.5)L 89.1	≈	(86.5,88.5,90,90)H
DMU12	 7.75	≈ (1.57,6,7.3,14.8)M	 4.85	≈ (4.6,4.6,4.95,10.5)L 87.4	≈	(86.5,88.4,90,90)H
DMU13	 6.00	≈ (1.57,6,7.3,14.8)M	 9.70	≈ (4.95,9.7,11.35,21)M 87.00	≈	(83.5,86,87,88.4)M
DMU14	 5.90	≈ (1.57,6,7.3,14.8)M	 11.35	≈ (4.95,9.7,11.35,21)M 83.70	≈	(82,82,83.5,86.5)L
DMU15	 5.60	≈ (1.57,6,7.3,14.8)M	 10.75	≈ (4.95,9.7,11.35,21)M 88.35	≈	(86.5,88.5,90,90)H
DMU16	 1.05	≈ (1,1.57,1.95,6.7)L	 19.45	≈ (10.5,19,22,22)H 83.10	≈	(82,82,83.5,86.5)L
DMU17	 1.25	≈ (1,1.57,1.95,6.7)L	 22.05	≈ (10.5,19,22,22)H 85.70	≈	(83.5,86,87,88.4)M
DMU18	 1.35	≈ (1,1.57,1.95,6.7)L	 20.50	≈ (10.5,19,22,22)H 83.80	≈	(82,82,83.5,86.5)L
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Table	8		Fuzzy	trapezoidal	efficiency	values	for	sputtering	process	
DMUj	 	෨௞ܧ
DMU1	 (0.070,0.073,0.073,0.619)	
DMU2	 (0.117,0.121,0.123,1.000)	
DMU3	 0.116,0.121,0.123,1.000)	
DMU4	 (0.117,0.121,0.123,1.000)	
DMU5	 (0.117,0.121,0.123,1.000)	
DMU6	 (0.114,0.116,0.118,1.000)	
DMU7	 (0.229,0.235,0.244,1.000)	
DMU8	 (0.224,0.226,0.244,1.000)	
DMU9	 (0.229,0.235,0.244,1.000)	
DMU10	 (0.114,0.116,0.117,1.000)	
DMU11	 0.116,0.121,0.123,1.000)	
DMU12	 (0.116,0.121,0.123,1.000)	
DMU13	 (0.114,0.116,0.118,1.000)	
DMU14	 (0.112,0.112,0.114,1.000)	
DMU15	 (0.117,0.121,0.123,1.000)	
DMU16	 (0.224,0.226,0.244,1.000)	
DMU17	 (0.229,0.235,0.244,1.000)	
DMU18	 (0.224,0.226,0.244,1.000)	

	
Table	9		Preference	degree	matrix	for	the	fuzzy	trapezoidal	efficiency	values	(columns	1	to	9)	

Preference	value	ܲ൫ܧ෨௞ ൐ 	෨௝ஷ௞൯ܧ
Rank	DMUj

DMUk	 1	 2	 3	 4	 5	 6	 7	 8	 9	
DMU1	 0.500	 0.320	 0.320	 0.320 0.320 0.324 0.207 0.212	 0.207	 7
DMU2	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU3	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU4	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU5	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU6	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU7	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU8	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6
DMU9	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU10	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU11	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU12	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU13	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU14	 0.672	 0.492	 0.492	 0.492 0.492 0.495 0.398 0.401	 0.398	 5
DMU15	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU16	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6
DMU17	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU18	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6

	
Table	9		Preference	degree	matrix	for	the	fuzzy	trapezoidal	efficiency	values	(continuation,	columns	10	to	18)	

Preference	value	ܲ൫ܧ෨௞ ൐ 	෨௝ஷ௞൯ܧ
Rank	DMUj

DMUk	 10	 11	 12	 13	 14	 15	 16	 17	 18	
DMU1	 0.324	 0.320	 0.320	 0.324 0.327 0.320 0.212 0.207	 0.212	 7
DMU2	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU3	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU4	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU5	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU6	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU7	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU8	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
DMU9	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU10	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU11	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU12	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU13	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU14	 0.495	 0.492	 0.492	 0.495 0.500 0.492 0.401 0.398	 0.401	 5
DMU15	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU16	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
DMU17	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU18	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
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4. Research results and discussion 

4.1 Results of case I 

For	this	case,	Table	4	reveals	that	DMU9	is	the	most	preferred	DMU.	Table	10	shows	the	results	
of	the	proposed	approach	against	that	of	the	fuzzy	multiple	regression	approach	(FMRA).	Using	
the	 proposed	 approach,	 the	MRR	 fuzzy	 response	 value,	 	which	ത෨ଵ,ݕ is	 a	 LTB	 type	 response	 im‐
proved	from	(56.4,	59.10,	62.46)	to	(57,	67,	74),	where	the	ݕതଶ	

௎	and		ݕതଶ
ெ	values	are	significantly	

increased.	Also,	 the	SR	 fuzzy	 response	value,	ݕത෨ଶ,	which	 is	 a	STB	 type	 response	 improves	 from	
(2.94,	3.32,	3.75)	to	(3.15,	3.15,	3.65).	Note	that	the	proposed	approach	provides	smaller	mean	
and	upper	bound	value	than	FMRA.	Therefore,	 to	 improve	the	performance	of	WEDM	process,	
the	best	combination	of	factor	settings	is	pulse	in	time	A3,	delay	time	B3,	wire	feed	speed	C2,	igni‐
tion	current	D1.	
	

Table	10		Improvement	comparison	for	case	I	
Response	 	(LTB)	ത෨ଵݕ 	(STB)	ത෨ଶݕ

Initial	condition	 ≈ (49.4,51.9,54.58) ≈	(2.99,3.42,3.92)
Fuzzy	multiple	regression	approach	(FMRA) ≈ (56.4,59.10,62.46) ≈	(2.94,3.32,3.75)

Proposed	approach	results	(IDEA)	 ≈ (57,67,74) ≈	(3.15,3.15,3.65)

4.2 Results for case II 

For	case	II,	it	is	found	that	DMU9	is	the	best	DMU,	which	corresponds	as	shown	in	Table	5.	Table	
11	displays	the	anticipated	improvements	using	the	proposed	approach	and	FMRA.	
	 Using	the	proposed	approach	the	 fuzzy	trapezoidal	value	of	 the	ER,	ݕതଵ,	which	 is	a	STB	type	
response	decreased	from	(1.39,	2.91,	3.19,	4.32)	to	(1.0,	1.57,	1.95,	6.7).	Although	the	proposed	
approach	 increased	the	upper	response	value,	ݕതଵ	

௎	 it	significantly	decreased	the	 lower	mid	and	
upper	mid	response	values.	For	DR,	ݕതଶ,	which	 is	a	LTB	 type	response,	 the	proposed	approach	
enhances	the	response	fuzzy	trapezoidal	value	from	(11.84,	12.26,	12.75	21.94)	to	(10.5,	19,	21,	
22).	Finally	for	OT,	ݕതଷ,	which	is	a	LTB	type	response,	the	proposed	approach	improves	the	upper	
response	value	from	87.7	to	88.5.	Consequently,	the	best	combination	of	factor	settings	for	the	
sputtering	process	 is	 the	R.F.	power	P	=	200,	 the	sputtering	pressure	Q	 =	1.33,	 the	deposition	
time	R	=	30,	the	substrate	temperature	S	=	100,	and	the	post‐annealing	temperature	T	=	100.	
	

Table	11		Improvement	comparison	for	case	II	

Methods	
Quality	responses

	input)	(STB,	ଵݕ y2 (LTB,	output) y3	(LTB,	output)
	 ଵݕ

௅	 ଵݕ
ெ௅	 ଵݕ

௎௅	 ଵݕ
௎	 	 ଶݕ

௅	 ଶݕ
ெ௅	 ଶݕ

௎௅	 ଶݕ
௎	 	 ଷݕ

௅	 ଷݕ
ெ௅	 ଷݕ

௎௅	 ଷݕ
௎	

FMRA	
results	

1.39	 2.91	 3.19	 4.32	 	 11.84 12.26	 12.75	 21.94	 	 86.4	 86.5	 87.6	 87.7	

IDEA	
results	

1.0	 1.57	 1.95	 6.7	 	 10.5	 19.0	 21.0	 22.0	 	 83.5	 86.0	 87.0	 88.5	

	

5. Conclusions 

In	this	research,	a	fuzzy	DEA	based	procedure	is	proposed	to	solve	the	fuzzy	multiple	responses	
problem	in	robust	design.	DEA	models	are	utilized	to	calculate	the	fuzzy	efficiencies.	Then,	the	
preference	matrix	 is	 adopted	 to	 identify	 the	 best	 decision	making	 unit.	 Two	 real	 case	 studies	
from	previous	literature	are	employed	to	illustrate	the	proposed	approach	including	improving	
performance	of	the	WEDM	and	sputtering	processes,	where	the	response	fuzziness	is	fitted	by	a	
triangular	and	trapezoidal	membership	functions	in	the	first	and	second	case	study,	respectively.	
In	both	studies,	the	proposed	approach	efficiently	identified	the	best	combination	of	factor	set‐
tings	 and	provides	 better	 anticipated	 improvements	 than	 the	 fuzzy	multiple	 regression	based	
approach.	 In	 conclusion,	 the	 proposed	 approach	may	 provide	 great	 assistant	 to	 process	 engi‐
neers	 in	 determining	 the	 best	 combination	 of	 factor	 settings	 that	 improves	 fuzzy	multiple	 re‐
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sponses in a wide range of business applications. Nevertheless, this approach ignores process 
factor settings and preferences on quality responses. Another limitation is its complexity when 
many fuzzy responses are considered simultaneously. Future research will consider these is-
sues. 
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A B S T R A C T	   A R T I C L E   I N F O	

Flux	cored	arc	welding	has	been	applied	in	manufacturing	industries	for	more	
than	 fifteen	 years.	 The	 quality	 of	 weld	 mainly	 depends	 on	 the	 mechanical	
properties	 of	 the	weld,	 which	 in	 turn	 relays	 on	 the	 interaction	 of	 the	weld	
parameters.	 This	 paper	 discusses	 the	 multi	 response	 optimization	 of	 weld	
parameters	 using	 grey	 based	 Taguchi	method.	 Grey	 relational	 analysis	 was
carried	out	 to	 convert	multi	 objective	 criterion	 into	 equivalent	 single	objec‐
tive	function;	overall	grey	relational	grade,	which	is	optimized	by	the	Taguchi	
technique.	Experiments	are	 conducted	using	Taguchi’s	L27	 orthogonal	 array.	
The	weld	parameters	used	in	this	study	were	welding	current,	welding	speed,
and	arc	voltage	with	bead	hardness	and	material	deposition	rate	as	respons‐
es.	Taguchi’s	 Signal‐to‐Noise	 (S/N)	 ratio	 is	 computed	based	on	 their	perfor‐
mance	 characteristics.	 Grey	 relational	 grade	 was	 obtained	 using	 Signal‐to‐
Noise	ratio	values	of	responses.	Based	on	the	grey	relational	grade,	optimum	
levels	 of	 parameters	 have	 been	 identified.	 Significant	 contributions	 were	
estimated	using	Analysis	of	Variance	(ANOVA).	A	confirmation	test	was	con‐
ducted	to	validate	the	proposed	method.	This	evaluation	procedure	could	be	
used	in	decision‐making	to	select	process	parameters	for	a	welding	operator.	
The	proposed	and	developed	method	has	good	accuracy	and	competency	with	
the	predicted	value	enhancing	automation	and	robotization.	
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1. Introduction 

Generally,	the	quality	of	a	weld	joint	is	directly	influenced	by	the	welding	input	parameters	dur‐
ing	the	welding	process;	therefore,	welding	can	be	considered	as	a	multi‐input	multi‐output	pro‐
cess.	 Unfortunately,	 a	 common	 problem	 that	 has	 faced	 the	manufacturer	 is	 the	 control	 of	 the	
process	 input	parameters	 to	obtain	a	good	welded	 joint	with	 the	required	bead	geometry	and	
weld	quality	with	maximum	deposition	rate.	Weld	deposition	rate	is	the	weight	(in	kg)	of	weld	
metal	deposited	per	unit	of	arc‐on‐time	(usually	one	hour).	The	weight	deposited	is	less	than	the	
weight	of	the	filler	metal	used,	because	of	various	losses.	The	ratio	of	the	weight	of	metal	depos‐
ited	 in	 the	weld	to	 that	of	 filler	metal	employed,	expressed	 in	percent,	 is	called	the	deposition	
efficiency.	 Flux	 cored	 arc	welding	 process	 is	 a	 fully	 automated	 process,	 in	which	 the	welding	
electrode	is	a	tubular	wire	that	is	continuously	fed	to	the	weld	area	[1].	The	flux	materials	are	in	
the	core	of	the	tube.	The	outer	shell	of	the	tube	conducts	the	electricity	that	forms	the	arc	and	
then	becomes	the	filler	metal	as	it	is	consumed.	Recent	studies	indicate	that	FCAW	has	a	number	
of	advantages	over	the	common	welding	techniques	available	that	use	solid	wires	such	as	manu‐
al	metal	arc	welding	and	gas	metal	arc	welding	[2].	Using	FCAW	in	any	repair	technique	can	pro‐
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vide	better	control	over	current	and	heat	 input	that	 is	necessary	to	carry	out	the	temper	bead	
repair.	As	 a	 fully	 automatic	process,	 FCAW	should	 also	have	 cost	 advantages	over	 other	 com‐
monly	used	processes.	Flux	cored	arc	welding	is	considered	a	high	deposition	rate	welding	pro‐
cess	that	adds	the	benefits	of	flux	to	the	simplicity	of	metal	inert	gas	welding	[3].	Many	research	
attempts	have	been	made	by	researchers	to	establish	flux	cored	arc	welding	process.	Mathemat‐
ical	modeling	[4],	particle	swarm	optimization	algorithm	[5],	simulated	annealing	algorithm	[6],	
memetic	algorithm	[7],	Taguchi	method	[8],	were	used	to	optimize	the	parameters	of	flux	cored	
arc	 welding	 process.	 Traditional	 Taguchi	 method	 can	 optimize	 a	 single	 objective	 function	
whereas	 it	 cannot	 solve	multi	 objective	 function	 [9].	 This	 paper	 explores	 the	 development	 of	
grey	based	Taguchi	method	for	multi	response	optimization	of	flux	cored	arc	weld	parameters.	

2. Grey based Taguchi method 

To	resolve	 the	problems	subjected	to	multiple	quality	characteristics,	a	decision	maker	should	
rely	on	the	subjective	experiences	of	engineers	to	attain	a	compromise.	As	a	result,	uncertainty	
will	be	 increased	during	 the	process.	Hence	some	researchers	have	concentrated	on	achieving	
multiple	quality	characteristic	at	a	time	as	a	function	of	different	appropriate	level	of	input	pa‐
rameter	settings.	Orthogonal	array	with	principle	component	analysis	and	Taguchi	method	and	
response	surface	methodology	applied	[10,	11]	to	optimize	multiple	quality	characteristics	dur‐
ing	 laser	 cutting	of	different	 thin	 sheets.	 Fuzzy	based	desirability	 function	 is	used	 to	optimize	
parameters	of	weld	[12].	
	 Grey	 relational	 analysis	 aims	 to	 fulfil	 the	 crucial	mathematical	 criteria	 for	multiple	 quality	
characteristic	 problems	 [13].	 It	 avoids	 the	 inherent	 shortcomings	 of	 conventional,	 statistical	
methods	and	requires	a	limited	data	to	estimate	the	behavior	of	an	uncertain	system.	It	provides	
an	efficient	solution	to	the	uncertain,	multi‐input	and	discrete	data	problem.	The	main	function	
of	Grey	relational	analysis	is	to	indicate	the	relational	degree	between	two	sequences	by	using	
discrete	measurement	method	the	distance.	It	can	be	effectively	recommended	as	a	method	for	
optimizing	the	complicated	interrelationships	among	multiple	performance	characteristics.	

2.1 Taguchi method 

The	quality	engineering	methods	of	Taguchi,	employing	design	of	experiments	provide	an	effi‐
cient	and	systematic	way	to	optimize	designs	for	performance,	quality	and	cost.	It	is	one	of	the	
most	important	statistical	tools	for	designing	high	quality	systems	at	reduced	cost	[14,	15].	The	
use	of	Taguchi	method	simplifies	the	optimization	procedure	for	determining	the	optimal	weld‐
ing	parameters	in	the	FCAW	process.	The	Taguchi	method	is	performed	to	reduce	the	sources	of	
variation	on	the	quality	characteristics	of	product,	and	reach	a	target	of	process	robustness.	The	
control	factors	that	may	contribute	to	reduce	variation	(improved	quality)	can	be	quickly	identi‐
fied	by	looking	at	the	amount	of	variation	present	as	a	response.	Taguchi	recommends	the	use	of	
the	 loss	 function	 to	measure	 the	performance	 characteristic	 deviating	 from	 the	desired	 value.	
The	value	of	the	loss	function	is	then	transformed	into	an	S/N	ratio.	Usually,	there	are	three	cat‐
egories	[16]	of	performance	characteristic	in	the	analysis	of	the	S/N	ratio,	i.e.	lower‐the‐better,	
higher‐the‐better,	 and	 nominal‐the‐best.	 The	 deposition	 rate	 and	 hardness	 are	 the	 higher	 the	
better	performance	characteristic.	The	S/N	ratio	ηij	for	the	ith	performance	characteristic	in	the	
jth	experiment	can	be	expressed	as	Eq.	1.	
	

௜௝ߟ ൌ െ10logሺܮ௜௝ሻ	 (1)

	
	 The	loss	function	Lij	for	higher‐the‐better	performance	characteristic	is	expressed	in	Eq.	2:	
	

௜௝ܮ ൌ
1
݊
෍

1
௜௝௞ݕ
ଶ

௡

௞ୀଵ

	 (2)
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where	n	is	the	number	of	replication,	k	is	the	number	of	tests,	yijk	is	experimental	value	of	the	ith	
performance	characteristic	in	the	jth	experiment	at	the	kth	tests.	
	 For	lower‐the‐better	performance	characteristic,	Lij	is	expressed	in	Eq.	3.	
	

௜௝ܮ ൌ
1
݊
෍ݕ௜௝௞

ଶ

௡

௞ୀଵ

	 (3)

	
	 For	nominal‐is‐best	performance	characteristics,	the	S/N	ratio	is	expressed	in	Eq.	4.	
	

௜௝ߟ ൌ 10log ൬
തݕ
ߪ
൰	 (4)

	
	 The	S/N	ratio	 for	each	 level	of	process	parameters	 is	 computed	based	on	 the	S/N	analysis.	
This	S/N	ratio	value	can	be	considered	for	the	optimization	of	single	response	problems.	How‐
ever,	optimization	of	multiple	performance	characteristics	cannot	be	straightforward	as	 in	 the	
optimization	of	a	single	performance	characteristic.	

2.2 Grey relational analysis 

The	grey	relational	analysis	is	based	on	the	grey	system	theory	used	to	solve	complicated	inter‐
relationship	multiple	performance	characteristics	problems	effectively.	A	grey	system	has	a	level	
of	information	between	black	and	white.	Black	represents	having	no	information	and	white	rep‐
resents	having	all	 information.	Grey	based	Taguchi	method	 is	 successfully	applied	 to	optimize	
film	coating	process	[17],	drilling	process	[18],	plasma	arc	weld	parameters	[19],	bead	geometry	
in	SAW	process,	and	wire	electrical	discharge	machining	process	[20,	21].	
	 Depending	upon	 the	 characteristics	of	 a	data	 sequence,	 there	are	various	methodologies	of	
data	pre‐processing	available	for	this	analysis.	Experimental	data	yij	is	normalized	as	Zij	(0	≤	Zij	≤	1)	
for	the	ith	performance	characteristics	in	the	jth	experiment	is	expressed	as:	
	 For	S/N	ratio	with	larger‐the‐better:	
	

ܼ௜௝ ൌ
௜௝ݕ െ ݉݅݊൫ݕ௜௝, ݅ ൌ 1,2, … , ݊൯

,௜௝ݕ൫ݔܽ݉ ݅ ൌ 1,2, … , ݊൯ െ ݉݅݊൫ݕ௜௝, ݅ ൌ 1,2, … , ݊൯
	 (5)

	
	 For	S/N	ratio	with	smaller‐the‐better:	
	

ܼ௜௝ ൌ
,௜௝ݕ൫ݔܽ݉ ݅ ൌ 1,2, … , ݊൯

,௜௝ݕ൫ݔܽ݉ ݅ ൌ 1,2, … , ݊൯ െ ݉݅݊൫ݕ௜௝, ݅ ൌ 1,2, … , ݊൯
	 (6)

	
	 For	S/N	ratio	with	nominal‐the‐best:	
	

ܼ௜௝ ൌ
൫ݕ௜௝ െ Target൯ െ ݉݅݊൫หݕ௜௝ െ Targetห, ݅ ൌ 1,2, … , ݊൯

௜௝ݕ൫หݔܽ݉ െ Targetห, ݅ ൌ 1,2, … , ݊൯ െ ݉݅݊൫หݕ௜௝ െ Targetห, ݅ ൌ 1,2, … , ݊൯
	 (7)

	
	 Then,	the	grey	relational	coefficients	are	calculated	to	express	the	relationship	between	the	
ideal	and	the	actual	experimental	results.	The	grey	relational	co‐efficient	is	expressed	in	Eq.	8:	
	

௜௝ߛ ൌ
Δ݉݅݊ ൅ ݔΔ݉ܽߦ
Δ௢௝ሺ݇ሻ ൅ ݔΔ݉ܽߦ

	 (8)

	
where	j	=	1,	2,…	,	n,	k	=	1,	2,…	,	m,	n	is	the	number	of	experimental	data	items,	and	m	is	the	num‐
ber	of	responses.	yo(k)	is	the	reference	sequence	yo(k)	=	1,	k	=	1,	2,…	,	m,	and	yj(k)	is	the	specific	
comparison	sequence.	
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	 The	absolute	value	of	the	difference	between	yo(k)	and	yj(k):	
	

Δ௢௝ ൌ ௢ሺ݇ሻݕ‖ െ 	‖௜ሺ݇ሻݕ (9)

	
Δmin	is	the	smallest	value	of	yj(k):	
	

Δ௠௜௡ ൌ min
∀௝∈௜

min
∀௞

௢ሺ݇ሻݕ‖ െ 	‖௜ሺ݇ሻݕ (10)

	
Δmax	is	the	largest	value	of	yj(k):	
	

Δ௠௔௫ ൌ max
∀௝∈௜

max
∀௞

௢ሺ݇ሻݕ‖ െ 	‖௜ሺ݇ሻݕ (11)

	
	 ξ	 is	the	distinguishing	coefficient	which	is	defined	in	the	range	0	to	1	(the	value	is	adjusted	
based	on	the	practical	needs	of	the	system)	
	 The	Grey	relational	grade	is	expressed	in	Eq.	12:	
	

γത௝ ൌ
1
݇
෍ݕ௜௝

௠

௜ୀଵ

	 (12)

	
where	 j	 is	 the	grey	relational	grade	for	the	 jth	experiment	and	k	 is	 the	number	of	performance	
characteristics.	Higher	grey	relational	grade	implies	the	better	product	quality,	therefore,	on	the	
basis	of	grey	relational	grade,	 the	 factor	effect	 is	estimated	using	ANOVA	[23]	and	the	optimal	
level	for	each	controllable	factor	is	determined.	

3. Experimental work 

Experiments	are	conducted	using	SUPRA	INVMIG	500	welding	machine	using	DC	electrode	posi‐
tive	(DCEP).	Test	pieces	of	size	200	mm	×	150	mm	×	6	mm	are	cut	from	low	carbon	structural	
steel	(IS:	2062)	plate	and	its	surfaces	are	ground	to	remove	oxide	scale	and	dirt	before	cladding.	
Flux	cored	mild	steel	electrode	(E71T‐1)	of	1.2	mm	diameter	 is	used	 for	welding.	CO2	gas	at	a	
constant	flow	rate	of	15	L/min	is	used	for	shielding.	The	experimental	setup	used	consists	of	a	
traveling	carriage	with	a	table	for	supporting	the	specimens.	The	welding	torch	is	held	station‐
ary	in	a	frame	mounted	above	the	work	table,	and	it	is	provided	with	an	attachment	for	both	up	
and	down	movement	 and	 angular	movement	 for	 setting	 the	 required	nozzle‐to‐plate	 distance	
and	welding	torch	angle,	respectively.	Single	pass	welding	bead	on	joint	weld	with	square	butt	
weld	is	performed	on	the	weld	plates	by	varying	the	initial	parameters	as	shown	in	Table	1.	The	
working	 ranges	 for	 the	 process	 parameters	 are	 selected	 from	 the	 American	 Society	Welding	
handbook	[24].	Each	trial	of	experiment	was	done	twice	and	the	average	value	is	taken.		
	 Deposition	rate	and	hardness	are	considered	as	objectives.	The	metal	deposition	rate	is	calcu‐
lated	with	the	help	of	stop	watch	and	 length	of	 the	electrode	melt	during	the	welding	process.	
Brinnel	 hardness	 test	 is	 performed	using	Brinnel	 hardness	 testing	machine.	 Based	 on	 the	 de‐
signed	 orthogonal	 array	 combination	 a	 series	 of	 joining	 processes	 are	 performed	 in	 welding	
machine.	Experimental	results	are	summarized	in	Table	2.	
	

Table	1		Welding	Parameters	and	their	levels	
Factors	 Welding	parameters	 Level	1 Level	2 Level	3

I	 Welding	current	(A)	 180 220 260	
V	 Arc	voltage	(V)	 20 24 28	
S	 Electrode	stick‐out	(mm)	 19 21 24	
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Table	2		Experimental	results	for	hardness	and	deposition	rate	
Exp.	No.	 I	 V	 S Hardness	(HB) Deposition	rate	(kg/h)

1	 1	 1	 1 320.96 2.12	
2	 1	 1	 2 496.41 2.15	
3	 1	 1	 3 469.83 2.21	
4	 1	 2	 1 465.45 1.48	
5	 1	 2	 2 589.83 1.92	
6	 1	 2	 3 519.96 2.21	
7	 1	 3	 1 433.83 1.44	
8	 1	 3	 2 580.99 1.48	
9	 1	 3	 3 519.83 2.16	
10	 2	 1	 1 329.96 2.58	
11	 2	 1	 2 259.83 5.26	
12	 2	 1	 3 445.07 2.86	
13	 2	 2	 1 449.96 2.45	
14	 2	 2	 2 595.07 2.01	
15	 2	 2	 3 265.07 5.61	
16	 2	 3	 1 389.96 2.37	
17	 2	 3	 2 549.96 2.31	
18	 2	 3	 3 459.83 2.26	
19	 3	 1	 1 269.96 4.08	
20	 3	 1	 2 485.09 3.39	
21	 3	 1	 3 345.09 4.32	
22	 3	 2	 1 424.15 3.01	
23	 3	 2	 2 515.09 3.75	
24	 3	 2	 3 488.41 3.83	
25	 3	 3	 1 319.96 3.97	
26	 3	 3	 2 464.15 4.18	
27	 3	 3	 3 449.83 3.71	

4. Results and discussion 

S/N	ratios	for	deposition	rate	and	hardness	are	computed	using	Eq.	1,	Eq.	2,	and	Eq.	3.	Using	Eq.	
5	and	Eq.	6	the	S/N	ratios	are	normalized	and	shown	in	Table	3.	Grey	relational	coefficient	for	
each	performance	characteristic	 is	 calculated	using	Eq.	8.	The	value	 for	ξ	 is	 taken	as	0.5	since	
both	 the	 process	 parameters	 are	 of	 equal	 importance.	 The	 grey	 relational	 grade	 is	 calculated	
using	Eq.	12,	which	is	the	overall	representative	of	both	the	responses	shown	in	Table	4.	
	 Now,	 the	 multiple	 objective	 optimization	 problems	 have	 been	 transformed	 into	 a	 single	
equivalent	objective	 function	optimization	problem	using	 this	approach.	The	higher	grey	 rela‐
tional	grade	is	said	to	be	close	to	the	optimal.	The	mean	response	table	for	overall	grey	relational	
grade	is	shown	in	Table	5	and	is	represented	graphically	in	Fig	1.	With	the	help	of	the	response	
table	and	response	graph,	the	optimal	parameter	combination	has	been	determined	as	I1V3S3.	
	 Using	the	grey	relational	grade	value,	ANOVA	is	formulated	for	identifying	the	significant	fac‐
tors.	The	results	of	ANOVA	are	presented	in	Table	6.	From	ANOVA,	it	is	clear	that	welding	speed	
(64.42	%)	influences	more	on	welding	of	mild	steel	plates	followed	by	arc	voltage	(18.54	%)	and	
welding	current	(1.07	%).	

In	order	to	predict	the	optimum	condition,	the	expected	mean	at	the	optimal	settings	(μ)	 is	
calculated	by	using	 the	 following	model	ߤ ൌ ଵ̅ܫ ൅ തܸଷ ൅ ܵଷ̅ െ 2 ∙ തܶ௚௚,	where	 	,ଵ̅ܫ തܸଷ,	and	ܵଷ̅	are	 the	
mean	values	of	the	grey	relational	grade	with	the	parameters	at	optimum	levels,	and	 തܶ௚௚	is	the	
overall	mean	 of	 average	 grey	 grade.	 The	 expected	mean	 (μ)	 at	 optimal	 setting	 is	 found	 to	 be	
0.5950.		
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Table	3		S/N	ratios	and	their	normalize	values	

Exp.	No.	
S/N	ratio Normalized	values	of	S/N	ratio

Hardness	(HB)	 Deposition	rate	(kg/h) Hardness	(HB) Deposition	rate	(kg/h)
1	 50.129	 6.5267 0.1823 0.1631	
2	 53.9168	 6.6488 0.7057 0.1703	
3	 53.4388	 6.8878 0.6264 0.1847	
4	 53.3575	 3.4052 0.6134 0.0096	
5	 55.4145	 5.666 0.9844 0.1151	
6	 54.3194	 6.8878 0.776 0.1847	
7	 52.7464	 3.1672 0.519 0	
8	 55.2834	 3.4052 0.958 0.0096	
9	 54.3172	 6.6891 0.7756 0.1727	
10	 50.3692	 8.2324 0.2092 0.2734	
11	 48.2938	 14.4197 0 0.9161	
12	 52.9686	 9.1273 0.5526 0.3405	
13	 53.0635	 7.7833 0.5671 0.2422	
14	 55.4914	 6.0639 1 0.1367	
15	 48.4672	 14.9793 0.0156 1	
16	 51.8204	 7.495 0.3882 0.223	
17	 54.8066	 7.2722 0.8654 0.2086	
18	 53.2519	 7.0822 0.5966 0.1966	
19	 48.626	 12.2132 0.0302 0.6331	
20	 53.7164	 10.604 0.6719 0.4676	
21	 50.7586	 12.7097 0.2543 0.6906	
22	 52.5504	 9.5713 0.4902 0.3765	
23	 54.2377	 11.4806 0.7614 0.554	
24	 53.7757	 11.664 0.6818 0.5731	
25	 50.1019	 11.9758 0.1794 0.6067	
26	 53.3332	 12.4235 0.6095 0.6571	
27	 53.061	 11.3875 0.5668 0.5444	

	
	

Table	4		Grey	relational	coefficients	of	responses	

Exp.	No.	
S/N	ratio

Grey	relational	grade	
Hardness	(HB) Deposition	rate	(kg/h)

1	 0.3795	 0.374 0.3767	
2	 0.6295	 0.376 0.5028	
3	 0.5724	 0.3801 0.4762	
4	 0.5639	 0.3355 0.4497	
5	 0.9697	 0.361 0.6654	
6	 0.6906	 0.3801 0.5353	
7	 0.5097	 0.3333 0.4215	
8	 0.9225	 0.3355 0.629	
9	 0.6902	 0.3767 0.5334	
10	 0.3874	 0.4076 0.3975	
11	 0.3333	 0.8563 0.5948	
12	 0.5277	 0.4312 0.4795	
13	 0.536	 0.3975 0.4668	
14	 1	 0.3668 0.6834	
15	 0.3368	 1 0.6684	
16	 0.4497	 0.3915 0.4206	
17	 0.7879	 0.3872 0.5876	
18	 0.5535	 0.3836 0.4685	
19	 0.3402	 0.5768 0.4585	
20	 0.6038	 0.4843 0.5441	
21	 0.4014	 0.6178 0.5096	
22	 0.4951	 0.445 0.4701	
23	 0.677	 0.5285 0.6027	
24	 0.6111	 0.5395 0.5753	
25	 0.3786	 0.5597 0.4692	
26	 0.5615	 0.5932 0.5773	
27	 0.5358	 0.5232 0.5295	
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Table	5		Response	table	for	overall	grey	relational	grade	
Factors	 Level	1 Level	2 Level	3	

I	 0.51 0.4821 0.4367	
V	 0.5296 0.5685 0.5985	
S	 0.5262 0.5151 0.5306	

	
	

	
Table	6		Response	table	for	overall	grey	relational	grade	

Factors	 Degrees	of	freedom	 Sum	of	squares Mean	squares F value	 Contribution	(%)
I	 2 0.00198 0.000993 0.68 1.07	
V	 2 0.0342 0.017102 11.65 18.54
S	 2 0.1188 0.05943 40.47 64.42

Error	 20 0.0293 0.00146 15.88
Total	 26 0.18441 100	

	
	

	
Fig.	1		Response	graph	for	grey	relational	grade	

	
	 Once	 the	 optimal	 level	 of	 the	process	parameters	has	been	determined,	 the	 final	 step	 is	 to	
predict	and	verify	the	improvement	of	the	performance	characteristic	using	the	optimal	level	of	
weld	parameters.	Table	7	shows	the	comparison	of	the	multiple	performance	characteristics	for	
initial	and	optimal	welding	parameters.	The	initial	designated	levels	of	welding	parameters	are	
I2,	V1,	and	S3.	As	noted	 from	Table	7,	 the	deposition	rate	 is	 increased	 from	2.06	kg/h	 to	2.16	
kg/h	and	the	hardness	is	increased	from	480.31	to	519.83.The	estimated	grey	relational	grade	is	
increased	from	0.4818	to	0.5334.	It	is	clearly	shown	that	the	multiple	objectives	of	the	weld	pro‐
cess	are	together	improved	remarkably.	

	
	

Table	7		Results	of	initial	and	optimal	welding	performance	

	 Initial	process	parameters	
Optimal	process	parameters	

Prediction Experiment
Level	 I2V1S3 I1V3S3 I1V3S3	

Hardness	 480.31 519.83
Deposition	rate 2.06 2.16	

Grey	relational	grade	 0.4818 0.595 0.5334
Improvement	of	Grey	relational	grade	 0.1132 0.0516

	

5. Conclusion 

Effects	of	welding	parameters	and	the	optimum	welding	parameters	for	a	FCAW	process	on	the	
multiple	performance	characteristics	are	systematically	investigated	by	Taguchi‐based	grey	re‐
lational	 analysis.	 Application	 of	 Taguchi	 optimization	 technique	 coupled	 with	 grey	 relational	
analysis	 has	 been	 adopted	 for	 estimating	 the	 optimal	 parametric	 combination	 to	 achieve	 ac‐
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ceptable (maximum) bead hardness and deposition rate. Signal-to-Noise ratio is computed 
based on their performance characteristics. 
 Grey relational grade is obtained using Signal-to-Noise ratio values of responses. Based on 
grey relational grade, optimum levels of parameters have been identified. The significant contri-
butions are estimated using analysis of variance. It is found that electrode stick out (64.42 %) 
influences more followed by arc voltage (18.57 %) and welding current (1.07 %). The best per-
formance characteristics is obtained with lower welding current of 180 A, higher arc voltage of 
28 V and higher electrode stick out of 24 mm. Confirmatory experiments prove that the deter-
mined optimal conditions of weld parameters to satisfy real conditions. The proposed and de-
veloped algorithm simplifies the optimization design of weld parameters with multiple-
performance characteristics. Thus, the solutions from this method can be used by engineers will-
ing to search for any weld optimal solution. 
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