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The Petra Šparl Award 2020

The Petra Šparl Award was established in 2017 to recognise in each even-numbered
year the best paper published in the previous five years by a young woman mathematician
in one of the two journals Ars Mathematica Contemporanea (AMC) and The Art of Discrete
and Applied Mathematics (ADAM). It was named after Dr Petra Šparl, a talented woman
mathematician who died mid-career in 2016 after a battle with cancer. The first award was
made in 2018 to Dr Monika Pilśniak (AGH University, Poland) for a paper she published
in AMC on the distinguishing index of graphs.

Nominations for the 2020 award were invited in 2019, and all cases were considered by
a committee (consisting of the three of us, listed below) appointed by the Editors-in-Chief
of AMC and ADAM. As judges we were impressed by the large number of papers in these
journals over the five years 2015–2019 having a woman author or co-author, with many
of these being women in the early stages of their career. With helpful commentaries from
co-authors and/or nominators, we drew up a long list of candidates for the 2020 award,
sought reports from referees on those, and also considered the papers themselves, before
making a decision.

In fact it seemed very appropriate to us to celebrate these awards in a year in which
Slovenia was to be hosting the European Congress of Mathematicians, by recommending
two awards. Sadly the ECM is being postponed to 2021, but we are proceeding with an
announcement of the 2020 awards.

The two winners of the Petra Šparl Award for 2020 are as follows:

• Dr Simona Bonvicini (of the Università di Modena e Reggio Emilia, Italy), for her
contributions to the paper ‘Octahedral, dicyclic and special linear solutions of some
Hamilton-Waterloo problems’, co-authored with Marco Buratti and published in Ars
Mathematica Contemporanea 14 (2018), 1–14. This paper provides a solution for
each of the nine Hamilton-Waterloo problems with cycles of length three and four,
left open by Danziger, Quattrocchi and Stevens in their paper in 2009. Its value lies
not only in dealing with the missing cases, but also in the elegant approach taken, and
the novel techniques used. Solutions with high degree of symmetry are constructed
by taking appropriate groups of automorphisms with sharply vertex-transitive action
(which was not an easy task, as only one group for each case could be used). Si-
mona’s contribution was described by her co-author Marco Buratti as significant at
all stages, showing deep understanding and great skills.

• Dr Klavdija Kutnar (of the University of Primorska, Slovenia), for her contribu-
tions to the paper on ‘Odd automorphisms in vertex-transitive graphs’, co-authored
with Ademir Hujdurović and Dragan Marušič, and published in Ars Mathematica
Contemporanea 10 (2016), 427–437. This paper addresses the question of which
vertex-transitive graphs admit automorphisms that act as an odd permutation of the
vertices. It reports on work that was initiated by Klavdija Kutnar, and is the first paper
to consider such a question. The paper provides background motivation, makes some
very interesting observations, and poses open questions for further study. Klavdija’s
two co-authors attest that her contributions to the paper were of utmost importance,
and that she provided key ideas in solving various problems. Also the number of
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citations the paper has received on MathSciNet shows that it has opened up a new
line of study, attracting several other researchers in the field.

We heartily congratulate the two awardees.
Also we encourage nominations for the next Petra Šparl Award in 2022, as well as

submissions of high quality new papers that will be worthy of consideration for future
awards.

Marston Conder, Asia Ivić Weiss and Aleksander Malnič
Members of the 2020 Petra Šparl Award Committee
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Abstract

A finite graph is called a tricirculant if admits a cyclic group of automorphism which
has precisely three orbits on the vertex-set of the graph, all of equal size. We classify all
finite connected cubic vertex-transitive tricirculants. We show that except for some small
exceptions of order less than 54, each of these graphs is either a prism of order 6k with k
odd, a Möbius ladder, or it falls into one of two infinite families, each family containing
one graph for every order of the form 6k with k odd.

Keywords: Graph, cubic, semiregular automorphism, tricirculant, vertex-transitive.

Math. Subj. Class. (2020): 05E18, 05C25

1 Introduction
All graphs in this paper are finite. A connected graph Γ admitting a cyclic group of
automorphisms H having k orbits of vertices of equal size larger than 1 is called a k-
multicirculant and a generator of H is then called a k-multicirculant automorphism of Γ.
In particular, 1-, 2- and 3-multicirculants are generally called circulants, bicirculants and
tricirculants, respectively. A graph is called cubic if it is connected and regular of valence 3.
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program P1-0294 and the second listed author Young Researcher scholarship.
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A famous and longstanding polycirculant conjecture claims that every vertex-transitive
graph and digraph is a k-multicirculant for some k (see [3, 13, 14, 15]). It is particularly
interesting to study conditions under which vertex-transitive graphs admit k-multicirculant
automorphisms of large order (and thus relatively small k); see, for example, [2, 20]. On
the other hand, existence of a k-multicirculant automorphism with small k often restricts
the structure of a vertex-transitive graph to the extent that allows a complete classification.
There is a series of classification results about cubic arc-transitive k-multicirculant for k ≤
5 (see [7, 10]). In particular, cubic arc-transitive tricirculants where completely classified
in [10], where it was shown that only 4 such graphs exist: K3,3, the Pappus graph, Tutte’s
8-cage and a graph on 54 vertices. This work culminated in a beautiful paper [9], where it
was shown that for all square-free values of k coprime to 6 there exist only finitely many
cubic arc-transitive k-multicirculants.

In this paper we widen the focus to a much wider and structurally richer class of cubic
vertex-transitive graphs that are not necessarily arc-transitive. It is know that every cubic
vertex-transitive graph has a k-multicirculant automorphisms [16] and that no fixed k exists
such that every cubic vertex-transitive graph is a k-multicirculant [20]. As for the classifi-
cation results, it is clear that a cubic graph is a vertex-transitive 1-circulant if and only if it
is a cubic Cayley graph on a cyclic group. Furthermore, vertex-transitive cubic bicirculants
were classified in [17]. The goal of this paper is to provide a complete classification of
cubic vertex-transitive tricirculants.

The following theorem and remarks are a brief summary of the contents of this paper.

Theorem 1.1. A cubic graph Γ is a vertex-transitive tricirculant if and only if the order of
Γ is 6k for some positive integer k and one of the following holds:

1. k > 1, k is odd and Γ is isomorphic to one of the graphs X(k) or Y(k), described in
Section 4 (Definition 4.1) and Section 5 (Definition 5.1), respectively.

2. Γ is a prism and k is odd, or Γ is a Möbius ladder (defined in Section 6).

3. Γ is the truncated tetrahedron or Tutte’s 8-cage.

Remark 1.2. All Möbius ladders are circulants. A prism Pk is a circulant whenever k is
odd. Meanwhile X(k) and Y(k) are bicirculants if and only if k is odd and 3 - k. In this
case, X(k) is isomorphic to the generalized Petersen graph GP(3k, k+ (−1)α) while Y(k)
is isomorphic to the graph H(3k, 1, αk + 2), where α ∈ {1, 2} and α ≡ k (mod 3) (see
[17] for definitions pertaining to bicirculant graphs).

Remark 1.3. Y(k) can be embedded on the torus yielding the toroidal map {6, 3}α,3 where
α = 1

2 (k − 1) (see [5] for the definitions pertaining to the maps on the torus).

Remark 1.4. For k ≥ 7, the graphs X(k) and Y(k) have girth 8 and 6, respectively.
Meanwhile, prisms and Möbius ladders have girth 4. The graph X(k) is not bipartite for
any integer k, while Y(k) is bipartite for all odd k > 1.

Remark 1.5. There are exactly four cubic arc-transitive tricirculants: K3,3, the Pappus
graph, Tutte’s 8-cage and the graph with 54 vertices denoted F054A in [1]. All other cubic
vertex-transitive tricirculants have two edge orbits and their arc-type is 2 + 1 (see [4] for
details). There are no semi-symmetric cubic tricirculants.
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2 Diagrams
Even though this paper is about simple graphs, it will be convenient in the course of the
analysis to have a slightly more general definition, which allows the graphs to have loops,
parallel edges and semi-edges. To distinguish between a simple graph (which we will refer
to simply as a graph) and these more general objects, that we shall call pregraphs. In what
follows, we briefly introduce the concept of a pregraph and refer the reader to [11, 12] for
more detailed explanation.

A pregraph is an ordered 4-tuple (V,D; beg, inv) where D and V 6= ∅ are disjoint
finite sets of darts and vertices, respectively, beg : D → V is a mapping which assigns to
each dart x its initial vertex beg x, and inv : D → D is an involution which interchanges
every dart x with its inverse dart, also denoted by x−1. The neighbourhood of a vertex v is
defined as the set of darts that have v for its initial vertex and the valence of v is the cardi-
nality of the neighbourhood. Note that a simple graph Γ can be represented as a pregraph
by letting V = V(Γ) be the vertex-set of Γ, letting D = {(u, v) : u, v ∈ V(Γ), u ∼Γ v}
be the arc-set of Γ, and by letting beg(u, v) = u and inv(u, v) = (v, u). Notions such
as morphism, isomorphism and automorphism of pregraphs are obvious generalisations of
those for (simple) graphs and precise definitions can be found in [11, 12].

The orbits of inv are called edges. The edge containing a dart x is called a semi-edge
if inv x = x, a loop if inv x 6= x while beg (x−1) = beg x, and is called a link other-
wise. The endvertices of an edge are the initial vertices of the darts contained in the edge.
Two links are parallel if they have the same endvertices. When we present a pregraph as
a drawing, the links are drawn in the usual way as a line between the points representing
its endvertices, a loop is drawn as a closed curve at its unique endvertex and a semi-edge
is drawn as a segment attached to its unique endvertex. The following lemma, which will
serve as the starting point of our analysis of cubic tricirculants, is an easy exercise illustrat-
ing the definition of a pregraph.

Lemma 2.1. Up to isomorphism there are precisely four non-isomorphic cubic pregraphs
on three vertices such that no vertex is the initial vertex of more than one semi-edge, namely
the pregraphs ∆1,∆2,∆3 and ∆4 depicted in Figure 1.

Figure 1: Cubic pregraphs on three vertices without parallel semi-edges.

Given a pregraph Γ and a group H ≤ Aut(Γ) we define the quotient Γ/H to be the
pregraph (V ′, D′; beg′, inv′) where V ′ and D′ are the sets V(Γ)/H and D(Γ)/H of orbits
ofH on V andD, respectively, and beg′ and inv′ are defined by beg′(xH) = (beg x)H and
inv′(xH) = (inv x)H for every x ∈ D(Γ). The mapping ℘H : V(Γ) ∪ D(Γ) → V ′ ∪D′
that maps a vertex or a dart x to itsH-orbit xH is then an epimorphism of pregraphs, called
the quotient projection with respect to H . If H acts semiregularly on V(Γ) (that is, if the
vertex-stabiliser Hv is trivial for every vertex v ∈ V(Γ)), then the quotient projection ℘H
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is a regular covering projection and in particular, it preserves the valence of the vertices.
Moreover, in this case the graph Γ is isomorphic to the derived covering graph of Γ/H , a
notion which we now define.

Let Γ′ = (V ′, D′,beg′, inv′) be an arbitrary connected pregraph, let N be a group
and let ζ : D′ → N be a mapping (called a voltage assignment) satisfying the condition
ζ(x) = ζ(inv′ x)−1 for every x ∈ D′. Then Cov(Γ′, ζ) is the graph with D′ × N and
V ′×N as the sets of darts and vertices, respectively, and the functions beg and inv defined
by beg(x, a) = (beg′ x, a) and inv(x, a) = (inv′ x, aζ(x)). If, for a voltage assignment
ζ : D(Γ′)→ N , there exists a a spanning tree T in Γ′ such that ζ(x) is the trivial element of
N for every dart x in T , then we say that ζ is normalised; note that in this case Cov(Γ′, ζ) is
connected if and only if the images of ζ generate N . The following lemma is a well-known
fact in the theory of covers:

Lemma 2.2. Let H be a group of automorphisms acting semiregularly on the vertex-set of
a connected graph Γ, let Γ′ = Γ/H and let T be a spanning tree in Γ′. Then there exists
a voltage assignment ζ : D(Γ′)→ N which is normalised with respect to T and such that
Γ ∼= Cov(Γ′, ζ).

Let us now move our attention back to cubic tricirculants. Consider the voltage assign-
ments ζi : ∆i → Z2k given in Figure 2 where the value ζi(x) is written next to the drawing
of each dart x ∈ D(∆i).

Lemma 2.3. Let Γ be a cubic tricirculant, let ρ be a corresponding tricirculant automor-
phism and let n be the order of ρ. Then n = 2k for some positive integer k and there exist
elements r, s ∈ Zn and i ∈ {1, 2, 3, 4} such that Γ ∼= Cov(∆i, ζi) where ζi : D(∆i)→ Zn
is the voltage assignment defined by Figure 2.

Proof. Note first that the quotient Γ/〈ρ〉 is a pregraph with three vertices of valency 3,
one for each orbit under the action of 〈ρ〉. Since ρ is a semiregular automorphism of Γ of
order n, the group 〈ρ〉 is isomorphic to Zn and acts semiregularly on V(Γ). By Lemma 2.2,
Γ ∼= Cov(Γ/〈ρ〉, ζ) for some voltage assignment ζ : D(Γ/〈ρ〉,Zn). Note that by definition
of voltage assignments, it follows that ζ(x) = −ζ(x−1) for every x ∈ D(Γ/〈ρ〉), implying
that if x is a semi-edge, then ζ(x) is an element of order at most 2 in Zn, and since Γ has no
semi-edges, ζ(x) must in fact have order 2 in Zn. Since every pregraph with three vertices
in which every vertex has valence 3 contains at least one semi-edge, it follows that n = 2k
for some positive integer k, and moreover, ζ(x) = k for every semi-edge x of Γ/〈ρ〉. Since
Γ has no parallel edges, this also implies that every vertex of Γ/〈ρ〉 is the initial vertex of
at most one semi-edge. By Lemma 2.1, Γ/〈ρ〉 ∼= ∆i for some i ∈ {1, 2, 3, 4} and we may
thus assume that Γ ∼= Cov(∆i, ζi) for some i ∈ {1, 2, 3, 4} and some voltage assignment
ζi : ∆i → Zn. Finally, in view of Lemma 2.2, we may assume that ζi(x) = 0 for every
edge x belonging to a chosen spanning tree of ∆i. In particular, ζi can be chosen as shown
in Figure 2.

A cubic tricirculant isomorphic to Cov(∆i, ζi), i ∈ {1, 2, 3, 4}, is said to be of Type i
and is denoted by Ti(k, r, s), if i 6= 3, or T3(k, r). From Lemma 2.3 we get the following
characterization of connected cubic tricirculants.

Theorem 2.4. A cubic graph Γ is a tricirculant if and only if n = 6k and it is isomorphic
to Ti(k, r, s) or T3(k, r), for some i ∈ {1, 2, 4} and r, s ∈ Z2k. Furthermore, Ti(k, r, s)
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(∆1, ζ1) (∆2, ζ2)

(∆3, ζ3) (∆4, ζ4)

Figure 2: The voltage assignments giving rise to cubic tricirculants.

is connected if and only if gcd(2k, k, r, s) = 1 while T3(k, r) is connected if and only if
gcd(2k, k, r) = 1.

Note that in principle, a cubic tricirculant could be of more than one type. However,
each vertex-transitive cubic tricirculant is of Type i for exactly one i ∈ {1, 2, 3, 4}, with
the exception of the triangular prism P3 which is both of Type 1 as well as of Type 3.

The following sections are devoted to the analysis of the tricirculants graphs arising
from the voltage assignments ζi, and in particular, to determining sufficient and necessary
conditions for vertex-transitivity. We will consider the graphs of order at most 48 separately
in Section 3 and as for the graphs of larger order, we will show that no graph of Type 4
is vertex-transitive, that Type 3 yields prisms and Möbius ladders, and that Types 1 and 2
each yield one infinite family of vertex-transitive graphs, namely the graphs X(k) defined
in Definition 4.1 and the graphs Y(k) defined in Definition 5.1.

Finally, to facilitate discussion in the forthcoming sections, we specify the notion
of a walk. A walk ω in a (pre)graph is a sequence of darts (x1, x2, . . . , xn) such that
beg(xi+1) = beg(x−1

i ) for all i ∈ {1, . . . , n − 1}; that is, the initial vertex of xi+1 is the
end vertex of xi. We say that ω is closed if the initial vertex of x1 is the endvertex of xn. If
additionally beg(xi) 6= beg(xj) for all i 6= j, then we say that ω is a cycle. We define the
inverse of ω as the walk ω−1 = (x−1

n , x−1
n−1, . . . , x

−1
1 ). We say that a walk ω is a reduced

walk if no two consecutive arcs are inverse to one another (if ω is closed, we will consider
the first arc and the last arc of ω to be consecutive). It is pertinent to point out that, from
this definition, all walks and cycles are directed and have an initial vertex. Therefore, no
reduced walk is equal to its inverse.
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3 Graphs of small order
To make this classification as general and as neat as possible, we will treat cubic tricirculant
graphs of small order separately, as if we allow graphs that are “too small”, special cases
and exceptions will inevitably occur. Since a cubic tricirculant must have order 6k, for
some positive k, we present, in Table 1, the complete list of all cubic vertex-transitive
tricirculants of order at most 48 obtained from the census [18] of cubic vertex-transitive
graphs. Notice that with the exception of the truncated tetrahedron, Tr(K4), of order 12
and Tutte’s 8-cage, T8, of order 30 (see Figure 3), all vertex-transitive cubic tricirculants
of order at most 48 are isomorphic to either X(k), Y(k), Pk (the prism of order 2k) or Mk

(the Möbius ladder of order 2k) for some integer k.

Table 1: Graphs of small order.

Order Type Graph Order Type Graph Order Type Graph
6 1, 3 P3 18 3 M9 36 3 M18

6 3 M3 24 3 M12 42 1 X(7)
12 1 Tr(K4) 30 1 X(5) 42 2 Y(7)
12 3 M6 30 2 Y(5) 42 3 P21

18 1 X(3) 30 3 P15 42 3 M21

18 2 Y(3) 30 3 M15 48 3 M24

18 3 P9 30 4 T8

Figure 3: The truncated tetrahedron Tr(K4) and Tutte’s 8-cage.

The graphs K3,3, Y(3) (the Pappus graph) and Tutte’s 8-cage are arc-transitive. The
fourth arc-transitive cubic tricirculant, denoted F054A in [1], does not appear in Table 1,
as it has 54 vertices; it corresponds to the graph Y(9) defined in Section 5. The four afore-
mentioned graphs are the only edge-transitive cubic tricirculants. Indeed, a cubic graph
that is both vertex- and edge-transitive is automatically arc-transitive [22]. A graph that is
edge-transitive but not vertex-transitive is called a semi-symmetric graph, and must have
two orbits of vertices under its full automorphism group [6]. It follows that no tricirculant
can be semi-symmetric, as its tricirculant automorphism would mix the two vertex orbits,
making the graph vertex-transitive.

For the remainder of this paper, all cubic tricirculants will have order at least 54.
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4 Type 1

Let k ≥ 9 be an integer, and let r and s be two distinct elements of Z2k. Recall that
T1(k, r, s) is the covering graph arising from (∆1, ζ1) shown in Figure 2; for convenience,
we repeat the drawing here (see Figure 4).

Figure 4: The voltage assignment giving rise to the graph T1(k, r, s).

By the definition of a derived cover, the vertices of T1(k, r, s) are then the pairs (x, i)
where x ∈ {u, v, w} is a vertex of ∆1 and i ∈ Z2k. Note that T1(k, r, s) is connected if
and only if k, r and s generate Z2k, that is, if and only if gcd(k, r, s) = 1.

To simplify notation, we write ui instead of (u, i) and similarly for vi and wi. Then
U = {u0, u1, . . . , u2k−1}, V = {v0, v1, . . . , v2k−1} and W = {w0, w1, . . . , w2k−1} are
the respective fibres of vertices u, v and w, and the edge-set of T1(k, r, s) is then the union
of the sets

EK = {uiui+k : i ∈ Z2k},
E0 = {uivi : i ∈ Z2k} ∪ {uiwi : i ∈ Z2k},
ER = {viwi+r : i ∈ Z2k},
ES = {viwi+s : i ∈ Z2k}.

Definition 4.1. For an odd integer k > 1, let

r∗ =

{
k+3

2 , if k ≡ 1 (mod 4)
k+3

2 + k, if k ≡ 3 (mod 4)

and let X(k) = T1(k, r∗, 1).

We can now state the main theorem of this section.

Theorem 4.2. Let k ≥ 9 and let Γ be a connected cubic tricirculant of Type 1 with 6k
vertices. Then the following holds:

(1) Γ is vertex-transitive if and only if it is isomorphic to X(k) with k odd.

(2) If Γ is not vertex-transitive, then it has two vertex orbits under its full automorphism
group, one twice the size of the other.

The next theorem gives more information about the graph X(k).

Theorem 4.3. Let k be an odd integer, k > 1. Then the following holds:
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(1) X(k) is a bicirculant if and only if 3 - k, in which case it is isomorphic to the gener-
alized Petersen graph GP(3k, k + (−1)α) where α ∈ {1, 2} and α ≡ k (mod 3).

(2) X(k) has arc-type 2 + 1.

The rest of the section is devoted to the proof of Theorems 4.2 and 4.3. Clearly, as
a tricirculant of Type 1, Γ is isomorphic to T1(k, r, s) for some integer k and elements
r, s ∈ Z2k (see Lemma 2.3). We shall henceforth assume that Γ = T1(k, r, s) for some
k ≥ 9 and that Γ is connected. For a symbol X from the set of symbols {0, R, S,K},
edges in EX will be called edges of type X , or simply X-edges.

Define ρ as the permutation given by ρ(ui) = ui+1, ρ(vi) = vi+1 and ρ(wi) = wi+1,
and note that ρ is a tricirculant automorphism of T1(k, r, s). Further, observe that

T1(k, r, s) ∼= T1(k, s, r), (4.1)

and if a ∈ Z is such that gcd(2k, a) = 1, then

T1(k, ar, as) ∼= T1(k, r, s).

Lemma 4.4. Let k be an odd integer, k > 1, and let r∗ and X(k) be as in Definition 4.1.
Then the graph X(k) is vertex-transitive.

Proof. Recall that X(k) ∼= T1(k, r∗, 1). Define φ as the mapping given by:

ui 7→ wi−r∗+2, wi 7→ vi−2r∗+2, vi 7→ ui−r∗+2 if i is even;
ui 7→ vi+r∗−2, vi 7→ wi+2r∗−2, wi 7→ ui+r∗−2 if i is odd.

That φ is indeed an automorphism follows from the fact that k is odd, r∗ is even and
the congruence k + 3 − 2r∗ ≡ 0 holds. Since φ transitively permutes the three 〈ρ〉-orbits
U , V and W , the group 〈ρ, φ〉 acts transitively on the vertices of T1(k, r∗, 1).

Lemma 4.5. For k > 1, X(k) has arc-type 2 + 1.

Proof. Let G be the full automorphism group of X(k) and consider the automorphism ϕ
interchanging ui with u−i and vi with w−i, i ∈ Z2k. Note that ϕ is an element of Gu0 ,
the stabiliser of u0. Moreover, ϕ fixes uk but interchanges v0 with w0. This is, ϕ fixes
one of the neighbours of u0 while interchanging the remaining two. This implies that the
arc-type of X(k) is either 3, when X(k) is arc-transitive, or 2 + 1. However, there are no
arc-transitive graphs of Type 1. The result follows.

Remark 4.6. The automorphism given in the proof above is an automorphism of Γ ∼=
T1(k, r, s), from which we see that if Γ is not vertex-transitive, then V ∪ W is a vertex
orbit under its full automorphism group Aut(Γ). Then Γ must have two vertex orbits: U
and V ∪W . This shows that item (2) of Theorem 4.2 holds.

Now, recall that Γ is connected and equals T1(k, r, s), for some k ≥ 9, r, s ∈ Z2k.
We may also assume that Γ is vertex-transitive, however, for some of the results in this
section vertex-transitivity is not needed. When possible, we will not assume the graph to
be vertex-transitive, but rather only to have some weaker form of symmetry, that we will
define in the following paragraphs.
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A simple graph Γ is said to be c-vertex-regular, for some c ≥ 3, if there are the same
number of c-cycles through every vertex of Γ.

For an edge e of Γ and a positive integer c denote by εc(e) the number of c-cycles that
pass through e. For a vertex v of Γ, let {e1, e2, e3} be the set of edges incident to v ordered
in such a way that εc(e1) ≤ εc(e2) ≤ εc(e3). The triplet (εc(e1), εc(e2), εc(e3)) is then
called the c-signature of v. If for c ≥ 3 all vertices in Γ have the same c-signature, then
we say Γ is c-cycle-regular and the signature of Γ is the signature of any of its vertices.
Note that for every c ≥ 3, a vertex-transitive graph is necessarily c-cycle-regular, and every
c-cycle-regular graph is c-vertex-regular.

If c equals the girth of the graph, then following [19], a c-cycle-regular graph will be
called girth-regular.

Lemma 4.7. If Γ is 4-vertex-regular, then neither r nor s equals k.

Proof. Suppose r = k. Since Γ has no parallel edges, we see that s 6= k. Observe that
(u0, v0, wr, ur) and (u0, w0, v−r, u−r) are the only 4 cycles of Γ through u0.

Meanwhile, there exists a unique 4-cycle through v0, namely (v0, wr, ur, u0), which
contradicts Γ being 4-vertex-regular. Hence r 6= k, and since T1(k, s, r) ∼= T1(k, r, s) (see
Equation (4.1)), this also shows that s 6= k.

For the sake of simplicity denote a dart in ∆1 starting at vertex a, pointing to ver-
tex b and having voltage x by (ab)x. Recall that a walk in ∆1 is a sequence of darts
(x1, x2, . . . , xn), for instance ((vw)r, (wu)0, (uu)k) is a walk of length 3. However, since
Γ is a simple graph a walk in Γ will be denoted as a sequence of vertices, as it is normally
done.

Lemma 4.8. If Γ is 8-cycle-regular, then neither r nor s equals 0.

Proof. Suppose r = 0. Since Γ has no parallel edges, we see that s 6= 0. Suppose there is
an 8-cycle C in Γ. Such a cycle, when projected to ∆1, yields a reduced closed walk ω in
∆1 whose ζ1-voltage is 0. Note that ω cannot trace three darts with voltage 0 consecutively,
as this would lift into a 3-cycle contained in C. This implies ω necessarily visits the dart
(vw)s or its inverse at least once. Furthermore, since gcd(k, s) = 1 and 8 < 9 ≤ k,
ω must trace (wv)−s as many times as it does (vw)s. By observing Figure 4, the reader
can see that if ω traces the dart (vw)s, then it must also trace the semi-edge (uu)k before
tracing (wv)−s, as ω cannot trace three consecutive darts with voltage 0. Since ω has net
voltage 0, it necessarily traces (uu)k an even number of times. Moreover, ω must trace
a dart in {(uv)0, (vu)0, (uw)0, (wu)0} immediately before and immediately after tracing
(uu)k. Hence, ω must visit the set {(vw)s, (wv)−s} at least twice; the semi-edge (uu)k
at least twice; and the set {(uv)0, (vu)0, (uw)0, (wu)0} at least 4 times. This already
amounts to 8 darts, none of which is (vw)r or its inverse. Therefore, no 8-cycle in Γ visits
an R-edge. However, for X 6= R there is at least one 8-cycle through every X-edge,
as (u0, v0, ws, us, us+k, ws+k, vk, uk) and (u0, w0, v−s, u−s, uk−s, vk−s, wk, uk) are 8-
cycles in Γ. This contradicts our hypothesis of Γ being 8-cycle-regular. The proof when
s = 0 is analogous.

Now, observe that (u0, uk, vk, wk+r, uk+r, ur, wr, v0, u0) is a cycle of length 8 in Γ
starting at u0. In what follows we will study the 8-cycle structure of Γ to determine condi-
tions for vertex-transitivity. Recall that each 8-cycle in Γ quotients down into a closed walk
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of length 8 having net voltage 0 in ∆1. We can thus, provided we are careful, determine
how many 8-cycles pass through any given vertex of Γ by counting closed walks of length
8 and net voltage 0 in the quotient ∆1. Note that only closed walks that are reduced will
lift into cycles of Γ. Therefore, we may safely ignore non-reduced walks and focus our
attention exclusively on reduced ones. DefineW8 as the set of all reduced closed walks of
length 8 in ∆1.

Every element ofW8 having net voltage 0 lifts into a closed walk of length 8 in Γ. In
principle, the latter walk might not be a cycle of Γ. However, we will show that this never
happens in our particular case. For this, it suffices to show that Γ does not admit cycles of
length 4 or smaller, as any closed walk of length 8 that is not a cycle is a union of smaller
cycles, one of which will have length smaller or equal to 4.

Lemma 4.9. Γ has girth at least 5.

Proof. Suppose Γ has a 3-cycle. Since Γ is vertex-transitive, this would mean that there is
a reduced closed walk with net voltage 0 of length 3 in ∆1 that visits u. From Figure 4 we
get that such a closed walk must be either ((uv)0, (vw)r, (wu)0), ((uv)0, (vw)s, (wu)0)
or one of their inverses. This would imply that either r = 0 or s = 0, a contradiction.
Similarly, the existence of 4-cycles in Γ would imply there is a closed walk with net voltage
0 of length 4 visiting u. The only such walks are

((uv)0, (vw)r, (wu)0, (uu)k)), ((uu)k, (uv)0, (vw)r, (wu)0),

((uv)0, (vw)s, (wu)0, (uu)k)), ((uv)0, (vw)s, (wu)0, (uu)k))

and their inverses. In all eight cases, we have that r = k or s = k, contradicting Lemma 4.7.

Now, let N be the set of the net voltages of walks inW8, expressed as linear combina-
tions of k, r and s, where we view r and s as indeterminants over Z2k. For instance, the
closed walk ((uv)0, (vw)r, (wv)−s, (vw)r, (wu)0, (uv)0, (vw)r, (wu)0) has net voltage
3r − s. For an element ν ∈ N , letW(ν) be the set of walks inW with net voltage ν and
for a vertex x of ∆1, letWx

8 (ν) be the set of walks inW(ν) starting at x.
For each ν ∈ N , we have computed the number of elements inWu

8 (ν) and inWv
8 (ν).

The result is displayed in Table 2. Notice that, if ω ∈ W8(ν), then ω−1 ∈ Wx
8 (−ν).

This means ω has voltage 0 if and only if ω−1 does too. For this reason, and since we are
interested in walks with net voltage 0, we have grouped walks with net voltage ν along with
their inverses having net voltage −ν. This computation is straightforward but somewhat
lengthy. For this reason and to avoid human error, we have done it with the help of a
computer programme written in SageMath [21].

From the first Row of Table 2 we know that there are always 12 walks starting at u in
W8 that have net voltage 0, regardless of the values of r and s. Similarly, there are always
10 such walks starting at v. Since Γ is vertex-transitive, the number of walks inW8 having
net voltage 0 (after evaluating r and s in Z2k) starting at u and those starting at v must be
the same. It follows that, for some ν ∈ N with |Wv

8 (ν)| > |Wu
8 (ν)|, the equation ν ≡ 0

(mod 2k) holds when we evaluate r and s in Z2k. We thus see that at least one expression
in VIII – XIII is congruent to 0 modulo 2k. In fact, if Γ is vertex-transitive, then at most
one of these expressions can be congruent to 0.
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Table 2: Net voltages of closed walks of length 8 in ∆1.

Label Net voltage Starting at u Starting at v
I 0 12 10
II ±(2r) 8 8
III ±(2s) 8 8
IV ±(r + s) 8 4
V ±(r − s) 8 4
VI ±(k + 2r − s) 12 10
VII ±(k + 2s− r) 12 10
VIII ±(k + 3r − 2s) 4 6
IX ±(k + 3s− 2r) 4 6
X ±(3r − s) 4 6
XI ±(3s− r) 4 6
XII ±(2r − 2s) 4 6
XIII ±(4r − 4s) 0 2

Lemma 4.10. If Γ is 4-vertex-regular and 8-cycle-regular, then exactly one of the following
equations modulo 2k holds:

3s− 2r + k ≡ 0, (4.2)
3r − 2s+ k ≡ 0, (4.3)

3r − s ≡ 0, (4.4)
3s− r ≡ 0, (4.5)

4r − 4s ≡ 0. (4.6)

Proof. We will slightly abuse notation and, for a label x ∈ {I, II, . . . ,XIII}, we will refer
by x to the congruence equation modulo 2k obtained by making the expression labelled x
in Table 2 congruent to 0. For instance, the equation 2r ≡ 0 will be referred to as II.

First note that if II or III holds then r = k or s = k, contradicting Lemma 4.7. If
V holds then (v0, wr, v0) is a 2-cycle in Γ, which is not possible. Similarly, XII implies
the existence of a 4-cycle in Γ, contradicting Lemma 4.9. Now, if XIII holds, then either
2r − 2s ≡ 0, which is not possible, or 2r − 2s+ k ≡ 0, which gives Equation (4.6).

If VI holds, then neither X nor XI can hold as this would imply 2r−2s ≡ 0 (subtracting
IV from X or from XI, respectively). Therefore, IV excludes X and XI. If IV and I are the
only equations to hold, we would have 6 more elements of W8 through u than through
v. This means that if IV holds then necessarily VII, IX and XII also hold. However, XII
implies 2r− 2s+ k ≡ 0 and subtracting this from VIII we get r = 0, in contradiction with
Lemma 4.8. Hence, VII, IX and XII cannot all hold at the same time and so IV can never
hold.

Suppose VI holds, then one of the equations in {VIII, IX,X,XI,XIII} must also hold.
Note that VI and VIII imply III; VI and IX imply V; VI and X imply r = k; VI and XIII
imply s = k. Therefore, by Lemma 4.7, only XI can hold. But VI and XI imply VII, and
so we would have 40 elements of W8 starting at u but only 36 starting at v. This would
contradict Γ being 8-cycle-regular. Thus VI cannot hold. An analogous reasoning, where
the roles of r and s are interchanged, shows that VII cannot hold. We have shown that



12 Ars Math. Contemp. 18 (2020) 1–31

the only equations that can hold are in {VIII, IX,X,XI,XIII}. However, if two or more of
these equations hold, then we would have more elements ofW8 through v than we would
have through u. It follows that exactly one equation in {VIII, IX,X,XI,XIII} holds.

Lemma 4.10 tells us, for each of the 5 possible equations, exactly which walks inW8

will lift to 8-cycles and so we can count exactly how many 8-cycles pass through a given
vertex or edge of Γ. For instance, if 3s − 2r + k ≡ 0, then there are 16 walks in W8

through u that will lift to an 8-cycle (see Table 2). Since a closed walk in W8 and its
inverse lift to the same cycle in Γ, we see that there are 8 cycles of length 8 through every
vertex in Γ. Moreover, there are exactly 5 cycles of length 8 through every edge of type R
or 0 while there are 6 such cycles through each edge of type K or S. It follows that the
8-signature of a vertex x of Γ is (5, 5, 6) whenever 3s−2r+k ≡ 0 and thus, in this case, Γ
is 8-cycle-regular with 8-signature (5, 5, 6). Table 3 shows the number of 8-cycles through
each vertex and through each edge, depending on its type, for each of the 5 cases described
in Lemma 4.10.

Table 3: Number of 8-cycles through each edge-type of T1(k, r, s).

Congruence 0 -edge R-edge S-edge K-edge 8-signature
3s− 2r + k 5 5 6 6 (5, 5, 6)
3r − rs+ k 5 6 5 6 (5, 5, 6)

3r − s 6 6 4 4 (4, 6, 6)
3s− r 6 4 6 4 (4, 6, 6)
4r − 4s 4 4 4 4 (4, 4, 4)

We will now show that Equations (4.4), (4.5) and (4.6) cannot hold when Γ is vertex-
transitive. This will be proved in Lemmas 4.12, 4.13 and 4.14. But first we need to show a
result about the subgraph induced by the 0 - and R-edges.

Recall that that Γ = T1(k, r, s) with k ≥ 9 and that it is connected. Henceforth we also
assume that Γ is vertex-transitive. Denote by Γ0 ,R the subgraph that results from deleting
the edges of type S and K from Γ. Equivalently, Γ0 ,R is the subgraph induced by 0 - and
R-edges. We see that Γ0 ,R is 2-valent and that it has gcd(2k, r) connected components,
each of which is a cycle of length 6k/ gcd(2k, r).

Since Γ0 ,R only has edges of type 0 and R, any two vertices in the same connected
components must have indices that differ in a multiple of r. It is not hard to see that,
indeed, each connected component consist precisely of all those vertices whose indices are
congruent modulo gcd(2k, r). We now prove an auxiliary result that will be used both in
the case where Equation (4.4) as well as in the case where Equation (4.2) or Equation (4.3)
holds.

Suppose that no automorphism of Γ maps an S-edge to a 0 -edge. Since Γ is vertex-
transitive, there is an automorphism that maps a vertex from V to a vertex in U . Such
an automorphism then maps an S-edge to a K-edge. Since all S-edges as well as all the
K-edges are in the same orbit, this then implies that ES ∪ EK forms a single edge-orbit
of Aut(Γ).

Lemma 4.11. Suppose that no automorphism of Γ maps an S-edge to a 0 -edge, then
Γ0 ,R is disconnected, and the set of connected components induce a block system for the
vertex-set of Γ.
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Proof. By the discussion above the lemma, ES ∪EK forms a single edge-orbit in Γ. Now
note that Aut(Γ) also acts as a group of automorphism on Γ0 ,R and that this action is
transitive, since the edges removed consist of an edge-orbit of Γ. It follows that connected
components of Γ0 ,R form a block system for the vertex set of Γ. Now, suppose Γ0 ,R

consists of a single cycle of length 6k, (w0, u0, v0, wr, ur, vr, . . . , v(2k−1)r). Notice that
the vertex antipodal to u0 in this cycle is ukr which is the same as uk, as r is odd. We see
that edges of type K in Γ join vertices that are antipodal in Γ0 ,R, while S-edges do not.
Since this 6k-cycle is a block of imprimitivity, K-edges can only be mapped into K-edges
and thus U is an orbit of Aut(Γ), contradicting the assumption that Γ is vertex-transitive.
Hence, Γ0 ,R is disconnected.

Lemma 4.12. If 3r − s ≡ 0 (mod 2k), k ≥ 9, then T1(k, r, s) is not vertex-transitive.

Proof. Let Γ = T1(k, r, s) where 3r − s ≡ 0 (mod 2k). A computer assisted counting
shows that S-edges and K-edge have exactly 4 distinct 8-cycles passing through them,
while 0 - and R-edges have 6 such cycles (see Table 3). It follows that any automorphism
sending a vertex u ∈ U to a vertex v ∈ V must necessarily map the K-edge incident to
u into the S-edge incident to v. Thus ES ∪ EK is an orbit of edges under the action of
Aut(Γ).

Since we are assuming that 3r − s ≡ 0 we get that any number dividing k and r must
also divide s, but since gcd(k, r, s) = 1, we have that gcd(k, r) = 1 and then gcd(2k, r) ∈
{1, 2}. In light of Lemma 4.11, Γ0 ,R is disconnected, implying gcd(2k, r) 6= 1 and there-
fore gcd(2k, r) = 2. From the congruence 3r − s ≡ 0 we also get that r and s must have
the same parity thus making s even and k odd. Recall that each connected component of
Γ0 ,R consists of all the vertices whose indices are congruent modulo gcd(2k, r), so Γ0 ,R

has two connected components: one containing all the vertices with even index, and the
other containing those with odd index. Since s is even and k is odd, S-edges in Γ join
vertices with same parity, while K-edges join vertices with distinct parity. We know that
each of the two connected components of Γ0 ,R is a block of imprimitivity of Γ, an so any
automorphism of Γ must either preserve the parity of all indices, or of none at all. It follows
that no automorphism can send S-edges into K-edges, and therefore no automorphism can
send a vertex in V to a vertex in U . We conclude Γ cannot be vertex-transitive.

Lemma 4.13. If 3s− r ≡ 0 (mod 2k), k ≥ 9, then T1(k, r, s) is not vertex-transitive.

Proof. Set Γ = T1(k, r, s) and Γ′ = T1(k, r′, s′), where r′ = s and s′ = r. Notice that
the triplet (k, r′, s′) satisfies Equation (4.4) and so, by Lemma 4.12, Γ′ cannot be vertex-
transitive. By observation (4.1), Γ ∼= Γ′. Therefore Γ is not vertex-transitive.

Lemma 4.14. If 4r − 4s ≡ 0 (mod 2k), k ≥ 9, then T1(k, r, s) is not vertex-transitive.

Proof. Let Γ = T1(k, r, s), with 4r − 4s ≡ 0 (mod 2k) and k ≥ 9. From the congruence
4r− 4s ≡ 0, we see that either 2r− 2s ≡ 0 or 2r− 2s+ k ≡ 0, but the former contradicts
Lemma 4.9. Hence 2r − 2s + k ≡ 0 and the closed walk ((uv)0, (vw)r, (wv)−s, (vw)r,
(wv)−s, (vu)0, (uu)k) in ∆1 lifts to a 7-cycle in Γ. We will show that Γ cannot be 7-
vertex-regular. Following a similar procedure as the one used to obtain Table 2, we have
counted all closed walks of length 7 in ∆1 starting at u and those starting at v, and we have
computed their net voltage. The result is displayed in Table 4.

It is plain to see that if, in addition to I, any one of the voltages in Rows III – VI is
congruent to 0, then either r = 0, r = k, s = 0 or s = k, contradicting Lemmas 4.7 or 4.8.
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Table 4: Net voltages of closed walks of length 7 in ∆1.

Label Net voltage Starting at u Starting at v
I ±(k + 2r − 2s) 8 10
II ±(k + r + s) 12 8
III ±(k + 2r) 6 4
IV ±(k + 2s) 6 4
V ±(3r − 2s) 2 6
VI ±(3s− 2r) 2 6

We see that only the voltages in Row I or II can hold, and thus Γ is not 7-vertex-regular and
hence cannot be vertex-transitive.

In what follow we deal with the case where Equation (4.2) holds, that is, when 3s −
2r + k ≡ 0 (mod 2k) and k ≥ 9. From Table 3 we see that S-edges and K-edge have
exactly 6 distinct 8-cycles passing through them, while 0 - and R-edges have only 5. In
particular, no automorphism of Γ maps an S-edge to a 0 -edge, implying that ES ∪ EK is
an edge-orbit of Γ (see the discussion above Lemma 4.11).

Lemma 4.15. Suppose that 3s−2r+k ≡ 0 (mod 2k), k ≥ 9. If e is an edge inEK∪ES ,
then the endpoints of e belong to different connected components of Γ0 ,R.

Proof. Suppose a K-edge e has both of its endpoints in the same connected component,
C, of Γ0 ,R. Then, because Γ is vertex-transitive and C is a block of imprimitivity, both
of the endpoints of any K-edge must belong to the same connected component of Γ0 ,R.
This means that the subgraph induced by 0 -edges, R-edges and K-edges is disconnected.
Recall that K-edges and S-edges belong to a single edge-orbit in Γ and thus, for every
S-edge, e′, there exists φ ∈ Aut(Γ) such φ(e) = e′. Since φ also acts as an automorphism
on Γ0 ,R, it follows that the endpoints of φ(e) are contained in the component φ(C), thus
making Γ a disconnected graph, which is a contradiction.

Lemma 4.16. Suppose that 3s− 2r + k ≡ 0 (mod 2k), k ≥ 9. Then the subgraph Γ0 ,R

has an even number of connected components.

Proof. Let e be a K-edge whose endpoints are in two different connected components C1

and C2. Let ρr ∈ Aut(Γ) be an “r-fold” rotation. That is, ρr adds r to the index of every
vertex. It is plain to see that ρr fixes the connected components of Γ0 ,R set-wise and that
it send K-edges into K-edges. Moreover, since it is transitive on U ∩ C1, we have that
all K-edges having an endpoint in C1 will have the other endpoint in C2. Hence K-edges
“pair up” connected components of Γ0 ,R. The result follows.

Proposition 4.17. If T1(k, r, s) is connected and vertex-transitive, then the following state-
ments (or the analogous three statements obtained by interchagning r and s) hold:

(1) 3s− 2r + k ≡ 0 (mod 2k)

(2) k and s are odd and gcd(k, s) = 1

(3) r is even and gcd(k, r) = {1, 3}.
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Proof. First, note that item (1) follows from the combination of Lemma 4.10 and Lem-
mas 4.12, 4.13 and 4.14.

We will continue by proving (3). Set d = gcd(k, r), so that r = dr′ and k = dk′ for
some integers k′ and r′. Since 3s − 2r + k ≡ 0 (mod 2k), we see that, for some odd
integer a:

3s = d(ak′ + 2r′).

By connectedness, gcd(k, r, s) = 1, and hence gcd(d, s) = 1 implying that d divides
3. Hence d = gcd(k, r) ∈ {1, 3}. Moreover, since Γ0 ,R has gcd(2k, r) connected compo-
nents and this number must be even by Lemma 4.16, we see that gcd(2k, r) ∈ {2, 6}, and
therefore r is even.

Now, from the congruence 3s − 2r + k ≡ 0 (mod 2k) we see that s and k are either
both even, or both odd. Since gcd(2k, r, s) = 1 and r is even, s must necessarily be odd
and then k is also odd. Set d′ := gcd(k, s) so that s = d′s′ and k = d′k′ for some integers
s′ and k′. Again, from Equation (4.2) we obtain

2r = d′(ak′ + 3s′)

for some odd integer a. Thus d′ ∈ {1, 2}, but since s is odd, we see that gcd(k, s) = 1.
This proves item (2) and completes the proof.

Remark 4.18. Conditions (1) – (3) (or their analogues) in Proposition 4.17 are also suf-
ficient to prove vertex-transitivity of a connected graph T1(k, r, s). This will be shown
after the proof on Lemma 4.20. Moreover, observe that if k and s satisfy condition (2) of
Lemma 4.17, then gcd(2k, 1) = 1 and T1(k, r, s) is isomorphic to T1(k, rs−1, 1) where
s−1 is the multiplicative inverse of s in Z2k. Hence, in what follows we may assume that
s = 1.

Lemma 4.19. Let k be an odd number and set s = 1. There exists a unique element
r ∈ Z2k such that conditions (1) and (3) of Proposition 4.17 are satisfied. This unique r
equals r∗ from Definition 4.1.

Proof. Suppose that such r exists. From condition (1) of Lemma 4.19, we get r = (3 −
ak)/2 for some odd integer a. Since r must be a positive integer smaller than 2k, it follows
that a ∈ {−1,−3}. Hence (3 + k)/2 and (3 + 3k)/2 = (3 + k)/2 + k are the only
possible candidates for r. Since k is odd, the integers (3 + k)/2 and (3 + k)/2 + k have
different parity. Set r to be whichever one of these two expressions is even. Note that any
odd number that divides both r and k must divide 3 and that this is true whether r equals
(3 + k)/2 or (3 + k)/2 + k. Thus condition (3) of Lemma 4.19 is satisfied and r equals r∗

from Definition 4.1.

We have just proved that once an odd k ≥ 9 is prescribed, then there is at most one
graph T1(k, r, 1) that is connected and vertex-transitive. The following lemma generalizes
this to an arbitrary value of s.

Lemma 4.20. Let k ≥ 9 be an odd integer and let T1(k, r, s) be vertex-transitive. Then
T1(k, r, s) ∼= X(k).

Proof. Recall that X(k) ∼= T1(k, r∗, 1), where r∗ is as in Definition 4.1. Since T1(k, r, s) is
connected and vertex-transitive, conditions (1) – (3) of Proposition 4.17 hold. In particular,
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s is relatively prime to 2k. Then we have T1(k, r, s) ∼= T1(k, s−1r, 1), where s−1 is
the multiplicative inverse of s in Z2k. It follows by Lemma 4.19 that T1(k, s−1r, 1) =
T1(k, r∗, 1).

Notice that in the previous proof vertex-transitivity is only used to ensure that the graph
T1(k, r, s) satisfies conditions (1) – (3) of Proposition 4.17, and from there T1(k, r, s) is
shown to be isomorphic to T1(k, r∗, 1). Since we know from Lemma 4.4 that T1(k, r∗, 1)
is vertex-transitive, we have that conditions (1) – (3) of Proposition 4.17 are not only nec-
essary, but also sufficient for vertex-transitivity, and thus Proposition 4.17 may be regarded
a characterization theorem.

Remark 4.21. For k ≥ 9, X(k) has girth 8. The proof of this fact is straightforward but
lengthy and for this reason we decide to omit it. Note as well that X(k) is not a bipartite
graph as every connected component of X(k)0,R is a cycle of odd length.

We have now completed the proof of Theorem 4.2. Item (1) follows from Lemmas 4.4
and 4.20 while item (2) follows from Remark 4.6. Now that we have a characterization
for vertex-transitivity, we would like to know when a cubic vertex-transitive tricirculant
of Type 1 is also a bicirculant. Note that the only cubic vertex-transitive circulants are
prisms and Möbius ladders, which have girth 4. It follows from Lemma 4.9 that no cubic
vertex-transitive tricirculant of Type 1 is a circulant.

Lemma 4.22. Let Γ = T1(k, r, s) be connected and vertex-transitive. If 3 - k, then Γ is a
bicirculant.

Proof. Let ϕ : V (Γ)→ V (Γ) be the mapping given by:

ui 7→ vi, vi 7→ wi+r, wi 7→ ui if i is even;

ui 7→ wi+k+s, vi 7→ ui+k+s, wi 7→ vi+k+s−r if i is odd.

It can be readily seen that ϕ is indeed a graph automorphism. Moreover, since r is even
and both k and s are odd, ϕ preserves the parity of the index of all vertices. In fact, it is
plain to see that ϕ is the product of the following two disjoint permutation cycles φ1 and
φ2 of length 3k:

φ0 = (u0, v0, wr, ur, vr, w2r, u2r, v2r, . . . , u(k−1)r, v(k−1)r, w0);

φ1 = (uk, ws, vk+2s−r, uk+r, wr+s, vk+2s, uk+2r . . . vk+2s+(k−2)r).

Hence, Γ is a bicirculant.

Lemma 4.23. If 3 | k, then X(k) is not a bicirculant.

Proof. Suppose X(k) admits a semiregular automorphism ϕ having two orbits, O1 and
O2 of size 3k. Following the notation in [17], X(k) must be isomorphic to H(3k, i, j),
I(3k, i, j) or F(3k, i) for some i, j ∈ N. Since X(k) is not bipartite, it cannot be isomorphic
to H(3k, i, j). Further, if X(k) ∼= F(3k, i) then each of its orbits under ϕ would admit a
matching, which is not possible because 3k is odd. Suppose X(k) ∼= I(3k, i, j) for some
i, j ∈ N. It is known that vertex-transitive I-graphs are generalized Petersen graphs and as
such, one of the two orbits, say O1, consists of a single cycle having, in this case, length
3k. Recall that the connected components of X(k)0 ,R are blocks of imprimitivity. Since
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gcd(2k, r) = 6, there are 6 such blocks, each of size k. It follows that no two adjacent
vertices of O1 are in the same block. On the other hand, it is plain to see that any 2-path
in X(k) has at least two vertices in the same block (see Figure 5). We conclude that X(k)
cannot be a bicirculant.

Figure 5: T1(9, 6, 1). Bold edges correspond to 0 - and R-edges.

Corollary 4.24. If T1(k, r, s) is vertex-transitive with 3 - k, then T1(k, r, s) ∼= GP(3k,
k + (−1)α) where α ∈ {1, 2} and α ≡ k (mod 3).

Proof. Let T1(k, r, s) be vertex-transitive and suppose k ≡ 1 (mod 3). Let ϕ = φ0φ1 be
the automorphism described in the proof of Lemma 4.22. We will show that uk is adjacent
to ϕ(k+1)(uk). Notice that ϕ(k+1)(uk) = vk+2s−r+ k−1

3 r, but k + 2s − r ≡ r − s so we

may write ϕ(k+1)(uk) = vr−s+ k−1
3 r. Recall that gcd(2k, 3) = 1 and r is even. From the

congruence k + 2r − 3s ≡ 0 we see that:

2r − 3s ≡ 3k,

3r − 3s+ r(k − 1) ≡ 3k,

r − s+ r(k − 1)/3 ≡ k.

So that ϕ(k+1)(uk) = vk, which is adjacent to uk. The case when k ≡ 2 (mod 3) can be
proved with the use of a similar argument.
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This completes the proof of Theorem 4.3. Item (1) follows from Lemma 4.22 and
Corollary 4.24, while item (2) is proved in Lemma 4.5.

5 Type 2

Let k ≥ 9 be an integer, and let r, s ∈ Z2k. Recall that T2(k, r, s) is the derived graph of
∆2 with the normalized voltage assignment for Z2k shown in Figure 6.

Figure 6: Type 2.

Then, with the same notation as in Section 4,

U = {u0, u1, . . . , u2k−1}, V = {v0, v1, . . . , v2k−1} and W = {w0, w1, . . . , w2k−1}

are the respective fibres of vertices u, v and w in ∆2. The set of edges of T2(k, r, s) can be
expressed as the union EK ∪ ER ∪ ES ∪ E0 where:

EK = {wiui+k : i ∈ Z2k},
E0 = {u0v0 : i ∈ Z2k} ∪ {u0w0 : i ∈ Z2k},
ER = {uiwi+r : i ∈ Z2k},
ES = {vivi+s : i ∈ Z2k}.

Similarly as with Type 1 cubic tricirculants, we see that every cubic tricirculant of Type 2
is isomorphic to T2(k, r, s) for an appropriate choice of k and r, s ∈ Z2k.

Definition 5.1. For an odd integer k > 1, let Y(k) = T2(k, 2, 1).

Theorem 5.2. Let k ≥ 9 and let Γ be a connected cubic tricirculant of Type 2 with 6k
vertices. Then the following holds:

1. Γ is vertex-transitive if and only if it is isomorphic to Y(k) for some odd integer k.

2. If Γ is not vertex-transitive, then it has three distinct vertex orbits under its full
automorphism group.

The next theorem gives more information about the graph Y(k).

Theorem 5.3. For an odd integer k > 1 the following holds:
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(1) Y(k) a bicirculant if and only if 3 - k, in which case it is isomorphic to the graph
H(6k, 1, αk + 2) where α ∈ {1, 2} and α ≡ k (mod 3) (see [17]).

(2) Y(k) is the underlying graph of the toroidal map {6, 3}α,3 where α = 1
2 (k − 3).

(3) Y(k) has arc-type 2 + 1.

We devote the remainder of this section to proving Theorems 5.2 and 5.3.

Remark 5.4. Note that T2(k, r, s) and T2(k, r,−s) are in fact the exact same graph. Then,
we can safely assume s < k.

Lemma 5.5. For an odd integer k > 1, Y(k) is vertex-transitive.

Proof. Since Y(k) = T2(k, r, s), it suffices to give an automorphism of T2(k, 2, 1) that
mixes the sets U , V and W . Let ϕ be the mapping given by:

ui 7→ vi+1, vi 7→ ui+1, wi 7→ vi if i is even;

ui 7→ wi+2+k, vi 7→ wi+2, wi 7→ ui+k if i is odd.

Now consider a vertex ui ∈ U with i even. Observe that ϕ maps ui to vi+1 and that the
neighbourhood N(ui) := {vi, wi, wi+2} is mapped to {ui+1, vi, vi+2}, which is precisely
the neighbourhood of v1+i. That is, ϕ maps the neighbourhood of any vertex ui into the
neighbourhood of its image, when i even. The reader can verify the remaining cases and
see that ϕ is indeed a graph automorphism.

Lemma 5.6. For an odd integer k > 9, Y(k) has arc-type 2 + 1.

Proof. Let G be the full automorphism group of Y(k), k > 9, and consider the automor-
phism ϕ interchanging wi with w−i, ui with u−i−2 and vi with v−i−2, i ∈ Z2k. Note that
ϕ ∈ Gw0

and that it fixes wk while interchanging u0 with u−2. Since no Y(k) with k > 9
is arc-transitive, it follows that its arc-type is 2 + 1.

For the rest of this section, let k ≥ 9 be an integer, let r, s ∈ Z2k and suppose Γ =
T2(k, r, s) is vertex-transitive. In what follows we will show that Γ is isomorphic to Y(k).
As with cubic tricirculants of Type 1, the strategy will be to count reduced closed walks
in the quotient ∆2. Observe that the walk ((wu)0, (uw)r, (ww)k, (wu)−r, (uw)0, (ww)k)
starting at w is a closed walk of length 6 having net voltage 0, regardless of what r and s
evaluate to in Z2k. As was done with graphs of Type 1, we computed all closed walks in
∆2 along with their net voltages. Again, it would be convenient if closed walks of length 6
with net voltage 0 always lift into 6-cycles. For this it suffices to show that the girth of Γ is
at least 4.

Lemma 5.7. Γ has no cycles of length 3.

Proof. Suppose to the contrary, that Γ contains a triangle T . By observing Figure 6 we
can see that all three vertices of T belong to V or they belong to U ∪ W . Since Γ is
vertex-transitive, there is at least one triangle through every vertex in W . We can thus
assume without loss of generality that all three vertices of T are in U ∪ W . This im-
plies that r = k and further, that there are 2 distinct triangles through every vertex in W :
the lifts of ((wu)0, (uw)r, (ww)k) and ((wu)−r, (uw)0, (ww)k). However, since the sub-
graph induced by V is 2-valent, there is at most one triangle through every vertex in V ,
contradicting the vertex-transitivity of Γ.
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Note that since Γ is simple, s 6= k and if r = k, Γ would contain a triangle. Thus the
following corollary holds.

Corollary 5.8. Neither r nor s equals k.

Now, letW6 be the set of all walks of length 6 in ∆2 and letN be the set of net voltages
of elements ofW6, expressed in terms of k, r and s. It follows from Lemma 5.7 that walks
inW6 with net voltage 0 will lift into 6-cycles, and not just closed walks. Table 5 shows,
for each element n of N , how many closed walks with net voltage n start at each vertex
of ∆2.

Table 5: Net voltages of closed walks of length 6 in ∆2.

Label Net voltage Starting at u Starting at v Starting at w
I 0 2 0 4
II ±(k − s) 8 8 8
III ±(k − r − s) 4 4 4
IV ±(k + r − s) 4 4 4
V ±(3r) 2 0 2
VI ±(2r) 2 0 4
VII ±(6s) 0 2 0
VII ±(r − 2s) 4 6 2
IX ±(r + 2s) 4 6 2

From Row I of Table 5 we see that there are at least 4 walks ω ∈ W6 starting at w.
Therefore, at least one expression from Rows II – IX must be congruent to 0 (mod 2k).
However, a careful inspection of Table 5 shows that if neither of the expressions in Rows
VIII and IX are congruent to 0 (mod 2k), then there are at least 2 more walks in W6

with net voltage 0 starting at w than there are those starting at v. This means that if Γ is
vertex-transitive, then one of the following two equations modulo 2k hold:

r ≡ 2s, (5.1)
r ≡ −2s

Suppose Equation (5.1) holds. By Remark 5.4 we can in fact write r = 2s. Then the
mapping φ : T2(k, 2s, s)→ T2(k,−2s,−s) given by xi 7→ x−i, for all x ∈ U ∪V ∪W , is
a graph isomorphism. But, again by Remark 5.4, T2(k,−2s,−s) = T2(k,−2s, s) so that
any graph T2(k, r, s) with r ≡ 2s is isomorphic to a graph T2(k, r′, s) satisfying r′ ≡ −2s.
We can therefore limit our analysis to the case when Equation (5.1) holds.

Let Γ = T2(k, r, s) be connected and vertex-transitive, and suppose r ≡ 2s. Note that
any number dividing both k and s must also divide r, and since by connectedness of Γ
gcd(k, r, s) = 1 we see that gcd(k, s) = 1 and gcd(2k, s) ∈ {1, 2}. We will show that
gcd(2k, s) cannot be 2.

Lemma 5.9. If Γ is vertex-transitive, gcd(2k, s) = 1 and gcd(2k, r) = 2.

Proof. In order to get a contradiction, suppose gcd(2k, s) = 2. Then s is even and k is
odd, as gcd(k, s) = 1. Furthermore, the 2-valent subgraph of Γ induced by the set V is
the union of two k-cycles. We will show that these are in fact the only two k-cycles in
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Γ which will imply that Γ cannot be vertex-transitive. Suppose there is a k-cycle C ′ that
visits a vertex not in V . Define Γ[U ∪W ] as the subgraph of Γ induced by the set U ∪W .
Since r is even and k is odd, it is not difficult to see that Γ[U ∪W ] is bipartite, with sets
{wi : i is even} ∪ {ui : i is odd} and {wi : i is odd} ∪ {ui : i is even}. Therefore no
k-cycle of Γ is contained in Γ[U ∪W ]. This means that C ′ visits at least one vertex in each
of sets U , V and W .

Now, C ′ projects onto a closed walk C in ∆2 that has net voltage 0. Define xS as the
number of times C traces the dart (vv)s minus the number of times it traces (vv)−s, so that
xSs is the total voltage contributed to C by darts in {(vv)±s}. Define xR similarly, and
define xK as the number of times C traces the semi-edge (ww)k. We obtain the following
congruence modulo 2k:

xRr + xSs+ xKk ≡ 0.

Recall that both r and s are even, making both xRr and xSs even. It follows that xKk is
even, but since k is odd, xK must be even, and hence xKk ≡ 0 (mod 2k). We thus have

xRr + xSs ≡ 0

and since r ≡ 2s (mod 2k),

xR2s+ xSs ≡ 0,

s(2xR + xS) ≡ 0.

From this, and because gcd(k, s) = 1, we see that 2xR + xS = 0 or 2xR + xS ≥ k. To
see that 2xR + xS cannot equal 0, define A as the set of darts in ∆2 with voltage 0 or r
and observe that C must visit A an even number of times. Since C has odd length, C visits
{(vv)±s} ∪ {(ww)k} an odd number of times. Then, since xK is even, xS must be odd.
But 2xR is even so 2xR + xS 6= 0. We thus have

2xR + xS ≥ k.

Now, notice that if C traces the dart (uw)r, then it must immediately trace a dart in
{(wu)0, (ww)k}. This means that C traces a dart in the subgraph of ∆2 induced by U ∪W
at least 2xR times. Then 2xR + xS < k, since C has length k and it must visit (vu)0 at
least once. We thus have k > 2xR + xS ≥ k, a contradiction. The result follows.

Lemma 5.10. If T2(k, r, s) is vertex-transitive, k is odd.

Proof. Suppose to the contrary that k is even. Since s is odd, we have sk ≡ k (mod 2k),
and thus s(2 · 1

2 )k ≡ k. But k is even, so we can rewrite that expression as 2s · k2 ≡ k.
Recall that r ≡ 2s and then r k2 ≡ k.

Now, consider the walk of length k + 1 in ∆2 that starts in w, traces the semi-edge
(ww)k once and then traces the 2-path ((wu)r, (uw)0) exactly k

2 times. Note that this
walk is closed and has net voltage k

2 r + k ≡ 0. Furthermore, it is easy to see that it lifts
into a (k + 1)-cycle in Γ and that it does not visit any vertex in V .

Since Γ is vertex-transitive, there must be a (k+ 1)-cycle C ′ through each vertex in V .
Note that the subgraph of Γ induced by V is a single 2k-cycle, and thus C ′ must visit all
three set U , V and W . It follows that C ′ projects into a walk C of length k + 1 having net
voltage 0 and that it visits all three vertices of ∆2. Furthermore, since k + 1 is odd, the
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number of times C visits {(vv)±s} must be of different parity than the number of times it
traces (ww)k. Define xS , xR and xK as in the proof of Lemma 4.16. Hence

xRr + xSs+ xKk ≡ 0.

Now, r and k are even, and so xRr and xKk are also even. It follows that xSs is even, but
since s is odd, sS is necessarily even. This means C visits {(vv)±s} an even number of
times. It follows that C traces (ww)k and odd number of times, that is, xK is odd. We thus
have

xRr + xSs+ k ≡ 0,

xRr + xSs ≡ k,

and since r ≡ 2s,
s(2xR + xS) ≡ k.

This implies 2xR + xS ≥ k, as s and k are relatively prime. However, 2xR + xR ≤
k − 1 since C has length k + 1 and C visits the set {(vu)0, (uv)0} at least twice. This
contradiction arises from the assumption that k is even. We conclude that k is odd.

Lemma 5.11. For an odd k > 9, if T2(k, r, s) is vertex-transitive then we have

T2(k, r, s) ∼= Y(k).

Proof. Let T2(k, r, s) be vertex-transitive. Then, by Lemmas 5.10 and 5.9 k is an odd
integer, gcd(2k, s) = 1 and r ≡ 2s. Denote by s−1 the multiplicative inverse of s in Z2k.
Now, define ϕ as the mapping between T2(k, 2, 1) and T2(k, r, s) given by xi 7→ xs−1i,
for x ∈ U ∪ V ∪ W . It is plain to see that ϕ is the desired isomorphism. Therefore
T2(k, r, s) ∼= T2(k, 2, 1) = Y(k).

This, together with Lemma 5.5, proves the first claim of Theorem 5.2. We now proceed
to show that a tricirculant of Type 2 that is not vertex-transitive must have 3 distinct orbits
on vertices.

Lemma 5.12. Let Γ be a tricirculant of Type 2. If Γ is not vertex-transitive, then it has 3
distinct vertex orbits.

Proof. We will slightly abuse notation and say Γ = T2(k, r, s) for some k ∈ Z and r, s ∈
Z2k. Let ϕ ∈ Aut(Γ) and let ui ∈ U . Suppose that ϕ maps ui to some vertex vj ∈
V . Then ϕ must map the neighbourhood of ui, {vi, wi, wi+r} to {uj , vj−s, vj+s}, the
neighbourhood of vj . It is straightforward to see that ϕ must map a vertex in W to a vertex
in V . This is, ϕ “mixes” the set V with the sets U and W implying that Γ is vertex-
transitive, a contradiction. Similarly, if ϕ maps ui to some wj ∈ W then it must map
{vi, wi, wi+r} to {wj+k, uj , uj−r}. Thus ϕ maps vi into either U or W contradicting
again Γ not being vertex-transitive. This shows that the set U is a single vertex orbit of Γ
under Aut(Γ). An analogous argument shows that V is a single vertex orbit and therefore
Γ has three distinct orbits on vertices: U , V and W .

The proof of Theorem 5.2 is now complete. In the following paragraphs we will give
further details about the structure of a vertex-transitive tricirculant of Type 2. In particular,
we will show that Y(k) can be seen as a map on the torus and we will give sufficient and
necessary conditions for Y(k) to be a bicirculant. This will prove items (1) and (2) of
Theorem 5.3.
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Proposition 5.13. Let k ≥ 3 be an odd integer, then Y(k) admits an embedding on the
torus with hexagonal faces, yielding a map of type {6, 3}α,3, where α = 1

2 (k − 3) (see [5]
for details about the notation).

Proof. First, notice that vertices in U ∪ W with even index form a cycle of length 2k,
C1 = (w0, u0, w2, u2, . . . , w2k−2, u2k−2). Likewise, vertices in U ∪W with odd index
form a 2k-cycle, C2. The vertices in V form a third cycle of length 2k, C3.

Now, wiwi+k ∈ E for all i ∈ Z2k, and i+k has different parity than i. This means each
vertex of C1 of the form wi is adjacent, through a K-edge, to a vertex of C2. Further, each
vertex of the form ui in C1 is adjacent to a vertex in C3, namely vi. Note that the vertices
of C2 that are not adjacent to a vertex of C1 are precisely those of the form ui (with i odd),
and that uivi ∈ E for all odd i. This is, every other vertex in C2 has a neighbour in C3.

Therefore, we can think of Y(k) as three stacked 2k-cycles C1, C2 and C3 where
every other vertex of Ci has a neighbour in Ci−1 while each of the remaining vertices
has a neighbour in Ci+1, where i ± 1 is computed modulo 3 (see Figure 7 for a detailed
example). From here it is clear that T2(k, 2, 1) can be embedded on a torus, tessellating
it with 3k hexagons. It can be readily verified that this yields the map {6, 3}α,3, where
α = 1

2 (k − 3), following the notation in [5].

Figure 7: The graph Y(9). The subgraph induced by bold edges has three connected com-
ponents that correspond, from bottom to top, to the cycles C1, C2 and C3 described in the
proof of Proposition 5.13.

Corollary 5.14. For k ≥ 3, Y(k) has girth 6 and is bipartite.

Observe that Y(9) corresponds to the map {6, 3}3,3, which is a regular map (see Chap-
ter 8.4 of [5]). It follows that T2(9, 2, 1) is arc-transitive, making it one of the four possible
cubic arc-transitive tricirculant graphs (called F054A in [10], following Foster’s notation).

Lemma 5.15. If k > 1 is an odd integer such that 3 - k, then Y(k) is a bicirculant.

Proof. Consider the mapping ϕ defined by:

ui 7→ wi+2+k, vi 7→ wi+2, wi 7→ ui+k if i is even;

ui 7→ vi+1, vi 7→ ui+1, wi 7→ vi if i is odd.

For a vertex ui ∈ U , we have ϕl(ui) ∈ U if and only if 3 | l. This is, if we start at U ,
every third iteration of ϕ lands us in U again. Moreover, we have ϕ3(ui) = ui+3+k. In
general ϕ3l(ui) = ui+3l+lk. Hence ϕ3l(ui) = ui if and only if 3l + lk ≡ 0. If 3 - k, then
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Figure 8: A drawing of Y(9) as the map on the torus {6, 3}3,3.

l = k is the smallest value for l that satisfies 3l + lk ≡ 0. It follows that the orbit of ui
has size 3k. It is plain to see that the vertices not in this orbit form an orbit of size 3k on
their own, namely, the orbit of ui+1. Hence Y(k) is a bicirculant and is isomorphic to the
graph H(3k, 1, αk + 2), where α ∈ {1, 2} and α ≡ k (mod 3) (see [17] for details). It is
worthwhile to mention that if 3 does divide k, then ϕ has 6 orbits of size k.

Lemma 5.16. If k > 1 is an odd integer such that 3 | k, then Y(k) is not a bicirculant.

Proof. Let k be an odd integer divisible by 3. To make this proof more succinct, we will
assume that Y(k) is not arc-transitive, this is, that k > 9. The graphs Y(3) and Y(9) can
be verified to not be bicirculants individually. By Lemma 5.6, Y(K) has arc-type 2 + 1
and the set E′ = {uivi | i ∈ Z2k} ∪ {wiwk+1 | i ∈ Z2k} is an orbit of edges under
the full automorphism group of Y(k). Then each connected component of Y(k) − E′

is a block of imprimitivity for Aut(Y(k)). Furthermore Y(k) − E′ has three connected
components that correspond precisely to the three 2k-cycles Ci, i ∈ {1, 2, 3}, in the proof
of Proposition 5.13. For convenience, we will relabel the vertices of Y(k) as follows: for
each i ∈ {1, 2, 3}, let V(Ci) = {vi,j | j ∈ Zk}, where vi,j is adjacent to vi,j−1, vi,j+1 and
vi+1,j−1. It is straightforward to see that this labelling is always possible.

Now, suppose Y(k) admits a bicirculant automorphism ρ. Since a ρ-orbit has size 3k,
and every 2k-cycle Ci is a block of imprimitivity, ρmust cyclically permute them. Without
loss of generality ρ(Ci) = Ci+1. Then, ρ is determined, up to two possibilities, by its
action on a single vertex. Indeed, if ρ(vi,0) = vi+1,a then the two neighbours of vi,0 in Ci
must be mapped to the neighbours of ρ(vi,0) in Ci+1. In other words, the set {vi,−1, vi,1}
is bijectively mapped to {vi,a−1, vi,a+1} in one of two possible ways, and this completely
determines the action of ρ. In short, for all i ∈ {1, 2, 3} and j ∈ Z2k one of the following
holds:

(1) ρ(vi,j) = vi+1,j+a,

(2) ρ(vi,j) = vi+1,−j+a.

If (2) holds, then ρ3(vi,j) = vi,−j+a and so ρ6(vi,j) = vi,j . This is, ρ has order 6,
which implies that Y(k) has order 12 and hence k = 2, which contradicts k being odd and
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divisible by 3. If (1) holds, then ρ3(vi,j) = vi,j+3a and since 3 | k, a vertex v1,j can only
be mapped to a vertex v1,b by an element of 〈ρ〉 if j ≡ b (mod 3). This implies that ρ has
at least 3 orbits on vertices, contradicting that it is a bicirculant automorphism. The result
follows.

Theorem 5.3 now follows from Proposition 5.13 and Lemmas 5.6, 5.15 and 5.16.

6 Type 3

Let us begin this section by giving the definition of two well-known families of cubic
graphs. For a positive integer k, the prism Pk is the graph of order 2k with vertex set
{u0, u1, . . . , uk−1} ∪ {v0, v1, . . . , vk−1} and edges of the form uiui+1, vivi+1 and uivi,
where the indices are taken modulo k. The Möbius ladder Mk is the graph with vertex
set {u0, u1, . . . , u2k−1} and edges of the form uiui+1 and uiui+k, where indices are taken
modulo 2k.

Let k ≥ 9 be an integer, and let r ∈ Z2k. Recall that T3(k, r) is the derived graph of
∆3 with the normalized voltage assignment for Z2k shown in Figure 9.

Figure 9: Type 3.

Let U = {u0, u1, . . . , u2k−1}, V = {v0, v1, . . . , v2k−1} and W = {w0, w1, . . . ,
w2k−1} be the respective fibers of vertices u, v and w in ∆3. It is clear that any cubic
tricirculant of Type 3 is isomorphic to T3(k, r) for some k and r.

Theorem 6.1. If T3(k, r) is connected, then it is isomorphic to either a prism or a Möbius
ladder.

Proof. First, recall that T3(k, r) is connected if and only if gcd(k, r) = 1. Then gcd(2k,
r) ∈ {1, 2}, depending on whether r is even or odd.

If r is odd, then the subgraph induced by 0 - and R-edges is a single cycle of length
6k, (w0, u0, v0, wr, ur, vr, . . . , w2k−r, u2k−r, v2k−r, w0). It is straighforward to see that
K-edges join antipodal vertices in this cycle. Hence, in this case T3(k, r) is a Möbius
ladder.

If r is even, then the graph induced by 0 - andR-edges is the union of two disjoint cycles
of length 3k: one consisting of all the vertices with even index, and the other consisting on
those with odd index. Observe thatK-edges connect these two cycles creating a prism.
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(a) T3(9, 4) (b) T3(9, 1)

Figure 10: A prism and a Möbius ladder on 54 vertices.

7 Type 4

Let k be a positive integer, and let r and s be two distinct integers in Z2k. Recall that
T4(k, r, s) is the derived graph of ∆4 with the normalized voltage assignment for Z2k

shown in Figure 11. Let U = {u0, u1, . . . , u2k−1}, V = {v0, v1, . . . , v2k−1} and

Figure 11: Type 4.

W = {w0, w1, . . . , w2k−1} be the respective fibers of vertices u, v and w in ∆4. Then, the
set of edges of T4(k, r, s) can be expressed as the union EK ∪ ER ∪ ES ∪ E0 where:

EK = {uiui+k : i ∈ Z2k},
E0 = {uivi : i ∈ Z2k} ∪ {uiwi : i ∈ Z2k},
ER = {vivi+r : i ∈ Z2k},
ES = {wiwi+s : i ∈ Z2k}.

For X ∈ {0, R, S,K}, edges in EX will be called edges of type X , or simply X-edges.
Similarly as with tricirculants of Types 1, 2 and 3, every cubic tricirculant of Type 4 with
6k vertices is isomorphic to T4(k, r, s) for an appropriate choice of r and s.
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Remark 7.1. Note that for any k, r and s the following isomorphism holds:

T4(k, r, s) ∼= T4(k,−r, s) ∼= T4(k, r,−s) ∼= T4(k, s, r).

Theorem 7.2. There are no cubic vertex-transitive tricirculants of Type 4 of order greater
or equal to 54.

The rest of this section is devoted to prove Theorem 7.2 as well as to characterise Type
4 tricirculants with 2 and 3 vertex orbits. We will assume henceforth that k ≥ 9 and thus
the order of T4(k, r, s) is at least 54.

Lemma 7.3. If T4(k, r, s) is vertex-transitive, then r 6= s and r 6= −s.

Proof. Suppose that r = s and consider the graph Γ := T4(k, r, r), with k ≥ 9 and
1 ≤ r ≤ k − 1. Observe that (v0, vr, ur, wr, w0, u0, v0) is a 6-cycle of Γ that does not
contain any K-edge but does contain edges of all other types. For Γ to be vertex-transitive,
there must be at least one 6-cycle through a K-edge; otherwise K-edges conform a single
edge-orbit and thus U is a single vertex-orbit. However, such a cycle would quotient down
to a closed walk of length 6 in ∆4 having voltage 0 and tracing the semi-edge (uu)k. By
observing Figure 11 we see that any closed walk of length 6 visiting (uu)k has net voltage
k ± 3r. That is, if Γ is vertex-transitive, then 3r ≡ k (mod 2k). Observe that under these
conditions, Γ is connected if and only if r = 1 and thus making k = 3, contradicting that
k ≥ 9. This shows that r 6= s and in view of Remark 7.1, r 6= −s.

Lemma 7.4. Let e be a K-edge of T4(k, r, s) and let a be an integer greater than 4. If
C is an cycle of length a containing e then there exists another cycle of length a, C ′, such
that the intersection C ∩ C ′ contains a 3-path whose middle edge is e.

Proof. Without loss of generality, we can assume e = u0uk. Define H as the subgraph of
Γ induced by vertices at distance at most one from e, and let C be a k-cycle through e (see
Figure 12). Observe that C intersects H in a 3-path, P , whose middle edge is e. Now, let
φ be the mapping that acts by multiplying the index of each vertex by −1; that is φ maps
ui into u−i, vi into v−i, and wi to w−i. Observe that φ is in fact an automorphism of Γ.
Moreover, φ fixes each vertex and each edge of H . In particular, it fixes P . Therefore,
φ(C) is a k-cycle through e and P lies in the intersection of C and φ(C). To see that φ(C)
is different from C, observe that φ interchanges the two vertices in each of the following
sets: {vk+r, vk−r}, {vr, v−r},{wk+s, wk−s} and {ws, w−s} (white vertices in Figure 12).
It is clear that C can visit at most one vertex in each of these four sets, and if C visits one
vertex in one of these sets, then φ(C) must visit the other.

Lemma 7.5. If T4(k, r, s) is vertex-transitive, then in Z2k one of the equalities (A1) – (A4)
below and one of the equalities (B1) – (B4) below hold:

(A1) k + 2r + s = 0, (B1) k + 2s+ r = 0,

(A2) k − 2r + s = 0, (B2) k − 2s+ r = 0,

(A3) r + 3s = 0, (B3) s+ 3r = 0,

(A4) r − 3s = 0, (B4) s− 3r = 0.

Proof. Suppose T4(k, r, s) is vertex-transitive. We will first show that one of the equalities
(A1) – (A4) holds in Z2k. The rest of the lemma will follow from the fact that T4(k, r, s) ∼=
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Figure 12: Neighbourhood of u0uk. The subgraph H shown in solid edges and vertices.

T4(k, s, r). Since T4(k, r, s) is vertex-transitive, the edge-neighbourhood of any vertex
in U can be mapped by an automorphism to the edge-neighbourhood of any vertex in V .
In particular, either there exists an automorphism mapping the K-edge u0uk to the 0 -
edge u0v0 or there is an automorphism mapping u0uk to the R-edge v0vr. Therefore, the
property described in Lemma 7.4 should also hold for u0v0 or for v0vr (or possibly both).
We will see what this means in terms of k, r and s.

Suppose that the property described in Lemma 7.4 holds for u0v0. Observe that there is
an 8-cycle C = (u0, v0, v−r, u−r, uk−r, vk−r, vk, uk, u0) through u0v0 (see Figure 13).
Then there must be another 8-cycle C ′ whose intersection with C contains the 3-path
(v−r, v0, u0, uk), but no 4-path containing this 3-path. This in turns implies that some
vertex in {v−3r, u−2r} is adjacent to a vertex in {wk−s, wk+s}. Since no vertex in V is
adjacent to a vertex in W , we have that either u−2rwk−s ∈ E or u−2rwk+s ∈ E. This
implies 2r ≡ k + s or 2r ≡ k − s, and so (A1) or (A2) holds.

Figure 13: A part of the graph T4(k, r, s) containing u0v0.

If, on the other hand, the property described in Lemma 7.4 holds for v0vr, then one ver-
tex in {wr+s, wr−s} must be adjacent to a vertex in {ws, w−s} (see Figure 14), implying
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that one of the following expressions must be equal to 0 in Z2k: r+3s, r+s, r−3s, r−s.
However, in view of Lemma 7.3, r+ s 6= 0 and r− s 6= 0. Hence (A3) or (A4) holds.

Figure 14: A subgraph containing v0vr.

We are now ready to prove Theorem 7.2. Let k ≥ 9 be an integer and suppose
T4(k, r, s) is vertex-transitive. Then, by Lemma 7.5, one of the equalities (A1) – (A4) and
one of the equalities (B1) – (B4) must hold. If, for instance both (A1) and (B1) hold, then
by adding them we see that r = −s, which contradicts Lemma 7.3. Similarly, we get that
r ± s if both equalities in any of the following pair hold: (A1) and (B2), (A2) and (B2),
(A3) and (B3). If (A1) and (B4), or (A2) and (B4) hold, then k = r, which contradicts
the simplicity of Γ. If (A1) and (B3), (A2) and (B3), or (A3) and (B4) hold, then either
k = 5 or gcd(k, r, s) 6= 1. It is readily seen that we get a contradiction in each of the 16
possible cases that arise from Lemma 7.5. We conclude that a connected T4(k, r, s) cannot
be vertex-transitive if k ≥ 9.

Lemma 7.6. Let k ≥ 9 and T4(k, r, s) be connected. Let α = gcd(2k, r), R = r/α,
S = s/α. Then T4(k, r, s) has two orbits on vertices if and only if α ∈ {1, 2} and
(SR−1)2 ≡ ±1 (mod 2k/α), where R−1 is the multiplicative inverse of R modulo 2k/α
(or the equivalent statement obtained from interchaging r and s).

Proof. For a graph Γ of Type 4, let Γ∗ be the graph obtained from Γ by deleting all vertices
in U (along with the edges incident to them) and making vi adjacent to wi, i ∈ Z2k.
Then Γ∗ is isomorphic to the bicirculant I-graph I(2k, r, s) of order 4k. Moreover, each
automorphism ϕ ∈ Aut(Γ) induces an automorphism ϕ∗ ∈ Aut(Γ∗) in a natural way.
Denote by Aut∗(Γ∗) the group of all automorphism of Γ∗ induced by an automorphism
of Γ.

Now suppose Γ has two orbits on vertices. Since K-edges can only be mapped to K-
edges, these two orbits must necessarily be U and V ∪W . This is, Aut(Γ) acts transitively
on V ∪W and so Aut∗(Γ∗) is transitive on the vertices of Γ∗.

If Γ∗ = I(2k, r, s) is connected then it must be a vertex-transitive generalised Petersen
graph [17]. This is, without loss of generality, the graph induced by V is a 2k-cycle, and
thus gcd(2k, r) = 1. Let r−1 be the multiplicative inverse of r modulo 2k and let Λ =
T4(k, 1, sr−1). Then Λ ∼= Γ = T4(k, r, s). Moreover, Λ∗ is isomorphic to the generalised
Petersen graph GP(2k, sr−1), and since it is vertex-transitive we have (sr−1)2 ≡ ±1
(mod 2k) [8].
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If Γ∗ = I(2k, r, s) is disconnected, then it must have two connected components.
Indeed, since Γ is connected we have gcd(2k, k, r, s) = 1, but I(2k, r, s) is disconnected if
and only if gcd(2k, r, s) 6= 1. Then necessarily gcd(2k, r, s) = 2 and both r and s are even
while k is odd. Each connected component is isomorphic to I(k, r/2, s/2). An analogous
argument as the one used in the connected case shows that gcd(k, r/2) = 1, (and since
k is odd, gcd(k, r) = 1 and gcd(2k, r) = 2) and (SR−1)2 = ((s/2)(r/2)−1)2 ≡ ±1
(mod k).

For the reverse implication let k ≥ 9 and r, s ∈ Z2k. Suppose that α = gcd(2k, r) ∈
{1, 2} and (SR−1)2 ≡ ±1 (mod 2k/α), where R−1 is the multiplicative inverse of R
modulo 2k/α. Let Γ = T4(k, r, s). Define ϕ : Γ→ Γ as follows:

ui 7→ u(SR−1)i, vi 7→ w(SR−1)i, wi 7→ v(SR−1)i for all i ∈ Z2k.

Observe that SR−1r ≡ s (mod 2k) and sSR−1 ≡ ±r (mod 2k). From here, it is routine
to check that ϕ is an automorphism of Γ. We conclude that V ∪W is a vertex orbit of Γ.
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Primož Potočnik https://orcid.org/0000-0001-5028-3545
Micael Toledo https://orcid.org/0000-0002-9531-3506

References
[1] I. Z. Bouwer (ed.), The Foster Census: R. M. Foster’s Census of Connected Symmetric Trivalent

Graphs, Charles Babbage Research Centre, Winnipeg, Canada, 1988.

[2] P. Cameron, J. Sheehan and P. Spiga, Semiregular automorphisms of vertex-transitive cubic
graphs, European J. Combin. 27 (2006), 924–930, doi:10.1016/j.ejc.2005.04.008.

[3] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič and L. A.
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Abstract

Detecting meaningful communities has become crucial to advance our knowledge in
diverse research areas that deal with datasets which can be naturally represented as net-
works. By regarding vertex clustering as the opposite problem of vertex colouring, we
were able to leverage the Petford-Welsh colouring algorithm to develop a fast, efficient,
and highly-scalable decentralised clustering algorithm. Its greatest potential lies in outper-
forming conventional methods when the community structure is fairly clear-cut.

Keywords: Graph algorithm, community detection, the Petford-Welsh algorithm, simulated anneal-
ing, complex networks.

Math. Subj. Class. (2020): 05C85, 05C15, 91C20

1 Introduction
Over the past few decades, deploying complex networks to represent and analyse vast
amounts of data has become prevalent across various disciplines [4, 21, 30]. Being able
to uncover a network’s community structure has turned out to be an invaluable tool when
trying to shed light on its intricate organisation and functioning [11].

However, to date we have not even gained an insight into what constitutes a satisfactory
clustering solution, let alone developed an approach that would have proven to be univer-
sally applicable and scalable to an ever-increasing abundance of data. As a matter of fact,
according to the “No Free Lunch Theorem” for community detection, “there can be no al-
gorithm that is optimal for all possible community detection tasks” [22]. As a consequence,
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Matjaž Perc. This research was supported by the Slovenian Research Agency projects N1-0057, N1-0071, and
J1-8155.

E-mail address: barbara.ikica@fmf.uni-lj.si (Barbara Ikica)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



34 Ars Math. Contemp. 18 (2020) 33–49

this has led to a number of clustering algorithms, stemming from different aspects, a variety
of objective functions, stand-alone quality metrics, and information recovery metrics [10].

In this paper, we introduce a clustering algorithm motivated by a heuristic approach to
vertex colouring proposed by Petford and Welsh [23, 37]. Our method was founded on the
observation that finding an appropriate vertex clustering is, in essence, dual to the problem
of finding a proper vertex colouring. Indeed, local proliferation of the colour of a vertex
should, in principle, lead to densely interconnected monochromatic neighbourhoods. By
associating colours with clusters one thus attains a clustering solution that captures the very
fundamental intuition behind community detection – a division into tightly-knit groups,
loosely connected to one another. Hence, the terms colour(ing) and cluster(ing) will be
used interchangeably.

Due to its heuristic nature, the resulting algorithm typically runs in linear time O(|E|)
in the number of edges, which makes it computationally less demanding compared to other
widely used methods, and, consequently, highly scalable. Moreover, as it only leverages
local knowledge about the network, it does not require specifying any objective function to
be optimised. Nevertheless, as there is a general lack of consensus regarding both validity
and quality of clustering solutions, it may be beneficial to define an application-specific
quality measure in order to filter the resulting solutions based on desirable properties. These
can also be accommodated by varying the only prerequisite parameter of the algorithm, the
weight parameter ω that enables tuning the degree of randomness, and thus renders the
algorithm more widely applicable.

2 Method

It should be noted that our algorithm can be applied to any kind of graphs – be it directed or
undirected, connected or disconnected, weighted or unweighted. Regardless, for simplic-
ity, let us assume that we are only dealing with simple connected undirected graphs with
possibly weighted edges.

Thus, let G = (V,E) be a simple connected undirected graph with possibly weighted
edges. Furthermore, let A = [auv]u,v∈V denote its (weighted) adjacency matrix with the
entry auv representing the weight of the edge uv ∈ E (auv = 0 if uv /∈ E) and assume
that, in the case of an unweighted graph, auv = 1 if and only if uv ∈ E.

For the purpose of the algorithm, we say that a vertex v ∈ V is bad if c(u) 6= c(v)
for the colouring c : V → {1, 2, . . . , k} currently constructed by the algorithm and some
vertex u ∈ V such that uv ∈ E. Analogously, an edge uv ∈ E that satisfies c(u) 6= c(v),
i.e., a bichromatic edge, is said to be a bad edge. It will also prove convenient to adopt
the notationW(v, i) =

∑
u∈V :c(u)=i auv for the sum of the weights of the edges incident

to vertices of colour i adjacent to vertex v. As a side note, in the case of an unweighted
graph, auv ∈ {0, 1} for all u, v ∈ V , and the expressionW(v, i) reduces to the number of
neighbours of vertex v of colour i.

The main idea of the algorithm goes as follows. During initialisation, each vertex gets
assigned a random colour. Afterwards, in an iterative procedure, a vertex with at least one
neighbour of a different colour – dubbed a bad vertex – is chosen uniformly at random and
is reassigned colour i chosen proportionally to eW(v,i)/T where W(v, i) denotes the sum
of the weights of the edges incident to v with an endpoint of colour i, and T denotes the
temperature parameter. Hence, from a local point of view, the more abundant a particular
colour is, the more likely it will spread out – even more so, when the corresponding vertices
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form strong bonds with the rest of the graph. This weighting function is motivated by
the simulated annealing heuristics [15] – we will be using an equivalent expression, i.e.,
ωW(v,i) for appropriately chosen weight ω > 1.

The recolouring process repeats until there are no more bad vertices or the stopping
criterion, a sufficiently low variance Var in the number of bad edges calculated over a
sliding window of length l ∈ N, is met. To facilitate the computation and subsequent
updating of the sliding-window variance, at each step of the iteration, the algorithm records
the number of bad edges, stores it in the list bad_edges, and re-evaluates Var only by
adding and subtracting local contributions.

To be more specific, let bstep = bad edges [step] be a shorthand notation for the
number of bad edges at step step of the iteration, and let µstep and Varstep denote the
sample mean and the variance of the number of bad edges at step step over the sliding
window of length l, respectively, i.e.,

µstep =
1

l

step∑
s=step−l+1

bs,

Varstep = Var
(
[bs]

step
s=step−l+1

)
=

1

l − 1

step∑
s=step−l+1

b2s −
l

l − 1
µ2
step.

The variance at step step+1 is then calculated by first updating the sample mean accord-
ing to

µstep+1 = µstep +
1

l
(bstep+1 − bstep−l+1) ,

which is immediately followed by

Varstep+1 = Varstep +
1

l − 1
(bstep+1 − bstep−l+1) ·

· (bstep+1 + bstep−l+1 − µstep+1 − µstep) .

All in all, the algorithm thus takes as an input a given graphG, a suitably chosen weight
ω > 1, and an initial number of clusters k ∈ N. Optionally, two additional parameters that
serve as a stopping condition may be specified – a tolerance tol > 0 on the variance Var
in the number of edges spanning distinct clusters and a length l ∈ N of the sliding window
over which this variance is computed. Alternatively – or additionally, a pre-given maximum
number of steps can be used as a termination condition. Schematically, the algorithm can
be outlined as detailed below (refer to Algorithm 1).

Observe that for the initial number of colours k any upper bound on the number of
clusters may be taken. E.g., one may even use the cardinality of the vertex set. Regardless
of the choice, the number of colours present in the graph will drop to its natural level as
the iterations proceed. Indeed, as soon as a colour 1 ≤ i ≤ k disappears, i /∈ {c(v) | v ∈
V }, it cannot reappear ever again, since the prerequisite W(v, i) 6= 0 is not met by any
vertex v ∈ V (cf. line 7 in Algorithm 1). Note that permanently discarding absent colours
also turned out to enhance numerical stability and consistency of the clustering solutions
generated by the algorithm.

More crucially, the weight parameter ω should be chosen more carefully as it may have
a profound affect on the algorithm’s performance. A sufficiently small ω yields a uniform
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Algorithm 1 The modified Petford-Welsh algorithm (mPW)

Input: G, ω, k, tol, l
Output: c

1: generate an initial k-colouring c
2: bad edges [0]←

∣∣{uv ∈ E | c(u) 6= c(v)}
∣∣

3: step← 1
4: Var← tol
5: while (bad edges [step− 1] > 0) and (Var ≥ tol) do
6: choose a bad vertex v uniformly at random
7: choose a new colour 1 ≤ i ≤ k for v with probability proportional to ωW(v,i) if

W(v, i) 6= 0
8: c(v)← i
9: bad edges [step]←

∣∣{uv ∈ E | c(u) 6= c(v)}
∣∣

10: if (step ≥ l − 1) then
11: Var← Var

(
[bad edges [s]]steps=step−l+1

)
12: end if
13: step← step+ 1
14: end while
15: return c

distribution over the set of all possible outcomes that result from recolouring a vertex at
each iteration step, leaving the diffusion of colours to chance. At the other end of the
spectrum, a large ω puts higher weight on more frequent colours – the more neighbours
of a certain colour a vertex has, the higher the probability of it being assigned the same
colour. The final decision whether to choose an intermediate value of ω or a value closer
to the extremes should be based on the specifics of the application. Moreover, to achieve
better results, the model could be extended by implementing a self-tuning mechanism that
iteratively optimises ω in a way analogous to [29].

Nevertheless, ω was set to the constant value of 6 for all test runs, the length l of the
sliding window was fixed at the number of vertices |V |, and the tolerance tol was chosen
by trial and error but was kept within the range of [10−4, 10−2]. A key insight that led to
the deployment of tol as a stopping criterion in the first place was a typical steady decline
in the number of bad edges followed by a flatter region observed across all experiments.

It is worth noting that optimising the initial parameters ω and tol through, e.g., dy-
namic adaptation to the specifics of the problem under consideration should lead to an
improvement in overall performance. Undertaking this task lies beyond the scope of this
work but nonetheless deserves more attention in an independent study. All data and the
source code for the modified Petford-Welsh algorithm are available at [14].

2.1 Fine-tuning

Essentially, the vertex colouring that is returned as the output of the algorithm lends itself
to a natural interpretation in terms of clusters – each vertex colour class corresponds to a
cluster. However, there are a few hurdles to overcome.

Initial random colouring may inadvertently lead to disconnected clusters, which inval-
idates one of the main premises underlying clustering in general. This is resolved in the
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final part of the algorithm by extracting subgraphs corresponding to different colour classes
and assigning new colours to their connected components, thus obtaining a subdivision of
the original clustering solution. Besides, an additional optional tweak is implemented to
enable a further refinement of the clustering solution by discarding singleton clusters that
are potentially left over after the iterations terminate. This is achieved by recolouring every
such cluster with the most frequently represented colour in its neighbourhood.

Although our algorithm already typically runs in linear time O(|E|), there is still room
for improvement. In the era of ever-expanding data, developing fast and efficient tools
is of utmost importance, as the sheer amount and complexity of data can make many ex-
isting algorithms computationally unfeasible. A further significant reduction in runtime
could be achieved through parallelism, as the very design of our method makes it easily
implementable. In fact, as vertex updates are computed locally and independently of one
another (that is, neglecting the unlikely event of simultaneously updating both endpoints of
an edge), they can be performed synchronously. This approach has already proved efficient
in practice for the Petford-Welsh algorithm [38].

3 Numerical experiments
In this section we compare the performance of our algorithm against several state-of-the-art
clustering algorithms. In particular, we restrict our analysis to algorithms that, similar to
ours, do not require specifying any additional parameters beforehand. In order to make ex-
periments more comparable, we use the implementations of these algorithms that are read-
ily available in the python-igraph (version 0.7.1) software package that comprises of
the igraph high performance C library for network analysis and a Python interface [8].
These are Edge betweenness relying on iterative removal of edges with high betweenness
scores, Fastgreedy, Multilevel, and Leading eigenvector optimising modularity in differ-
ent ways, Infomap analysing the information flow of random walks, Label propagation
based on an iterative process in which each vertex adopts a label that the majority of its
neighbours has, Spinglass utilising a spin-glass model and simulated annealing, and Walk-
trap performing random walks. For a thorough review of the methods, their computational
complexity and performance, we refer to survey [35] and the references therein.

As far as our algorithm is concerned, it is implemented in Python. However, in order
to make it comparable to igraph’s implementations in C, the part of the code that corre-
sponds to the iterative procedure is compiled using Cython [5] that converts it into C code.
The initialisation and the fine-tuning processes are compiled in Python. The experiments
were performed on a computer equipped with an Intel Core i7-8550U 1.80 GHz processor
with 16.0 GB of physical memory (RAM).

3.1 Datasets

We investigated the performance of our proposed method on a class of artificially generated
networks as well as on several real-world networks, some of which were given a ground-
truth division into clusters. However, it should be noted that it can be misleading to compare
the ground-truth clusters, possibly derived from latent network information, with those
detected by clustering algorithms operating solely with structural information about the
network.

All synthetic networks with embedded community structure were generated by means
of the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [17], a commonly used bench-
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mark for testing clustering algorithms. It tries to mimic observations found in many real-
world networks by producing networks whose vertex degrees and cluster sizes follow
power-law distributions with exponents 2 ≤ γ ≤ 3 and 1 ≤ β ≤ 2, respectively. Moreover,
its tunable mixing parameter µ ∈ [0, 1], the fraction of a vertex’s neighbours that belong to
different clusters, enables varying how well-defined the clusters are. For µ > 0.5, clusters
tend to blend in and become increasingly indistinguishable; as noted in [35], clusters in the
strong sense disappear.

Further analysis was carried out on diverse real-world networks ranging from social to
infrastructural networks. With the exception of one, all of them have an observationally or
experimentally pre-defined community structure. Their basic properties are summarised in
Table 1.

Table 1: Real-world networks used in our experiments.

Graph Vertices Edges Ground truth
Zachary’s karate club 34 78 Yes
Dolphins 62 159 Yes
UK faculty 79 552 Yes
Political books 105 441 Yes
American college football 115 613 Yes
Political blogs 1222 16714 Yes
Cora citation network 23166 89157 Yes
International E-road network 1040 1305 No

For simplicity, all networks are treated as unweighted and undirected, and we only
consider their largest connected components.

3.2 Quality metrics

Most commonly, clustering results are evaluated using internal and external quantitative
approaches [34]. The former are derived on the basis of distinct intrinsic statistical charac-
teristics of the clustering solution obtained, whereas the latter compare it to a given ground-
truth clustering, provided such a clustering exists.

With regard to internal quality measures, we used the now-standard modularity Q [21],
conductance φ [10], and coverage γ [10], defined as

Q(C) = 1

2|E|
∑

v,w∈V

(
avw −

kvkw
2|E|

)
δ(cv, cw),

φ(C) = 1− 1

|C|
∑
Ci∈C

φ(Ci) with

φ(Ci) =

∑
v∈Ci,w/∈Ci

avw

min
{∑

v∈Ci,w∈V avw,
∑

v/∈Ci,w∈V avw

} ,
γ(C) =

∑
v,w∈V avwδ(cv, cw)∑

v,w∈V avw
.

Here, C = {Ci}i denotes a partition into clusters,A = [avw]v,w∈V the network’s adjacency
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matrix, kv the degree of vertex v and cv the community it has been assigned to with respect
to C.

One should bear in mind that despite the general prevalence of these indices, they come
with a number of caveats. For example, modularity suffers from the resolution limit that
displays a bias towards detecting larger clusters, as its value increases by merging clusters
smaller than the characteristic size [12]. In spite of there being no clear winner in terms of
general applicability, the study published in [10] suggests that conductance correlates best
with information recovery metrics, which tend to be more reliable than internal indices
when ground truth is supplied.

To validate against externally given ground truth, we made use of two well-established
information-theoretic measures, normalised mutual information NMI [9] and the adjusted
Rand index ARI [34]. Given two partitions C1 and C2, they can be calculated as follows

NMI(C1, C2) =
MI(C1, C2)√
H(C1)H(C2)

with MI(C1, C2) = H(C1) + H(C2)−H(C1, C2),

ARI(C1, C2) =
RI(C1, C2)− E[RI(C1, C2)]

max(RI(C1, C2))− E[RI(C1, C2)]

=
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
.

In the formulas above, H denotes the Shannon entropy, i.e., H(Ci) = −
∑

C∈Ci
|C|
|V | log

|C|
|V |

and H(C1, C2) = −
∑

C1
i ∈C1,C2

j∈C2
|C1

i ∩C
2
j |

|V | log
|C1

i ∩C
2
j |

|V | , and nij denotes the number of
pairs of vertices that fall in the same cluster (different clusters) of C1 if i = 1 (i = 0) and
in the same cluster (different clusters) of C2 if j = 1 (j = 0). Both NMI and ARI were
computed using Python library Scikit-learn.

As a final remark, all metrics under consideration assume values in the range of 0-1,
and combined higher values across all quality measures indicate better performance.

3.3 Results

Adequately equipped with all the necessary tools, we are now able to present our exper-
imental results. First of all, let us see how well our algorithm performs on the set of
real-world networks which was briefly described in Table 1.

As evident from Tables 2 to 8 provided in Section A.1 of the Supplementary materials,
the modified Petford-Welsh algorithm, if ran a sufficiently large number of times, either
recovered the underlying ground-truth division into clusters or constructed a clustering
closest to the ground truth in terms of both NMI and ARI. Notice that modularity may
indeed not be the best indicator of the quality of clustering solutions. On the other hand,
conductance tends to achieve highest values for the mPW, which is consistent with findings
in [10].

What is more, although the International E-road network does not come with a pre-
determined community structure, solutions generated by the mPW – besides achieving the
highest conductance (see Table 9 in Section A.1 of the Supplementary materials) – also
seem to be in line with a natural partition of Europe and Central Asia into countries, as
shown on Figure 1 below. On top of that, relaxing the tolerance tol on the variance in the
number of bichromatic edges leads to a coarser partition into geopolitical regions within
both continents.
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In all experiments, the mPW turned out to be the fastest-performing method, although
it should be pointed out that the time elapsed during the initialisation phase and the fine-
tuning procedures was not measured in order to be able to benchmark the code against
python-igraph C implementations.

On a different note, results on the LFR benchmark (here, we refer to Section A.2 in
the Supplementary materials and the figures within) indicate that the mPW is among the
best-performing methods in terms of NMI and ARI when the community structure is well-
defined, that is, in the range µ ∈ [0.1, 0.4]. As the clusters become more and more inter-
twined, its performance drops, but achieves best results in the region of µ ' 0.7, where all
methods, as expected, struggle the most. Here, the difference between the mPW and Label
propagation becomes the most apparent – although both methods use only local informa-
tion, are non-deterministic (and thus need to be executed repeatedly in order to achieve
best results), with almost linear complexity in the number of edges, Label propagation, as
opposed to the mPW, can either easily get trapped into local minima or inevitably lead to a
single giant cluster.

Leaflet (http://leafletjs.com)

Figure 1: A clustering solution generated by the modified Petford-Welsh algorithm. It
consists of 20 clusters; the corresponding quality metrics are equal to Q = 0.830, φ =
0.847, and γ = 0.933.

It should be taken into account that optimising the choice of the initial parameters ω
and tol lies beyond the scope of this study; implementing it should lead to better results.
Indeed, dynamically adapting tol to account for the mixing parameter µ already yielded
a significant improvement.

All in all, predominantly, the mPW is a fast algorithm that scales efficiently to large
networks and produces high-quality clustering solutions when the community structure is
reasonably well-defined. Due to its non-deterministic nature, it can be best used in order
to find a division into clusters that optimises an application-dependant pre-given quality
measure.
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Appendix A Supplementary materials

A.1 Real-world networks

Our analysis on real-world networks is supported by the numerical results presented in the
tables below. In columns NMI, ARI, φ, γ, and Q, maximum values attained over r runs
(as specified below) are reported. Column Clusters shows the median number of clusters
returned and column t[s] the average running time in seconds over the same set of runs. For
the modified Petford–Welsh algorithm (mPW), only running times of the code compiled to
C are measured (excluding the initialisation phase and the fine-tuning procedures). In all
cases except for the Spinglass method applied to the Political blogs and the International
E-road network, the number of runs r was set to 100. Due to a relatively high complexity
of Spinglass, we needed to resort to a smaller value of r = 10 when running it on net-
works of order greater than ≈ 1000 (although this was still too much of a hurdle for the
Cora citation network). Edge betweenness was not even run on these networks noting its
prohibitively high computational complexity, namelyO(|E|2|V |) [35]. Bold font indicates
maximum values attained column-wise (except for the column corresponding to t[s], where
the minimum values are indicated).

Table 2: Zachary’s karate club [36].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness [13] 0.517 0.392 0.424 0.692 0.401 5 2.083e−03
Fastgreedy [7] 0.576 0.568 0.574 0.756 0.381 3 1.630e−04
Multilevel [6] 0.516 0.392 0.558 0.731 0.419 4 1.512e−04
Leading eigenvector [20] 0.612 0.435 0.487 0.667 0.393 4 3.191e−03
Infomap [28, 27] 0.578 0.591 0.668 0.821 0.402 3 5.579e−03
Label propagation [25] 0.865 0.882 0.773 0.949 0.415 3 7.300e−05
Spinglass [26, 33] 0.627 0.509 0.563 0.756 0.420 4 2.922e−01
Walktrap [24] 0.531 0.321 0.434 0.590 0.353 5 1.538e−04
mPW 1.000 1.000 0.773 0.949 0.403 2 3.080e−07

Table 3: Dolphins [18].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.600 0.395 0.570 0.799 0.519 5 1.792e−02
Fastgreedy 0.602 0.451 0.575 0.824 0.495 4 8.213e−04
Infomap 0.649 0.390 0.571 0.774 0.528 5 8.299e−02
Label propagation 1.000 1.000 0.880 0.962 0.526 4 3.263e−04
Leading eigenvector 0.497 0.283 0.544 0.711 0.491 5 7.615e−03
Multilevel 0.564 0.327 0.585 0.755 0.519 5 1.217e−03
Spinglass 0.690 0.452 0.654 0.805 0.529 5 4.357e−01
Walktrap 0.565 0.417 0.613 0.824 0.489 4 2.257e−03
mPW 1.000 1.000 0.880 0.962 0.528 3 4.210e−07
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Table 4: UK faculty [19].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.875 0.898 0.540 0.841 0.441 4 1.826e−01
Fastgreedy 0.882 0.854 0.564 0.783 0.457 4 5.425e−04
Infomap 0.838 0.817 0.583 0.763 0.461 4 5.510e−03
Label propagation 0.898 0.920 0.722 0.953 0.443 3 1.763e−04
Leading eigenvector 0.898 0.913 0.495 0.772 0.408 4 4.711e−03
Multilevel 0.948 0.957 0.683 0.826 0.446 3 6.230e−04
Spinglass 0.894 0.842 0.583 0.764 0.461 4 5.776e−01
Walktrap 0.838 0.817 0.583 0.763 0.461 4 1.544e−03
mPW 0.951 0.968 0.743 0.953 0.443 3 4.250e−07

Table 5: Political books [16].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.562 0.682 0.626 0.905 0.517 5 1.153e−01
Fastgreedy 0.531 0.638 0.648 0.918 0.502 4 4.967e−04
Infomap 0.503 0.536 0.584 0.855 0.523 6 1.142e−02
Label propagation 0.607 0.702 0.917 0.957 0.523 3 2.345e−04
Leading eigenvector 0.525 0.547 0.555 0.778 0.467 4 7.717e−03
Multilevel 0.516 0.558 0.675 0.853 0.520 4 4.436e−04
Spinglass 0.566 0.657 0.644 0.889 0.527 6 8.279e−01
Walktrap 0.544 0.653 0.687 0.914 0.507 4 9.237e−04
mPW 0.645 0.727 0.917 0.957 0.511 3 5.230e−07

Table 6: American college football [13].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.880 0.778 0.533 0.710 0.600 10 2.486e−01
Fastgreedy 0.708 0.474 0.567 0.731 0.550 6 8.467e−04
Multilevel 0.891 0.807 0.547 0.708 0.605 10 4.085e−04
Leading eigenvector 0.703 0.464 0.456 0.641 0.493 8 9.658e−03
Infomap 0.924 0.897 0.505 0.690 0.601 12 9.109e−03
Label propagation 0.927 0.889 0.568 0.741 0.605 11 2.301e−04
Spinglass 0.929 0.900 0.563 0.728 0.605 11 3.580e−01
Walktrap 0.888 0.815 0.547 0.705 0.603 10 1.383e−03
mPW 0.936 0.900 0.600 0.780 0.603 9 6.200e−07
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Table 7: Political blogs [3].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness – – – – – – –
Fastgreedy 0.659 0.785 0.451 0.923 0.427 10 6.923e−01
Infomap 0.523 0.651 0.250 0.899 0.423 41 3.500e+00
Label propagation 0.723 0.813 0.857 1.000 0.426 3 6.523e−03
Leading eigenvector 0.693 0.781 0.854 0.926 0.424 2 8.246e−02
Multilevel 0.651 0.774 0.476 0.920 0.427 9 3.876e−02
Spinglass 0.649 0.783 0.315 0.922 0.427 15 5.976e+01
Walktrap 0.646 0.760 0.484 0.925 0.425 11 4.427e−01
mPW 0.732 0.820 0.857 0.927 0.426 4 2.000e−06

Table 8: Cora citation network [1, 32].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness – – – – – – –
Fastgreedy 0.373 0.085 0.701 0.906 0.693 159 7.465e+00
Infomap 0.574 0.122 0.505 0.678 0.670 1162 1.450e+02
Label propagation 0.546 0.170 0.580 0.793 0.721 722 5.967e−01
Leading eigenvector 0.157 0.008 0.252 0.853 0.311 11 6.480e+00
Multilevel 0.450 0.190 0.792 0.860 0.790 42 2.600e−01
Walktrap 0.522 0.127 0.523 0.797 0.710 1204 3.347e+01
Spinglass – – – – – – –
mPW 0.537 0.184 0.602 0.771 0.729 517 7.100e−05

Table 9: International E-road network [2, 31].

Method φ γ Q Clusters t[s]

Edge betweenness – – – – –
Fastgreedy 0.860 0.917 0.861 24 3.741e−03
Infomap 0.663 0.787 0.777 126 4.615e−01
Label propagation 0.731 0.856 0.828 82 7.130e−03
Leading eigenvector 0.794 0.887 0.835 26 3.492e−01
Multilevel 0.873 0.921 0.867 24 4.546e−03
Spinglass 0.866 0.924 0.872 25 1.210e+01
Walktrap 0.757 0.886 0.828 67 8.510e−03
mPW 0.945 0.979 0.845 17 2.000e−06

A.2 LFR benchmark

Experiments were also conducted on networks generated by the LFR benchmark model [17].
To this end, we constructed three qualitatively different families of networks on 1000 ver-
tices and, for each of the regimes separately, studied how varying the mixing parameter µ
in the range of 0.1 to 0.9 affects the overall performance.
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First, the power-law exponents were set to γ = 2 and β = 1, the average and the
maximum degree to 15 and 100, respectively, and the sizes of the embedded ground-truth
clusters were restricted to the interval [50, 100]. Further, the second set of trials was carried
out on networks with the average degree and the maximum degree equal to 25 and 150,
respectively, whereas the power-law exponents were kept the same, i.e., γ = 2 and β = 1,
and no constraints were imposed on the sizes of the clusters. Lastly, the networks in the
third regime followed power-law distributions at the other extreme, with γ = 3 and β = 2.
For the average degree and the maximum degree we chose 15 and 50, respectively. Again,
we left out the optional parameters controlling the permitted cluster sizes.

The plots below display how maximum values of NMI, ARI, and Q attained over a
series of runs vary as a function of the mixing parameter µ. For each particular value of
µ, 10 networks were generated and each of the methods was run 100 times on top of them.
Edge betweenness and Spinglass were omitted from the analysis due to their rather slow
execution speed. Moreover, in order for Leading eigenvector to converge, new networks
had to be generated occasionally.
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Figure 2: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 2, β = 1,k_avg =
15,k_max = 100,c_min = 50 and c_max = 100.
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Figure 3: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 2, β = 1,k_avg = 25
and k_max = 150.
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Figure 4: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 3, β = 2,k_avg = 15
and k_max = 50.
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1 Introduction

Graphs here are connected with loops or multi-edges permitted. Terms mentioned without
definition may be found in [8, 28, 48]. A graph (map) is k-(edge-)connected if it takes
the removal of at least k (edges) vertices to separate the graph (map) [8]. Notice that a
2-connected graph (map) may have loops which have been excluded by Tutte [44]. A pair
of edges {e1, e2} is called a 2-edge-cut if removing of them will result in a disconnected
graph (map). A cycle is separating if removing its edges will leave a disconnected graph
(map). It is clear that in a 4-regular graph (map) on the projective plane any 2-edge-cut is
contained in a separating cycle.

A planar map (projective planar map) is a graph G drawn on the sphere S0 (the pro-
jective plane N1) such that no two edges cross and each component of S0 − G (N1 − G)
is homeomorphic to an open disc called a face whose boundary is the facial walk. In the
same way, we may define a map on higher surfaces. A circuit C on a surface Σ is essen-
tial (or noncontractible as some people named it) if Σ − C has no component which is
homeomorphic to an open disc. Otherwise it is called planar (or trivial).

A map is rooted if an edge, a vertex incident to the edge together with a direction along
one side of the edge are all distinguished. The essence of rooting a map is to trivialize the
automorphism group and set up equation(s) of the enumerating functions which makes it
possible to determine the solution in an algebraical or analytic way. Furthermore, many
results on rooted maps are valid for unrooted maps in terms of asymptotic evaluation since
there are at most 4n ways to root an n-edged map. There has been a trend to evaluate the
distributions of a certain type of maps in random map theory [6, 16, 18, 41]. Following
the path of Tutte [46] and Brown [9], people have investigated many quadratic equations
(or equations much related to them) and got much information about the number of maps.
Although some pioneers such as Walsh et al. [50, 51], D. Arquès [1], E. A. Bender et
al. [4, 5] and Gao et al. [17] did some influential works on nonplanar maps in an exact
way, elegant formulae are very difficult to obtain for maps on higher surfaces. People such
as E. A. Bender et al. started systematically working on asymptotic evaluations of rooted
maps. Many scholars such as E. A. Bender et al. [3], G. Chapuy et al. [12], Gao [14, 15],
A. Mednykh et al. [33, 34] and T. R. S. Walsh et al. [49] have investigated many types of
maps on general surfaces and gotten asymptotic evaluations of nonplanar maps up to now.
For a survey one may see [7] or [25].

4-regular maps are very important for their applications in many fields such as rectilin-
ear embedding in VLSI, the Gaussian crossing problem in graph theory, the knot problem
in topology and the enumerations of some other types of maps [26, 27, 28, 29]. For in-
stance, Bender et al. showed [6] that there exists a close relation between the face-width
(a concept due to Hutchinson [21]) and the edge-width of a graph on a surface through an
extended bijection of Brown [10] between n-edged maps and n-faced bipartite quadrangu-
lations; a result of Tutte [43], every 2k-edge-connected graph has k edge-disjoint spanning
trees, together with a formula of Xuong [52] shows that a 4-edge-connected graph is up-
embeddable (i.e., may be embedded into an orientable surface with at most two faces).
Let k ≥ 1 be an integer and G = (V,E) a multigraph. A Z-flow f on G such that
0 < |f(~e )| < k for all ~e ∈ ~E is called a k-flow. Tutte’s 3-flow conjecture [42], which is
still open, states that every 4-edge-connected 4-regular graph has a nowhere-zero 3-flow.
Although Grötzsch [20] showed its validity for planar graphs, Tutte conjectured that this
statement should still be valid without the requirement that the graph be planar. Jaeger
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proved [22] that every 4-edge-connected graph has a nowhere-zero 4-flow. However, the
difficulty to give a positive answer for the existence of a nowhere-zero 3-flow shows that
there is still a long way to go. Instead, Jaeger raised the weak 3-flow conjecture: There is a
fixed integer k such that every k-edge-connected graph has a nowhere-zero 3-flow.

A (rooted) near-4-regular map is a map having all the vertices 4-valent except possibly
the rooted one. A map is called Eulerian if all the valencies of its vertices are even. It is
clear that a near-4-regular map is Eulerian and 2-edge-connected. Rooted (near-)4-regular
maps (or their duals: quadrangulations) have been investigated by many scholars. We list
them (as far as we know) as follows (among which some are not 4-regular):

(1) rooted bicubic maps [46];

(2) rooted trees [45];

(3) rooted quadrangulations [10];

(4) rooted c-nets via quadrangulations [35];

(5) rooted one-faced maps on surfaces [50, pp. 212–213];

(6) rooted 4-regular planar maps [28, pp. 159–166];

(7) rooted near-4-regular planar Eulerian trials [38];

(8) rooted loopless 4-regular maps on the projective plane, the torus and the Klein bottle
[36, 39, 38, 37];

(9) rooted 2-connected 4-regular maps on the plane and the projective plane [30, 40];

(10) rooted 4-edge-connected 4-regular maps on the plane [31].

We expect that several more classes of 4-regular maps could be added into this list. In
fact, Z. C. Gao showed us his interest in enumeration of simple Eulerian maps through the
conversations at 2000’s Workshop of Graph Theory with Applications at Nanjing Normal
University. As an approach to this open problem, we investigate the number of rooted 4-
edge-connected 4-regular maps on the projective plane and give a formula, through which
an exact formula may be derived, for this type of maps. Furthermore, by using the Dar-
boux’s method, we present a nice asymptotic formula for them. Although we did some
work on this as shown in the list, the main result(s) of this paper is much closer to the
answer since a 4-edged-connected 4-regular map is 2-connected without loops and there
are at most two multi-edges between a pair of vertices and there are infinitely many 2-
connected 4-regular maps with three multi-edges connecting two vertices. Finally, as an
application of those facts, we conclude that among rooted 4-regular maps on the sphere (or
the projective plane) almost all of such maps have at least one separating cycle.

Remark 1.1.

(1) Since Tutte’s 3-flow conjecture is still open for general graphs, our results may be
viewed as an approach to it.

(2) Here we regard planar trees or generally maps with one face on surfaces, which some
people also called monopoles, as a special kind of near-4-regular maps.
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2 Maps on the projective plane
In this section we shall set up a general equation with up to five more parameters for rooted
near-4-regular maps on the projective plane. We first give some definitions on maps.

Let U and Up, respectively, denote the set of the rooted near-4-regular maps on the
plane and the projective plane. Let their enumerating functions be, respectively, as

f(x, y, z, t, w) =
∑
M∈U

x2m(M)ys(M)zn(M)tα(M)wβ(M),

fp(x, y, z, t, w) =
∑
M∈Up

x2m(M)ys(M)zn(M)tα(M)wβ(M),

where the variables x, y, z, t and w mark, respectively, the root-valency, the number of
edges, the number of inner faces, the number of nonroot-vertex-loops and the number of
separating cycles of M . The set Up may be partitioned into three parts as

Up = Up1 + Up2 + Up3,

where

Up1 = {M | er(M) is a planar loop},
Up2 = {M | er(M) is an essential loop},
Up3 = {M | er(M) is a link},

in which er(M) is the rooted edge of M ; when er(M) is not a loop, it is called a link.

Lemma 2.1. Let U〈p1〉 = {M − er(M) |M ∈ Up1}. Then

U〈p1〉 = U � Up + Up � U ,

where “�” is the 1v-addition of the sets of maps defined in [28, pp. 88–89].

Here the operation� of two maps is defined as follows: For two mapsM1 andM2 with
their respective roots r1 = r(M1) and r2 = r(M2), the map

M = M1 ∪M2

with M1 ∩M2 = {v} such that
v = vr1 = vr2

is defined such that its root, root-vertex and root-edge are as the same as those of M1 but
the root-face is the composition of fr(M1) and fr(M2). The operation for getting M from
M1 and M2 is called the 1v-addition and the map is written as

M = M1 �M2.

Further, for two sets of rooted mapsM1 andM2 , the set of maps

M1 �M2 = {M1 �M2 |M1 ∈M1,M2 ∈M2}

is said to be the 1v-production ofM1 andM2.
IfM1 =M2 =M, then we are allowed to write

M�M =M�2,

and further,
M�k =M�(k−1) �M.
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Proof. For a map M ∈ Up, the root-edge er(M) is a planar loop. The inner and outer
regions determined by er(M) are, respectively, two elements of U and Up. Since this
procedure is reversible, the lemma follows.

By the above lemma and the reasoning used in [36, Lemma 3.1] the enumerating func-
tions of Up1 and Up2 are, respectively,

fp1 = 2x2yzffp (2.1)

and

fp2 = x2y
∂(xf)

∂x
. (2.2)

The following result is easy to obtain from the definition.

Lemma 2.2. Let U(p3) = {M • er(M) | M ∈ Up3}. Then U(p3) = Up − Up(2), where
Up(2) is the set of maps in Up whose root-valencies are all 2.

Here,M•er(M) is the map obtained by contracting (or shrinking) the root-edge er(M)
of M into a vertex (i.e., identifying the two ends of er(M) along it). The reverse operation
is the so-called splitting the root-vertex. It is clear that splitting the root-vertex of a near-4-
regular map M may create at most one near-4-regular map.

By Lemma 2.2, the enumerating function of U(p3) is

f(p3) = fp − x2Fp(2), (2.3)

where Fp(2) is the enumerating function of Up(2).
If the splitting operation results in a nonroot-vertex loop, the root-edge of the resultant

map is contained in a 2-edge-cut. Since splitting the root-vertex may create nonroot-vertex
loops, among which some are planar ones while others are essential, the set U(p3) has to be
divided into several more parts as U(p3) =

∑6
i=1 U i(p3), where maps in U i(p3) (1 ≤ i ≤ 5)

have the structures as depicted in Figure 1 (which defines several types of possibilities of a
nonroot-vertex loop after splitting the root-vertex).

Remark 2.3.

(1) Maps of type 1 (or 2) have their edge er(M) (or ePr
(M)) the planar loop. Here P is

the permutation of the edges of M incident to the root-vertex.

(2) Maps of the above types may create new separating cycles after splitting the root-
vertex.

In order to set up recursive relations of maps, we should first state some basic facts for
embeddings of graphs on surfaces.

Fact 2.4. Let G(M) be a 2-edge-connected graph (map) with {e1, e2} a 2-edge-cut. Then
e1 and e2 are on the same separating cycle (which is a part of facial walk of M ).

Proof. One may verify this from the fact that for a 2-edge-cut as defined above, each cycle
passing through e1 will also contain e2 and each facial walk containing e1 will also has a
shortest simple subwalk passing through e1 and e2.
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v *
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Figure 1: Five types of maps which will induce a nonroot-vertex loop after splitting the
root-vertex.

Fact 2.5. Let M be a map as defined in Figure 1. Then after splitting the root-vertex, the
root-edge of the resulting map will be on a separating cycle.

Proof. This may be concluded from the definition of the vertex-splitting procedure.

An edge in a map is called singular if it lies on the boundary of exactly one face.
Otherwise, it is nonsingular. The following fact shows that a projective planar map with a
singular edge is determined by performing an edge-twisting operation on an edge in planar
maps.

Here the so-called edge-twisting operation is defined to replace an edge ewith a Möbius
strip.

Fact 2.6. Removing of a singular edge on a cycle in a projective planar map will result in
a planar map. Conversely, by twisting a nonsingular edge e in a planar map will re-embed
its underlying graph into the projective plane.

Since splitting the root-vertex may lead to a new nonroot-vertex loop or separating
cycle, there are several more cases which must be handled.

Case 1. The maps of U1
(p3).

Notice that for a map of U1
(p3), one thing will happen: both the number of nonroot-

vertex loops and the number of separating cycles will increase after splitting the root-vertex.
Let e1 = eP 2r, where P is the permutation of the edges incident to the root-vertex. Then
the set U1

(p3) can be partitioned into two parts as

U1
(p3) = U11

(p3) + U12
(p3),
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where

U11
(p3) = {M | e1 is contained in a 2-edge-cut},

U12
(p3) = {M | e1 is not contained in any 2-edge-cut}.

Hence, by Facts 2.4 and 2.5, a mapM in U11
(p3) will have a 2-edge-cut containing e1 together

with another edge, say e2. Let e2 be chosen such that size of the component ofM−{e1, e2}
containing the root-vertex will be as small as possible which is as shown in the left side
of Figure 2, where the shaded region is either a planar map or a nonplanar map and f
represents the possible (inner) face containing e1 and e2. Notice that f may be identical to
the root-face which will happen only in the case of e2 being singular.

v

vv

v � v

v

v

v

�

s =

e1

f

e2

e1

M1 M2

Figure 2: One type of maps containing a 2-edge-cut {e1, e2}.

In general, people use ∂f to denote the boundary of a face f . Here we use this to denote
the shortest closed subwalk of f which contains the 2-edge-cut {e1, e2}. One may see that
those two concepts coincide in the planar case.

Subcase 1.1. e2 is a singular edge.

By Fact 2.6 and the discussion used in the planar case in [31], the contribution of such
type of maps to Up is

x2y(F (2)− yz)
F (2)

(f − 1), (2.4)

where F (2) is the enumerating function of those maps in U whose root-valency are all 2.
In fact, in this situation the shortest closed subwalk of ∂f in a map M (as shown in the

left part of Figure 2) containing {e1, e2} is an essential cycle and the operation in Figure 2
results in two planar maps M1 and M2 where M1 ∈ U(2)− L, the set of non-loop maps in
U whose root-valencies are all 2 while M2 is a map which is the 1v-addition of a loop map
and a planar one. We denote the enumerating functions of the above three types of maps
M,M1 and M2 are, respectively, P,Q,R. It is clear that the reverse operation from M1

andM2 toM in Figure 2 does not increase the number of inner faces, nonroot-vertex loops
and separating cycles. Therefore, P = F (2)−yz

yz R. SinceR = x2y2z
F (2) (f −1), we have (2.4).

Subcase 1.2. e2 is a nonsingular edge.

In this case, removing the edge e2 from M will leave a projective planar map, i.e.,
M − e2 is a map on N1 with e1 a bridge (i.e., a separating singular edge) connecting two
types of maps M1 and M2 as shown in the right side of Figure 2.
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Subcase 1.2.1. M1 is nonplanar and M2 is planar.

Now M corresponds to two types of maps. One is in U1
p (2), a subset of Up containing

the maps with their root-valencies being 2 while the other is a planar one with the edge
eP 2r (= e1) which is not on any separating cycle. This correspondence has been depicted
in Figure 3.

v

vv

v � v

v
v

v

v

�

K

e1

f

e2

A map in U1
p (2)

Figure 3: Decomposition of a map into two types of maps.

Let Up(2) be the set of those maps in Up such that their root-valencies are all 2. Since
rooted edges of maps in U1

p (2) are all nonsingular, its contribution to Up is

F 1
p (2) = Fp(2)− 1

z
F (2),

where Fp(2) and F (2) are, respectively, the enumerating functions of Up(2) and U(2)
(which is the set of maps in U such that their root-valencies are all 2). As we have reasoned
in the proof of (2.4), this combined with (2.4), implies that the total contribution of the
maps in this subcase is

Fp(2)− 1
zF (2)

yz
× x2y2z2(f − 1)

F (2)
. (2.5)

Subcase 1.2.2. M1 is planar and M2 is nonplanar.

This time we have a similar situation as we got in Subcase 1.2.1, i.e., maps in this case
may be decomposed into two types of maps such that the map in rightmost part of Figure 3
is a nonplanar map. Notice that a map of the type in the rightmost side of Figure 3 is in
U12
(p3) such that its edge eP 2r is nonsingular. We denote the set of such type of maps as
U121
(p3). Then

U12
(p3) = U121

(p3) + U122
(p3),

where U122
(p3) is the subset of U12

(p3) whose maps have their edge ep2r being singular. Also by
the same reason as above, the enumerating function of U122

(p3) is

1

z

x2y2z2(f − 1)

F (2)
.
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Thus, we have the contribution of the maps in this case as

F (2)− yz
yz

(
f12(p3) −

x2y2z2(f − 1)

F (2)

)
, (2.6)

where f12(p3) is the enumerating function of U12
(p3). By (2.4), (2.5) and (2.6) and the fact

f1(p3) = x2yzfp, we see that the total contributions of the maps in those cases satisfy

x2yzfp =
x2y(F (2)− yz)

F (2)
(f − 1) +

x2yz(Fp(2)− 1
zF (2))

F (2)
(f − 1)

+
F (2)− yz

yz

(
f12(p3) −

x2y2z2(f − 1)

F (2)

)
+ f12(p3).

After simplification we find that

f12(p3) =
x2y2z2

F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
(f − 1)

}
.

Since
f1p3 =

yt

x2
f11(p3) +

ytw

x2
f12(p3),

where f1p3 is the enumerating function of U1
p3, we have that

f1p3 =

{
y3zt(w − 1)

F (2)
+ y2t

}
fp −

y3zt(w − 1)(Fp(2)− 1
zF (2))

F 2(2)
(f − 1).

Hence,

f1p3 −
y

x2
f1(p3) =

{
y3zt(w − 1)

F (2)
+ y2(t− 1)

}
fp

−
y3zt(w − 1)(Fp(2)− 1

zF (2))

F 2(2)
(f − 1).

(2.7)

Case 2. The maps of U2
(p3).

Since maps in this case have a very similar structure as those in Case 1 except for the
ways of putting the planar loop eP 2r, so we have

f2p3 −
y

x2
f2(p3) = f1p3 −

y

x2
f1(p3). (2.8)

Case 3. The maps of U3
(p3).

Since the set of maps of this type satisfies

U3
p3 = Lp � Up,

where Lp is the loop map on N1, the projective plane. By the result obtained in [31] (or a
similar procedure as the proof of (2.4)) we conclude that

f3p3 −
y

x2
f3(p3) =

y3zt(w − 1)

F (2)
(f − 1) + y2(t− 1)(f − 1). (2.9)
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By rearranging the root-edges of those in U3
(p3) which are singular we get all of those

in U3
(p3) + U4

(p3). After an analogous procedure as we did in Case 3 we obtain

f4p3 −
y

x2
f4(p3) = f5p3 −

y

x2
f5(p3) = f3p3 −

y

x2
f3(p3), (2.10)

where f ip3 (f i(p3)) is the enumerating function of U ip3 (U i(p3)), 1 ≤ i ≤ 6.

Case 4. The maps of U6
(p3).

Since splitting the root-vertex of a map of this type will not create a nonroot-vertex loop
but may result in a 2-edge-cut containing the root-edge, we have to partition the set U6

(p3)

into several more parts as

U6
(p3) =

6∑
i=1

U6i
(p3),

where maps in U6i
(p3) (1 ≤ i ≤ 5) have the structure shown in Figure 4 where splitting the

root-vertex will lead to a 2-edge-cut containing their root-edges.

v���

(a)M ∈ U61
(p3)

v��)

(b)M ∈ U62
(p3)

v
n
� R
}

6

(c)M ∈ U63
(p3)

v
n
6

(d)M ∈ U64
(p3)

v��
���

��
�

(e)M ∈ U65
(p3)

Figure 4: Maps which are composed of U − L (or Up(2)− Lp) and a subset of Up (or U).

Here we use L and Lp to denote, respectively, the loop-map on the sphere and the
projective plane. Further, we use f6ip3 (f6i(p3)) to denote the enumerating function of U6i

p3

(U6i
(p3)), 1 ≤ i ≤ 6.

One may see that the structures for mapsM in U i(p3) and U i(63) (1 ≤ i ≤ 6) are the same
except for whether a new nonroot-vertex loop appears or not after splitting the root-vertex
of M . Therefore,

f61(p3) =
x2yz(F (2)− yz)

F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
(f − 1)

}
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and further

f61p3 −
y

x2
f61(p3) =

y2z(w − 1)(F (2)− yz)
F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
(f − 1)

}
. (2.11)

Since correspondences like this exist between U6i
p3 and U ip3 for 2 ≤ i ≤ 5, repeating

similar procedures we may establish that

f62p3 −
y

x2
f62(p3) =

y2z(w − 1)(F (2)− yz)
F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
(f − 1)

}
,

f6ip3 −
y

x2
f6i(p3) =

y2(w − 1)(F (2)− yz)
F (2)

(f − 1), 3 ≤ i ≤ 5.

(2.12)

We now begin to handle the maps in U66
p3 . By the definition, a map in U66

p3 is not
separable at the root-vertex. Given that the possibility of creating new separating cycles,
the set U66

p3 has to be further partitioned into two parts as

U66
p3 = U661

p3 + U662
p3 ,

where splitting the root-vertex of the maps in U661
p3 will create a new separating cycle with

a structure shown in the left side of Figure 5.v

v v@@
@@
@@
@@
@@ ����

+

v

v

W�

�
�

HH



�

v

v
��
?

e
A 4-regular map

Figure 5: A map in U661
(p3) with an unique edge e lying on a new separating cycle after

splitting the root-vertex and may be decomposed into two types of maps.

Let M be a map in U661
p3 . Then it is not separable at the root-vertex and contains an

unique edge, say e, such that removal of ewill make it separable at the root-vertex. Further,
M − e = M1 �M2 and the root-valency of M1 is 3. Since M1 and M2 may be of distinct
types of maps, there are several cases that must be handled.

Subcase 4.1. e is singular.

By Fact 2.6 this is in fact a planar case we have handled in [31] and maps of this type
contribute

x2F (4)

zF (2)
(f − 1) (2.13)

to Up, where F (4) is the enumerating function of those 4-regular maps in U which are not
separable at the root-vertex.

Subcase 4.2. e is nonsingular.
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For a map M of this case, M − e = M1 �M2 and there is only one nonplanar map
among M1 and M2. Notice that this will not hold in the general case for the maps which
are composed this way. But this possibility has been excluded now. Thus, two subcases
will be introduced.

Subcase 4.2.1. M1 is nonplanar and M2 is planar.

As we have reasoned in the Subcase 1.2.1 of the maps in U1
(p3), M may be decomposed

into two maps as shown in Figure 5. This determined by M1 is a 4-regular map in Up(4)
such that the edge eP−1r is nonsingular. Further, we let U1

p (4) be the set of those maps. On
the other hand, the one determined by M2 is a planar map having its root-edge outside of
any separating cycle. Through a very similar procedure as we used in the Subcase 1.2.1 of
the maps in U1

(p3) we see that the contribution of this case to Up is

x2F 1
p (4)

F (2)
(f − 1),

where F 1
p (4) is the enumerating function of U1

p (4). By subtracting the contribution of those
determined by the maps in U(4) we conclude that the enumerating function for maps of this
case is

x2(Fp(4)− 1
zF (4))

F (2)
(f − 1), (2.14)

where Fp(4) counts the maps in Up(4).

Subcase 4.2.2. M1 is planar and M2 is nonplanar.

Similar to what we have analyzed in the corresponding situation of the maps in U1
(p3),

maps of this case may be decomposed into two types of maps, among which one is deter-
mined by twisting the edge which is one edge ahead of the root-edge along the root-face
of a map in U(4) and the other is in U662

(p3) whose root-edge is nonsingular. By repeating an
analogous but much more complicated manipulation we find that the enumerating function
for maps of this type is

x2F 1
p (4)

F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
− 1

z
(f − 1)

}
.

Combining all the three cases shows that the enumerating function of U661
(p3) is

f661(p3) =
x2F (4)

zF (2)
(f − 1) +

x2(Fp(4)− 1
zF (4))

F (2)
(f − 1)

+
x2F 1

p (4)

F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
− 1

z
(f − 1)

}
.

This implies that

f66p3 −
y

x2
f66(p3) =

y(w − 1)

F (2)

{
Fp(4)(f − 1)

+ F 1(4)

(
fp −

Fp(2)− 1
zF (2)

F (2)
− 1

z
(f − 1)

)}
.

(2.15)
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Now we are in a position to obtain our first main result. Equations (2.1) – (2.15) yield

fp = 2x2yzffp + x2y
∂xf

∂x
+

y

x2
{
fp − x2Fp(2)

}
+

5∑
i=1

(
f ip3 −

y

x2
f i(p3)

)
+

5∑
i=1

(
f6ip3 −

y

x2
f6i(p3)

)
+ f661p3 −

y

x2
f661(p3)

= 2x2yzffp + x2y
∂xf

∂x
+

y

x2
{
fp − x2Fp(2)

}
+ 2

{
y3zt(w − 1)

F (2)
+ y2(t− 1)

}
fp − 2

y3zt(w − 1)(Fp(2)− 1
zF (2))

F 2(2)
(f − 1)

+ 3
y3zt(w − 1)

F (2)
(f − 1) + 3y2(t− 1)(f − 1)

+ 2
y2z(w − 1)(F (2)− yz)

F (2)

{
fp −

Fp(2)− 1
zF (2)

F (2)
(f − 1)

}
+ 3

y2(w − 1)(F (2)− yz)
F (2)

(f − 1)

+
y(w − 1)

F (2)

{
Fp(4)(f − 1) + F 1(4)

(
fp −

Fp(2)− 1
zF (2)

F (2)
− 1

z
(f − 1)

)}
.

By considering the coefficient of fp we have that

x2 − y − 2x4yzf − 2x2
{
y3zt(w − 1)

F (2)
+ y2z(t− 1)

}
− 2x2y2z(w − 1)(F (2)− yz)

F (2)
− x2y(w − 1)F (4)

F (2)
= −

√
4,

where 4 is the discriminant of the following quadratic equation for planar maps obtained
in [31]:

x4yzf2 + (y − x2G)f + x2G− y − x2yF (2) = 0,

G = 1− 2y3z2t(w − 1)

F (2)
− 2y2z(t− 1)

− y2z(w − 1)
F (2)− yz
F (2)

− y(w − 1)
F (4)

F (2)
.

(2.16)

Theorem A. The enumerating functions fp and f satisfy the following equation:

−
√
4fp = x4y

∂xf

∂x
− x2yFp(2)− 2

x2y3zt(w − 1)(Fp(2)− 1
zF (2))

F 2(2)
(f − 1)

+ 3
x2y3zt(w − 1)

F (2)
(f − 1) + 3y2(t− 1)(f − 1) + 3x2y2(t− 1)(f − 1)

− 2
x2y2z(w − 1)(F (2)− yz)

F (2)

{
Fp(2)− 1

zF (2)

F (2)
(f − 1)

}
+ 3

x2y2(w − 1)(F (2)− yz)
F (2)

(f − 1)

+
x2y(w − 1)

F (2)

{
Fp(4)(f − 1)− F 1(4)

F (2)
(Fp(2)− 1

z
F (2))− F 1(4)

z
(f − 1)

}
.
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Remark 2.7. Since the above equation contains 5 or more parameters and much informa-
tion, many known results such as for monopoles on N1 [36], 4-regular maps on N1 [36]
(the case of t = w = 1) and loopless 4-regular maps on N1 [39] (the case of t = 0, w = 1)
may be derived. If more parameters are introduced, more results will be obtained. But here
we are only interested in the case of 4-edge-connected 4-regular maps on N1 since they are
more closer to the simple Eulerian maps which is what we shall handle in the next section.

3 Calculations
In this section we shall concentrate on the calculation of the function in Theorem A and all
the arguments are under the restriction t = w = 0, y = 1 since this is what we are really
interested in and may be handled by the double-root method developed by Brown [11].
Since t = w = 0 will destroy all the nonroot-vertex loops and all the separating cycles, we
have that F (2) = z, Fp(2) = 1. Now the equation in Theorem A becomes

−
√
4fp = x2

{
x2
∂(xf)

∂x
− 1− 3(f − 1)− Fp(4)

z
(f − 1) +

F (4)

z2
(f − 1)

}
,

where

−
√
4 = Hx2 − 1− 2x4zf, H = 1 + 2z +

F (4)

F (2)
. (3.1)

Let x2 = η denote a double root of4. Then after simplifications we obtain

Theorem B. The enumerating function of rooted 4-edge-connected 4-regular maps on the
projective plane is

Fp(4) =
z

1− f

(
ηf − 1−

√
1− 4zη2f

zη

)
+

z

1− f
− 3z +

F (4)

z
,

where

fη(2− f) = 1, η = 1 +
z2η3

1− 4zη2
. (3.2)

Remark 3.1. By applying Lagrangian inversion (for a reference one may see [19]) for
(3.2) and its other version

t = 1 +
z2

4z − t2
, tη = 1,

we may expand Fp(4) into a power series of z, i.e.,

Fp(4) =
∑
m≥0

z(η + 1)fm+1 −
∑
m≥1
n≥0

2

m

(
2m− 2

m− 1

)
zmη2m−1fm+n − 4z − 1 + 2zηf + t,

where

fs =
∑
k≥s

s

k22k−s

(
2k − s− 1

k − 1

)
tk,
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ηs =
z2

1− 4z
+
∑
m≥1
n≥0

4ns

m!

(
m+ n− 1

m− 1

)
D

(m−1)
η=1 (η2m+2n+s−1)z2m+n,

ts =
z2

4z − 1
+
∑
m≥1
n≥0

s

4m+nm!

(
m+ n− 1

m− 1

)
D

(m−1)
t=1 (t2n+s−1)zm−n.

Here

D(m)
x=af(x) =

dmf(x)

dxm

∣∣∣∣
x=a

.

By using an algebraic symbolic system such as Maple [32], the first few coefficients of
Fp(4) may be calculated:

Fp(4) = 6z2 + 21z3 + 94z4 + 471z5 + 2516z6 + 14006z7 + 80246z8 + 469635z9

+ 2793758z10 + 16835979z11 + 102530832z12 + 629875252z13

+ 3898000312z14 + 24274540180z15 + 151988898790z16

+ 956148311939z17 + 6040124414714z18 + · · ·

One may compare the initial values of the maps with the number presented by the
formula above and see that they coincide with each other. For instance, there are 6 rooted
4-edge-connected 4-regular maps with 3 faces on N1 and the following group of unrooted
maps (as shown in Figure 6) will induce 21 distinct rooted maps with 4 faces on N1.

v
v

v
(a)M1

v

v
v vAA

A
AA

(b)M2

v

v
v

(c)M3

v
v v
�
��

(d)M4

Figure 6: Four distinct embeddings of the double graph K2
3 on N1 which will induce 21

rooted maps.

The contributions of the 4 maps to the rooted maps are, respectively, listed in Table 1.
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Table 1: Initial values for 3-vertex rooted maps on N1.

M1 M2 M3 M4

12 6 2 1

4 Asymptotic evaluations
In this section we concentrate on the approximate values of the number of the maps ob-
tained in the previous section. We first state some basic facts.

Fact 4.1. Let M be a class of infinite rooted maps with M1 as its subset. Suppose that
their enumerating functions may be expanded into power series and their respective con-
vergence radiuses are R and R1. Then R and R1 are, respectively, the singularities of
them. Furthermore, R ≤ R1.

Fact 4.2 (Long [30]). The convergence radius of the power series expansion with the num-
ber of inner faces as the parameter of the enumerating function for the rooted 2-connected
4-regular maps without loops on the projective plane is 27

196 . Consequently, rooted 4-edge-
connected 4-regular maps on the projective plane must have its convergence radius, say r,
of enumerating function satisfying 27

196 ≤ r ≤ 1.

As we have reasoned in [31], the function H = G|y=1 (defined in Theorem A) and the
parameter η = x2 = x may be rewritten as

Hx =
1− 2z2x3

1− 2zx2
, x = 1 +

z2x3

1− 4zx2
. (4.1)

Remark 4.3. Here we use x2 = x = η to denote a double root of4 in convenience.

Since Darboux’s Theorem [2, Theorem 4] shows that the dominating singularity (i.e.,
that corresponds to the convergence radius) of the power series expansion of an enumer-
ating function of a type of maps contains a lot of information about the number of maps
considered, we have to locate the wanted singularity. By the definition of Fp(4) we have
the following

Fact 4.4. The singularities of Fp(4) satisfy either

(1) f − 1 = 0 or

(2) x = 0 or

(3) vx = 1 or

(4) Equations (4.1).

From the above fact we may conclude that the dominating singularity of Fp(4) must
satisfy (4.1). We now investigate the singularities of (4.1). The equation on the right hand
side of (4.1) may be rewritten as

S(x, z) = (z2 + 4z)x3 − 4zx2 − x+ 1 = 0. (4.2)
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By the implicit function theorem [24, Theorem 1.3.1], (4.2) will determine a function
x = x(z) with its singularities also satisfying ∂S(x,z)

∂x = 0. From this we may obtain a
group of equations as

(z2 + 4z)x3 − 4zx2 − x+ 1 = 0,

3(z2 + 4z)x2 − 8zx− 1 = 0.
(4.3)

The variable z may be extracted from (4.3) such that

z =
3− 2x

4x2
.

Now we substitute it into an equation of (4.3) and obtain another high order equation of x:

3(3− 2x)2 + 48x2(3− 2x)− 32x(3− 2x)− 16x2 = 0. (4.4)

Factoring the left hand side of (4.4) yields

(−8x+ 9)(2x− 1)2 = 0.

One may see that the only possible singularity satisfying Facts 4.1 and 4.2 is z = 4
27 (which

corresponds to x = 9
8 ).

In order to apply Darboux’s Theorem we also need to investigate the behavior of x =

x(z) near the dominating singularity m = 4
27 . Since both ∂2S(x,z)

∂x2 and ∂S(x,z)
∂x are not

equal to zero (where the function S(x, z) is defined by the Lagrangian inversion formula
in (4.2)) at m, x = x(z) may be expanded into a power series of (1− z

m )
1
2 near m. Let

x = a+ b

(
1− z

m

)1
2

+ c

(
1− z

m

)
+ d

(
1− z

m

)3
2

,

z = m−m
(

1− z

m

)
.

(4.5)

Substitute those into the equation system (4.3) and set the coefficients of (1 − z
m ) and

(1− z
m )

3
2 to zero we obtain a group of relations such as

a =
4

27
,

b2 =
27

256
,

c =
6ma2 − 3mb2 + 12a2 − 12b2 − 8a

2(3ma+ 12a− 4)
,

d =
203
√

3

16
.

We now begin to study the asymptotic behavior of Fp(4) near m. By Theorem B and
Darboux’s Theorem, we have the following

Fact 4.5. The coefficients of Fp(4) will be dominated by those of
√

1−4zx2f

x(1−f) , when the
number of faces is sufficiently large.
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Remark 4.6. Although there are several other terms in the expression of Fp(4) in Theo-
rem B which will contribute several corresponding coefficients to the power series of Fp(4)
by the famous transfer theorem discussed by Flajolet and Odlyzko [13], their effects may
be ignored when the number of faces is large enough.

Let u =
√

1− z
m . Then the coefficient of u0 in 1− 4zx2f is

1− 4ma2
1− am

1− 2ma2
= 0, a =

9

8
, m =

4

27
.

Now we concentrate on the evaluation of the coefficient of u in 1 − 4zx2f . After many
manipulations we see that this number is

− b(3− 2ma2)

a(1− 2ma2)
,

which implies that

√
1− 4zx2f ≈

√
− b(3− 2ma2)

a(1− 2ma2)

(
1− z

m

) 1
4

.

Substitute this into (4.3) we see that

√
1− 4zx2f

x(1− f)
≈

√
− b(3−2ma2)
a(1−2ma2)

ma2(1−2a)
1−2ma2

(
1− z

m

) 1
4

.

This together with the Darboux’s Theorem concludes the following

Theorem C. The number of rooted 4-edge-connected 4-regular maps on the projective
plane with n inner faces is asymptotic to

− C

n
5
4mnΓ(− 1

4 )
,

where Γ(x) is the gamma function at x and

C =

√
− b(3−2ma2)
a(1−2ma2)

ma2(1−2a)
1−2ma2

,

and

a =
9

8
, m =

4

27
, |b| = 3

√
3

16
.

Here the sign of the number b is chosen to guarantee that the number C is a real number.

Remark 4.7. Although 4
27 is very close to 27

196 , the dominating singularity corresponding
to the rooted 2-connected loopless 4-regular maps on N1, almost all the maps of such type
are not 4-edge-connected by Theorem C, that is, nearly all of such maps must contain at
least one separating cycle.
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Abstract

The n-dimensional abstract polytopes and hypertopes, particularly the regular ones,
have gained great popularity over recent years. The main focus of research has been their
symmetries and regularity. The planification of a polyhedron helps its spatial construction,
yet it destroys symmetries. No “planification” of n-dimensional polytopes do exist, how-
ever it is possible to make a “mapification” of an n-dimensional polytope; in other words
it is possible to construct a restrictedly-marked map representation of an abstract polytope
on some surface that describes its combinatorial structures as well as all of its symmetries.
There are infinitely many ways to do this, yet there is one that is more natural that describes
reflections on the sides of (n− 1)-simplices (flags or n-flags) with reflections on the sides
of n-gons. The restrictedly-marked map representation of an abstract polytope is a cellular
embedding of the flag graph of a polytope. We illustrate this construction with the 4-cube,
a regular 4-polytope with automorphism group of size 384. This paper pays a tribute to
Lynne James’ last work on map representations.

Keywords: Maps, hypermaps, representation, polytopes, hypertopes.
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1 Introduction
This paper stands to be a tribute to Lynne James’ last, and unfinished, work [9], where
she outlines a method of representing topological categories, such as the categories of cell
decompositions of n-manifolds, by other categories, for example the category of cell de-
compositions of oriented surfaces.
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A map is a cellular embedding of a graph (possibly with multiple edges, loops and/or
free edges) on connected surfaces with or without boundary. Algebraically a map M =
(Ω; r0, r1, r2) is a set Ω of triangular pieces of surface called flags, and 3 involutory per-
mutations r0, r1, r2 on Ω satisfying (r0r2)2 = 1 and generating a transitive group on Ω
called the monodromy group of the map.

An abstract n-polytope P is a partially ordered set (poset) of faces with a strictly mono-
tone rank function of range {−1, 0, . . . , n}, represented by a Hasse diagram with n + 1
layers, where the poset obey the diamond condition and the set of flags are strongly flag-
connected. Flags are maximal chains of faces, that is, vectors consisting of n + 2 faces
of rank −1, 0, 1, . . . , n respectively. There is a unique least face, the (−1)-face F−1 and a
unique greatest face the n-face Fn. Faces of rank 0, 1 and n− 1 are called vertices, edges
and facets, respectively. Two flags are adjacent if they differ only by one face (entry). Flags
are strongly flag-connected means that any two flags Ψ1, Ψ2 are connected by a sequence
of flags Φ0 = Ψ1, Φ1, . . . , Φm = Ψ2 such that two successive flags Φi, Φi+1 are adjacent
and for any i, j, Φi ∩Φj ⊇ Ψ1 ∩Ψ2. The diamond condition says that whenever Fi−1 and
Fi+1 are faces of ranks i−1 and i+1 for some i, with Fi−1 < Fi+1, then there are exactly
two faces Fi of rank i containing Fi−1 and contained in Fi+1, that is, Fi−1 < Fi < Fi+1.
In other words, the poset of the section Fi+1/Fi−1 = {F ∈ P | Fi−1 ≤ F ≤ Fi+1} is like
a diamond.

An abstract 2-polytope is just a polygon while a 3-polytope is a non-degenerate map
(cellular embedding of a loopless graph on some compact connected (i.e. closed) surface),
with the property that every edge is incident with exactly two faces, and every vertex on a
face is incident with two edges of that face.

A n-hypertope is an extension of an n-polytope by eliminating the partial order set
condition [6]. All n-polytopes are finite in this paper and n > 2 everywhere. For a fur-
ther reading on polytopes we address the reader to the classical book by McMullen and
Schulte [13].

2 Restrictedly-marked maps
Lynne James in [9] introduced maps representations and associate it to a non-commutative
multiplication operation between map type objects. Although restrictedly-marked map rep-
resentations [4] lie in a different category, they represent the same topological objects with
a different perspective and semantics.

Consider the “right triangle” group Γ = 〈R0, R2〉 ∗ 〈R1〉 ∼= (C2 × C2) ∗ C2 generated
by the three reflections R0, R1, R2 in the sides of a hyperbolic right triangle with two zero
internal angles.

Hyperbolic plane

(Poincaré disk) 0

0

0R

1R2R

Figure 1: Hyperbolic right triangle on the Poincaré disc.
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Every finite index subgroup M < Γ determines a finite map M = (Γ/rM ;M∗R0,
M∗R1,M

∗R2), where M∗ is the core of M in Γ and each M∗Ri acts as a permutation
on the right cosets Γ/

r
M of M in Γ by right multiplication. M is called the fundamental

map subgroup of M (or just “map subgroup”). Let Θ be a normal subgroup of Γ with
finite index n. A map is Θ-conservative if M is a subgroup of Θ. In this case the flags of
M are n coloured under the action of Θ, each colour determined by an orbit (the Θ-orbit)
under the action of Θ. By the Kurosh Subgroup Theorem [11, Proposition 3.6, p. 120], Θ
freely decomposes into a free product C2 ∗ · · · ∗ C2 ∗D2 ∗ · · · ∗D2 ∗ C∞ ∗ · · · ∗ C∞ =
〈Z1, . . . , Zm〉 for some finite number (possibly zero) of factors C2, D2 = C2 × C2 and
C∞. This decomposition is unique up to a permutation of the factors [12, p. 245]. A Θ-
conservative map can then be represented by a Θ-marked mapQ = (Ω; z1, . . . , zm), where
Ω is the set of right cosets Θ/rM of M in Θ, and each zi = MΘZi ∈ Θ/MΘ (where MΘ

is the core of M in Θ). The geometric construction described in [2], which can be adapted
to Γ [4], uses Θ-slices, polygonal regions determined by a Schreier transversal for Θ in Γ.
Θ-slices represent the elements of Ω. For example, a Γ-slice is a “flag” and a Γ+-slice is
a “dart”, where Γ+ is the normal subgroup of index 2 in Γ consisting of the words of even
length on R0, R1, R2. The group generated by z1, . . . , zm, called the monodromy group of
Q (denoted Mon(Q)), or the Θ-monodromy group ofM, acts transitively on the set of the
Θ-slices Ω.

A covering, or morphism, ψ from a Θ-marked map Q1 = (Ω1; z1, . . . , zm) to another
Θ-marked map Q2 = (Ω2; z′1, . . . , z

′
m) is a function ψ : Ω1 −→ Ω2 that commutes the

diagram
Ω1 ×Mon(Q1) −−−−→ Ω1

ψ

yι : zi 7→z′i yψ
Ω2 ×Mon(Q2) −−−−→ Ω2

An automorphism of Q is just a bijective covering from Q to Q. A Θ-marked map Q is
regular, or the Γ-marked map M is Θ-regular, if M is a normal subgroup of Θ. In this
case the automorphism group of Q, which is the automorphism group of M preserving
each Θ-orbit, coincides with the monodromy group Mon(Q), but with different action on
Ω. For a more detailed exposition see [2]; though the focus here has been hypermaps the
results are easily adapted to maps (see [4]).

By a restrictedly-regular (or resctrictly-regular) map we mean a map that is Θ-regular
for some (finite index) normal subgroup Θ/Γ. In a similar way as done in [2], not all maps
are restrictedly-regular. However, any group G is the monodromy group (and hence the
automorphism group) of a restrictedly-regular map ([3, Lemma 2.2] easily adapted to Γ).

3 Algebraic representation of finite n-polytopes
A Coxeter group is a group with presentation 〈s0, s1, . . . , sn−1 | s2

i = (sisj)
pij = 1〉

where pij ≥ 2 is a positive integer possibly ∞. If pij = ∞ then the relation (sisj)
pij

is vacuous and is not considered in the above presentation. Let P be an abstract n-
polytope, and denote by ΩP the set of flags of P . As an immediate consequence of
the diamond condition, for any flag Φ ∈ ΩP and for any 0 ≤ i ≤ n − 1, the set
{Φ′ ∈ ΩP | Fj(Φ′) = Fj(Φ), ∀j 6= i}, where Fj(Φ) is the face of rank j of Φ, con-
tains exactly two elements, being Φ one of them. Denote by Φri = Φ′ the other flag of



76 Ars Math. Contemp. 18 (2020) 73–86

this set. Then we have n permutations ri =
∏

Φ∈ΩP
(Φ,Φri) for i ∈ {0, 1, . . . , n − 1},

giving rise to a transitive permutation group G(P) = 〈r0, r1, . . . , rn−1〉 on ΩP , called the
connection group (or monodromy group) of P , that describes the polytope P: each rank i
face Fi for i ∈ {0, 1, . . . , n− 1}, corresponds to an orbit of 〈r0, . . . , r̂i, . . . , rn−1〉 on ΩP ,
where r̂i denotes the absence of ri. In fact, if Fi is a face of rank i and Φ and Ψ are two
flags containing Fi, then by strong connectedness

Φ〈r0, . . . , r̂i, . . . , rn−1〉 = Ψ〈r0, . . . , r̂i, . . . , rn−1〉.

So Φ〈r0, . . . , r̂i, . . . , rn−1〉 is the set of all flags containing the common i-face Fi. An i-
face Φ〈r0, . . . , r̂i, . . . , rn−1〉 is incident to a j-face Ψ〈r0, . . . , r̂j , . . . , rn−1〉 (i 6= j) if and
only if Φ〈r0, . . . , r̂i, . . . , rn−1〉 ∩ Ψ〈r0, . . . , r̂j , . . . , rn−1〉 6= ∅; so incidence corresponds
to non-empty intersection.

Hence the polytope P can be identified with the n + 1 tuple (ΩP ; r0, r1, . . . , rn−1).
Two such n + 1 tuples (Ω1; r0, r1, . . . , rn−1) and (Ω2; s0, s1, . . . , sn−1) are isomorphic
if there is a bijection f from Ω1 to Ω2 that satisfy ωrif = ωfsi for every ω ∈ Ω1 and
i ∈ {0, 1, . . . , n− 1}.

Denote by ∆n−1 the Coxeter group 〈S0, S1, . . . , Sn−1 | S2
i = 1〉. Then we have

a natural epimorphism π : ∆n−1 → G(P), mapping each Si to ri, inducing an action
Φd := Φdπ of ∆n−1 on ΩP . Similarly to [2, §1.2], fixing a flag Φ ∈ ΩP and letting P be
the stabiliser of Φ in ∆n−1, then ∆n−1 acts on ∆n−1/rP by right multiplication, inducing
a bijective function πΦ : ∆n−1/rP → ΩP , Pd 7→ Φdπ. The kernel of π is the core P ∗ of P
in ∆n−1

1 and the group ∆n−1/P
∗ acts transitively on ∆n−1/rP by right multiplication in a

similar way asG(P) acts on ΩP . Hence the polytope (ΩP ; r0, r1, . . . , rn−1) is isomorphic
to (∆n−1/rP ;P ∗S0, P

∗S1, . . . , P
∗Sn−1). Every polytope P is described by such (n+ 1)-

tuples; the converse is false. The set of all such (n+1)-tuples will be called for the moment
the set of (n − 1)-hypermaps (see also Section 7). So both n-polytopes and n-hypertopes
are (n− 1)-hypermaps, the converse is false. The subgroup P will be called a fundamental
subgroup of P . This is unique up to a conjugacy in ∆n−1.

A (n − 1)-hypermap H = (ΩP ; r0, r1, . . . , rn−1) is regular if the connection group
acts regularly on Ω; this is equivalent to say that the fundamental subgroup P is normal
in ∆n−1. In such case P ∗ = P and, up to an (n − 1)-hypermap isomorphism, Ω =
∆n−1/rP = G is the connection group, which coincides with the automorphism group of
H. The action of G on Ω = G as a connection group is done by right multiplication, while
as automorphism group is done by left multiplication.

A string Coxeter group of type [k1, k2, . . . , kn−1] (k1 > 2, k2 > 2, . . . , kn−1 > 2) is
a Coxeter group 〈S0, S1, . . . , Sn−1 | S2

i = 1〉 satisfying the Dynking diagram (or string
diagram) of type [k1, k2, . . . , kn−1]:

S4S3S2S0 S1

k1 k2 k3 k4 kn-1

Sn-1
...

A regular polytopeP is of type [k1, k2, . . . , kn−1] if its automorphism group (or connection
group) is a smooth quotient of a string Coxeter group ∆n−1 of type [k1, k2, . . . , kn−1].

For additional details on polytopes and related subjects we address the reader to [14].
1Let α : G(P) → SΩ be the action homomorphism of G(P) on Ω, then πα : ∆n−1 → SΩ (right action

notation) is the action homomorphism of ∆n−1 on Ω. As G(P) acts faithfully on Ω, then P ∗ = Ker(πα) =
π−1(Ker(α)) = π−1(1) = Ker(π).
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4 Topological approach to n-polytopes and n-hypertopes
Polytopes appear in the literature both as abstract and geometric. Hypertopes have been
essentially introduced as abstract constructions. There is a topological construction that
is relevant for what follows later in Section 8. From the example below (Section 6) one
see that a flag of the hypercube can be associated to a tetrahedron, that is, a 3-simplex.
Replacing faces in the poset of a polytope (hypertope) by simplices and the rank function by
the dimension function, under the same conditions, we get an abstract simplicial complex
model of a polytope (hypertope).

Towards a more topological approach, let a n-flag be an (n − 1)-simplex with its n
vertices labelled 0, 1, . . . , n − 1 and its n facets labelled by the opposite vertex label. Let
also Ω be a set of n-flags.

3-flag2-flag 4-flag 5-flag

. . .
0 12

2

01

0 1 01 0 1

2

1111

3

0
2 3

0 1

23

2
3

1
4

3

2
3

1
4

0
42

Figure 2: Example of n-flags.

For each i ∈ {0, 1, . . . , n − 1} we denote by the transposition τi = (a, b) the joining of
two n-flags a, b ∈ Ω along their facet labelled i so that its facet’s vertex numbers match
up, and call it an i-transposition. Denote by ri the product of i-transpositions recording
those pairs of n-flags that are joined by their i-labelled facets; ri = 1 just means that no
pairs of n-flags are joined by their facets labelled i. The group G = 〈r0, r1, . . . , rn−1〉
records all the existing joining between the n-flags. We call it a connection group (or
monodromy group). If this group acts transitively on Ω then (Ω; r0, r1, . . . , rn−1) describes
a topological/algebraic object isomorphic2 to an (n − 1)-hypermap. Call it n-hyperplex3.
Since n-flags are only connected by their facets, no k-face, for k < n − 1, can occur as
the intersection of two consecutive n-flags. Moreover, if an n-flag is fixed by some ri this
means that the facet labelled i of the flag is on the boundary. Thus boundary cannot be
made of k-faces for k < n− 1. Thus if two n-flags have in common a k-face (k < n− 1)
then necessarily there must be a sequence of n-flags that intersect two by two on a facet
containing the k-face. Hence by construction, if this connection group acts transitively on
Ω it does so strongly transitively.

This bring polytopes (hypertopes) close to Piecewise Linear Manifolds (PL-manifolds).

5 Regular representation of n-polytopes by restrictedly-marked maps
Following Lynne’s ideas [9], and more explicitly the notations and definitions expressed in
[4], a regular representation of (n−1)-hypermaps by restrictedly-marked maps is a (m+1)-
tuple (Θ;X0, X1, . . . , Xm−1), consisting of a normal subgroup Θ of Γ freely generated by
X0, X1, . . . , Xm−1 for some m ≥ n, together with an epimorphism ρ from Θ to ∆n−1.

2Isomorphisms taken in the same sense as isomorphisms between Θ-marked maps defined in Section 3.
3Terminology introduced by Steve Wilson in BIRS Workshop 17w5162, Canada, 2017.
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Such representation gives rise to a bijection between the set of (n− 1)-hypermaps P with
fundamental subgroup H to the set of regular Θ-marked maps with fundamental subgroup
Hρ−1, henceforth a representation of n-polytopes (or n-hypertopes).

Γ

Θ ∆n−1

Hρ−1 H

ρ
= 〈S0, S1, . . . , Sn−1〉

= C2 ∗D2 = 〈R1〉 ∗ 〈R0, R2〉

Q P
Θ-marked

map

Theorem 5.1. There is a regular restrictedly-marked representation of n-polytopes such
that:

(1) n-flags ((n− 1)-simplices for n-polytopes and -hypertopes) correspond to n-gons;

(2) local reflections about facets of an n-flag corresponds to local reflections on the sides
of the n-gon;

(3) the (full) automorphism group of the n-polytope (-hypertope) is the (full) automor-
phism group of the restrictedly marked map;

(4) the n-polytope (-hypertope) is orientable if and only if the restrictedly marked map
is orientable.

Proof. Lynne James’s first example [9], more specifically the example given by the alterna-
tive construction, gives an answer to this question for n = 4. The proof could be resumed
to find a normal subgroup Θ of Γ which is freely generated by reflections. However there
are only four subgroups that are freely generated by, and only by, reflections, namely

Γ2.1 = 〈R0, R1, R2R1R2〉 = C2 ∗ C2 ∗ C2,

Γ2.4 = 〈R1, R2, R0R1R0〉 = C2 ∗ C2 ∗ C2,

Γ2.5 = 〈R1, R2R0, R0R1R0〉 = C2 ∗ C2 ∗ C2, and
Γ4.2 = 〈R1, R0R1R0, R2R1R2, R0R2R1R2R0〉 = C2 ∗ C2 ∗ C2 ∗ C2.

These solve the problem for n = 3 and 4. The following approach gives a general con-
struction for all n ≥ 3.

Denote by
∏
k(Ri, Rj) the product RiRjRiRjRi . . . of Ri and Rj in alternate form,

starting from Ri and counting k total factors. If k = 0 then put
∏

0(Ri, Rj) = 1. Now
take the normal subgroup4

Γn = 〈R0, R
R1
0 , RR1R2

0 , . . . , R
∏

n−1(R1,R2)

0 , (R1R2)n〉

of rank n + 1 and index 2n in Γ (Γ/Γn is a dihedral group of order 2n). By the Kurosh’s
Subgroup Theorem [11, Proposition 3.6], these generators decompose Γn as a free product

4There is another subgroup generated by reflections and one rotation with the same decomposition as a free
product C2 ∗ C2 ∗ C2 ∗ · · · ∗ C∞, it is the dual resulting from swapping R0 with R2. Another subgroup also
appears with such free product decomposition C2 ∗C2 ∗C2 ∗ · · · ∗C∞, however one of the C2 is generated by
the rotation R0R2, instead of a reflection.
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C2 ∗ C2 ∗ · · · ∗ C2 ∗ C∞. We take the epimorphism ρ : Γn → ∆n−1 by mapping each
R

∏
k(R1,R2)

0 to Sk, for k = 0, 1, . . . , n− 1, and (R1R2)n to 1. Then the regular map with
dihedral automorphism group of size 2n corresponding to the quotient Γ/Γn, called trivial
Γn-map, is a star graph cellular embedded in the disk, thus a boundary map with one vertex
and n edges. We need to cut open this disk to its centre to create a Γn-slice (see [4] for the
constructing example of such a Γn-slice) for the restricted Γn-marked map, however we
need to join it back to accomplish (R1R2)n = 1, satisfied by the epimorphism ρ, to create
a Γn-slice for this representation ρ. Each (n− 1)-hypermap P , and hence each n-polytope
(and each n-hypertope), corresponding to a fundamental subgroup P , is isomorphic to a
Γn-marked map Q with fundamental subgroup the inverse image Q = Pρ−1. The rooted
Γn-slice forQ is the above n-gon with a distinguished flag (in black) as shown in Figure 3.

Figure 3: Rooted Γ3-slice, Γ4-slice and Γ6-slice.

The monodromy group (which corresponds to the connection group of the (n− 1)-hyper-
map, n-polytope or n-hypertope) is generated by the reflections on the sides of this n-gon.
The isomorphism ρ̄ between the restricted Γn-marked map Q and P establishes the third
statement. A (n− 1)-hypermap is orientable (and so is an n-polytope and an n-hypertope)
if and only if any word on r0, r1, . . . , rn−1 that turns to be the identity has even length,
that is, it can be expressed as a word on the rotations r1r2, r2r3, . . . , rn−2rn−1. Given that
the isomorphism ρ̄ sends each odd length word R

∏
i(R1,R2)

0 to ri, that is also true in the
restrictedly marked map representation, that is, the representation word will also be a word
of even length on R0, R1, . . . , Rn. This establishes the last statement.

As it turns out from the rooted Γn-slice, a restrictedly-marked map representation of an
abstract polytope is a cellular embedding of the flag graph of the polytope on a connected
surface without boundary. In [4] we dealt only with clean restrictedly-marked representa-
tions (of hypermaps), that is, regular restricted Θ-marked map representations of n-ranked
objects where the generators of Θ give rise to free product decompositions of Θ of equal
rank n; this translates, for instance, to 3 generators for representations of hypermaps (rank
3 polytopes). As (n − 1)-hypermaps (n-polytopes, n-hypertopes) have rank n and Γn
has rank n + 1, the above restricted Γn-marked map representations are not clean. As a
consequence of this fact we have,

Proposition 5.2. There are infinitely many regular restricted Γn-marked map representa-
tions of (n− 1)-hypermaps. Thus in general, there are infinitely many regular restrictedly-
marked representations of (n− 1)-hypermaps, and so of n-polytopes and n-hypertopes.

Proof. In order to get distinct epimorphisms ρ : Γn → ∆n−1 = 〈S0, . . . , Sn−1〉 = C2 ∗
C2 ∗ · · · ∗ C2 we just assign R

∏
k(R1,R2)

0 to Sk as before, for k = 0, 1, . . . , n − 1, and
(R1R2)n to different, and non conjugate, elements in ∆n−1. In this way we get infinitely
many distinct epimorphism and hence infinitely many regular restricted Γn-marked map
representations of (n− 1)-hypermaps.
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6 Example: The hypercube
As an illustration we take the hypercube, an orientable and regular 4-polytope with 384
flags. The rooted Γ4-slice of the restricted Γ4-marked map representation is illustrated in
the picture above (Figure 3). To construct the regular restricted Γ4-map Q that represents
the hypercube, we need to join the 384 rooted Γ4-slices through their four sides according
to the rule dictated by the side reflections r0 = R0, r1 = RR1

0 , r2 = RR1R2
0 and r3 =

RR1R2R1
0 .

r0
r1

r2r3

Figure 4: Identification sides on the rooted Γ4-slice.

The automorphism group G of the hypercube is a Coxeter group of type [4, 3, 3] with
presentation

〈r0, r1, r2, r3 | r2
0, r

2
1, r

2
2, r

2
3, (r0r2)2, (r0r3)2, (r1r3)2, (r0r1)4, (r1r2)3, (r2r3)3〉.

Since it is regular, its connection group coincide with its automorphism group (only its
action on the flags is different), and since the automorphism group acts regularly on the
set of flags its size is the number of flags. So we may replace the set of flags by the auto-
morphism group, in which case the action of the automorphism group on the flags is done
by left multiplication while the action of the connection group is done by right multiplica-
tion. For the constructing we use the group as a connection group and automatically label
its elements 1, 2, 3, . . . , being the identity element the element labelled 1, followed by the
elements 2 = r0 = R0, 3 = r1 = RR1

0 , 4 = r0r1, 5 = r0r1r0 etc, so that the first 8 label
all the elements of the dihedral subgroup 〈r0, r1〉 (the central 8-gon). As the hypercube is
symmetric around the central 8-gon, we only need to construct one sector, being the rest of
the 7 sectors obtained by reflections and rotations about this central 8-gon. So we only need
to figure out how to arrange the 48 Γ4-slices and the final labelling of the outside border of
this sector. This is done (with the help of GAP [15]) in the figure below (Figure 5). GAP
was used twice:

(i) to ensure that each rooted Γ4-slice placed inside the sector does not appear when
reflecting or rotating around the central 8-gon,

(ii) to get the side-pairings between the labelled sides of the sector with the sides of the
rest of the picture.

Bold numbers and letters label the sides of this sector; the red labels signalize identifications
inside the same sector, while the black ones label indentifications outside this sector.

Now copy reflecting this sector about the central 8-gon we get the final picture of the
hypercube (Figure 6) which reflects a Γ4-restrictedly regular map on an orientable surface
of genus 41. Not all the sides were labelled. To complete the labelling we use the reflec-
tions and rotations about the central polygonal region. For example, the central bottom
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Figure 5: The first sector of the hypercube.

side labelled 37 has its right side unlabelled; label it x for a while. This x vertically mirror
reflects to 37, so the x side should be identified to the side y that is the vertical mirror
reflection of the identification pair of 37. There is also no arrows to instruct the identifica-
tion side pairing; this is unnecessary as well since the identification is done similarly to the
matching of the internal sides, which was done by following the words R0, RR1

0 , RR1R2
0

and RR1R2R1
0 corresponding to the sides (Figure 4); any of these words will take a rooted

Γ4-slice to a neighbouring rooted Γ4-slice.



82 Ars Math. Contemp. 18 (2020) 73–86

2
3 4

5
67

8

1

73

17

121

305

225

129

289

353

321
209

257

161

241

177

273

81

89

57

145

265

9

49

97

33
65

193

25

137

185

297

41

169

337

345

361

377

369

329

113

313

233

105
153

201

249

281

217

18

22 23

mn
p

s t
u

30

31
xy

37

1

2

13 14

h d

eg

2021

24
25

26

28
29

32
33

34

v

35

36

3

d

e

h

g

12
25

m
n p

7
8

12

1314

k

18
19

8

c 17

k

20 21

22
23

24

17
26

s
t u

3

b

q

vc
7x

y

28
29

30
31

32
33

19

34

27

35

36

16

37

r

a

r

27

q

1

2

16

b

a

x

y

Figure 6: The hypercube.
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7 Genus of a regular orientable n-polytope and n-hypertope
The genus g of an orientable n-polytope (resp. orientable n-hypertope) can be defined to
be the genus of the orientable (n − 1)-hypermap it corresponds to, which is the genus of
the regular Γn-marked map representation Q without boundary. Recall that g = 2−χ

z ,
where z = 2 ifQ is orientable and 1 otherwise. The formula of the characteristic χ (i.e. the
Euler characteristic of the underlying surface of the regular Γn-marked map representation)
presented below is derived from the characteristic formula in [2] taking into account that
the trivial Γn-map is a boundary map with edges and faces on the boundary. A direct
calculation can go as follows: we see from a rooted Γn-slice (Figure 7) that the embedding
of the n-coloured graph (flag graph in the case of polytopes and hypertopes) produces n
type of faces f1, f2, . . . , fn determined by

ρ1 = r0r1 = (R0R1)2,

ρ2 = r0r2 = (R0R1)R2 ,

ρ3 = r1r3 = ((R0R1)2)R2R1 ,

...

ρn−1 = rn−3rn−1 = ((R0R1)2)
∏

n−2(R2,R1), and

ρn = rn−2rn−1 = ((R0R1)2)
∏

n−1(R2,R1).

Then Fi = |G|
2mi

is the number of faces of type i, where mi = |ρi| and G = 〈r0, . . . , rn−1〉
is the set of n-flags. It also produces n types of edges, one for each ri, being the number
Ei of edges of type i given by Ei = |G|

2 .

0
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r1

r3r5
r7

r9

r11
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f4
f6f8
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f11

f9

f7
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f3

Figure 7: Γ12-slice showing the i-labelled edges and the i-labelled faces.

Finally, as the number V of vertices is |G|, the number of edges is E = E0 + E1 + · · · +
En−1 and the number of faces is F = F1 +F2 + · · ·+Fn, then the characteristic χ = V −
E+F of a regular (n−1)-hypermap (or a regular n-hypertope)H = (G; r0, r1, . . . , rn−1)
is given by

χ =
|G|
2

(
1

m1
+

1

m2
+ · · ·+ 1

mn−1
+

1

mn
+ 2− n

)
.

In regular (n− 1)-hypermaps we may have mi = 1, so writing N = −χ, we have

|G| = 2N

n− 2− ( 1
m1

+ 1
m2

+ · · ·+ 1
mn

)
≤ 2N

n− 2− ( 1
1 + · · ·+ 1

1 + 1
2 + 1

3 + 1
7 )

= 84N,
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the usual Hurwitz bound.
However, for regular n-polytopes, of type [m1, k2, k3, . . . , kn−1,mn], we have m2 =

m3 = · · · = mn−1 = 2, which gives the formula

χ =
|G|
2

(
1

m1
+

1

mn
+

2− n
2

)
.

We have also m1 ≥ 3 and mn ≥ 3, so that

|G| = 2N
n−2

2 − ( 1
m1

+ 1
mn

)
≤ 12N

3n− 10
.

In particular if n > 3, then

|G| < 4N

n− 4
and N ≥ |G|

12
(3n− 10) >

|G|
4

(n− 4).

For n > 8 the minimum size of a regular polytope is |G| = 2.4n−1 (Conder [5]), which
gives N > 2.4n−2(n − 4). A better refinement for n in {3, 4, 5, 6, 7, 8} can be made by
taking the Propositions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 of [5] into account:

Table 1: Leasted values for |G| and negative characteristic N for regular n-polytopes.

n min |G| (from [5]) minN = −χ inf

3 |G| ≥ 24 N ≥ −2 from |G| = 24, type [3, 3]

4 |G| ≥ 96 N ≥ 18 from |G| = 108, type [3, 6, 3]

5 |G| ≥ 432 N ≥ 198 from |G| = 432, type [3, 6, 3, 4]

6 |G| ≥ 1728 N ≥ 1296 from |G| = 1728, type [4, 3, 6, 3, 4]

7 |G| ≥ 7776 N ≥ 7452 from |G| = 7776, type [3, 6, 3, 6, 3, 4]

8 |G| ≥ 31104 N ≥ 38234 estimated with |G| = 32772,
type [3, . . . , 3]

n |G| ≥ 2.4n−1 N > 2.4n−2(n− 4)

Regular n-polytopes and their duals have the same genus. The restricted Γ4-map pic-
tured in Figure 6 that represents the hypercube has genus 41 (N = 80). If we have done
the same for the hypertetrahedron, an orientable and regular 4-polytope with 120 flags and
automorphism group the Coxeter group of type [3, 3, 3], we would end up with a regular
restricted Γ4-map of genus 11 (N = 20).

The above formulae do not take into account the smallest dimension that a n-polytope
(or n-hypertope) might be realised as a complex simplicial manifold. For this we have
the genus g(M) of a piecewise linear manifold M introduced by Gagliardi [8] as being
the minimum genus of any colour-graph that induces the same piecewise linear manifold
M , where the genus of a coloured-graph is the minimum genus of its strongly-regular
embeddings. Despite g(M) be a topological invariant, g(M) = 0 if and only if M is the
(n − 1)-sphere, and g(M) coincides with usual surface genus if dim(M) = 2 and with
Heegaard genus if dim(M) = 3, to calculate g(M) one needs to apply dipoles operations
of addition and/or subtraction consecutively on the n-graph in order to transform it into a
minimal coloured-graph embedding for M , called a crystallisation of M [7]. The genus of
a crystallisation is a topological invariant and coincides with g(M). However it has been
shown to be difficult to get a transition from a crystallisation to another one [16].
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8 n-hypermaps as generalisation of hypermaps
Hypermap are generalisations of maps by allowing edges to join more than two vertices.
They are accomplished by cellular embeddings of hypergraphs (bipartite graphs) on con-
nected surfaces. Now n-hypermaps can also be seen as a further generalisation of hyper-
maps. A map is a cellular embedding of a (1-partite) graph on a connected surface (so to
speak a 1-partite map). A n-hypermap, n > 1, is a cellular embedding of an n-partite
graph on a connected surface (that is an n-partite map or n-coloured map) such that each
vertex coloured k with 1 < k < n, is alternately surrounded by vertices coloured k − 1
and k + 1, while vertices coloured 1 (resp. n) are surrounded by vertices coloured 2 (resp.
n− 1). They arise as quotients of “(n+ 1)-gonal” groups. Take a hyperbolic (n+ 1)-gon
with zero internal angles (Figure 8 left). The dual is a cellular embedding tree (Figure 8
right) and so the Coxeter group generated by the reflections on the sides of this hyperbolic
(n+ 1)-gon is a free product C2 ∗C2 ∗ · · · ∗C2. Each conjugacy class of a subgroup H in
∆n determines, up to isomorphism, a n-hypermapH = (∆n/rH;H∗r0, H

∗r1, . . . ,H
∗rn)

with monodromy group Mon(H) = ∆n/H
∗, where H∗ is the core of H in ∆n, and
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Figure 8: Hyperbolic 5-gonal tesselation (left), 4-hypermap (centre), 5-valency tree (right).

Aut(H) = N
∆n

(H)/H . It occurs as an orbifold of the universal hyperbolic n-hypermap
illustrated in Figure 8 centre (for n = 4). A map is a 1-hypermap and a hypermap is a
2-hypermap.

These (n+1)-gonal hyperbolic tessellations on the Poincaré disc are maps. Their duals
are maps whose edges are (n+1) coloured (Figure 8 right) representing hyperbolic cellular
embeddings of universal (n + 1)-coloured graphs [1] or (n + 1)-GEMs ((n + 1)-graph
encoding manifolds) [10].
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Abstract

In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic
graph has three perfect matchings whose intersection is empty. In this paper we answer
a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent for-
mulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture
originally proposed by the first author, which states that in every simple bridgeless cubic
graph there exist two perfect matchings such that the complement of their union is a bipar-
tite graph. Here, we show that this conjecture can be equivalently stated using a variant of
Petersen-colourings, we prove it for graphs having oddness at most four and we give a nat-
ural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.

Keywords: Cubic graph, perfect matching, oddness, Fan-Raspaud Conjecture, Berge-Fulkerson Con-
jecture, Petersen-colouring.

Math. Subj. Class. (2020): 05C15, 05C70

1 Introduction and terminology
Many interesting problems in graph theory are about the behaviour of perfect matchings
in cubic graphs. One of the early classical results was made by Petersen [28] and states
that every bridgeless cubic graph has at least one perfect matching. Some years ago, one
of the most prominent conjectures in this area was completely solved by Esperet et al. in
[5]: the conjecture, proposed by Lovász and Plummer in the 1970s, stated that the number
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of perfect matchings in a bridgeless cubic graph grows exponentially with its order (see
[20]). However, many others are still open, such as Conjecture 2.1 proposed independently
by Berge and Fulkerson in the 1970s as well, and Conjecture 2.2 by Fan and Raspaud (see
[10] and [7], respectively). These two conjectures are related to the behaviour of the union
and intersection of sets of perfect matchings, and properties of this kind are already largely
studied: see, amongst others, [1, 2, 15, 16, 17, 19, 22, 23, 25, 30, 31]. In this paper we
prove that a seemingly stronger version of the Fan-Raspaud Conjecture is equivalent to the
classical formulation (Theorem 3.3), and so to another interesting formulation proposed in
[21] (see also [18]). In the second part of the paper (Section 4 and Section 5), we study
a weaker conjecture proposed by the first author in [24]: we show how we can state it in
terms of a variant of Petersen-colourings (Proposition 4.1) and we prove it for cubic graphs
of oddness four (Theorem 5.4). Although all mentioned conjectures are about simple cubic
graphs without bridges, we extend our study of the union of two perfect matchings to
bridgeless cubic multigraphs and to particular cubic graphs having bridges (Section 6.1
and Section 6.2).

Graphs considered in the sequel, unless otherwise stated, are simple connected bridge-
less cubic graphs and so do not contain loops and parallel edges. Graphs that may contain
parallel edges will be referred to as multigraphs. For a graph G, let V (G) and E(G) be
the set of vertices and the set of edges of G, respectively. A matching of G is a subset of
E(G) such that any two of its edges do not share a common vertex. For an integer k ≥ 0, a
k-factor of G is a spanning subgraph of G (not necessarily connected) such that the degree
of every vertex is k. The edge-set of a 1-factor is said to be a perfect matching. The least
number of odd cycles amongst all 2-factors of G, denoted by ω(G), is called the oddness
of G, and is clearly even for a cubic graph since G has an even number of vertices. For
M ⊆ E(G), we denote the graphG\M byM . In particular, whenM is a perfect matching
of G, then M is a 2-factor of G. In this case, following the terminology used for instance
in [8], if M has ω(G) odd cycles, then M is said to be a minimal perfect matching.

A cut in G is any set X ⊆ E(G) such that X has more components than G, and
no proper subset of X has this property, i.e. for any X ′ ⊂ X , X ′ does not have more
components than G. The set of edges with precisely one end in W ⊆ V (G) is denoted
by ∂GW , or just ∂W when it is obvious to which graph we are referring. Moreover, a cut
X is said to be odd if there exists a subset W of V (G) having odd cardinality such that
X = ∂W .

We next define some standard operations on graphs that will be useful in the sequel.
Let G1 and G2 be two bridgeless graphs (not necessarily cubic), and let e1 and e2 be two
edges such that e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2). A 2-cut connection on
u1v1 and u2v2 is a graph operation that consists of constructing the new graph

[G1 − e1] ∪ [G2 − e2] ∪ {u1u2, v1v2},

and denoted by G1(u1v1) ∗G2(u2v2). It is clear that another possible graph obtained by a
2-cut connection on e1 and e2 is G1(u1v1) ∗ G2(v2u2). Clearly, the two graphs obtained
are bridgeless, and, unless otherwise stated, if it is not important which of these two graphs
is obtained, we use the notation G1(e1) ∗G2(e2) and we say that it is a graph obtained by
a 2-cut connection on e1 and e2.

Now, letG1 andG2 be two bridgeless cubic graphs, v1 ∈ V (G1) and v2 ∈ V (G2) such
that the vertices adjacent to v1 are x1, y1 and z1, and those adjacent to v2 are x2, y2 and z2.
A 3-cut connection (sometimes also known as the star product, see for instance [11]) on v1



G. Mazzuoccolo and J. P. Zerafa: An equivalent formulation of the Fan-Raspaud Conjecture . . . 89

and v2 is a graph operation that consists of constructing the new graph

[G1 − v1] ∪ [G2 − v2] ∪ {x1x2, y1y2, z1z2},

and denoted byG1(x1y1z1)∗G2(x2y2z2). The 3-edge-cut {x1x2, y1y2, z1z2} is referred to
as the principal 3-edge cut (see for instance [9]). As in the case of 2-cut connections, other
graphs can be obtained by a 3-cut connection on v1 and v2, and, unless otherwise stated,
if it is not important how the adjacencies in the principal 3-edge cut look like, we use the
notation G1(v1) ∗ G2(v2) and we say that it is a graph obtained by a 3-cut connection on
v1 and v2. It is clear that any resulting graph is also bridgeless and cubic.

2 A list of relevant conjectures
One of the aims of this paper is to study the behaviour of perfect matchings in cubic graphs,
more specifically the union of two perfect matchings (see Section 4 and Section 5). We
relate this to well-known conjectures stated here below, in particular: the Berge-Fulkerson
Conjecture and the Fan-Raspaud Conjecture.

Conjecture 2.1 (Berge-Fulkerson [10]). Every bridgeless cubic graphG admits six perfect
matchings M1, . . . ,M6 such that any edge of G belongs to exactly two of them.

⇒ ⇒Conjecture 2.3 Conjecture 2.4⇒Berge-Fulkerson
Conjecture Conjecture

Fan-Raspaud Prop. 2.5

Figure 1: Conjectures mentioned and how they are related.

We also state here other (possibly weaker) conjectures implied by the above conjecture.

Conjecture 2.2 (Fan-Raspaud [7]). Every bridgeless cubic graph admits three perfect
matchings M1,M2, and M3 such that M1 ∩M2 ∩M3 = ∅.

In the sequel we will refer to three perfect matchings satisfying Conjecture 2.2 as an
FR-triple. We can see that Conjecture 2.2 is immediately implied by the Berge-Fulkerson
Conjecture, since we can take any three perfect matchings out of the six which satisfy
Conjecture 2.1. A still weaker statement implied by the Fan-Raspaud Conjecture is the
following:

Conjecture 2.3 ([21]). For each bridgeless cubic graph G, there exist two perfect match-
ings M1 and M2 such that M1 ∩M2 contains no odd-cut of G.

We claim that any two perfect matchings out of the three in an FR-triple have no
odd-cut in their intersection, in other words that Conjecture 2.2 implies Conjecture 2.3.
For, suppose not. Then, without loss of generality, suppose that M2 ∩ M3 contains an
odd-cut X . Hence, since every perfect matching has to intersect an odd-cut at least once,
|M1∩(M2∩M3)| ≥ |M1∩X| ≥ 1, a contradiction, since we assumed thatM1∩M2∩M3

is empty. In relation to the above, the first author proposed the following conjecture:

Conjecture 2.4 (S4-Conjecture [24]). For any bridgeless cubic graph G, there exist two
perfect matchings such that the deletion of their union leaves a bipartite subgraph of G.
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For reasons which shall be obvious in Section 4 we let such a pair of perfect matchings
be called an S4-pair of G and shall refer to Conjecture 2.4 as the S4-Conjecture. We will
first proceed by showing that this conjecture is implied by Conjecture 2.3, and so, by what
we have said so far, is a consequence of the Berge-Fulkerson Conjecture. In particular, we
can see the S4-Conjecture as Conjecture 2.3 restricted to odd-cuts ∂V (C), where C is an
odd cycle of G.

Proposition 2.5. Conjecture 2.3 implies the S4-Conjecture.

Proof. Let M1 and M2 be two perfect matchings such that their intersection does not
contain any odd-cut. Consider M1 ∪M2, and suppose that it contains an odd cycle C.
Then, all the edges of ∂V (C) belong to M1 ∩ M2. If ∂V (C) has exactly two com-
ponents, then ∂V (C) is an odd-cut belonging to M1 ∩ M2, a contradiction. Therefore,
∂V (C) must have more than two components, say k, denoted by C1, C2, . . . , Ck, where
the first component C1 is the cycle C. Let [C1, Cj ] denote the set of edges between C1

and Cj , for j ∈ {2, . . . , k}. Since
∑k

j=2 |[C1, Cj ]| = |∂V (C)| ≡ 1 (mod 2), there exists
j′ ∈ {2, . . . , k}, such that |[C1, Cj′ ]| ≡ 1 (mod 2). However, [C1, Cj′ ] is an odd-cut
which belongs to M1 ∩M2, a contradiction.

3 Statements equivalent to the Fan-Raspaud Conjecture
Let M1, . . . ,Mt be a list of perfect matchings of G, and let a ∈ E(G). We denote the
number of times a occurs in this list by νG[a : M1, . . . ,Mt]. When it is obvious which
list of perfect matchings or which graph we are referring to, we will denote this as ν(a)
and refer to it as the frequency of a. We will sometimes need to refer to the frequency
of an ordered list of edges, say (a, b, c), and we will do this by saying that the frequency
of (a, b, c) is (i, j, k), for some integers i, j and k. Mkrtchyan et al. [27] showed that the
Fan-Raspaud Conjecture, i.e. Conjecture 2.2, is equivalent to the following:

Conjecture 3.1 ([27]). For each bridgeless cubic graphG, any edge a ∈ E(G) and any i ∈
{0, 1, 2}, there exist three perfect matchingsM1,M2, andM3 such thatM1∩M2∩M3 = ∅
and νG[a :M1,M2,M3] = i.

In other words they show that if a graph has an FR-triple then, for every i in {0, 1, 2},
there exists an FR-triple in which the frequency of a pre-chosen edge is exactly i. In
the same paper, Mkrtchyan et al. state the following seemingly stronger version of the
Fan-Raspaud Conjecture:

Conjecture 3.2 ([27]). Let G be a bridgeless cubic graph, w a vertex of G and i, j and k
three integers in {0, 1, 2} such that i + j + k = 3. Then, G has an FR-triple in which the
edges incident to w in a given order have frequencies (i, j, k).

This means that we can prescribe the frequencies to the three edges incident to a given
vertex. At the end of [27], the authors remark that it would be interesting to show that
Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture. We prove here that this is
actually the case.

Theorem 3.3. Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture.

Proof. Since the Fan-Raspaud Conjecture is equivalent to Conjecture 3.1, it suffices to
show the equivalence of Conjectures 3.1 and 3.2. The latter clearly implies the former, so
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assume Conjecture 3.1 is true and let a, b and c be the edges incident to w such that the
frequencies (i, j, k) are to be assigned to (a, b, c). It is sufficient to show that there exist
two FR-triples in which the frequencies of (a, b, c) are (2, 1, 0) in one FR-triple (Case 1
below) and (1, 1, 1) in the other FR-triple (Case 2 below).

u4

u1 u2

u3

G1 G2

u3

a1

b1
c1

a2

c2
b2

u4

Figure 2: The graphs K4 and K∗4 in Case 1 of the proof of Theorem 3.3.

Case 1. Let u1, u2, u3 and u4 be the vertices of the complete graph K4 as in Figure 2.
Consider two copies of G, and let the vertex w in the ith copy of G be denoted by wi, for
each i ∈ {1, 2}. We apply a 3-cut connection between ui and wi, for each i ∈ {1, 2}. With
reference to this resulting graph, denoted by K∗4 , we refer to the copy of the graph G − w
at u1 as G1, and to the corresponding edges a, b and c as a1, b1 and c1, respectively. The
graph G2 and the edges a2, b2 and c2 are defined in a similar way, and the 3-cut connection
is done in such a way that b1 and b2 are adjacent, and also c1 and c2, as Figure 2 shows. Note
also that a1 and a2 coincide in K∗4 . By our assumption, there exists an FR-triple M1,M2

and M3 of K∗4 in which the edge u3u4 has frequency 2. Without loss of generality, let
u3u4 ∈ M1 ∩M2. Then, a1 (and so a2) must belong to M1 ∩M2. Clearly, a1 (and so
a2) cannot belong to M3, and so the principal 3-edge-cuts with respect to G1 and G2 do
not belong to M3. If b1 ∈M3, then we are done, as then M1,M2 and M3 restricted to G1,
together with a and b having the same frequencies as a1 and b1, induce an FR-triple of G
such that the frequencies of (a, b, c) are (2, 1, 0). So suppose c1 ∈ M3. Then, b2 ∈ M3,
and so by a similar argument applied to G2 and the corresponding edges, M1,M2 and M3

induce an FR-triple in G such that the frequencies of (a, b, c) are (2, 1, 0).

e

G1

G2 G3

G4

a1

b1

c3

a4

c2

c1

a2 a3

u2

u4

e

u1

u3

b3b2

b4

c4

Figure 3: The graphs P and P ∗ in Case 2 of the proof of Theorem 3.3.

Case 2. Let P be the Petersen graph and {u1, u2, u3, u4} be a maximum independent set
of vertices in P as in Figure 3. Consider four copies of G. Let the vertex w in the ith copy
of G be denoted by wi, for each i ∈ {1, . . . , 4}. Let P ∗ be the graph obtained by applying
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a 3-cut connection between each ui and wi, as shown in Figure 3. Similar to Case 1 we
refer to the copy of G − w at ui as Gi and to the corresponding edges a, b and c as ai, bi
and ci, respectively. Since we are assuming that Conjecture 3.1 is true, we can consider
an FR-triple M1,M2 and M3 of P ∗ in which the edge e incident to both a1 and a4 has
frequency 2. Without loss of generality, let the two perfect matchings containing e be M1

andM2. The edges a1, c2, c3 and a4 are not contained inM1 and neitherM2, since they are
all incident to e, and so no principal 3-edge-cut leavingGi belongs toM1 orM2. Then,M1

and M2 induce perfect matchings of P (clearly distinct), and since there are exactly two
perfect matchings of P containing e, we can assume that M1 contains {e, b1, a2, a3, b4},
and M2 contains {e, c1, b2, b3, c4}.

If the third perfect matching M3 induces a perfect matching of the Petersen graph then
the induced perfect matching cannot be one of the perfect matchings induced by M1 and
M2 in P . Hence, since every two distinct perfect matchings of P intersect in exactly
one edge of P , there exists i ∈ {1, 2, 3, 4} such that the frequencies of (ai, bi, ci) are
(1, 1, 1) and so, M1,M2 and M3 restricted to Gi, together with a, b and c having the same
frequencies as ai, bi and ci, induce an FR-triple in G with the needed property.

Therefore, suppose M3 contains the principal 3-edge-cut of one of the Gis, say G1

by symmetry of P ∗. Thus, a1, b1 and c1 belong to M3. The perfect matching M3 can
intersect the principal 3-edge-cut at G2 either in b2 or c2 (not both). If c2 ∈ M3 we are
done by the same reasoning above applied to G2 and the corresponding edges. So suppose
b2 ∈ M2 ∩M3. Then, c4 ∈ M3, and M3 can only intersect the principal 3-edge-cut at G3

in c3, implying that the frequencies of (a3, b3, c3) are (1, 1, 1) in P ∗ and that M1,M2 and
M3 restricted to G3, together with a, b and c having the same frequencies as a3, b3 and c3,
induce an FR-triple in G with the needed property.

In [27] it is also shown that a minimal counterexample to Conjecture 3.2 is cyclically
4-edge-connected. It remains unknown whether a smallest counterexample to the original
formulation of the Fan-Raspaud Conjecture has the same property. Indeed, we only prove
that the two assertions are equivalent, but we cannot say whether a possible counterexample
to Conjecture 3.2 is itself a counterexample to the original formulation.

4 Statements equivalent to the S4-Conjecture
All conjectures presented in Section 2 are implied by a conjecture made by Jaeger in the
late 1980s. In order to state it we need the following definitions. Let G and H be two
graphs. AnH-colouring ofG is a proper edge-colouring f ofG with edges ofH , such that
for each vertex u ∈ V (G), there exists a vertex v ∈ V (H) with f(∂G{u}) ⊆ ∂H{v}. If G
admits anH-colouring, then we will writeH ≺ G. In this paper we consider S4-colourings
of bridgeless cubic graphs, where S4 is the multigraph shown in Figure 4.

g3 g0g4
z

g1

g2

Figure 4: The multigraph S4.
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The importance ofH-colourings is mainly due to Jaeger’s Conjecture [14] which states
that each bridgeless cubic graph G admits a P -colouring (where P is again the Petersen
graph). For recent results on P -colourings, known as Petersen-colourings, see for instance
[12, 13, 26, 29]. The following proposition shows why we choose to refer to a pair of
perfect matchings whose deletion leaves a bipartite subgraph as an S4-pair.

Proposition 4.1. Let G be a bridgeless cubic graph, then S4 ≺ G if and only if G has an
S4-pair.

Proof. Along the entire proof we denote the edges of S4 by using the same labelling as in
Figure 4. Let M1 and M2 be an S4-pair of G. The graph induced by M1 ∪M2, denoted
by G[M1 ∪M2], is made up of even cycles and isolated edges, whilst the bipartite graph
M1 ∪M2 is made up of even cycles and paths. We obtain an S4-colouring of G as follows:

• the isolated edges in M1 ∪M2 are given colour g0,

• the edges of the even cycles in M1 ∪M2 are properly edge-coloured with g3 and g4,
and

• the edges of the paths and even cycles in M1 ∪M2 are properly edge-coloured with
g1 and g2.

One can clearly see that this gives an S4-colouring of G. Conversely, assume that S4 ≺ G.
We are required to show that there exists an S4-pair of G. Let M1 be the set of edges of
G coloured g3 and g0, and let M2 be the set of edges of G coloured g4 and g0. If e and f
are edges of G coloured g3 (or g4) and g0, respectively, then e and f cannot be adjacent,
otherwise we contradict the S4-colouring of G. Thus, M1 and M2 are matchings. Next,
we show that they are in fact perfect matchings. This follows since for every vertex v of
G, f(∂G{v}) is equal to {g1, g3, g4}, or {g2, g3, g4}, or {g0, g1, g2}. Thus, M1 ∪M2 is
the graph induced by the edges coloured g1 and g2, which clearly cannot induce an odd
cycle.

Hence, by the previous proof, Conjecture 2.4 can be stated in terms of S4-colourings,
which clearly shows why we choose to refer to it as the S4-Conjecture. In analogy to what
we did for FR-triples, here we prove that for S4-pairs we can prescribe the frequency of an
edge and the frequencies of the edges leaving a vertex (the proof of the latter also implies
that we can prescribe the frequencies of the edges of each 3-cut). Consider the following
conjecture, analogous to Conjecture 3.1:

Conjecture 4.2. For any bridgeless cubic graph G, any edge a ∈ E(G) and any i ∈
{0, 1, 2}, there exists an S4-pair, say M1 and M2, such that νG[a :M1,M2] = i.

In Theorem 4.3 we show that the latter conjecture is actually equivalent to the S4-Con-
jecture. The proof given in [27] to show the equivalence of the Fan-Raspaud Conjecture
and Conjecture 3.1 is very similar to the proof we give here for the analogous case for the
S4-Conjecture, however, we need a slightly more complicated tool in our context.

Theorem 4.3. Conjecture 4.2 is equivalent to the S4-Conjecture.

Proof. Clearly, Conjecture 4.2 implies the S4-Conjecture so it suffices to show the con-
verse. Assume the S4-Conjecture to be true and let f1, f2, f3 be three consecutive edges
of K4 inducing a path. Consider two copies of G. Let the edge a in the ith copy of G
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be denoted by ai, for each i ∈ {1, 2}. Let K ′4 be the graph obtained by applying a 2-cut
connection between fi and ai for each i ∈ {1, 2}. We refer to the copy of the graph G− a
on fi as Gi.

G1

G2

Figure 5: An edge in P transformed into the corresponding structure in H .

Let {e1, . . . , e15} be the edges of the Petersen graph and let T1, . . . , T15 be fifteen
copies of K ′4. For every i ∈ {1, . . . , 15}, apply a 2-cut connection on ei and the edge f3 of
Ti. Consequently, every edge ei of the Petersen graph is transformed into the structure Ei

as in Figure 5, and we refer to G1 and G2 on Ei as Gi
1 and Gi

2, respectively. Let H be the
resulting graph. By our assumption, there exists an S4-pair of H , say M1 and M2, which
induces a pair of two distinct perfect matchings in P , say N1 and N2, respectively. There
exists an edge of P , say ej , for some j ∈ {1, . . . , 15}, such that νP [ej : N1, N2] = 1, since
every two distinct perfect matchings of P have exactly one edge of P in common. Hence,
the restriction of M1 and M2 to the edge set of Gj

1, together with the edge a having the
same frequency as ej , gives rise to an S4-pair of G in which the frequency of a is 1.

Moreover, there exists an edge of P , say ek, for some k ∈ {1, . . . , 15}, such that
νP [ek : N1, N2] = 2. Restricting M1 and M2 to the edge set of Gk

1 , together with the edge
a having the same frequency as ek, gives rise to an S4-pair of G, in which the frequency of
a is 2. Also, the restriction of M1 and M2 to the edge set of Gk

2 gives rise to an S4-pair of
G (Gk

2 together with a), in which the frequency of a is 0, because if not, then there exists an
odd cycle in G, say of length α, passing through a and having all its edges with frequency
0. However, this would mean that there is an odd cycle of length α+4 on Ek in M1 ∪M2

(in H), a contradiction.

As in Section 3, we state an analogous conjecture to Conjecture 3.2, but for S4-pairs:

Conjecture 4.4. Let G be a bridgeless cubic graph, w a vertex of G and i, j and k three
integers in {0, 1, 2} such that i + j + k = 2. Then, G has an S4-pair in which the edges
incident to w in a given order have frequencies (i, j, k).

The following theorem shows that this conjecture is actually equivalent to Conjec-
ture 4.2, and so to the S4-Conjecture by Theorem 4.3.

Theorem 4.5. Conjecture 4.4 is equivalent to the S4-Conjecture.

Proof. Since the S4-Conjecture is equivalent to Conjecture 4.2, it suffices to show the
equivalence of Conjectures 4.2 and 4.4. Clearly, Conjecture 4.4 implies Conjecture 4.2 and
so we only need to show the converse. Let a, b and c be the edges incident to w such that
the frequencies (i, j, k) are to be assigned to (a, b, c). We only need to prove the case when
(i, j, k) is equal to (1, 1, 0), as all other cases follow from Conjecture 4.2.

Consider the graph G(w) ∗ P (v), where P is the Petersen graph and v is any vertex of
P . We refer to the edges corresponding to a, b and c in G(w) ∗ P (v), as aw, bw and cw.
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aw

d

cw

bw

G−w

Figure 6: The graph G(w) ∗ P (v) from Theorem 4.5.

Let d be an edge originally belonging to P and adjacent to cw in G(w) ∗ P (v). Since we
are assuming Conjecture 4.2 to be true, there exists an S4-pair in G(w) ∗ P (v) in which d
has frequency 2. If the frequencies of (aw, bw, cw) are (1, 1, 0), then we are done, because
the S4-pair for G(w) ∗ P (v) restricted to the edges in G−w, together with a and b having
the same frequencies as aw and bw, give an S4-pair for G with the desired property. We
claim that this must be the case. For, suppose not. Then, without loss of generality, the
frequencies of (aw, bw, cw) are (2, 0, 0). This implies that all the edges of G(w) ∗ P (v)
originally in P have either frequency 0 or 2, since the two perfect matchings in the S4-pair
induce the same perfect matching in P . However, this implies that P has a perfect matching
whose complement is bipartite, a contradiction since P is not 3-edge-colourable.

As in [27], a minimal counterexample to Conjecture 4.4 (but not necessarily to the
S4-Conjecture) is cyclically 4-edge-connected. We omit the proof of this result as it is very
similar to the proof of Theorem 2 in [27].

5 Further results on the S4-Conjecture
Little progress has been made on the Fan-Raspaud Conjecture so far. Bridgeless cubic
graphs which trivially satisfy this conjecture are those which can be edge-covered by four
perfect matchings. In this case, every three perfect matchings from a cover of this type
form an FR-triple since every edge has frequency one or two with respect to this cover.
Therefore, a possible counterexample to the Fan-Raspaud Conjecture should be searched
for in the class of bridgeless cubic graphs whose edge-set cannot be covered by four perfect
matchings, see for instance [6]. In 2009, Máčajová and Škoviera [22] shed some light on
the Fan-Raspaud Conjecture by proving it for bridgeless cubic graphs having oddness two.
One of the aims of this paper is to show that even if the S4-Conjecture is still open, some
results are easier to extend than the corresponding ones for the Fan-Raspaud Conjecture.
Clearly, the result by Máčajová and Škoviera in [22] implies the following result:
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Theorem 5.1. Let G be a bridgeless cubic graph of oddness two. Then, G has an S4-pair.

We first give a proof of Theorem 5.1 in the same spirit of that used in [22], however
much shorter since we are proving a weaker result.

Proof 1 of Theorem 5.1. Let M1 be a minimal perfect matching of G, and let C1 and C2

be the two odd cycles in M1. Colour the even cycles in M1 using two colours, say 1 and
2. For each i ∈ {1, 2}, let Ei be the set of edges belonging to the even cycles in M1 and
having colour i. In G, there must exist a path Q whose edges alternate in M1 and E1 and
whose end-vertices belong to C1 and C2, respectively, since C1 and C2 are odd cycles.
Note that since the edges of C1 and C2 are not edges in M1 ∪ E1, every other vertex on Q
which is not an end-vertex does not belong to C1 and C2.

For each i ∈ {1, 2}, let vi be the end-vertex of Q belonging to Ci, and let MCi be the
unique perfect matching of Ci − vi. Let M2 := (M1 ∩ Q) ∪ (E1 \ Q) ∪MC1

∪MC2
.

Clearly, M2 is a perfect matching of G which intersects C1 and C2, and so M1 ∪M2 is
bipartite.

We now give a second alternative proof of the same theorem using fractional perfect
matchings, which we will show to be easier to use for graphs having larger oddness. Let w
be a vector in R|E(G)|. The entry of w corresponding to e ∈ E(G) is denoted by w(e), and
for A ⊆ E(G), we let the weight of A, denoted by w(A), to be equal to

∑
e∈A w(e). The

vector w is said to be a fractional perfect matching of G if:

1. w(e) ∈ [0, 1] for each e ∈ E(G),

2. w(∂{v}) = 1 for each v ∈ V (G), and

3. w(∂W ) ≥ 1 for each W ⊆ V (G) of odd cardinality.

The following lemma is presented in [16] and it is a consequence of Edmonds’ characteri-
sation of perfect matching polytopes in [3].

Lemma 5.2. If w is a fractional perfect matching in a graph G, and c ∈ R|E(G)|, then G
has a perfect matching N such that

c · χN ≥ c · w,

where · denotes the inner product. Moreover, there exists a perfect matching satisfying the
above inequality and which contains exactly one edge of each odd-cut X with w(X) = 1.

Remark 5.3. If we let w(e) = 1/3 for all e ∈ E(G), for some graph G, then we know that
w is a fractional perfect matching of G. Also, since the weight of every 3-cut is one, then
by Lemma 5.2 there exists a perfect matching of G containing exactly one edge of each
3-cut of G.

Proof 2 of Theorem 5.1. Let M1 be a minimal perfect matching of G, and let C1 and C2

be the two odd cycles in M1. For each i ∈ {1, 2}, let ei1 and ei2 be two adjacent edges
belonging to Ci. We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪2i=1{ei1, ei2},
0 otherwise.
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By Remark 5.3, we also know that if we let w(e) = 1/3 for all e ∈ E(G), then w is a
fractional perfect matching of G. Hence, by Lemma 5.2, there exists a perfect matching
M2 such that c · χM2 ≥ c · w, which implies that

| ∪2i=1 {ei1, ei2} ∩M2| ≥ 1/3× 2× 2 = 4/3 > 1.

Therefore, for each i ∈ {1, 2}, there exists exactly one j ∈ {1, 2} such that eij ∈ M2.
Hence, M2 intersects C1 and C2 and so M1 ∪M2 is bipartite.

Using the same idea as in Proof 2 of Theorem 5.1, we also prove that the S4-Conjecture
is true for graphs having oddness four.

Theorem 5.4. Let G be a bridgeless cubic graph of oddness four. Then, G has an S4-pair.

Proof. Let M1 be a minimal perfect matching of G, and let C1, C2, C3 and C4 be the four
odd cycles in M1. By Remark 5.3, there exists a perfect matching N of G such that if
G has any 3-cuts, then N intersects every 3-cut of G in one edge. Moreover, for every
i ∈ {1, . . . , 4}, there exists at least a pair of adjacent edges ei1 and ei2 belonging to Ci ∩N .
We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪4i=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

The vector w is clearly a fractional perfect matching of G because, in particular, N in-
tersects every 3-cut in one edge and so w(X) ≥ 1 for each odd-cut X of G. Hence, by
Lemma 5.2, there exists a perfect matching M2 such that c · χM2 ≥ c · w, which implies
that

| ∪4i=1 {ei1, ei2} ∩M2| ≥ 2/5× 2× 4 = 16/5 > 3.

Therefore, for each i ∈ {1, . . . , 4}, there exists exactly one j ∈ {1, 2} such that eij ∈ M2.
Hence, M2 intersects C1, C2, C3 and C4 and so M1 ∪M2 is bipartite.

As the above proofs show us, extending results with respect to the S4-Conjecture is
easier than in the case of the Fan-Raspaud Conjecture and this is why we believe that a proof
of the S4-conjecture could be a first feasible step towards a solution of the Fan-Raspaud
Conjecture. For graphs having oddness at least six we are not able to prove the existence of
an S4-pair and we wonder how many perfect matchings we need such that the complement
of their union is bipartite. In the next proposition we use the technique used in Theorem 5.4
and show that given a bridgeless cubic graph G, if ω(G) ≤ 5k−1 − 1 for some positive
integer k, then there exist k perfect matchings such that the complement of their union is
bipartite. Note that for k = 2 we obtain ω(G) ≤ 4.

Proposition 5.5. Let G be a bridgeless cubic graph and let C be a collection of disjoint
odd cycles in G such that |C| ≤ 5k−1 − 1 for some positive integer k. Then, there exist
k − 1 perfect matchings of G, say M1, . . . ,Mk−1, such that for every C ∈ C, there exists
j ∈ {1, . . . , k− 1} for which C ∩Mj 6= ∅. Moreover, if ω(G) ≤ 5k−1− 1, then there exist
k perfect matchings such that the complement of their union is bipartite.
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Proof. We proceed by induction on k. For k = 1, the assertion trivially holds since C is the
empty set. Assume the result is true for some k ≥ 1 and consider k+1. LetC1, C2, . . . , Ct,
with t ≤ 5k − 1, be the odd cycles of G in C. Let N be a perfect matching of G which
intersects every 3-cut of G once. For every i ∈ {1, . . . , t}, there exists at least a pair of
adjacent edges ei1 and ei2 belonging to Ci ∩N . We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪ti=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

As in the proof of Theorem 5.4, w is a fractional perfect matching of G and by Lemma 5.2
there exists a perfect matching Mk such that c · χMk ≥ c · w. This implies that

| ∪ti=1 {ei1, ei2} ∩Mk| ≥ 2× 2/5× t.

Let C′ be the subset of C which contains the odd cycles of C with no edge of Mk. Then,
|C′| ≤ |C| − 4

5 t = t − 4
5 t =

t
5 ≤ 5k−1 − 1

5 , and so |C′| ≤ 5k−1 − 1. By induction, there
exist k − 1 perfect matchings of G, say M1, . . . ,Mk−1, having the required property with
respect to C′. Therefore, M1, . . . ,Mk intersect all odd cycles in C. The second part of the
statement easily follows by considering C to be the set of odd cycles in the complement of
a minimal perfect matchingM ofG, since the union ofM with the k−1 perfect matchings
which intersect all the odd cycles in C has a bipartite complement.

Remark 5.6. We note that with every step made in the proof of Proposition 5.5, one could
update the weight w of the edges using the methods presented in [16, 23] which gives a
slightly better upper bound for ω(G). For reasons of simplicity and brevity, we prefer the
present weaker version of Proposition 5.5.

6 Extension of the S4-Conjecture to larger classes of cubic graphs
6.1 Multigraphs

In this section we discuss natural extensions of some previous conjectures to bridgeless
cubic multigraphs. We note that bridgeless cubic multigraphs cannot contain any loops.
We will make use of the following standard operation on parallel edges, referred to as
smoothing. Let G′ be a bridgeless cubic multigraph. Let u and v be two vertices in G′ such
that there are exactly two parallel edges between them.

x u v y

Figure 7: Vertices x, u, v and y in G′.

Let x and y be the vertices adjacent to u and v, respectively (see Figure 7). We say
that we smooth uv if we delete the vertices u and v from G′ and add an edge between x
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and y (even if x and y are already adjacent in G′). One can easily see that the resulting
multigraph, say G, after smoothing uv is again bridgeless and cubic.

In what follows, we will say that a perfect matching M of G and a perfect matching
M ′ of G′ are corresponding perfect matchings if the following holds:

M =

{
M ′ ∪ xy − {xu, vy} if xu ∈M ′,
M ′ − uv otherwise.

The following theorem can be easily proved by using smoothing operations.

Theorem 6.1. The S4-Conjecture is true if and only if every bridgeless cubic multigraph
has an S4-pair.

Now we show that Conjecture 4.4 can also be extended to multigraphs.

Theorem 6.2. Let i, j and k be three integers in {0, 1, 2} such that i + j + k = 2 and let
w be a vertex in a bridgeless cubic multigraph G′. Then, the S4-Conjecture is true if and
only ifG′ has an S4-pair in which the edges incident to w in a given order have frequencies
(i, j, k).

Proof. It suffices to assume that the S4-Conjecture is true and only show the forward di-
rection, by Theorem 6.1. Let G′ be a minimal counterexample and suppose it has some
parallel edges. If G′ = C2,3 then the result clearly follows. So assume G′ 6= C2,3. Let
a, b and c be the edges incident to w such that the frequencies (i, j, k) are to be assigned to
(a, b, c). We proceed by considering two cases: when w has two parallel edges incident to
it (Figure 8) and otherwise (Figure 9).

x w v y

a
c

b

Figure 8: Case 1 in the proof of Theorem 6.2.

Case 1. Let G be the resulting multigraph after smoothing wv. By minimality of G′, G
has an S4-pair (say M1 and M2) in which ν(xy) = k. It is easy to see that a pair of
corresponding perfect matchings in G′ give νG′(c) = νG′(vy) = k and can be chosen in
such a way such that νG′(a) = i and νG′(b) = j, a contradiction to our initial assumption.
Therefore, we must have Case 2.

a c

b

w

Figure 9: Case 2 in the proof of Theorem 6.2.

Case 2. Let G be the resulting multigraph after smoothing some parallel edge in G′ and
let aw, bw and cw be the corresponding edges incident to w in G after smoothing is done.
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In G, there exists an S4-pair such that the frequencies of (aw, bw, cw) are equal to (i, j, k).
Clearly, the corresponding perfect matchings in G′ form an S4-pair in which the frequen-
cies of (a, b, c) are (i, j, k), a contradiction, proving Theorem 6.2.

Using the same ideas as in Theorem 6.1 and Theorem 6.2 one can also state analogous
results for the Fan-Raspaud Conjecture in terms of multigraphs.

6.2 Graphs having bridges

Since every perfect matching must intersect every bridge of a cubic graph, then the Fan-
Raspaud Conjecture cannot be extended to cubic graphs containing bridges. The situation
is quite different for the S4-Conjecture as Theorem 6.3 shows. By Errera’s Theorem [4] we
know that if all the bridges of a connected cubic graph lie on a single path, then the graph
has a perfect matching. We use this idea to show that there can be graphs with bridges that
can have an S4-pair.

Theorem 6.3. Let G be a connected cubic graph having k bridges, all of which lie on a
single path, for some positive integer k. If the S4-Conjecture is true, then G admits an
S4-pair.

v3

xk+1

yk+1

x1

y1

u1
uk

vk+1Bk+1v2 B2B1 u2
e1 e2 ek

Figure 10: G with k bridges lying all on the same path.

Proof. Let B1, B2, . . . , Bk+1 be the 2-connected components of G and let e1, . . . , ek be
the bridges of G such that ei = uivi+1 for each i ∈ {1, . . . , k}, where ui ∈ V (Bi) and
vi+1 ∈ V (Bi+1). Let x1 and y1 be the two vertices adjacent to u1 in B1, and let xk+1

and yk+1 be the two vertices adjacent to vk+1 in Bk+1. Let B′1 = (B1 − u1) ∪ x1y1 and
B′k+1 = (Bk+1 − vk+1) ∪ xk+1yk+1. Also, let B′i = Bi ∪ viui for every i ∈ {2, . . . , k}.
Clearly, B′1, . . . , B

′
k+1 are bridgeless cubic multigraphs. Since we are assuming that the

S4-Conjecture holds, then, by Theorem 6.1, for every i ∈ {1, . . . , k+1},B′i has an S4-pair,
say M i

1 and M i
2. Using Theorem 6.2, we choose the S4-pair in:

• B′1, such that the two edges originally incident to x1 (not x1u1) both have fre-
quency 1,

• B′i, for each i ∈ {2, . . . , k}, such that νB′
i
(viui) = 2, and

• B′k+1, such that the two edges originally incident to xk+1 (not xk+1vk+1) both have
frequency 1.

Let M1 := (∪k+1
i=1M

i
1) ∪ (∪kj=1ej) − ∪kl=2vlul, and let M2 := (∪k+1

i=1M
i
2) ∪ (∪kj=1ej) −

∪kl=2vlul. Then, M1 and M2 are an S4-pair of G.
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Finally, we remark that there exist cubic graphs which admit a perfect matching how-
ever do not have an S4-pair. For example, since the edges uivi in Figure 11 are bridges,
then they must be in any perfect matching. Consequently, every pair of perfect matchings
do not intersect the edges of the odd cycle T . This shows that it is not possible to extend
the S4-Conjecture to the entire class of cubic graphs.

G2

G1

G3

T

v1

v3v2

u3u2

u1

Figure 11: A cubic graph with bridges having no S4-pair.

7 Remarks and problems
Many problems about the topics presented above remain unsolved: apart from asking if
we can solve the Fan-Raspaud Conjecture and the S4-Conjecture completely, or at least
partially for higher oddness, we do not know which are those graphs containing bridges
which admit an S4-pair and we do not know either if the S4-Conjecture is equivalent to
Conjecture 2.3. Here we would like to add some other specific open problems.

For a positive integer k, we define ωk to be the largest integer such that any graph with
oddness at most ωk, admits k perfect matchings with a bipartite complement. Clearly, for
k = 1, we have ω1 = 0, since the existence of a perfect matching of G with a bipartite
complement is equivalent to the 3-edge-colourability of G. Moreover, the S4-Conjecture
is equivalent to ωk = ∞, for k ≥ 2, but a complete result to this is still elusive. Proposi-
tion 5.5 (see also Remark 5.6) gives a lower bound for ωk and it would be interesting if this
lower bound can be significantly improved. We believe that the following problem, weaker
than the S4-Conjecture, is another possible step forward.

Problem 7.1. Prove the existence of a constant k such that every bridgeless cubic graph
admits k perfect matchings whose union has a bipartite complement.

It is also known that not every perfect matching can be extended to an FR-triple and
neither to a Berge-Fulkerson cover, where the latter is a collection of six perfect matchings
which cover the edge set exactly twice. We do not see a way how to produce a similar
argument for S4-pairs and so we also suggest the following problem.

Problem 7.2. Establish whether any perfect matching of a bridgeless cubic graph can be
extended to an S4-pair.
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It can be shown that Problem 7.2 is equivalent to saying that given any collection of
disjoint odd cycles in a bridgeless cubic graph, then there exists a perfect matching which
intersects all the odd cycles in this collection.
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Abstract

A connected signed graph is called exceptional if it has a representation in the root
system E8, but has not in any Dk. In this study we obtain some properties of these signed
graphs, mostly expressed in terms of those that are maximal with a fixed number of eigen-
values distinct from −2. As an application, we characterize exceptional signed graphs
with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such
signed graphs.

Keywords: Adjacency matrix, least eigenvalue, root system, signed line graph, exceptional signed
graph, signed graph decomposition.
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1 Introduction
A signed graph Ġ is a pair (G, σ), where G = (V,E) is a finite unsigned graph, called the
underlying graph, and σ : E −→ {−1, 1} is the signature. The edge set of a signed graph
is composed of subsets of positive and negative edges. Throughout the paper we interpret
a graph as a signed graph with all the edges being positive.

The n×n adjacency matrix AĠ of Ġ is obtained from the (0, 1)-adjacency matrix of G
by reversing the sign of all 1s which correspond to negative edges. The eigenvalues of AĠ
are real and form the spectrum of Ġ.

We establish some properties of exceptional signed graphs. Precisely, we extend some
results concerning the particular case of exceptional graphs, which can be found in [3].
It occurs that the ‘signed’ generalizations of some known theorems have a nice form and
give an interesting insight into the nature of signed graphs. We also give a characterization
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of exceptional signed graphs with 2 (distinct) eigenvalues in terms of certain decomposi-
tions which are specified in the corresponding section. Some particular exceptional signed
graphs with 2 eigenvalues are determined.

Sections 2 and 3 are preparatory. In the former we fix some terminology and notation,
and in the latter we give a brief review of the root systems with a special emphasis on Dk

and E8. Our main contribution is reported in Sections 4 and 5.

2 Preliminaries
If the vertices i and j of a signed graph are adjacent, then we write i ∼ j; in particular, the
existence of a positive (resp. negative) edge between these vertices is designated by i +∼ j

(resp. i −∼ j).
The degree of a vertex in a signed graph is equal to the number of edges incident with

it. A signed graph is said to be r-regular if the degree of all its vertices is r.
The signed graphs Ġ and Ḣ are said to be switching equivalent if there exists a set

U ⊆ V (Ġ), such that Ḣ is obtained from Ġ by reversing the sign of every edge with
exactly one end in U . Switching equivalent signed graphs share the same underlying graph
and the same spectrum. Equivalently, if the vertex labelling of Ġ and Ḣ is transferred
from their common underlying graph, then they are switching equivalent if there exists a
diagonal matrix D of ±1s, such that AḢ = D−1AĠD.

A walk in a signed graph is positive if the number of its negative edges (counted with
their multiplicity if there are repeated edges) is not odd. Otherwise, it is negative. In the
same way we decide whether a cycle, considered as a subgraph of a signed graph, is positive
or negative.

A signed doubled graph G̈ is obtained by doubling every edge of a graph G (i.e., a
signed graph with positive signature) with a negative edge. In fact, this is a signed multi-
graph.

We proceed by a concept of signed line graphs which is frequently used in spectral
considerations, see [2, 5, 8]; a slightly different approach can be found in [10]. For a
signed graph Ġ, we introduce the vertex-edge orientation η : V (Ġ)×E(Ġ) −→ {1, 0,−1}
formed by obeying the following rules:

(1) η(i, jk) = 0 if i /∈ {j, k},

(2) η(i, ij) = 1 or η(i, ij) = −1 and

(3) η(i, ij)η(j, ij) = −σ(ij).

In fact, each edge has two orientations, and thus η is also called a bi-orientation. The
vertex-edge incidence matrix Bη is the matrix whose rows and columns are indexed by
V (Ġ) and E(Ġ), respectively, in such a way that its (i, e)-entry is equal to η(i, e). The
following relation, valid also if multiple edges exist, is well-known:

Bᵀ
ηBη = 2I +AL(Ġ),

where L(Ġ) is taken to be the signed line graph of Ġ. In fact, a signed line graph is a
switching class, not a single signed graph, since L(Ġ) depends on orientation.

We say that a signed graph is maximal with a fixed property, if it is not an induced
subgraph of a signed graph having the same property.
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3 Root systems
A representation of a signed graph Ġwith least eigenvalue≥ −2 is a mapping f : V (Ġ) −→
Rk, k ≥ 1, such that

f(i) · f(j) =


2 if i = j,

1 if i +∼ j,
−1 if i −∼ j,
0 if i � j.

If S ⊂ Rk is the image of f , then we say that Ġ is represented by S. Clearly, AĠ + 2I

is the Gram matrix of S, so it is positive semidefinite and the least eigenvalue of Ġ is,
indeed,≥ −2. We do not make a difference between the set S and the matrix (also denoted
by S) whose columns are the vectors of S.

If e1, e2, . . . , ek are the vectors of the canonical basis of Rk, k ≥ 4, then the root
system Dk consists of the vectors (in the context of root systems, they are also known as
the roots) ±ei ± ej, for 1 ≤ i < j ≤ k. The root system E8 consists of the 112 roots
that also belong to D8 and the additional 128 roots of the form 1

2

∑8
i=1±ei, where the

number of positive summands is not odd. The root system E7 consists of the 126 roots
of E8 orthogonal to a fixed root x ∈ E8, and E6 consists of the 72 roots of E8 orthogonal
to a fixed pair of roots x,y ∈ E8, such that x · y = −1.

A root system determines a line system, i.e., a system of one-dimensional subspaces
generated by the corresponding roots. The definitions of E7 and E6 do not essentially
depend on the choice of roots, as different choices produce isometric line systems.

For a root system R, a system of positive roots R+ is its subset such that:

(1) for ±x ∈ R, exactly one of x,−x belongs to R+ and

(2) for x,y ∈ R+, if x+ y ∈ R then x+ y ∈ R+.

Observe that R and R+ produce the same line system. In particular, we shall frequently
deal with the systems of positive roots E+

k (of Ek, for 6 ≤ k ≤ 8).
It is known that every signed line graph has a representation in someDk [2, 5]. Accord-

ingly, the least eigenvalue of every signed line graph is ≥ −2. A connected signed graph
is said to be exceptional if it has a representation in E8, but has not in any Dk. It follows
that a connected signed graph is exceptional if and only if it is not a signed line graph, but
its least eigenvalue is ≥ −2.

For a signed graph Ġ with n vertices and least eigenvalue greater than−2, an extension
(or a (−2)-extension) of Ġ is a signed graph with the following properties:

(1) its least eigenvalue is equal to −2,

(2) it contains Ġ as an induced subgraph and

(3) exactly n of its eigenvalues (with possible repetitions) are greater than −2.

4 Properties of exceptional signed graphs
We start with the following lemma.
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Lemma 4.1. If a signed graph is represented by S ⊂ Rk, then the set S′ obtained by
reversing the sign of some elements of S represents a switching equivalent signed graph.

In particular, signed graphs represented by all the possible sets of positive roots R+

of R (where R stands for any of Dk, E6, E7, E8) are switching equivalent.

Proof. Given S = {x1,x2, . . . ,xn} and N ⊆ {1, 2, . . . , n}, let S′ be obtained by re-
versing the sign of vectors whose indices belong to N . If S represents a signed graph Ġ,
then S′ obviously represents some signed graph, say Ḣ . Moreover, if D is the diagonal
matrix of ±1s with −1 in the ith position if and only if i ∈ N , then

AĠ + 2I = SᵀS = D−1S′ᵀS′D = D−1(AḢ + 2I)D = D−1AḢD + 2I,

giving the first part of the statement.
LetR+ be a fixed set of positive roots. If x,y ∈ R+, then x·y ∈ {−1, 0, 1}, and soR+

indeed represents a signed graph. In addition, any other set of positive roots is obtained by
reversing the sign of some roots of R+, and the result follows by the previous part of the
proof.

The previous result can also be proved on the basis of Vijayakumar’s [9, Lemma 2.3].
Throughout the remainder of the paper, we do not make a difference between switching

equivalent signed graphs; in particular, when we say that some signed graph is unique (for
certain property), we always mean that it is unique up to the switching equivalence.

The following 3 signed graphs play a significant role in our study: Ṁ6 represented
by E+

6 , Ṁ7 represented by E+
7 and Ṁ8 represented by E+

8 . Each of them is unique (by
Lemma 4.1). Their and spectra of the corresponding underlying graphs are given in Table 1.
Note that the corresponding underlying graphs are known from literature; for example, they
can be met in [3].

Table 1: Spectra of signed graphs Ṁ6, Ṁ7 and Ṁ8.

Signed graph Spectrum Spectrum of the underlying graph

Ṁ6

[
106, (−2)30

] [
20, 220, (−4)15

]
Ṁ7

[
167, (−2)56

] [
32, 427, (−4)35

]
Ṁ8

[
288, (−2)112

] [
56, 835, (−4)84

]
We proceed with the following theorem.

Theorem 4.2. Ṁ8 is the unique maximal exceptional signed graph.

Proof. If Ġ is a maximal exceptional signed graph, then it has a representation in E8, and
consequently it has a representation in some E+

8 . The maximality of Ġ implies that it is
represented by the entire set of positive roots. The uniqueness follows by Lemma 4.1.

In what follows we prove a sequence of results that give a closer insight into exceptional
signed graphs. We start with the following lemma and conclude the section with the forth-
coming Theorem 4.8 which, together with Theorem 4.2, gives an interesting generalization
of certain results concerning exceptional graphs.
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Lemma 4.3. Given x,x′,y,y′ ∈ E8, such that x · y = −1 and x′ · y′ = −1, let E7

and E′7 stand for the sets of roots of E8 orthogonal to x and y, respectively, and let E6

and E′6 stand for the sets of roots of E8 orthogonal to the pair x,y and x′,y′, respectively.
The set of signed graphs with a representation in E7 (resp. E6) is equal to the set of those
with a representation in E′7 (resp. E′6).

Proof. Let E stand for one of E7 or E6 and E′ for a corresponding E′7 or E′6.
If a signed graph Ġ has a representation in E, then AĠ + 2I = SᵀS, for some S ⊆ E.

Observe that an entry of SᵀS is twice the cosine of the angle between the corresponding
vectors. Since E and E′ determine isometric line systems, there exists S′ ⊆ E′ such that
S′ᵀS′ = SᵀS, that is Ġ has a representation in E′.

At this point we need a result of [5]. We restate it in a slightly modified form by putting
focus on relations between signed graphs in question.

Lemma 4.4. An exceptional signed graph whose least eigenvalue is greater than −2 is

(i) one of 32 signed graphs with 6 vertices,

(ii) one of 233 signed graphs with 7 vertices or

(iii) one of 1242 signed graphs with 8 vertices

listed in [5]. Every signed graph of (ii) (resp. (iii)) is a one-vertex extension of some of (i)
(resp. (ii)).

In [9], Vijayakumar characterized signed graphs represented in Dk, for all k. In par-
ticular, the set of connected minimal forbidden subgraphs for signed line graphs has been
described. It occurs that they have at most 6 vertices, and all with least eigenvalue greater
than −2 are given in the previous lemma. In addition, we claim that none of them has −2
as the least eigenvalue. One may confirm this by constructing all the minimal forbidden
subgraphs (by following the particular procedure described in [9]) and checking their least
eigenvalue. This would be an extensive work, as just in case of graphs there are the 31
minimal forbidden subgraphs [3, p. 35]. We applied a different approach based on the
computer search. Namely, we first obtained all the connected signed graphs with at most 6
vertices that are represented in D6 and whose least eigenvalue is −2. This procedure was
performed very quickly by computer, as there are just 30 roots in D+

6 . Then we have
just checked whether each connected signed graph with at most 6 vertices and least eigen-
value−2 (they can be found at the web page [6]) appears in the list found by computer. We
record this as the following lemma.

Lemma 4.5. Every signed graph with at most 6 vertices and least eigenvalue −2 has a
representation in D6.

Here is an immediate consequence.

Corollary 4.6. Every exceptional signed graph Ġ with least eigenvalue −2 has at least 7
vertices and contains an exceptional induced subgraph with 6 vertices and least eigenvalue
greater than −2.
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Proof. Since Ġ is exceptional, by the mentioned result of [9], it contains a connected in-
duced subgraph, say Ḣ , with at most 6 vertices and with no representation in any Dk; in
other words, Ḣ is an exceptional signed graph. By Lemma 4.5, the least eigenvalue of Ḣ is
greater than −2. By Lemma 4.4, Ḣ has exactly 6 vertices and it is some of signed graphs
mentioned in that lemma.

Similarly to a result concerning graphs (cf. [2]), we have the following.

Lemma 4.7. An exceptional signed graph Ġ has between 6 and 8 eigenvalues (with possi-
ble repetitions) greater than −2.

Proof. By Corollary 4.6, Ġ contains an induced exceptional subgraph with 6 vertices and
least eigenvalue greater than −2, which together with the interlacing argument, gives the
lower bound.

It holds AĠ + 2I = SᵀS, where S is obtained by arranging some roots of E8 as its
columns. Since the dimension of the linear span of E8 is 8, the rank of AĠ + 2I is at
most 8, giving the upper bound.

Theorem 4.8. For 6 ≤ k ≤ 8, Ṁk is the unique maximal extension of exceptional signed
graphs with k vertices and least eigenvalue greater than −2.

Proof. Every exceptional signed graph with k (6 ≤ k ≤ 8) vertices and least eigenvalue
greater than −2 has a representation in Ek, and also in E+

k . Clearly, such a signed graph is
an induced subgraph of a signed graph represented by the entire set of positive roots. For
k = 8, the result follows by Theorem 4.2.

For k = 7, assuming to the contrary, we arrive at the existence of an extension, say Ġ,
such that AĠ+2I = SᵀS, where S is obtained by arranging some roots of E+

7 and at least
one root, say x, of E+

8 \E
+
7 as its columns. Since x ·y = 0, for all y ∈ E+

7 , it follows that
the rank of AĠ + 2I is 8, meaning that 8 eigenvalues (with repetitions) of Ġ are greater
than −2, and so Ġ cannot be an extension – a contradiction.

For k = 6, the proof is essentially the same.

In particular case of graphs, there are exactly 473 maximal exceptional graphs, along
with a large number of maximal extensions of exceptional graphs with 6 or 7 vertices, as
follows by [3, Chapter 6]. On the contrary, the ‘signed’ generalization reported in Theo-
rems 4.2 and 4.8 has a very simple formulation.

5 Exceptional signed graphs with 2 eigenvalues
In [8], we determined all the signed line graphs with 2 eigenvalues. This result is also
needed here.

Theorem 5.1. A connected signed line graph has 2 eigenvalues if and only if the corre-
sponding signed root graph is switching equivalent to

(i) the star K1,n−1,

(ii) the negative quadrangle or the signed multigraph obtained by inserting the (parallel)
negative edge between the vertices of degree 2 of the path P4,

(iii) the complete graph Kn or
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(iv) a signed doubled regular graph with n vertices,

in all cases, for n ≥ 3.

The next natural step is a determination of exceptional signed graphs with 2 eigenval-
ues. In the forthcoming Theorem 5.4, we give a characterization of such signed graphs;
this result relies on Theorems 5.2 and 5.3.

If A is the adjacency matrix of a signed graph with 2 eigenvalues, λ and µ, then

A2 − (λ+ µ)A+ λµI = O. (5.1)

It follows that such a signed graph is regular with vertex degree −λµ.
Letmλ andmµ denote the multiplicity of λ and µ, respectively, and let t (resp. q) denote

the difference between the numbers of positive and negative triangles (resp. quadrangles)
contained.

Theorem 5.2. If Ġ is an exceptional signed graph with 2 eigenvalues, then either Ġ is the
3-dimensional cube with negative quadrangles or its parameters (n, r, λ,mλ, µ,mµ, t, q)
have the form(

k

2
(λ+ 2), 2λ, λ, k, −2, k

2
λ,

k

6
λ(λ2 − 4),

k

8
λ(λ+ 2)(λ− 1)(λ− 5)

)
,

where λ is a positive integer and either

(a) k = 6, 2 ≤ λ ≤ 10,

(b) k = 7, 2 ≤ λ ≤ 16 and λ is even or

(c) k = 8, 2 ≤ λ ≤ 28.

Proof. Let µ > −2. Then either µ = −1 or λ = −µ (as follows by considering (5.1)).
In the former case, we arrive at the complete signed graph (which is non-exceptional). In
the latter case, we have r = −λµ < 4, and so r = 3, as r < 3 leads to non-exceptional
solutions. It is known from [8] that the mentioned cube is the unique 3-regular signed
graph with 2 eigenvalues (±

√
3); in addition, this is an exceptional signed graph. The last

can be verified either by hand or by identifying our cube among 1242 signed graphs of
Lemma 4.4(iii) (it is enumerated by 641 in the original reference).

Let µ = −2. We immediately get r = 2λ, while, by virtue of Theorem 4.8, we have
mλ = k, for 6 ≤ k ≤ 8. By using mλ +m−2 = n and λmλ − 2m−2 = 0, we arrive at
n = k

2 (λ+ 2) and m−2 = k
2λ. Similarly, the parameters t and q are obtained by

mλλ
3 − 8m−2 = 6t,

mλλ
4 + 16m−2 = (2r − 1)rn+ 8q,

where the right-hand sides count the difference between the numbers of positive and nega-
tive closed walks of length 3 and 4, respectively.

Since Ġ is an induced subgraph of Ṁk, we get the upper bounds for λ. Taking into
account that all the parameters are integral if and only if either k is even or k is odd and λ
is even, we conclude the proof.

Here is another result giving a specified decomposition of Ṁk.
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Theorem 5.3. Let Ġ be a signed graph with a representation in Ek (6 ≤ k ≤ 8) having 2
eigenvalues, λ and −2, and k

2 (λ + 2) vertices. If n denotes the number of vertices in Ṁk

then, unless Ġ coincides with Ṁk, there exists a signed graph Ḣ with eigenvalues 2n
k −λ−4

(of multiplicity k) and −2 (of multiplicity n− k
2 (λ+ 4)), such that

AṀk
=

(
AĠ Bᵀ

B AḢ

)
. (5.2)

Proof. Observe that, under given assumptions, the multiplicity of λ (in Ġ) is k. Clearly,
the matrixAṀk

can be written in the form (5.2), whereAḢ is the adjacency matrix of some

signed graph Ḣ . If so, then by (5.1) we have AḢB = −BAĠ +
( 2(n−k)

k − 2
)
B, as the

positive eigenvalue of Ṁk is 2(n−k)
k . If x is an eigenvector associated with an eigenvalue

of Ġ, then AḢBx = −BAĠx+
( 2(n−k)

k − 2
)
Bx, giving

AḢBx =

(
−ν + 2(n− k)

k
− 2

)
Bx, (5.3)

where ν stands for either λ or −2.
If Bx = 0, then (again, by (5.1)) we have

AṀk

(
x
0

)
=

(
AĠx
0

)
= ν

(
x
0

)
. (5.4)

The case ν = λ cannot occur in (5.4), since Ṁk and Ġ cannot share the same eigenvalues
because they differ in vertex degree. Therefore, 2n

k −λ−4 is an eigenvalue of Ḣ , with mul-
tiplicity at least k. Moreover, its multiplicity must be exactly k, as follows by interchanging
the roles of Ġ and Ḣ and considering (5.3) (with AĠ instead of AḢ and Bᵀ instead of B);
a larger multiplicity would imply either λ = 2(n−k)

k or λ = −2, both impossible.
Since Ḣ has n− k

2 (λ+2) vertices, there are exactly n− k
2 (λ+4) remaining eigenvalues

(with repetitions). If n − k
2 (λ + 4) = 0, then Ḣ is totally disconnected (with k vertices),

and we are done; this is a degenerate case where Ḣ has only one eigenvalue. Otherwise,
if d is the average value of the remaining eigenvalues, then by

k

(
2n

k
− λ− 4

)
+

(
n− k

2
(λ+ 4)

)
d = 0,

we get d = −2, which (since Ḣ is an induced subgraph of Ṁk) implies that −2 is the
unique remaining eigenvalue with the desired multiplicity.

In the light of the previous result, we say that Ṁk is decomposed into Ġ and Ḣ . We are
now in position to give the following characterization.

Theorem 5.4. If Ġ is an exceptional signed graph with 2 eigenvalues, then either

(i) Ġ is the 3-dimensional cube with negative quadrangles, Ṁ6, Ṁ7, Ṁ8 or

(ii) the parameters of Ġ are determined by Theorem 5.2 and Ġ is obtained from a de-
composition of Ṁk in sense of Theorem 5.3.
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The proof follows directly. Observe that if Ṁk is decomposed as in Theorem 5.3, then
a special case where Ġ and Ḣ are isomorphic (possibly, after an appropriate switching)
may occur. Here are some particular cases:

• Besides the cube described in Theorem 5.2, in [8] (but see also [4, 7]) the existence
of the 2 additional exceptional signed graphs with 2 eigenvalues is confirmed; they
correspond to data of Theorem 5.2 obtained for (k, λ) = (7, 2) and (k, λ) = (8, 2),
respectively.

• Setting (k, λ) = (7, 14) and (k, λ) = (8, 26) in Theorem 5.2, we get that Ġ is
paired (in sense of Theorem 5.3) with a totally disconnected graph with 7 and 8
vertices, respectively. Since Ṁk contains a co-clique with the corresponding number
of vertices, we may confirm the existence of Ġ; clearly, it is exceptional.

Note that every signed graph represented by all the non-integral roots of E+
k , for

6 ≤ k ≤ 8, is exceptional. Therefore, every signed graph represented by these and possibly
some other roots of E+

k is also exceptional.

• Up to the switching equivalence, L(K8) is represented by the roots ei − ej (1 ≤ i <
j ≤ 8). Thus, it has a representation in E+

8 ; moreover, since all the corresponding
roots are orthogonal to 1

2 j ∈ E+
8 , L(K8) has a representation in E+

7 , as well. It
is paired with the signed graph with (k, λ) = (7, 8), which is exceptional by the
previous observation.

To get another example we need the following theorem.

Theorem 5.5. If F is a regular graph with 8 vertices, then L(F̈ ) is represented by integral
roots of E+

8 .

Proof. Since each column of the vertex-edge incidence matrix Bη of F̈ has length 8 and
contains exactly 2 non-zero entries, it follows that L(F̈ ) has a representation in D+

8 , which
is sufficient to conclude the proof.

• If F is r-regular with k vertices, then by (5.1) the spectrum of L(F̈ ) is[
2(r − 1)k, (−2)k(r−1)

]
, (5.5)

and so, for k = 8, L(F̈ ) is paired with an exceptional signed graph with spec-
trum

[
2(14− r)8, (−2)8(14−r)

]
. Its existence covers many particular cases of The-

orem 5.2.

We continue by some non-existences.

Theorem 5.6. There is no exceptional signed graph neither for k = 6 and λ /∈ {4, 5, 10}
nor (k, λ) = (8, 27), where the parameters k and λ are determined in the formulation of
Theorem 5.2.

Proof. Denote the putative signed graph by Ġ, and let Ḣ be the other signed graph of a
decomposition described in Theorem 5.3.

The case (k, λ) = (6, 2) cannot occur, since the only connected signed graph with the
corresponding spectrum is L(C̈6) [8], so non-exceptional.
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The case (k, λ) = (6, 3) is eliminated by the computer search.
For (k, λ) = (6, 6) and (k, λ) = (6, 7), Ḣ would be the mentioned L(C̈6) and the

disconnected signed graph consisting of the 3 negative triangles, respectively, but this is
impossible since these signed graphs have no representation in E6.

For (k, λ) = (6, 8), Ḣ would be totally disconnected with 6 vertices, but this is impos-
sible since the size of the largest co-clique in Ṁ6 is 4.

The case (k, λ) ∈ {(6, 9), (8, 27)} is resolved easily on the basis of Theorem 5.3
(Ḣ does not exist).

Therefore, Ġ does not exist.

We conclude the section with the ‘line’ counterparts to Theorem 4.2 and Lemma 4.4.

Theorem 5.7. If Ġ is a signed line graph with a representation in Dk ( for some fixed k),
then Ġ is an induced subgraph of L(K̈k).

Proof. This follows since L(K̈k) is represented by all the roots of D+
k .

We believe that the reader is familiar with the concept of star complements in signed
graphs, where an induced subgraph Ḣ is said to be a star complement in its k-vertex ex-
tension Ġ for an eigenvalue ν if ν is not an eigenvalue of Ḣ , but is an eigenvalue of Ġ
with multiplicity k. For more details, see [3]. A connected signed multigraph with equal
number of vertices and edges is called unicyclic.

Lemma 5.8. For every connected r-regular graph F with vertex degree at least 2, F̈ con-
tains a unicyclic subgraph whose signed line graph is a star complement for −2 in L(F̈ ).

Proof. By (5.5), the multiplicity of −2 in L(F̈ ) is t(r − 1) (t being the number of vertices
in F ), and thus there exists a star complement, say Ḣ , for−2, where Ḣ has tr−t(r−1) = t
vertices. By [1], it can be chosen to be connected. Then, its signed root multigraph is also
connected and has t edges, so it is unicyclic.

A cycle in F̈ can be formed by 2 parallel edges, as well.
By Lemmas 4.4 and 4.7, if Ḣ is an exceptional star complement for −2 (in some ex-

ceptional signed graph), then Ḣ is one of signed graphs listed in the former lemma. By
following the proof of Lemma 5.8, one can obtain star complements in signed line graphs
of Theorem 5.1(i)–(iii); in fact, this is a matter of routine. In this way, we have described
the basis of all star complements for −2 in signed graphs with 2 eigenvalues.
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[8] Z. Stanić, Spectra of signed graphs with two eigenvalues, Appl. Math. Comput. 364 (2020),
124627 (9 pages), doi:10.1016/j.amc.2019.124627.

[9] G. R. Vijayakumar, Signed graphs represented by D∞, European J. Combin. 8 (1987), 103–
112, doi:10.1016/s0195-6698(87)80024-0.

[10] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: B. D. Acharya, G. O. H. Ka-
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Abstract

We consider edge colourings, not necessarily proper. The distinguishing index D′(G)
of a graphG is the least number of colours in an edge colouring that is preserved only by the
identity automorphism. It is known that D′(G) ≤ ∆ for every countable, connected graph
G with finite maximum degree ∆ except for three small cycles. We prove that D′(G) ≤
d
√

∆e+ 1 if additionally G does not have pendant edges.

Keywords: Symmetry breaking, distinguishing index of a graph.

Math. Subj. Class. (2020): 05C15, 05E18

1 Introduction and main result
We use standard graph theory terminology and notation [3]. In particular, the circumference
of a graphG, denoted by c(G), is the length of a longest cycle ofG. A graph that contains a
Hamiltonian path, i.e. a path that visits each vertex of the graph, is called traceable. A finite
tree is called symmetric (respectively, bisymmetric) if it contains a central vertex v0 (resp.
a central edge e0), all leaves are at the same distance from v0 (resp. e0) and all vertices that
are not leaves have the same degree. An infinite path P∞ is an infinite connected 2-regular
graph.

We consider edge colourings, not necessarily proper. Such a colouring breaks an auto-
morphism ϕ ∈ Aut(G) if there exists an edge that is mapped into an edge with a different
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colour. A colouring is called distinguishing, if it breaks all non-trivial automorphisms. The
minimum number of colours in a distinguishing colouring of a graph G is called the dis-
tinguishing index of G and is denoted by D′(G). Obviously, the distinguishing index is
defined only for graphs without K2 as a component and with at most one isolated vertex.
In this paper, we exclusively consider connected graphs, hence in the sequel, we assume
that each graph in question is of order at least 3.

The following general upper bound for the distinguishing index of finite connected
graphs was proved in [5].

Theorem 1.1 ([5]). If G is a finite, connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

unless G is C3, C4 or C5.

This result was improved by the third author who characterized all connected graphs
with the distinguishing index equal to the maximum degree.

Theorem 1.2 ([9]). Let G be a finite, connected graph of order n ≥ 3. Then

D′(G) ≤ ∆(G)− 1

unless G is a cycle, a symmetric or a bisymmetric tree, K4 or K3,3.

For infinite graphs, a sharp upper bound was proved by Pilśniak and Stawiski in [10].

Theorem 1.3 ([10]). Let G be a connected, infinite graph with finite maximum degree
∆(G). Then

D′(G) ≤ ∆(G)− 1

unless G is an infinite path P∞ with D′(P∞) = ∆(P∞) = 2.

However, D′(G) ≤ 2 if G belongs to some classes of graphs, e.g. G is a traceable
graph of order at least 7 ([9]), G is any Cartesian power of a graph unless G = K2

2 ([4]), or
G is a countable graph every non-identity automorphism of which moves infinitely many
vertices ([6]).

Pilśniak [9] formulated the following conjecture.

Conjecture 1.4 ([9]). If G is a 2-connected graph, then

D′(G) ≤
⌈√

∆(G)
⌉

+ 1.

We prove this conjecture in a bit stronger form.

Theorem 1.5 (Main result). If G is a connected, countable graph with minimum degree
δ(G) ≥ 2, then

D′(G) ≤
⌈√

∆(G)
⌉

+ 1.

In view of Theorem 1.3, the claim obviously holds for countable graphs with infinite
∆(G). Hence, from now on, we assume that the maximum degree of any graph G in
question is finite.



W. Imrich et al.: The distinguishing index of connected graphs without pendant edges 119

This result is tight for complete bipartite graphs K2,r2 since D′(K2,r2) = r + 1 for
any integer r ≥ 2. Indeed, there are r2 internally disjoint paths of length two between the
two vertices u, v of maximum degree in K2,r2 , and they have to be coloured with distinct
ordered pairs of colours. With r colours, we have r2 distinct pairs, but if all of them are
used, we can transpose u and v and permute the other vertices to obtain an automorphism
preserving this colouring. There are also some small graphsG withD′(G) = d

√
∆(G)e+

1, e.g. Kn, Cn for n ∈ {3, 4, 5}, and K3,3. We conjecture that the only connected graphs
of order at least seven satisfying this equality are complete bipartite graphs K2,r2 .

The proof of the Main result for 2-connected graphs is given in Section 2 (Theorem 2.2).
In Section 3, we prove it for graphs of connectivity 1 (Theorem 3.5).

We believe that the following much stronger claim is true1.

Conjecture 1.6. If G is a connected, countable graph with finite minimum degree δ ≥ 2,
then

D′(G) ≤
⌈

δ
√

∆(G)
⌉

+ 1.

Moreover, for graphs of order at least seven, the equality holds if and only if G = Kδ,rδ ,
for some positive integer r.

If true, this would imply that D′(G) ≤ 2 for every regular graph G of order at least
seven. Observe that for vertex-transitive graphs this result would be also implied by the
famous Lovász Conjecture [8] that every vertex-transitive graph is traceable since, as it
was already mentioned, D′(G) ≤ 2 for every traceable graph of order at least 7. Let us add
that recently Lehner, Pilśniak and Stawiski [7] proved thatD′(G) ≤ 3 for every connected,
regular graph G, finite or infinite.

2 2-connected graphs
In the proof of the Main result, we colour the edges of a graph G with colours from the set
Z = {0, 1, . . . , d

√
∆e}. Observe that we always have at least three colours at our disposal.

Given a vertex a of a graph H , by Aut(H)a we denote the stabilizer of a vertex a, i.e.
Aut(H)a = {ϕ ∈ Aut(H) : ϕ(a) = a}. For two vertices a, b, we denote Aut(H)a,b =
Aut(H)a ∩Aut(H)b.

In this section, we prove the Main result for 2-connected, countable graphs. The fol-
lowing lemma plays a key role in the proof.

Lemma 2.1. Let a, b be two vertices of a graph H of finite maximum degree at most ∆,
such that

dist(a, v) + dist(v, b) = dist (a, b)

for every vertex v ∈ V (H). ThenH admits an edge colouring with d
√

∆e colours breaking
every automorphism of Aut(H)a,b.

Proof. For r ∈ {0, 1, . . . ,dist(a, b)}, let

Sr(a) = {v ∈ V (H) : dist(a, v) = r}
1Actually, this conjecture was earlier posed by Pilśniak and Woźniak, and the first part of it was independently

formulated by Alikhani and Soltani in [1]. The latter authors claimed a proof therein but we found two errors and
a few gaps that we cannot fix.
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be the r-th sphere centered at the vertex a. Thus, for r < dist(a, b), every vertex v ∈ Sr(a)
has at least one and at most ∆ − 1 neighbours in Sr+1(a). For r ≥ 1, denote Hr =
H [S0(a) ∪ · · · ∪ Sr(a)]. We recursively colour the edges between Sr(a) and Sr+1(a)
with d

√
∆e colours such that for each r the following two conditions are satisfied:

(1) Sr(a) is fixed pointwise by every automorphism ϕ ∈ Aut(H)a,b preserving the
colouring of Hr+1, whenever Sr+1(a) is fixed so;

(2) if A ⊆ Sr+1(a) is a set of vertices such that there exists a cyclic permutation of A
that can be extended to an automorphism ϕ ∈ Aut(H)a,b preserving the colouring
of Hr+1, then |A| ≤ d

√
∆e.

2 Ars Math. Contemp. x (xxxx) 1–x
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Figure 1: Colouring of edges between subsequent spheres centered at the vertex a
breaking all automorphisms of Auta,b(H)

Figure 1: Colouring of edges between subsequent spheres centered at the vertex a breaking
all automorphisms of Auta,b(H).

First we partition the set of edges incident to a into at most d
√

∆e subsets of cardinality
at most d

√
∆e, and we colour edges in each subset with the same colour.

Suppose that we have already defined an edge colouring f of Hr satisfying the above
two conditions for r − 1 instead of r. Let A = {v1, . . . , vp}, with p ≥ 2, be a set of
vertices of Sr(a) such that there exists a cyclic permutation of A that can be extended to
an automorphism ϕ ∈ Aut(H)a,b preserving the colouring f . By assumption, 1 ≤ |A| ≤
d
√

∆e. Each vertex vi of A has the same number k ≤ ∆ − 1 of incident edges joining it
to Sr+1(a), and let aj denote the number of those of them that will obtain the colour j, for
j ∈ Z \ {0}.

Every vertex vi ∈ A, for i ∈ {1, . . . , p}, can be assigned a distinct sequence (a1, . . . ,
ad
√

∆e), where aj ≤ d
√

∆e for every j. Indeed, take a vertex vi ∈ A for some i ∈
{1, . . . , p}. If k ≤ d

√
∆e, then we put ai = k and aj = 0 for j ∈ Z \ {0, i}. If

k > (d
√

∆e − 1)d
√

∆e, then we put ai = k − (d
√

∆e − 1)d
√

∆e, and aj = d
√

∆e for
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j ∈ Z \ {0, i}. Otherwise, d
√

∆e+ 1 ≤ k ≤ (d
√

∆e − 1)d
√

∆e. If this case, ai = 0, and
for j 6= i we put aj > 0 such that |aj − k

d
√

∆e−1
| ≤ 1. Thus, ai 6= aj for j 6= i, whence

the vertices of A are distinguished.
Moreover, this way we produce at most d

√
∆e vertices in Sr+1(a) that can be inter-

changed by an automorphism preserving the colouring of Hr+1 because at most d
√

∆e
edges joining any vertex of A to Sr+1(a) have the same colour.

The second last sphere Sr(a), i.e. for r = dist(a, b)−1, has at most ∆ vertices and, due
to our construction, any of its subsets A that can be permuted, has at most d

√
∆e vertices.

We colour the edges between b and the vertices of A with distinct colours. The unique
vertex b of the last sphere is fixed by assumption, hence all spheres are fixed pointwise
with respect to any automorphism ϕ ∈ Aut(H)a,b preserving the edge colouring f of H .

Finally, we colour edges within each sphere with an arbitrary colour.

Given a cycle C of a 2-connected graph G 6= C4 and two distinct colours α, β ∈
Z \ {0}, by C0(α, β) we denote this cycle coloured such that three consecutive edges are
coloured with α, 0, β in that order, and all other edges of the cycle are coloured with 0.
Exceptionally, in case G = C4, by a colouring C0(α, β) of C4 we mean the colouring
α, β, 0, 0 of its consecutive edges.

Theorem 2.2. If G is a 2-connected, countable graph with finite maximum degree ∆, then

D′(G) ≤
⌈√

∆
⌉

+ 1.

Proof. If the circumference of G equals 3, then G = C3 and the claim holds.

2 Ars Math. Contemp. x (xxxx) 1–x
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Figure 1: For a given n ≥ 5, there are exactly two non-isomorphic graphs of order
n and circumference 4 (the dashed edge may exist or not)Figure 2: For a given n ≥ 5, there are exactly two non-isomorphic graphs of order n and
circumference 4 (the dashed edge may exist or not).

Let c(G) = 4. If G ∈ {C4,K4,K4 − e}, then D′(G) ≤ 3, and the claim is true.
Suppose |V (G)| ≥ 5. Then either G = K2,∆ or G = K2,∆−1 + e, where e is an edge
between the two vertices of maximum degree ∆ ≥ 3 (see Figure 2). Indeed, let V (G) =
{u1, . . . , un} with n ≥ 5, and suppose that u1, u2, u3, u4 are consecutive vertices of a
cycle C of length 4. As G is 2-connected and c(G) = 4, all other vertices u5, . . . , un have
to be adjacent to the same pair of non-consecutive vertices of C, say u1, u3. Thus, we
get a complete bipartite graph K2,n−2. The only possible additional edge not violating the
condition c(G) = 4, is e = u1u3. As it was mentioned in the Introduction, in such a graph
G ∈ {K2,∆,K2,∆−1 + e}, we have enough colours for a distinguishing colouring of G.
It is also easy to see that we can require that colour 0 appears only in one cycle of length
four, coloured as C0(α, β).

Suppose then that G has a cycle C of length at least 5. We colour it as C0(α, β) for
some distinct α, β ∈ Z \ {0}. Moreover, we colour all chords of C with α. We can require
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that the colour 0 appears only in this cycle C. Thus each vertex of C is fixed by every
automorphism of G preserving the colouring. To see this it is enough to observe that both
endpoints of the unique edge coloured with β are fixed.

We define a colouring of the remaining edges of G recursively, as follows. Suppose
that we have already coloured the edges of an induced 2-connected subgraph F of G such
that the only automorphism of G preserving this colouring is the identity, regardless of a
colouring of the edges outside F . Thus F = G[V (C)] in the initial step. If F 6= G, then
we choose a shortest path P between any two vertices of F containing at least one vertex
outside F . Let a, b be the end-vertices of P , and let p be the length of P . As P is shortest
possible, each path of length p between a and b in G is either uncoloured or fully coloured.
Consider the subgraph H induced by the vertices of P and of all uncoloured paths between
a and b of length p. Thus, all edges of H are uncoloured yet. We colour the edges of
H with d

√
∆e colours according to Lemma 2.1. Let F ′ = G[V (F ) ∪ V (H)]. We thus

obtained a colouring of all edges of F ′ that breaks every non-trivial automorphism of G,
because the colouring of F already break them.

If F ′ 6= G, the we repeat this procedure with F ′ instead of F until all edges of G are
coloured.

Actually, we have proved the following result which we use in the next section.

Corollary 2.3. Let G be a 2-connected, countable graph with finite maximum degree ∆
and let C be a longest cycle or any cycle of length at least five in G. Then for every two
distinct colours α, β ∈ Z \ {0}, any colouring C0(α, β) of its edges can be extended to a
distinguishing colouring of G with colours from the set Z such that all edges coloured with
0 belong to the cycle C.

Proof. The claim follows directly from the proof of Theorem 2.2 unless |G| = 4. In
the latter case, Z = {0, 1, 2}, and G contains a cycle C4, which we colour as C0(1, 2)
(recall that this means a colouring α, β, 0, 0 of consecutive edges if G = C4, and α, 0, β, 0
otherwise). This is clearly a distinguishing colouring of G = C4. If G = K4, then the
other two edges get distinct colours 1, 2. Otherwise, G = K4− e, and the chord of C4 gets
colour 1.

3 Graphs of connectivity 1

Observe that it follows from Theorem 1.2 and Theorem 1.3 that Theorem 1.5 is true for
graphs of maximum degree ∆ ≤ 5 satisfying the conditions of the Theorem. This fact did
not matter in the proof for 2-connected graphs, but it facilitates a bit our proof for graphs
with cut vertices. From now on, assume that G is a countable graph of finite maximum
degree ∆ ≥ 6 and connectivity 1. Hence, we have at least four colours 0, 1, 2, 3 at our
disposal.

Two edge colourings f1, f2 of a graph H are called isomorphic with respect to a group
Γ ⊆ Aut(H) if there exists an automorphism ϕ ∈ Γ such that f1(uv) = f2(ϕ(u)ϕ(v)) for
every edge uv ∈ E(H). Furthermore, f1, f2 are called isomorphic if they are isomorphic
with respect to Aut(H).

Lemma 3.1. Let u0 be a vertex of a 2-connected, countable block H0 of finite maximum
degree at most ∆, where ∆ ≥ 6. Then H0 admits at least d

√
∆e edge colourings with

colours from the set Z, breaking all non-trivial automorphisms of Aut(H0)u0
, which are

pairwise non-isomorphic with respect to Aut(H0)u0
, and do not contain C0(1, 2).
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Proof. First observe that if H0 is a 2-connected, countable graph and c(H0) ≥ 5, then
every vertex of H0 belongs to a cycle of length at least five. This easily follows from the
fact that every vertex outside a given cycle C of length at least five is the origin of two
internally disjoint paths to two vertices of C, which partition the cycle C into two paths,
one of which is of length at least three.

We choose a longest cycle C inB passing through the vertex u0 ifB is finite, or a cycle
of length at least five ifB is infinite. It is easy to see thatC is a longest cycle inGwhenever
|C| ≤ 4. We colour C as C0(α, β), for {α, β} 6= {1, 2}. By Corollary 2.3, regardless
of location of colours α and β on C, this colouring can be extended to a distinguishing
colouring ofH0 using colours from Z \{0}. We have

(d√∆e
2

)
−1 choices for the set of two

colours {α, β} 6= {1, 2}. For a given colouring C0(α, β), there are at least three possible
placements for u0 (actually, there are more possibilities if |H0| > 3). Hence, there are
at least L = 3(

(d√∆e
2

)
− 1) edge colourings of H0 that are pairwise non-isomorphic with

respect to Aut(H0)u0 . The inequalityL ≥ d
√

∆e, equivalent to 3(d
√

∆e)2−5d
√

∆e−6 ≥
0, holds whenever d

√
∆e) ≥ 3.

Lemma 3.2. Let H0 be a graph of finite maximum degree at most ∆, with ∆ ≥ 6, con-
sisting of s ≥ 2 copies of a 2-connected block B sharing a common cut vertex u0. Then
H0 admits at least d

√
∆e pairwise non-isomorphic distinguishing edge colourings with

colours from the set Z, such that C0(1, 2) does not appear in any of these colourings.

Proof. LetH0 be a graph satisfying the assumptions. Observe that Aut(H0) = Aut(H0)u0

for s ≥ 2. Clearly, s ≤ b∆
2 c.

As we have shown above, the block B admits at least L = 3(
(d√∆e

2

)
− 1) colourings

which are pairwise non-isomorphic with respect to Aut(H0)u0
. To colour the graph H0,

we select s of them. Hence, we have at least
(
L
s

)
pairwise non-isomorphic colourings of

H0. Clearly,
(
L
s

)
≥ L, when 1 ≤ s ≤ b∆

2 c ≤ L−1, which is the case for ∆ ≥ 6. We know
that L ≥ d

√
∆e, hence there are at least d

√
∆e non-isomorphic distinguishing colourings

of H0.

Lemma 3.3. Let H0 be a graph satisfying the assumptions of Lemma 3.1 or of Lemma 3.2.
Let T be a symmetric tree of order at least 3 with a central vertex v0. A graphH is obtained
by attaching a copy of the graph H0 to every leaf of T in such a way that each pendant
edge of T is incident to the same vertex u0 of H0. If the maximum degree of H is at most
∆ and ∆ ≥ 6, then there exists a distinguishing colouring of H with colours from the set
Z, and without C0(1, 2).

Proof. We colour the edges of T with d
√

∆e colours similarly as in the proof of Lemma 2.1.
That is, at most d

√
∆e edges incident to the central vertex v0 of T get the same colour. Then

recursively, at each level of T , any set A of vertices that can be cyclically permuted by an
automorphism ofH preserving the hitherto defined colouring, has at most d

√
∆e elements.

For each vertex v of A, we choose a distinct colour i ∈ Z such that the number of edges
joining v to the next level of T and coloured with i, is different from the number of such
edges coloured with any other colour. We arrive at the leaves of T with a colouring such
that every set A of leaves that can be cyclically permuted by an automorphism of T pre-
serving the colouring of T has at most d

√
∆e elements. It follows from Lemma 3.1 or

Lemma 3.2 (depending on the structure of H0) that each copy of H0 attached at a leaf
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Figure 1: Example of a 4-colouring of a graph H of Lemma ?? with ∆ = 9, where
a graph H0 consisting of four triangles sharing a cut vertex u0 is attached to every
leaf of a tree T = K1,9

Figure 3: Example of a 4-colouring of a graphH of Lemma 3.3 with ∆ = 9, where a graph
H0 consisting of four triangles sharing a cut vertex u0 is attached to every leaf of a tree
T = K1,9.

belonging to the same set A has a distinct colouring satisfying our assumptions. Thus we
obtain a desired colouring of the whole graph H .

The following result of Broere and Pilśniak [2] will be useful in the next proof.

Theorem 3.4 ([2]). If T is an infinite tree without leaves, then D′(T ) ≤ 2.

We are now ready to prove Theorem 1.5 for graphs with cut vertices.

Theorem 3.5. Let G be a countable graph of connectivity 1 and without pendant edges. If
G has finite maximum degree ∆, then

D′(G) ≤
⌈√

∆
⌉

+ 1.

Proof. Recall that we may assume that ∆ ≥ 6, whence the set Z contains at least four
colours. If G is a tree, then it has no leaves, so D′(G) ≤ 2 by Theorem 3.4.

Suppose then that G contains a 2-connected block B0. Let C be a longest cycle of
B0, if it exists, or any cycle of length at least five of B0. Colour it with C0(1, 2). By
Corollary 2.3, there is a distinguishing edge colouring of B0, where colour 0 is used only
on the cycle C. In our colouring of the whole graph G, we ensure that C0(1, 2) does not
appear again, therefore each vertex of B0 is fixed by every automorphism of G preserving
the colouring of B0. We recursively extend this colouring in such a way that every vertex
with at least one coloured incident edge is fixed as well.

Now, we set any ordering v1, v2, . . . of all cut vertices of G. We recursively consider
the first vertex vi in this ordering that belongs to an already coloured block, as well as to an
uncoloured one. Hence, vi is already fixed by every ϕ ∈ Aut(G) preserving the existing
partial colouring. We proceed with vi in four stages.
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1. Let B1, . . . , Bl be pairwise non-isomorphic, uncoloured 2-connected blocks con-
taining vi. For each j ∈ {1, . . . , l}, we consider a maximal subgraph H0 of G
that consists of s ≥ 1 copies of Bj sharing the cut vertex vi. Taking u0 = vi, by
Lemma 3.1 if s = 1, or by Lemma 3.2 if s ≥ 2, there is a distinguishing colouring
of H0 with colours from the set Z, not containing C0(1, 2).

2. We consider every uncoloured maximal subgraph H satisfying the assumptions of
Lemma 3.3. We colourH distinguishingly according to the conclusion of Lemma 3.3.
Consequently, all 2-connected blocks containing vi are now coloured.

3. If some components of G − vi are uncoloured infinite trees, then we consider the
infinite tree T containing all those components and the vertex vi, and we colour the
edges of T with two colours, by Theorem 3.4.

4. We colour every yet uncoloured edge e incident to vi arbitrarily. Note that both
endpoints of e are already fixed by any ϕ ∈ Aut(G) preserving the existing partial
colouring, because uncoloured components of G− vi are pairwise non-isomorphic.

This recursive procedure yields a distinguishing colouring of G with d
√

∆e + 1 colours,
which completes the proof of Theorem 3.5, and thus of Theorem 1.5.

ORCID iDs
Wilfried Imrich https://orcid.org/0000-0002-0475-9335
Rafał Kalinowski https://orcid.org/0000-0002-3021-7433
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Abstract

It is proved that for any prescribed orientation of the triples of either a Steiner triple
system or a Latin square of odd order, there exists an embedding in an orientable surface
with the triples forming triangular faces and one extra large face.
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1 Introduction
The motivation for the work described herein comes from two previous papers, respectively
on the upper embedding of Steiner triple systems [1] and the upper embedding of Latin
squares [2]. First we recall the relevant definitions. Let X = (V,B) be a (partial) triple
system on a point set V , that is, a collection B of 3-element subsets of V , called blocks
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or triples, such that every 2-element subset of V is contained in at most one triple in B.
Equivalently, such a triple system X may be viewed as a pair (K,B), where K is a graph
with vertex set V and edge set E consisting of all pairs uv for distinct points u, v ∈ V
such that {u, v} is a subset of some block in B. In other words, in the graph setting, B is
regarded as a decomposition of the edge set E of K into triangles. Of course, such a graph
K = (V,E) may admit many decompositions into triangles and so the set of blocksB needs
to be specified. We will refer to K = (V,E) with the specified decomposition B of E as
the graph associated with the triple system X = (V,B). We will be assuming throughout
that the triple systems considered here are connected, meaning that their associated graphs
are connected. In the case of a Steiner triple system S = STS(n) where n = |V |, the
associated graph is the complete graph Kn. Such systems exist if and only if n ≡ 1 or 3
(mod 6) [4]. For a Latin square L = LS(n), the associated graph is the complete tripartite
graph Kn,n,n where the three parts of the tripartition are the rows, the columns and the
entries of the Latin square.

By an embedding of a triple system X = (V,B) we will understand a cellular embed-
ding ϑ : K → Σ of the associated graph K = (V,E) of X in an orientable surface Σ, such
that every triangle in B bounds a face of ϑ. Such faces will be called block faces, and the
remaining faces of the embedding ϑ will be called outer faces. By the properties of the set
B, in the embedding ϑ every edge of E lies on the boundary of exactly one block face, so
that there is at least one outer face in ϑ. The extreme case occurs if such an embedding has
exactly one outer face; we then speak about an upper embedding and call the triple system
X = (V,B) upper embeddable.

A necessary and sufficient condition for upper embeddability of triple systems follows
from available knowledge about upper embeddings of graphs in general. To make use of
this we will represent triple systems by their point-block incidence graphs as usual in design
theory. For a triple systemX = (V,B) its point-block incidence graph is the bipartite graph
G(X ) with vertex set V ∪ B and edge set consisting of pairs {v,B} for v ∈ V and B ∈ B
such that v ∈ B. The pair (V,B) forms the bi-partition of the vertex set of G(X ); vertices
in V and B will be referred to as point vertices and block vertices respectively. By our
convention regarding triple systems, the graph G(X ) is assumed to be connected, and note
that every block vertex has valency 3 in G(X ).

It is a folklore fact in topological design theory that there is a one-to-one correspon-
dence between orientable embeddings of a triple system X and its point-block incidence
graph G(X ) in orientable surfaces; the correspondence is illustrated in Figure 1. As is
obvious from this figure, an embedding of G(X ) arises from an embedding of X naturally.
On the other hand, given an embedding ofG(X ) one obtains the corresponding embedding
of X by ‘inflating’ every block vertex into a triangle on the surface. In particular, a triple
system X is upper embeddable if and only if its point-block incidence graph is embeddable
with exactly one face; such graphs are also called upper-embeddable. By a classical result
of Jungerman [3] and Xuong [5], a graph (in particular, the point-block incidence graph of
a triple system) is upper-embeddable if and only if the graph contains a spanning tree such
that each of its co-tree components has an even number of edges.

Let us now look more closely at an upper embedding of a triple system X = (V,B)
in an orientable surface Σ, or, equivalently, at an upper embedding ϑ : G(X ) → Σ of the
point-block intersection graph of X in Σ. For any tripleB = {u, v, w} ∈ B the (given) ori-
entation of Σ induces one of the two cyclic permutations (u, v, w) or (u,w, v) when look-
ing at the three points from the ‘centre’ of the triangular face representing B. Equivalently
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Figure 1: Correspondence between embeddings of X and G(X ).

for any block vertex B of G(T ) with point vertex neighbours u, v, w, the orientation of Σ
induces one of the cyclic permutations (u, v, w) or (u,w, v) of the three points ‘around’
the block vertex B. We refer to any of the two permutations as an orientation of the triple,
or equivalently, an orientation of the neighbourhood. In this terminology, the orientation of
Σ induces one of the two possible orientations of every triple (or, of the neighbourhood of
every block vertex) in the embedding. It was proved in [1] that every Steiner triple system
STS(n) and in [2] that every Latin square LS(n) where n is odd has an upper embedding
in an orientable surface. In the Latin square case the restriction that n must be odd is deter-
mined by Euler’s formula (V +F −E = 2−2g). However in both [1] and [2] no attention
was paid to the orientation of the triples in the upper embeddings.

The driving question of our research is the following question. Which triple systems
X = (V,B) have the property that, for every choice of the orientation of all triples B ∈ B,
the system X admits an upper embedding in an orientable surface such that the orientation
of the surface induces the preassigned orientation of B for every triple B ∈ B? We will
refer to this property simply as upper embeddability in every orientation of triples. The
main results of this paper are the two theorems below which substantially extend the results
in the two papers [1] and [2].

Theorem 1.1. Every Steiner triple system admits an upper embedding in every orientation
of triples.

Theorem 1.2. Every Latin square of odd order admits an upper embedding in every ori-
entation of triples.

2 Spanning tree

In what follows we prove a sufficient condition for a triple system to admit upper embed-
dability in every orientation of triples. The result will be stated in terms of the point-block
incidence graph of a triple system and, as one expects by Jungerman and Xuong’s The-
orem [3] and [5], the statement will involve existence of a spanning tree with particular
properties. We recall the connectivity assumption of our triple systems.
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Theorem 2.1. Let X be a triple system and let G = G(X ) be its point-block incidence
graph. If G admits a spanning tree such that every point vertex has even valency in the
corresponding co-tree, then X admits an upper embedding in every orientation of triples.

Proof. Let X = (V,B) and suppose that every tripleB = {u, v, w} ∈ B has been assigned
an orientation, i.e., one of the two cyclic permutations (u, v, w), (u,w, v). Using the ideas
of Jungerman and Xuong we will show (by induction) how to build an upper embedding of
the point-block incidence graph G = G(X ) of X in an oriented surface in such a way that
its orientation will induce the preassigned orientation on every B ∈ B.

Let T be a spanning tree of G as in the assumption of our theorem, that is, such that
every point vertex of the subgraph of G induced by the set E(G) \ E(T ) of co-tree edges
has even valency. SinceG is bipartite, this assumption implies that the setE(G)\E(T ) has
a decomposition into paths of length two that have a point vertex in the centre; in particular,
the number of co-tree edges here is even. We note that the quantity β = |E(G) \ E(T )| is
known as the Betti number of G. The set of co-tree edges thus decomposes into β/2 paths
P of the form P = AuB, where A,B are block vertices and u is a point vertex.

To proceed, we prove quite a general auxiliary statement on upper embeddability of
extensions of spanning subgraphs of our point-block incidence graph by paths as above.
LetH be a connected spanning subgraph ofG and letA andB be block vertices and u be a
point vertex ofH such that P = AuB is a path inG but the edgesAu andBu are not inH .
Further, let C be the set of block vertices of G that have valency 3 in H . We will say that
H upper embeds in every orientation at C if, for every vertex C ∈ C and every orientation
of the neighbourhood of C, there is an embedding of H in an orientable surface such that
its orientation induces the preassigned orientation around every vertex C ∈ C. Extending
this terminology in a natural way to the graph H ′ = H ∪P and the set C′ of block vertices
of valency 3 in H ′, we prove the following.

Claim. If H upper embeds in every orientation at C, then H ′ upper embeds in every ori-
entation at C′.

To prove our Claim, let H → Σ be an upper embedding of H in an orientable surface
Σ such that its orientation induces the preassigned orientations of neighbourhoods of block
vertices in C. Let P = AuB be a path as above. The boundary of the single face F of
this embedding is, without loss of generality, a closed walk in H of the form (uXAY BZ),
where X,Y, Z are u → A, A → B and B → u walks of H traversed in the direction
induced by the (clockwise) orientation of Σ, as one can see in Figure 2 when disregarding
the arcs (edges with direction) a, b, c, d. We point out that in our considerations the order
of appearance of the vertices A and B on the boundary of F will be immaterial.

Ignoring the condition on the set C′, the embedding of H can be extended to an upper
embedding of H ′. Namely, letting a = uA and b = uB denote the arcs from u to A and
u to B respectively, one ‘adds’ the path P = AuB to the single face F of ϑ in such a way
that all the local cyclic orderings of arcs emanating from vertices distinct from A, u,B are
kept intact and the local cyclic ordering of neighbours of u is extended from (. . . , c, d, . . .)
to (. . . , c, b, a, d, . . .) as in Figure 2; the local cyclic order of arcs at A and B is obvious
from Figure 2.

The single face F ′ of the new embedding of H ′ in an oriented surface Σ′ is obtained
by tracing down its boundary, which is the closed walk (uXa−bZaY b−), where a− and
b− indicate traversals along a and b in the opposite direction. We again emphasize that, for
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Figure 2: Extending F by adding the path P = AuB.

this construction, the position of A and B on the boundary of F is irrelevant. Note that the
genus of Σ′ is equal to the genus of Σ increased by 1.

We now show that the above construction can be carried out in such a way that the
orientation of Σ′ induces the preassigned orientations of neighbours of vertices in C′. This
orientation is obviously maintained for block vertices in the subset C ⊂ C′ and so one only
needs to consider the block vertices in C′\C ⊂ {A,B}; note that A,B /∈ C. If neither A
nor B are in C′, we simply use the above construction. If one or both of A,B are in C′\C,
then we proceed as follows.

Say, without loss of generality, that A ∈ C′, which means that the valency of A in
H must have been equal to 2. We know that u ∈ A; let A = {u, v, w} with {v, w}
being the point vertices constituting the neighbourhood of A in H . Since the boundary
of the single face F in H must contain every edge twice (and traversed in each direction
once) and A has valency 2 in H , it follows that the boundary of F must have the form
(u . . . vAw . . . wAv . . .), as displayed in Figure 3; the relative position of the vAw and
wAv paths is without loss of generality.

.  .  . AA
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Figure 3: Adding the edge uA to control the orientation of the triple A.
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Now, if the preassigned orientation of the block A = {u, v, w} is given by the cyclic
permutation (uvw), we will add the arc a = uA pointing to the position of A appearing
on the left-hand side of Figure 3; if the preassigned orientation is (uwv) we use the arc
a pointing to the occurrence of A on the right-hand side in Figure 3. If the vertex B also
has valency 2 in H , we make a similar choice for the position of B for addition of the arc
b = uB. We then complete the construction of the single face embedding of H ′ with the
required properties as in the previous paragraph.

Having proved our Claim, the rest of the proof is straightforward. We begin by embed-
ding the spanning tree T in a sphere in such a way that its orientation induces a preassigned
orientation at every block vertex that has valency 3 in T . We then apply the construction of
our Claim β/2 times for every path in the decomposition of the set E(G)\E(T ) of co-tree
edges into β/2 paths whose middle vertex is a point vertex. As a result we obtain the upper
embeddability of G in every orientation at its set B of block vertices.

3 Steiner triple systems
We deal first with the case of Steiner triple systems. In view of the previous section, Theo-
rem 1.1 follows immediately from the following Proposition.

Proposition 3.1. Let S = (V,B) be a Steiner triple system of order n and let G = G(S)
be its point-block incidence graph. Then G admits a spanning tree such that every point
vertex has even valency in the corresponding co-tree.

Proof. If n = 3, the result is true trivially. If n = 7, then S is unique up to isomorphism
and G is the Heawood graph. A breadth first search starting from any block gives a tree in
which each point has valency 1 or 3 and hence valency 2 or 0 in the co-tree. Now assume
that n ≥ 9.

Let V = {0, 1, . . . , n − 1}. Construct a spanning tree T of the point-block incidence
graph G as follows. For convenience, we will refer to point vertices simply as points and
block vertices as blocks. Let the root (Level 0) of the tree be the point 0. Connect the point
to all (n− 1)/2 blocks containing it, which will be at Level 1. At Level 2 put all the n− 1
points x ∈ V \ {0} and connect these to the blocks at Level 1 which contain them. The
remaining n(n − 1)/6 − (n − 1)/2 = (n − 1)(n − 3)/6 blocks are at Level 3. Connect
each one of these to a point at Level 2 which is contained in the block. The structure of the
spanning tree is shown below.

In the co-tree the point 0 has zero valency and the points at Level 2 have either odd or
even valency including zero. We will refer to such points as either odd points or even points
respectively. The number of edges in the co-tree is 3n(n− 1)/6− n(n− 1)/6− n+ 1 =
(n − 1)(n − 3)/3 which is even. Thus the number of odd points is even. The aim is
to construct a spanning tree with no odd points. The proof is in the form of an iterative
algorithm. Beginning with a spanning tree constructed as above, at any stage, if there are
odd points at Level 2, modify how the blocks at Level 3 are connected to the points at
Level 2 in order to reduce the number of odd points until they are absent. Let B3 denote the
set of blocks at Level 3, i.e. the blocks that do not contain 0. Each of these blocks is always
adjacent in T to exactly one point. Let P be the number of odd points. For any distinct
a, b ∈ V let ab be the point so that {a, b, ab} ∈ B.

Claim 1. If {a, b, c} ∈ B3, {a, {a, b, c}} ∈ T , a is odd, and at least one of b or c is odd,
then we can reduce P .
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Figure 4: Spanning tree of G(S).

Proof. Suppose that b is odd. Replace {a, {a, b, c}} by {b, {a, b, c}}.

Claim 2. If P > 0 then we may assume that there is {p, q, r} ∈ B3 with p and q odd, r
even, and {r, {p, q, r}} ∈ T ; otherwise we can reduce P .

Proof. If P > 0 then there are at least two odd points: say a and b are odd.
Suppose that w = ab 6= 0, so {a, b, w} ∈ B3. If w is odd or {w, {a, b, w}} /∈ T , then

we can reduce P by Claim 1. So we may assume that {a, b, w} is the required block, with
p = a, q = b, r = w.

Suppose now that ab = 0, so that {a, {a, b, 0}} ∈ T . Since a does not have valency
0 in the co-tree, there is some block {a, c, x} ∈ B3 with {a, {a, c, x}} /∈ T . Then c, x ∈
V \ {0, a, b} and we may assume that {c, {a, c, x}} ∈ T . If c is odd, then we can reduce
P by Claim 1, so assume that c is even. Replace {a, {a, c, x}} in T by {c, {a, c, x}}, so
that a becomes even and c becomes odd. There is also some {b, c, y} ∈ B3. If y is odd or
{y, {b, c, y}} /∈ T then we can reduce P by Claim 1. So we may assume that {b, c, y} is
the required block, with p = b, q = c, r = y.

Claim 3. Given a block {p, q, r} as in Claim 2, we can reduce P .

Proof. Let Sp be the set of points z such that {p, z, pz} ∈ B3, z is even, and either
{p, {p, z, pz}} ∈ T or {z, {p, z, pz}} ∈ T . Define Sq and Sr similarly.

There are N = (n − 5)/2 blocks {p, z, s} ∈ B \ {{p, q, r}, {p, 0, p0}}, which all
belong to B3. Consider such a block {p, z, s}. If {p, {p, z, s}} ∈ T then we can reduce
P by Claim 1 unless z and s are both even, so z ∈ Sp. Otherwise we may assume that
{z, {p, z, s}} ∈ T , and again we may reduce P by Claim 1 unless z is even, so again
z ∈ Sp. Since each of the N blocks {p, z, s} contains an element of Sp, |Sp| ≥ N .

Similarly, |Sq| ≥ N . Temporarily replacing {r, {p, q, r}} in T by {p, {p, q, r}}, which
does not change Sr, we also obtain |Sr| ≥ N . Then Sp, Sq, Sr ⊆ V \ {0, p, q, r} and since
n ≥ 9, we have |Sp|+ |Sq|+ |Sr| ≥ 3N = 3(n− 5)/2 > n− 4. Hence by the pigeonhole
principle there is some z belonging to at least two of Sp, Sq, Sr.

If z ∈ Sp∩Sq , replace {p, {p, z, pz}} in T by {z, {p, z, pz}} or vice versa, and replace
{q, {q, z, qz}} in T by {z, {q, z, qz}} or vice versa. This makes p and q even, and the
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parity of z is changed twice, so remains even; hence P is reduced. If z ∈ Sp ∩ Sr or
z ∈ Sq ∩ Sr apply a similar argument after replacing {r, {p, q, r}} in T by {q, {p, q, r}}
or {r, {p, q, r}}, respectively.

By applying Claims 2 and 3 repeatedly we can reduce P to 0, as required.

4 Latin squares
Now we turn our attention to the case of Latin squares of odd order. Let LS(n) be a Latin
square of odd order. Denote the sets of row points, column points and entry points by R,
C and E respectively. Let B be the set of triples, which we will also for convenience refer
to as blocks, {ir, jc, ke} where ir ∈ R, jc ∈ C, ke ∈ E and k = L(i, j). The point-block
incidence graph is the bipartite graph with vertex setR∪ C ∪ E ∪ B and edge set

{(vr, B) : vr ∈ R, B ∈ B, vr ∈ B} ∪ {(vc, B) : vc ∈ C, B ∈ B, vc ∈ B}
∪ {(ve, B) : ve ∈ E , B ∈ B, ve ∈ B}.

The following result is an exact analogy of Proposition 3.1 above for Steiner triple systems
and establishes Theorem 1.2. However the proof is much simpler. We are able to con-
struct the spanning tree with the appropriate property directly rather than by an iterative
procedure.

Proposition 4.1. Let L = LS(n) be a Latin square of odd order n and let G = G(L) be its
point-block incidence graph. Then G admits a spanning tree such that every point vertex
has even valency in the corresponding co-tree.

Proof. Let R = {0r, 1r, . . . , (n− 1)r}, C = {0c, 1c, . . . , (n− 1)c} and E = {0e, 1e, . . . ,
(n − 1)e}. Construct a spanning tree T of the point-block incidence graph G as follows.

Figure 5: Spanning tree of G(L).
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For convenience, we will again refer to point vertices simply as points and block vertices as
blocks. Let the root (Level 0) of the tree be the point 0r. Connect the point to all n blocks
containing it, which will be at Level 1. At Level 2 put all the 2n points x ∈ C ∪ E and
connect each of these to the unique block at Level 1 which contains it. At Level 3 put the
remaining n− 1 blocks which contain the point 0c and connect these to 0c. Then at Level
4 put the n − 1 points R \ {0r} and connect each of these to the unique block at Level 3
which contains it. In standard form, i.e. L(0, j) = j, the structure of the tree is shown in
Figure 5.

At this stage we have a tree which contains all the points but only the blocks which
contain the points 0r or 0c. Now consider the point 1c. There are n− 1 blocks containing
the point which as yet are not in the tree. Connect all of these to 1c. Repeat this procedure
for all of the points in the set C \ {0c, 1c}. We now have a spanning tree of the point-block
incidence graph in which the valency of the points 0r and x ∈ C are n and all other points
have valency 1. Thus in the co-tree all points have even valency.
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Abstract

Universality theorems (in the sense of N. Mnëv) claim that the realization space of a
combinatorial object (a point configuration, a hyperplane arrangement, a convex polytope,
etc.) can be arbitrarily complicated. In the paper, we prove a universality theorem for a
graph in the plane with a prescribed oriented matroid of stresses, that is the collection of
signs of all possible equilibrium stresses of the graph.

This research is motivated by the Grassmanian stratification (Gelfand, Goresky,
MacPherson, Serganova) by thin Schubert cells, and by a recent series of papers on strati-
fications of configuration spaces of tensegrities (Doray, Karpenkov, Schepers, Servatius).

Keywords: Maxwell-Cremona correspondence, Grassmanian stratification, oriented matroid, equi-
librium stress.
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1 Preliminaries and the main theorem
Let Γ = (V,E) be a graph without loops and multiple edges, where V = {v1, . . . , vm} is
the set of vertices, and E is the set of edges. A realization of Γ is a map p : V → R2 such
that (ij) ∈ E implies p(vi) 6= p(vj). We abbreviate p(vi) as pi.

That is, we have a planar drawing of Γ with possible intersections of edges and possible
coinciding vertices. However, each edge is mapped to a non-degenerate line segment.

A stress s on a realization (Γ, p) is an assignment of real scalars s(i, j) to the edges.
One imagines that each edge is represented by a (either compressed or extended) spring.
Each spring produces some forces at its endpoints.
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A stress s is called a self-stress, or an equilibrium stress, if at every vertex pi, the sum
of the forces produced by the springs vanishes:∑

(ij)∈E

s(i, j)uij = 0.

Here uij =
pi−pj

|pi−pj | is the unit vector pointing from pj to pi.
A self-stress is non-trivial if it is not identically zero.
The set of all self-stresses S(Γ, p) is a linear space which naturally embeds in Re,

where e = |E|; the space S depends on p.
A realization (Γ, p) is stressable if dimS(Γ, p) > 0.
Given (Γ, p), define an oriented matroidM(Γ, p) := SIGN(S(Γ, p)).
In simple words, to obtain the matroid, enumerate somehow the edges of the graph,

and for each non-trivial stress, list the signs of s(i, j). We obtain a collection of strings
(elements of (+,−, 0)](E)), which is an oriented matroid.1 For the purpose of the present
paper, it is sufficient to imagine an oriented matroid as a collection of strings. For a general
theory of oriented matroids see [1].

Example 1.1. Let (Γ, p) be a planar realization of the graph K4 such that p4 lies inside the
triangle p1p2p3. Assume that the edges are enumerated in a way such that first come the
edges of the triangle. ThenM(Γ, p) = {(+ + +−−−), (−−−+ + +)}.

The realization space of a graph Γ is the space of all realizations of Γ factorized by the
action of the affine group:

R(Γ) = {p : p is a realization of Γ}/Aff(R2).

Given a graph Γ and an oriented matroid M, the realization space of (Γ,M) is the
space of all realizations of Γ that yield the oriented matroidM:

R(Γ,M) = {p ∈ R(Γ) :M(Γ, p) =M}.

For a fixed graph Γ, the realization spaces R(Γ,M) stratify R(Γ). Each of R(Γ,M)
becomes a stratum.

In general, semialgebraic sets are subsets of some Euclidean space RN defined by poly-
nomial equations and inequalities. A semialgebraic set is called a open basic primary semi-
algebraic set (OBP semialgebraic set) if there are no defining equations, all the defining
inequalities are strict, and the coefficients of all the defining polynomials are rational.

We borrow the notion of stable equivalency from traditional papers on universality,
e.g. from [9]: stable equivalence is an equivalence relation on OBP semialgebraic sets
generated by rational equivalence and stable projections.

The main result of the paper is:

Theorem 1.2. For each open basic primary semialgebraic set A, there exists a graph Γ
and an oriented matroidM such that the realization space R(Γ,M) is stably equivalent
to A.

1This is some realizable oriented matroid indeed, since it represents the set of vectors of some easy-to-build
vector configuration related to the rigidity matrix. For rigidity matrices see [10].
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Our first motivation comes from the complex Grassmanian stratifications [4], where
strata are labeled by realizable matroids, and each stratum equals the realization space of
a matroid. The stratification has a version over the field R, where strata are labeled by
realizable oriented matroids.

The other motivation is a series of papers [3, 5, 6] on stratifications of configuration
spaces of tensegrities. Although the setup of the present paper might look different from
the setup of [3, 5, 6], there is very much in common, see Section 3. In particular, we have
the following analogue of Theorem 1.2:

Theorem 1.3. For each connected open basic primary semialgebraic set A, there exists a
graph Γ and a stratum (in the sense of [3]) R in the realization space of Γ such that R is
stably equivalent to A.

2 Proof of Theorem 1.2
Combinatorial equivalence of planar point configurations and line configurations see [8]
is a classical subject and a starting point of our research. Given a combinatorial type,
the equivalence class of point configurations (or line configurations) having this type is
called the realization space. We shall use the same letter R for realization spaces of line
configurations. In particular, for a line configuration L we denote by R(L) the realization
space of all line configurations that are combinatorially equivalent to L.

We shall use the following version (chronologically, one of the first ones) of the cele-
brated Universality Theorem [7]: generic planar point configurations are universal. More
precisely, for each OBP semialgebraic set A, there exists a planar point configuration with
points in generic position2 such that the realization space of the configuration is stably
equivalent to A. An immediate consequence of the theorem is: generic planar line arrange-
ments are universal.

Assume that a OBP semialgebraic set A is fixed. For the set A, we shall construct a
graph Γ together with its realization p, depicted in Figure 1. Thus, we get the associated ori-
ented matroidM =M(Γ, p). Our final aim is to show that R(Γ,M) is stably equivalent
to A.

Here is the construction.

(1) Take a generic line configuration L = {li}ni=1 whose realization space is stably
equivalent to A. Since the configuration is generic, there are no triple intersections.

(2) Take a rhombus ABCD such that all mutual intersections Tij = Tji = li ∩ lj lie
strictly inside the rhombus, and each line li ∈ L intersects the interiors of the seg-
ments AB and AD. Denote the intersection points points by Ai and Di respectively.
We may assume that the points A,A1, A2, . . . , An, B appear on the segment AB in
this very order. Therefore, the order of the points Di (from left to right) is reverse.

(3) Add to our construction the diagonals of the rhombus AC and BD.

(4) Add to our construction the points Bi ∈ BC, Ci ∈ CD, and the segments AiBi,
BiCi, CiDi, and DiAi such that AiDi is symmetric to BiCi with respect to the
diagonal BD for all i.

(5) Finally, add the intersection points Tij = Tji = AiDi ∩AjDj .

2No three points are collinear.



140 Ars Math. Contemp. 18 (2020) 137–148

(6) Now let us specify edges of the graph. The points Ai split the segment AB into
edges. The points Bi split BC into edges, etc. Besides, the points Tij split AiDi

into edges. The segments AiBi, BiCi, CiDi, AC, and BD are edges as well. All
the edges are depicted in Figure 1.

We obtain a realization of a graph, whose vertices are {A,B,C,D,Ai, Bi, Ci, Di, Tij}i,j .

A

B

D

C

A1

A2

A3

B1

B2

B3

D3

D2

D1

C3

C2

C1

T13

T23

T12

Figure 1: The graph Γ with its realization p.

Lemma 2.1. Assume that we have a self-stressed realization of an arbitrary graph, and
a vertex of the graph looks as is depicted in Figure 2. Then, in notation of the figure, the
stresses satisfy:

(a) (left) Sign s1 = Sign s3 = − Sign s2,

(b) (right) s1 = s2, s3 = s4.

(c) If a self-stress s of the above constructed (Γ, p) (see Figure 1) vanishes at one of the
segments of the quadrilateral AiBiCiDi, then it vanishes on each of the segments of
the quadrilateral.

(d) If a self-stress s of (Γ, p) from Figure 1 vanishes at all the segments lying on AB,
then it vanishes everywhere.

Let us look at some particular elements of S(Γ, p) (in matroid terminology, they all
are circuits of the oriented matroidM). At most of the edges, these stresses vanish, so we
depict them as subgraphs of (Γ, p). That is, we leave stressed edges only, and indicate the
signs of the stress.
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s1

s2

s3

s4

s2

s1

s3

Figure 2: Local stresses.

Lemma 2.2.

(1) The subgraphs depicted in Figure 3 are stressable. The signs of the associated
stresses are indicated. (Clearly, simultaneous inversion of signs also represents some
self-stress.)

(2) The stresses (a) and (d) from Figure 3 (for all i = 1, . . . , n) form a basis of the linear
space S(Γ, p).

(3) The stresses (a) and (c) (for all i = 1, . . . , n) also form a basis of S(Γ, p).

(4) For any stress of (Γ, p), the ratio of stresses on edges AiAi+1 and BiBi+1 does not
depend on i (provided that the stresses are non-zero). The ratio of stresses on edges
CiCi+1 and DiDi+1 does not depend on i either.

Proof. (1): (a) is known to be stressable.3 (c) and (d) are stressable since these are Desar-
gues configurations. This means that the three lines AiDi, BC and BiCi meet at a point;
the three lines AiBi, CiDi and AC are parallel, that is, meet at a point at infinity. (b) is
the difference of two different stresses of type (c), therefore stressable. The signs in all the
cases follow from Lemma 2.1.

(2): Assume we have a stress s ∈ S(Γ, p). Adding an appropriate stress of type (a), we
kill the value of the stress on the edge AA1, and therefore, on all the edges emanating from
A. Next, adding appropriate stresses of type (d) kills the stresses on all the edges of AB.
By Lemma 2.1, the result is identically zero.

(3): It follows from (2).
(4): It is true for (a) and (d), therefore, it is true for all self-stresses.

Now we analyze the realization space of matroid (Γ,M).

Proposition 2.3. Assume thatM(Γ, p′) =M(Γ, p), that is, (Γ, p′) ∈ R(Γ, p). Denote the
vertices of the realization by the same letters with primes (that is, by A′i, B

′
i, etc.). Then:

(1) All collinearities of vertices that are present in p survive in p′. Besides, the order of
collinear vertices is maintained.

(2) Points A′B′C ′D′ lie in the convex position.

(3) p′ yields an arrangement of lines L′ = {l′i} with the same combinatorics as the
initial arrangement L.

3(a) can be viewed as a projection of a tetrahedron, therefore (a) is liftable. By Maxwell-Cremona correspon-
dence, it is stressable.
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Figure 3: Some particular stresses.

Proof. The stressed graph (a) from Figure 3 should be stressed with the same signs (and
with no other signs) for p′ as well. Therefore A′B′C ′D′ is a convex quadrilateral, and
all the edges belonging to A′B′, are collinear (all the edges belonging to C ′B′, etc. are
collinear as well). The graphs of type (b) from Figure 3 remain stressed for p′, so the
segments of li stay collinear. Therefore we have an arrangement of lines L′ = {l′i}.

The graph Γ records the combinatorics of L, therefore the L and L′ are combinatorially
equivalent, that is, L′ ∈ R(L).

Corollary 2.4. There exists a natural mapping between the realization space of (Γ,M)
and the realization space of the arrangements of lines L:

π : R(Γ,M)→ R(L).

The mapping π extracts the arrangement L′ from (Γ, p′) and forgets the rest.

Proposition 2.5. LetA′B′C ′D′ be a convex quadrilateral. Assume that the points {A′i, B′i,
C ′i, D

′
i}ni=1 are such that:
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(i) The points A′i lie on the segment A′B′ and come in the same order as Ai. The
points B′i lie on the segment B′C ′ and come in the same order as Bi; and the same
condition for C ′i and D′i.

(ii) The affine hulls of A′iD
′
i form an arrangement of lines combinatorially equivalent

to L.

(iii) All the associated subgraphs of type (c) from Figure 3 are Desargues ones.

Then:

(1) All the associated subgraphs of type (d) from Figure 3 are Desargues ones, and
therefore, stressable.

(2) The realization of the graph Γ with these vertices has the same oriented matroid as
M =M(Γ, p).

Proof. (1): Follows from Desargues’ theorem. The conditions imply that we have some
realization p′ of Γ, and that all circuits depicted in Figure 3 are circuits relative p′.

Before we proceed with the claim (2), let us observe the following:

Lemma 2.6. Assume that s is a self-stress of (Γ, p′), whose values on the edges A′i−1A
′
i

and A′i+1A
′
i we denote by s1 and s2. Then the signs of the stresses of the other two edges

E1 and E2 (each of them equals A′iT
′
ij for some j), emanating from A′i are:

SIGN(s(E1)) = SIGN(s2 − s1) = −SIGN(s(E2)),

assuming that E1 lies to the left of E2, see Figure 4. Similar statements are valid for edges
emanating from B′i, C

′
i, and D′i.

Ai

Ai+1

Ai−1

E1

E2

Figure 4: Illustration for the proof of Proposition 2.5.

Now let us prove the statement (2) of Proposition 2.5. First observe that Lemma 2.2
stays valid for (Γ, p′). Let di (respectively, d′i) be a stress of (Γ, p) (respectively, (Γ, p′))
depicted in Figure 3(d), such that its value on AA1 (respectively, A′A′1) equals 1.

Let a be a stress of (Γ, p) depicted in Figure 3(a), such that its value on AA1 equals 1,
let a′ be defined analogously for (Γ, p′).

Assume that s is a stress of (Γ, p). By Proposition 2.3, s = λa +
∑
λidi for some

real coefficients. Consider the stress s′ = λa′ +
∑
λid
′
i of (Γ, p′). By Lemma 2.2(4) and

Lemma 2.6, we have SIGN(s) = SIGN(s′). Conversely, each stress s′ of (Γ, p′), has a
similar counterpart for (Γ, p).
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Proposition 2.7. Mapping π from Corollary 2.4 is a stable projection.

Proof. Assume that a line arrangement L′ belongs to the realization space R(L). Let us
look at the preimage π−1(L′). Specification of A′B′C ′D′ is stable since the positions of
the lines A′B′, A′D′, etc. are defined by a number of strict inequalities depending on the
lines L.

Now we may choose arbitrary distinct points A′1, . . . , A
′
n on the segment A′B′ that

come in the same order as A1, A2, . . . , An. The same happens with B′1, . . . , B
′
n: here we

care about their order only. Now let us choose C ′1 as an arbitrary point on the segment
B′C ′. Once C ′ is specified, the position of D′1 is uniquely determined, since Desargues
condition implies that the lines A′C ′, A′1B

′
1, and C ′1D

′
1 meet at a point.

The point C ′2 should be chosen to the left of C ′1 but in such a way that D′2 lies to the
right ofD′1. This is always possible but dictates some extra condition, still in the framework
of stable equivalence. The rest of the points C ′i and D′i are treated analogously.

Corollary 2.4 and Proposition 2.7 imply thatR(Γ,M) is stably equivalent to A. Theo-
rem 1.2 is proven.

3 Relations between different settings. Proof of Theorem 1.3
In this section we show the equivalence of the settings of the present paper and that of [3].

Let us start with the definition of equilibrium stress. The paper [3] puts no restrictions
on a realization of a graph p, that is, the endpoints of an edge might be mapped to one and
the same point. Besides, [3] presents a more usual setting of the equilibrium stress (as in
[2]): the equilibrium condition reads as∑

(ij)∈E

s(i, j)(pi − pj) = 0.

Let us denote by S(Γ, p) the linear space of stresses and byM(Γ, p) = SIGN(S(Γ, p))
the associated matroid.

Clearly, if no edge is degenerate (that is, pi − pj 6= 0), a stress s in this setting gives a
stress in the setting of the present paper s(i, j) = s(i, j)|pi−pj | and vice versa. Therefore,
M(Γ, p) = M(Γ, p). The only subtlety may arise if a realization p produces degenerate
edges.

Lemma 3.1. The matroidM(Γ, p) “knows” all the degenerate edges. In particular, if there
exists p ∈ R(Γ,M) with no degenerate edges, then each p′ ∈ R(Γ,M) has no degenerate
edges.

Proof. Degenerate edges are detected by almost everywhere zero stresses: an edge number
i is degenerate for (Γ, p) iff (0, . . . , 0,+, 0, 0, . . . , 0) ∈M(Γ, p).

3.1 Strong equivalence vs weak equivalence

Assume that a realization p of a graph Γ has no degenerate edges.
Repeating [6], let us say that two realizations of one and the same graph (Γ, p) and

(Γ, p′) are strongly equivalent, if there exists a sign preserving homeomorphism between
the stress spaces S(Γ, p) and S(Γ, p′).
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Two realizations of one and the same graph (Γ, p) and (Γ, p′) are weakly equivalent, if
the associated matroids coincide:M(Γ, p) =M(Γ, p′).

Classes of weak equivalence are realization spaces, defined in the introduction (Sec-
tion 1). Classes of strong equivalence are strata considered in [6].4

Proposition 3.2. Strong equivalence equals weak equivalence.

Proof. Clearly, strong equivalence implies weak equivalence. Let us prove the converse.
The linear space S(Γ, p) is tiled by convex cones, each cone corresponds to some string of
signs fromM(Γ, p). Let us intersect this tiling with the unit sphere centered at the origin.
This gives a tiling of the sphere where each tile is a spherically convex polytope. The
matroidM(Γ, p) “knows” the incidence relation of the tiles: a tile labeled by (ε1, . . . , εe),
εi ∈ {+,−, 0}, belongs to the closure of the tile (ε′1, . . . , ε

′
e) iff either εi = 0, or εi = ε′i.

Besides, the matroidM(Γ, p) “knows” the dimension of each tile. Indeed, the matroid
records the face poset of each tile. Since each tile is some pointed cone, its dimension is
determined by the length of a longest chain in the poset.

Now it becomes possible to inductively build a sign-preserving homeomorphism be-
tween two spaces S(Γ, p) and S(Γ, p′) with equal matroids. One should start with zero-
dimensional spherical tiles, then extend the homeomorphism to one-dimensional tiles,
etc.

Now let us prove Theorem 1.3. Given A, take the pair (Γ, p) as in the proof of The-
orem 1.2. By Lemma 3.1, R(Γ, p) = R(Γ, p). By Proposition 3.2, R(Γ, p) is a strong
equivalence class, that is, a stratum in the sense of [3, 5, 6]. Finally, by Theorem 1.2 the
stratum is stably equivalent to A.
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A Appendix
A.1 One more example

A simpler (but in a sense, more “degenerate”) example of (Γ′, p) with the same realization
space as in the previous section can be obtained if one takes (Γ, p) from Figure 1, removes
all the edges lying on AB,BC,CD,DA,AC,BD,AiBi, BiCi, CiDi, and adds the new
edges AiDi. That is, all the edges of the new graph lie on the lines li.

A.2 “No parallel edges” condition

The graph from Figure 1 has parallel edges emanating from one and the same vertex (in
fact, almost all the vertices have parallel emanating edges). If parallel edges emanating of
one and the same vertex are forbidden we still have a universality-type theorem:

Theorem A.1. For each OBP semialgebraic set A, there exists a graph Γ, an oriented
matroidM, and a number N such that

(1) (Γ,M) has a realization with no parallel edges at all, and

(2) the realization spaceR(Γ,M) is stably equivalent to 2N disjoint copies of A.

Proof. The idea is depicted in Figure 5: take the graph from Figure 1 and for each edge
(ij), add two new vertices and replace (ij) by five new edges. One imagines a stressed
realization of K4 added to a stressed realization of Γ in such a way that the stresses on (ij)
cancel. Denote the realization of the new graph by (Γ̂, p̂), and set M̂ = M(Γ̂, p̂). There
exists a natural mapping

R(Γ̂, M̂)→ R(Γ,M).

The preimage of each point has 2e(Γ) connected components since each stressed copy of
K4 can be attached both on the righthand side and on the lefthand side of (ij), but never
degenerates.

Figure 5: Adding a stressed copy of K4.

A.3 Intersection of closures of two strata is not necessarily the closure of a stratum

This phenomenon was observed in [4] for Grassmanian stratifications. Let us adjust an
example from [4] to show the same for stressed graphs.

Take the point configuration from Figure 6 and associate to it a graph (Γ, p) by the
following rule: for each three collinear points i, j, k add the edges (ij), (jk), and (ik).
So each three collinear points yield a stressable subgraph K3. We conclude that all the
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1
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Figure 6: A graph which forces harmonic relation.

collinearities of vertices persist for all the elements of the realization spaceR(Γ,M(Γ, p)).
However, all these collinearities imply that the four points 1, 2, 3, 4 are harmonic, that is,
their cross ratio equals −1.

Let us take a realization p′ of Γ with all the vertices lying on a line. The corresponding
matroid depends on the order of the vertices only and “does not see” the cross ratio. There-
fore the intersection of the closures of the strataR(Γ,M(Γ, p)) andR(Γ,M(Γ, p′)) is not
a closure of a stratum.
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1 Introduction
Suppose UTn(q) denotes the set of all n × n unipotent upper-triangular matrices over
the finite field GF(q). While working on the complex characters of this group, André
constructed something nowadays called a supercharacter theory [1, 2, 3]. Diaconis and
Isaacs in their seminal paper [9], axiomatized the notion of supercharacter theories of finite
groups. To define, we assume that G is a finite group, Irr(G) denotes the set of all ordinary
irreducible characters of G and Con(G) is the set of all conjugacy classes of G. A pair
(X ,K) is a supercharacter theory of G if the following conditions hold:

1. X and K are set partitions of Irr(G) and Con(G), respectively;

2. K contains {e}, where e denotes the identity element of G;

3. |X | = |K|;

4. For every X ∈ X , characters σX =
∑
χ∈X χ(e)χ are constant on each K ∈ K.

Characters σX are called supercharacters, and the members of K are superclasses of
G [9]. Throughout this paper, Sup(G) denotes the set of all supercharacter theories of
G. Assume X = {{1G}, Irr(G) \ {1G}} and K = {{e},Con(G) \ {e}}. Then m(G) =
(Irr(G),Con(G)) and M(G) = (X ,K) are the trivial supercharacter theories of G.

We now review some constructive results on supercharacter theories of finite groups.
Hendrickson [13] provided several constructions which are used to classify all supercharac-
ter theories of cyclic groups and obtained an exact formula for the number of supercharacter
theories of a finite cyclic p-group. By studying partitions of the set of irreducible charac-
ters, Clifford theory and some well-known results regarding the structure of simple rational
groups, Burkett et al. [6] proved that there are only three groups with exactly two super-
character theories: the cyclic group Z3, the symmetric group S3 which is solvable, and the
non-abelian simple group Sp(6, 2). Furthermore, Wynn [22] described all supercharacter
theories of extraspecial and Frobenius groups. The number of supercharacter theories of
dihedral groups of order 2p, p is a Mersenne prime, was also calculated. In particular,
he proved that if G is a Frobenius group of order pq, where p, q are primes and p > q,
then G has exactly 1 + τ(p−1q )τ(q − 1) supercharacter theories in which τ(n) denotes the
number of positive divisors of n. In [5] the authors continued these works by providing
some constructive methods in order to find new supercharacter theories. Then, they ap-
plied these methods towards a classification of finite simple groups with exactly three or
four supercharacter theories.

The aim of this paper is to present an algorithm for constructing all supercharacter the-
ories of finite groups. To explain and then evaluate our algorithm, we need some concepts
in computer science. The time complexity of a program with a given input data of size n is
defined as the number of elementary instructions that this program executes as a function of
n. Moreover, the space complexity of a program with a given input data of size n is defined
as the number of elementary objects that this program needs to store during its execution
with respect to n. For two matrices A and B with the same number of rows, the augmented
matrix C = [A|B] is formed by appending the columns of B to A.

E-mail addresses: ashrafi@kashanu.ac.ir (Ali Reza Ashrafi), leila.ghanbari@ut.ac.ir (Leila
Ghanbari-Maman), kkavousi@ut.ac.ir (Kaveh Kavousi), f.moftakhar@sharif.edu (Fatemeh
Koorepazan-Moftakhar)
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Throughout this paper, our calculations are done with the aid of GAP [12]. Our group
theory notations and terminologies can be found in [14, 18]. Moreover, we refer the inter-
ested readers to the book [8] for more information on algorithms.

2 Algorithm
Set [n] = {1, 2, . . . , n}, G is a finite group, Irr(G) = {χ1, . . . , χn} and Con(G) =
{K1, . . . ,Kn}. Choose A ⊆ [n]. Define AI(G) = {χi | i ∈ A} and AC(G) = {Ki |
i ∈ A}. Then the mappings ξ1 : P([n]) −→ P(Irr(G)) and ξ2 : P([n]) −→ P(Con(G))
are given by ξ1(A) = AI(G) and ξ2(A) = AC(G), where P(Y ) denotes the power set of
a given set Y . Conversely, we assume that B ⊆ Irr(G), C ⊆ Con(G) and define [n]B =
{i | χi ∈ B} and [n]C = {j | Kj ∈ C}. We now define γ1 : P(Irr(G)) −→ P([n]) and
γ2 : P(Con(G)) −→ P([n]) by γ1(B) = [n]B and γ2(C) = [n]C . Then the mapping ξt
and γt, t = 1, 2, are mutually inverse and so we can use P([n]) instead of both P(Con(G))
and P(Irr(G)) in our algorithms.

Let X = {χ1, . . . , χu} and K = {K1, . . . ,Ks} be parts of set partitions X of Irr(G)
and K of Con(G), respectively. If σX(K1) = · · · = σX(Ks), then we say that X and
K are consistent. If all parts of X are mutually consistent with all parts of K, then the set
partitions X and K are said to be consistent. In a part of the proof of [9, Theorem 2.2(c)],
the following equivalence relation on G is given.

u ∼ v ⇐⇒ ∀ X ∈ X , σX(u) = σX(v).

Note that if u and v are conjugate inG, then u ∼ v. As a result, it is enough to compute
σX on all conjugacy classes of G. Suppose I = {X1, . . . , Xr} is a set partition of Irr(G)
and define σi = σXi , 1 ≤ i ≤ r. Set Kx = {y | ∀i, 1 ≤ i ≤ r;σi(x) = σi(y)}, x ∈ G,
and let J be the set of all such subsets. If all members of J are non-empty, then J is a
set partition of Con(G) consistent with I and so (I, J) ∈ Sup(G). It is far from true that
for each set partition X of the irreducible characters of G there exists a set partition K of
G-conjugacy classes such that X and K are consistent. Hence the problem of computing
supercharacter theories of G is reduced to the problem of computing all consistent pairs
for G.

For the sake of completeness, we introduce here some notations in order to work with
supercharacter theories of a group G in GAP. The notation σX(i) denotes the image of σX
in the i-th conjugacy class of G. We also use the notation [n, i] = SmallGroup(n, i) to
denote the i-th group of order n in the small group library of GAP.

The aim of this section is to present an algorithm for constructing all supercharacter
theories of a finite group G. We partition this algorithm into three sub-algorithms. These
sub-algorithms are presented in three sub-sections. In the first sub-section, a sub-algorithm
for finding the set of all bad parts is provided. The second sub-section devotes to calculating
all set partitions of an n-element set such that these set partitions do not have any bad
part. In the last sub-section, a sub-algorithm for computing a consistent set partition of the
conjugacy classes of a group G with respect to a set partition of Irr(G) is given.

2.1 Bad parts and bad set partitions

A part X of a set partition X of Irr(G) is said to be bad if X is consistent with only
singleton subsets of Con(G). A set partition containing a bad part is called a bad set
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partition. It is easy to see that a bad set partition X of Irr(G) does not have a mate K such
that (X ,K) ∈ Sup(G).

We recall that in computing supercharacter theories of a finite group G, {e} and {1G}
are always parts of K and X , respectively. As a result, it is enough to work with the set
partitions of [n]? = {2, . . . , n}.

Lemma 2.1. Suppose X ∈ P([n]?) is a bad part. Then all values of σX(i), 2 ≤ i ≤ n,
are distinct.

Proof. Choose 2 ≤ j 6= k ≤ n such that σX(j) = σX(k). Then the part X is consistent
with {j}, {k} and {j, k}. This is a contradiction to the definition of a bad part.

By Lemma 2.1, to check whether a part X ∈ P([n]?) is bad or not, it is enough to
compute σX(i) for i ∈ [n]?. If all values are different, then X is a bad part.

2.2 Create set partitions

The computer algebra system GAP does not have the potential to construct set partitions
for large enough [n]. In literature, there are two algorithms by Semba [17] and Er [11] for
computing set partitions of [n]. The Semba’s algorithm is based on the backtrack technique
[17, Theorem 1] and has the time complexity Θ(4B(n)), where the Bell number B(n) is
defined as the number of set partitions of an n-element set. The Er’s algorithm is recursive.
He claimed (without proof) that

∑n
i=1B(i) < 1.6B(n). This is while Nayak and Stojmen-

ović [16, p. 12] proved that
∑n
i=2B(i) < 2B(n). In an exact phrase, Er claimed that the

time complexity of his algorithm for generating all set partitions of [n] is Θ(1.6B(n)).
There exists a limitation in the Er’s algorithm: Each set partition is determined at the

end step and so we cannot identify whether a given set partition is bad or not, unless it is
done completely. As a consequence, we design an algorithm which generates set partitions
part by part. When a bad part occurs, calculations of all set partitions containing that part
are pruned.

To explain our algorithm, we set S = {s1, s2, . . . , sn}. The 2n − 1 non-empty subsets
of S are used as the parts of the set partitions of S. Note that when n is enough large, it
is not possible to save all set partitions on the memory. In order to reduce memory usage,
we use the integers of the closed interval I = I(S) = [1, 2|S| − 1]. In fact, we define
a one-to-one correspondence αS : I −→ P(S) \ {∅} by αS(k) = {si | an+1−i = 1},
where a1a2 . . . an is the n-bit binary form of k. For example, if S = {s1, s2, s3, s4, s5}
and k = 13 then (13)2 = 1101 and since |S| = 5, the 5-bit binary form of 13 is 01101.
Thus, αS(13) = {s1, s3, s4}. Let IO = IO(S) be the set of all odd integers in the closed
interval I . Then αS(IO) is the set of all subsets of S containing s1. On the other hand,
if F is a non-empty subset of S, then we conclude that α−1S (F ) =

∑
i∈F 2Position(S,i)−1,

where Position(S, i), i ∈ F , is the position of i in S. In this example, if F = {s1, s3, s4}
then α−1S (F ) = 21−1 + 23−1 + 24−1 = 13.

Now, we are ready to present our algorithm for constructing all set partitions with no
bad part. We use two lists SPs and RE in order to keep the set partitions and remaining
elements, respectively. At the first step, we have SPs = ∅ and RE = [n]?. We fill SPs by
parts constructed from the elements of RE which are not bad. Thus, RE := RE \αRE (k)
and SPs := SPs ∪{αRE (k)}, where k ∈ IO and σRE (k) is not a bad part. This algorithm
will be returned to the previous step, when RE = ∅. Since our algorithm is recursive, its
generating tree is constructed by DFS strategy. In Sub-algorithm 2, all set partitions of [n]?
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that do not contain any bad part are generated. In Figure 1, an example of a generating tree
for set partitions of [4]? is presented.

T = α{3,4}(1) = {3}
RE = RE\T = {4}
SPs = {{2}, {3}}

T = α{3,4}(3) = {3, 4}
RE = RE\T = { }
SPs = {{2},{3, 4}}

T = α{2,3,4}(3) = {2, 3}
RE = RE\T = {4}
SPs={{2,3}}

T = α{2,3,4}(5) = {2, 4}
RE = RE\T = {3}
SPs = {{2,4}}

T = α{2,3,4}(7) = {2, 3,4}
RE = RE\T = { }
SPs = {{2, 3, 4}}

T = α{4}(1) = {4}
RE = RE\T = { }
SPs = {{2},{3},{4}}

T = α{3}(1) = {3}
RE = RE\T = { }
SPs = {{2,4},{3}}

RE = {2, 3, 4}
SPs = { }

T = α{4}(1) = {4}
RE = RE\T = { }
SPs = {{2,3},{4}}

T = α{2,3,4}(1) = {2}
RE = RE\T = {3, 4}
SPs = {{2}}

1

1

1 3

7

1

3 51

Figure 1: A schematic diagram of Sub-algorithm 2 for the case that RE = [4]? and badparts
= {{2, 3}, {2, 4}, {3}, {4}}. The red and blue arrows represent forward and backward
directions in the generating tree traversal, respectively. The number on each edge is an odd
integer in IO(RE) of the parent node of the edge. The gray part of the tree is pruned due
to the occurrence of a bad part in the process of creating corresponding set partition.

Note that after creating a set partition for Irr(G), we invoke the Sub-algorithm 3 for it,
to check whether there exists a consistent set partition of Con(G) or not. This function is
explained in details in the next subsection.

2.3 Create the consistent set partition K with respect to a given set partition of
Irr(G)

We recall that finding all supercharacter theories of a group G with n conjugacy classes is
equivalent to constructing all consistent pairs of set partitions. Suppose Irrp is a given set
partition of the irreducible characters of G. To find a consistent set partition of Irrp, we
first define the matrix A as follows, see Table 1.

• The rows of A are the parts of Irrp and so A has exactly |Irrp| rows.

• The columns of A are the conjugacy classes of G.

• If A = (aij), then aij = σXi(Kj) where 1 ≤ i ≤ |Irrp|, 1 ≤ j ≤ n and Kj are the
conjugacy classes of G.
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Suppose C1, C2, . . . , Cn are all columns of A. We construct a matrix ST and a list
Kappa as follows. Since {e} is a part of each consistent set partition with Irrp, we con-
clude that {1} ∈ Kappa . We start our algorithm by defining Kappa = {{1}, {2}} and the
submatrix ST = [C1, C2]. For each j, 3 ≤ j ≤ n, we compare Cj with all constructed
columns of ST other than its first column. If Cj is different from such columns of ST ,
then we add Cj to ST as a new column and add j to Kappa as a singleton part. Hence
Kappa := Kappa ∪ {{j}} and ST := [ST |Cj ]. If Cj is equal to the r-th column of ST ,
then we add j to the r-th part of Kappa , i.e.

Kappa = {{1}, . . . , {. . . , j︸ ︷︷ ︸
part r

}, . . . , {. . .}}.

Table 1: Matrix A.

K1 K2 K3 · · · Kn

χ1 1 1 1 · · · 1
... * * * · · · *

Xi


χi1
...
χit

σXi(K1) σXi(K2) σXi(K3) · · · σXi(Kn)

... * * * · · · *

If in the process of constructing Kappa and ST the inequality |Kappa| > |Irrp| occurs,
then we stop calculations without any result. It is because there is no consistent set partition
with the same size as Irrp. If at the end of our calculations, |Kappa| = |Irrp|, then we
conclude that (Irrp,Kappa) is a supercharacter theory and ST is the supercharacter table
of G.

To construct all supercharacter theories of a group G, it is possible to combine the Er’s
algorithm which creates all set partitions of Irr(G) with the algorithm based on the proof
of Theorem 2.2(c) in [9]. This is our first algorithm. Our main algorithm is a combination
of the Sub-algorithms 1, 2 and 3. In [4], Sub-algorithm 3 for computing bad parts of the
cyclic group Z13 is analyzed.

We end this section by noticing that:

1. The result of our main algorithm is supercharacter theories of a given group G. In
fact, conditions of being a supercharacter theory are checked by the main algorithm
in each case.

2. All supercharacter theories are generated by our algorithm. This is guaranteed by the
proof of [9, Theorem 2.2(c)].

3 Analysis of algorithms
In Section 2, three sub-algorithms for computing bad parts, set partitions and supercharacter
theories were presented. The aim of this section is to calculate the running time and the
space complexity of these sub-algorithms and also our main algorithm.
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Theorem 3.1. Let T1(n), S1(n) and BP be the time complexity function, the space com-
plexity function and the list of bad parts for a given group, respectively. Then, T1(n) ∈
O((n2 − n) · 2n−1) and S1(n) ∈ O(n) +O(|BP |), where n = |Con(G)|.

Proof. To compute the running time of the Sub-algorithm 2, we should know the values
of σX(j), 2 ≤ j ≤ n, where X = {x1, . . . , xi} ∈ P([n]?). For this purpose, i(n − 1)

multiplications and (i − 1)(n − 1) additions are needed. Therefore, we have (n−1)(n−2)
2

comparisons for investigating the property that σX ’s are distinct. Since there are
(
n−1
i

)
i-subsets, the complexity of this sub-algorithm can be computed by the following formula:

T1(n) =

n−1∑
i=1

[
(n− 1)(2i− 1)

(
n− 1

i

)
+

(n− 1)(n− 2)

2

]
.

Therefore,

T1(n) =

n−1∑
i=1

[
(n− 1)(2i− 1)

(
n− 1

i

)
+

(n− 1)(n− 2)

2

]

= (n− 1)

n−1∑
i=1

(2i− 1)

(
n− 1

i

)
+

(n− 1)2(n− 2)

2

< n ·
n−1∑
i=1

2i ·
(
n− 1

i

)
+ n3 = 2n ·

n−1∑
i=1

i ·
(
n− 1

i

)
+ n3

= 2n · (n− 1) · 2n−2 + n3 = (n2 − n) · 2n−1 + n3.

Hence T1(n) ∈ O((n2 − n) · 2n−1).
To compute the space complexity of this sub-algorithm, we note that all parts are gen-

erated one by one. If a generated part is bad, then we add it to BP . To keep each part, our
calculations need an array of size n − 1. Moreover, an (n − 1)-length array is needed in
order to save the values σX(i). Therefore, this sub-algorithm needs a memory of sizeO(n)
to keep each part. For saving all bad parts, we need another array such that its size depends
only on the number of bad parts of irreducible characters of a given group. Consequently,
S1(n) ∈ O(n) +O(|BP |).

Theorem 3.2. Suppose T2(n) and S2(n) are the time and space complexity functions of
the Sub-algorithm 2, respectively. Then,

(1) T2(n) ∈ O(2B(n));

(2) The space complexity S2(n) belongs to Θ(n).

Proof. To prove (1), let T2(n) denote the number of calculations needed to obtain all set
partitions which do not contain bad parts and are from the (n − 1)-element set RE . For
computing the time complexity in the worst case |BP | = 0, we have to count the number
of edges in the generating tree of this sub-algorithm in general, see Figure 1. Then,

T2(n) =

n−1∑
i=0

(
n− 1

i

)
(T2(i) + 1).
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In OEIS [10], the sequence {a(n)}n≥0 with code A060719 exists which is defined as
follows.

a(n+ 1) = a(n) +

n∑
i=0

(
n

i

)
(a(i) + 1); a(0) = 1

By [15], a(n) = 2B(n + 1) − 1 and since T2(n) = a(n − 1), we conclude that T2(n) =
2B(n)− 1. Hence, the time complexity of this algorithm is O(2B(n)).

The space complexity depends on the sizes of SPs and RE . Since the union of RE
with the members of SPs is [n], S2(n) ∈ Θ(n) which proves (2).

In the next theorem, we calculate the complexity of our Sub-algorithm 3 which com-
putes the supercharacter theories of G.

Theorem 3.3. Suppose G has exactly n conjugacy classes. For a given set partition Irrp,
the time and space complexities of the Sub-algorithm 3 are O(n3) and O(n2), respectively.

Proof. Suppose Irrp is a set partition for the set of all irreducible characters of a group G
and |Irrp| = k. To calculate the matrix A, we first obtain all values χi(1)χi, 1 ≤ i ≤ n.
Since χi has n values, there are n2 different products χi(1)χi. To compute σX and in the
worst case X = {χ1, . . . , χn}, we need n(n − 2) products. As a result, the calculations
for obtaining the matrix A is of the time complexity O(n2).

Now, we count all the operations that we need to construct ST and the list Kappa .
The first and second columns of ST are the same as the first and second columns of A,
respectively. Therefore, we have nothing to count for these columns. For the third column
of ST , we have to compare the third column of A with the second column of ST and so
there are k comparisons. For the fourth column of ST , the fourth column of A should be
compared with the second and third columns of ST , and so there are at most 2k compar-
isons, and so on. Suppose that from the column Cj to the next, |Kappa| = |Irrp|. In this
case, the remaining conjugacy classes of the group should be distributed among the other
parts of Kappa and hence we do not have a new part in Kappa . Thus from Cj to Cn, the
number of comparisons is equal to k(k − 1). Therefore, the total number of comparisons
for constructing ST and Kappa is:

T3(n) := k(1) + k(2) + · · ·+ k(k − 1) + k(k − 1) + · · ·+ k(k − 1)︸ ︷︷ ︸
n−j+1

.

Since j ≥ 3, n − j + 1 ≤ n − 2. Thus T3(n) ≤ k(n
2−5n+6

2 ) ≤ n(n
2−5n+6

2 ), and so,
T3(n) ∈ O(n3).

Suppose S3(n) is the space complexity of the Sub-algorithm 3. We have two matrices
A and ST of sizes k × n and k × k, respectively. Since in the worst case k = n, we
conclude that S3(n) ∈ O(n2).

We are now ready to compute the time and space complexity of the first and main
algorithms. In the first algorithm, the generated set partitions are used as an input to
compute all supercharacter theories of a finite group. In what follows, we assume that
our group has exactly n conjugacy classes. The running time of our first algorithm is
TEr (n) = O(n3) ·Θ(2B(n)) and so TEr (n) ∈ O(n3B(n)).

In the main algorithm, we do not need to create consistent set partition Kappa for bad
set partitions. As a result, the Sub-algorithm 3 should be calledB(n)−|BPs| times, where
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|BPs| is the number of bad set partitions. Therefore, the time complexity of the main
algorithm is O((n2 − n)2n−1 + (B(n)− |BPs|)n3) = O(n3(B(n)− |BPs|)) and so the
following result holds.

Theorem 3.4. The time complexity of our first and main algorithms are O(n3B(n)) and
O(n3(B(n)− |BPs|)), respectively.

4 Performance evaluation
To evaluate the performance of the main algorithm and then compare it with the first one,
both algorithms have been implemented in the computer algebra system GAP under Win-
dows 10 Home Single Language. The average running times for both algorithms after
three runs on a computer with processor Intel(R) Core(TM) m7-6Y75 CPU @ 1.20 GHz
1.51 GHz, installed memory (RAM) 8.00 GB (7.90 GB usable), system type 64-bit oper-
ating system and x64-based processor are summarized in Table 2. In this table, we have
chosen groups which have the maximum or the minimum number of supercharacter theo-
ries with different number of conjugacy classes. Let BP(G) be the set of all bad parts in a
group G and α(G) = |BP (G)|

2κ(G)−1−1 in which κ(G) denotes the number of distinct conjugacy
classes of G. We have the following two cases in general.

1. There is not any bad part in P(Irr(G)). In this case, the algorithm for computing
supercharacter theories based on the Er’s algorithm has a faster running time. Note
that we have a pre-process for finding bad parts but such an overhead is very small
with respect to the total running time.

2. There are some bad parts in P(Irr(G)). In this case, by removing these parts
from our calculations, the main algorithm will have a faster running time. For exam-
ple, in the cyclic group Z13 in which %98.17 of all parts are bad, our main algorithm
takes less than one second to run while the other algorithm takes more than 548 sec-
onds. In rare cases such as the Mathieu group M22 in which a few percentage of
existence of parts are bad, the running time of the first algorithm is a bit faster.

To compare the first algorithm with the main one, we use Figure 2 in which the running
time of the groups with exactly 13 conjugacy classes with respect to these algorithms are
shown. As it can bee seen, groups numbered 29–53 have faster running times with the main
algorithm. The result shows that the main algorithm is better for some classes of groups.

5 Concluding remarks
In this paper, two algorithms for computing all supercharacter theories of a finite group
G have been presented. The first algorithm is based on the Er’s algorithm. In the main
algorithm, we have introduced the new feature “bad part” for the parts of Irr(G). Since
none of the supercharacter theories contains these bad parts, by filtering and detecting the
set partitions of Irr(G) which have at least one bad part, the running time of this algorithm
decreases significantly.

Suppose BP(G) denotes the set of all bad parts in a group G. Let α(G) = |BP(G)|
2κ(G)−1−1

and assume |Sup(G)| is the number of all supercharacter theories of G. In Table 4, the
percentage of existence of bad parts for some cyclic and dihedral groups are given.
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Table 2: Comparing the running times for some groups.

Main algorithm First algorithm
κ(G) G |Sup(G)| |BP(G)| α(G) (MA)(second) (FA)(second) FA/MA

10 [100, 11] 623 0 0 1.4 1.1 0.8

11 [32, 43] 376 0 0 7.6 6.7 0.9

11 [32, 44] 376 0 0 8.1 7.5 0.9

12 [1296, 3523] 1058 0 0 70.1 62 0.9

13 [64, 32] 325 0 0 464.6 429.8 0.9

12 D36 51 168 8.2 65.4 68.2 1.04

12 M22 5 288 14.1 65.8 61.8 0.9

10 M11 5 112 21.9 0.8 1.1 1.4

10 D28 23 144 28.9 0.8 1.7 2.1

10 [120, 35] 10 152 29.7 0.6 1.1 1.8

13 [93, 1] 9 1980 48.4 169.7 662.3 3.9

13 [253, 1] 9 1980 48.4 127.8 521.3 4.08

10 Z10 10 376 73.6 0.06 1.2 20

10 D34 5 480 93.9 0.04 1.3 32.5

11 Z11 4 990 96.8 0.1 7.9 79

13 Z13 6 4020 98.1 1.2 548.2 456.8

11 D38 4 1008 98.5 0.1 8.5 85

13 D46 3 4092 99.9 1.2 610.6 508.8

Table 3: The GAP id of all groups with exactly 13 conjugacy classes.

1 [162, 21] 12 [162, 20] 23 [960, 11359] 34 [100, 10] 45 [328, 12]

2 [96, 191] 13 [1944, 2290] 24 [64, 33] 35 [162, 15] 46 [148, 3]

3 [400, 206] 14 [64, 37] 25 [1000, 86] 36 [40, 6] 47 [333, 3]

4 [162, 22] 15 [64, 32] 26 [720, 409] 37 [1053, 51] 48 [156, 7]

5 [192, 1494] 16 [96, 190] 27 [576, 8652] 38 [120, 38] 49 [301, 1]

6 [96, 193] 17 [192, 1491] 28 [40, 4] 39 [600, 148] 50 [205, 1]

7 [1944, 2289] 18 [64, 36] 29 [162,11] 40 [216, 86] 51 [150, 5]

8 [192, 1493] 19 [192, 1492] 30 [160, 199] 41 [258, 1] 52 [13, 1]

9 [1440, 5841] 20 [64, 35] 31 [324, 160] 42 [310, 1] 53 [46, 1]

10 [40, 8] 21 [162, 19] 32 [162, 13] 43 [253, 1]

11 [64, 34] 22 [216, 87] 33 [1320, 133] 44 [93, 1]

Our calculations given in Table 4 suggests the following conjecture.

Conjecture 5.1. If βn = α(Zpn) and γn = α(D2pn), then

lim
n→∞

βn = lim
n→∞

γn = 1,

where pn is the n-th prime number.

In Table 5, the percentage of existence of bad parts in some groups of order 3p, 3 | p−1
is presented. The calculations given in this table show that the Conjecture 5.1 is not valid
for groups of order 3p. Suppose p and q are primes such that q < p and q | p − 1. Let
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Figure 2: A diagram for the running time of all 53 groups which are listed in Table 3.

Table 4: Percentage of existence of bad parts for some cyclic and dihedral groups.

κ(G) Group α(G) |Sup(G)| κ(G) Group α(G) |Sup(G)|
4 D4 % 0 5 2 Z2 % 100 1

3 D6 % 66.67 2 3 Z3 % 66.67 2

4 D10 % 57.14 3 5 Z5 % 80 3

5 D14 % 80 3 7 Z7 % 85.7 4

7 D22 % 95 3 11 Z11 % 96.77 4

8 D26 % 84.3 5 13 Z13 % 98.16 6

10 D34 % 93.75 5 17 Z17 % 99.6 5

11 D38 % 98.53 4 19 Z19 % 99.78 6

13 D46 % 99.92 3

16 D58 % 99.2 5

17 D62 % 99.88 5

Tp,q denote the non-abelian group of order pq and qn denote the n-th prime number with
the property 3 | qn − 1.
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Table 5: Percentage of existence of bad parts in Tp,3.

p α(G) p α(G) p α(G)

7 % 26 13 % 38 19 % 42

31 % 48 37 % 49 43 % 49.6

By the results of Table 5, we offer the following conjecture:

Conjecture 5.2. If δn = α(Tqn,3), then limn→∞ δn = 0.5.

Table 6: Supercharacter theory form of groups with κ ≤ 14 conjugacy classes.

κ Supercharacter Theory Form

3 22

4 33 51

5 33 53 92

6 41 51 71 81 91 (15)1 (18)1 (20)1

7 31 41 51 73 82 (11)1 (20)3

8 52 71 (10)1 (11)1 (12)3 (13)1 (14)1 (15)1 (16)1 (18)1 (19)1 (22)1 (23)1 (25)1

(28)1 (54)1 (100)1 (110)1

9 31 73 91 (10)1 (12)1 (13)1 (15)1 (18)1 (19)1 (21)1 (22)2 (32)2 (36)1 (43)1 (40)1

(45)3 (49)1 (65)1 (128)2

10 52 (10)2 (11)1 (13)1 (14)1 (15)1 (16)1 (23)1 (25)2 (23)1 (24)1 (28)1 (32)2 (34)1

(35)2 (44)1 (51)1 (52)1 (57)2 (58)3 (64)2 (80)1 (83)2 (165)1 (215)2 (623)1

11 42 82 (11)4 (13)4 (15)1 (17)1 (18)2 (25)1 (26)1 (31)1 (47)3 (53)2 (55)1 (81)1

(89)2 (124)1 (144)3 (232)1 (376)2

12 51 71 (13)2 (16)1 (18)2 (19)2 (22)3 (23)2 (32)2 (34)1 (35)1 (36)1 (46)1 (49)1

(51)1 (65)1 (68)1 (69)1 (76)3 (81)2 (88)2 (94)1 (99)2 (100)1 (105)1 (133)4

(144)1 (152)1 (197)1 (205)1 (212)1 (233)1 (255)1 (360)1 (484)1 (1058)1

13 31 61 92 (11)1 (13)2 (17)1 (18)1 (24)2 (25)2 (35)1 (38)2 (40)2 (42)1 (43)1 (46)2

(50)1 (53)2 (71)3 (72)2 (81)2 (89)1 (102)1 (110)4 (129)4 (132)3 (138)1 (175)1

(313)3 (325)3

14 52 91 (10)1 (12)1 (13)1 (14)1 (15)2 (21)1 (22)2 (23)1 (29)1 (35)2 (38)1 (39)1

(41)1 (43)1 (45)3 (47)1 (49)1 (51)1 (53)1 (57)1 (63)2 (71)1 (76)1 (78)2 (79)1

(81)2 (85)1 (105)1 (110)2 (119)1 (123)1 (125)1 (130)1 (138)1 (139)1 (140)2

(145)1 (157)1 (172)2 (186)2 (206)1 (213)3 (222)1 (244)2 (270)1 (272)2 (304)2

(308)2 (320)1 (482)1 (601)2 (613)2 (620)3 (627)1 (645)3 (904)1 (940)3 (1048)2

(1324)3 (2093)1 (29016)1

Suppose Irr(Z7) = {1Z7
, χ2, . . . , χ7} and Con(Z7) = {e, xZ7

2 , . . . , xZ7
7 }. The cyclic

group Z7 has exactly four supercharacter theories m(Z7), M(Z7), C1 = (X1,K1) and
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C2 = (X2,K2) such that

X1 := {{1Z7
}, {χ2, χ3, χ5}, {χ4, χ6, χ7}},

K1 := {{e}, {x2Z7 , x3
Z7 , x5

Z7}, {x4Z7 , x6
Z7 , x7

Z7}},
X2 := {{1Z7

}, {χ2, χ7}, {χ3, χ6}, {χ4, χ5}},
K2 := {{e}, {x2Z7 , x7

Z7}, {x3Z7 , x6
Z7}, {x4Z7 , x5

Z7}}.

This shows that each part in X and K in a supercharacter theory (X ,K) has size 1, 2, 3
or 6. On the other hand, if p is prime and d is the number of divisors of p − 1, then by
[13, Table 1], the cyclic group Zp has exactly d supercharacter theories. As a result, the
following conjecture is suggested.

Conjecture 5.3. For each divisor r of p − 1, there exists only one supercharacter theory
(X ,K) ofZp such that the sizes of all non-trivial parts ofX andK are equal to r. Moreover,
if we sort the conjugacy classes and irreducible characters of Zp by ATLAS notations [7],
then γ1(X ) = γ2(K).

It is a well-known result in group theory that for any positive integer k, there are
finitely many number of non-isomorphic finite groups with exactly k conjugacy classes.
This number is denoted by f(k). The supercharacter theory form of f(k) is defined as
nα1
1 nα2

2 · · ·nαss where αi, 1 ≤ i ≤ s, denote the number of groups with exactly k con-
jugacy classes containing ni supercharacter theories and note that f(k) =

∑s
i=1 αi. The

supercharacter theory form of groups with at most 14 conjugacy classes are recorded in
Table 6 and the following conjecture has been suggested based on this table.

Conjecture 5.4. The number of supercharacter theories of all members of Γ(k) are distinct
if and only if k = 6. In this case, all groups are Z5, D14, A5, Z5 : Z4, Z7 : Z3, S4, D8

and Q8.

Vera-López and his co-authors [19, 20, 21] classified all finite groups containing up to
14 conjugacy classes. We apply these classification theorems and our main algorithm to
find all supercharacter theories of groups containing up to 14 conjugacy classes. These
calculations are presented in [4].
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Abstract

Carlitz defined the degenerate Bernoulli polynomials βn(λ, x) by means of the generat-
ing function t

(
(1+λt)1/λ−1

)−1
(1+λt)x/λ. In 1875, Glaisher gave several interesting de-

terminant expressions of numbers, including Bernoulli, Cauchy and Euler numbers. In this
paper, we show some expressions and properties of hypergeometric degenerate Bernoulli
polynomials βN,n(λ, x) and numbers, in particular, in terms of determinants.

The coefficients of the polynomial βn(λ, 0) were completely determined by Howard
in 1996. We determine the coefficients of the polynomial βN,n(λ, 0). Hypergeometric
Bernoulli numbers and hypergeometric Cauchy numbers appear in the coefficients.

Keywords: Bernoulli numbers, hypergeometric Bernoulli numbers, hypergeometric Cauchy numbers,
hypergeometric functions, degenerate Bernoulli numbers, determinants, recurrence relations.

Math. Subj. Class. (2020): 11B68, 11B37, 11C20, 15A15, 33C15

1 Introduction
Carlitz [7, 8] defined the degenerate Bernoulli polynomials βn(λ, x) by means of the gen-
erating function (

t

(1 + λt)1/λ − 1

)
(1 + λt)x/λ =

∞∑
n=0

βn(λ, x)
tn

n!
. (1.1)

When λ→ 0 in (1.1), Bn(x) = βn(0, x) are the ordinary Bernoulli polynomials because

lim
λ→0

(
t

(1 + λt)1/λ − 1

)
(1 + λt)x/λ =

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.
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When λ → 0 and x = 0 in (1.1), Bn = βn(0, 0) are the classical Bernoulli numbers
defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (1.2)

The degenerate Bernoulli polynomials in λ and x have rational coefficients. When x = 0,
βn(λ) = βn(λ, 0) are called degenerate Bernoulli numbers. In [16], explicit formulas for
the coefficients of the polynomial βn(λ) are found. In [26], a general symmetric identity in-
volving the degenerate Bernoulli polynomials and the sums of generalized falling factorials
are proved.

In another direction, hypergeometric Bernoulli polynomials BN,n(x) (see, e.g., [17])
are defined by the generating function

etx

1F1(1;N + 1; t)
=

∞∑
n=0

BN,n(x)
tn

n!
, (1.3)

where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =

∞∑
n=0

(a)(n)

(b)(n)
zn

n!

with the rising factorial (x)(n) = x(x+ 1) · · · (x+ n− 1) (n ≥ 1) and (x)(0) = 1. When
x = 0 in (1.3), BN,n = BN,n(0) are the hypergeometric Bernoulli numbers ([12, 13, 14,
15, 19]). When N = 1 in (1.3), Bn(x) = B1,n(x) are the ordinary Bernoulli polynomials.
When x = 0 and N = 1 in (1.3), Bn = B1,n(0) are the classical Bernoulli numbers.

Many kinds of generalizations of the Bernoulli numbers have been considered by many
authors. For example, such generalizations include poly-Bernoulli numbers, Apostol Ber-
noulli numbers, various types of q-Bernoulli numbers, Bernoulli Carlitz numbers. One of
the advantages of hypergeometric numbers is the natural extension of determinant expres-
sions of the numbers.

A determinant expression of hypergeometric Bernoulli numbers ([2, 18]) is given by

BN,n = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣

N !
(N+1)! 1 0
N !

(N+2)!
N !

(N+1)!

...
...

. . . 1 0
N !

(N+n−1)!
N !

(N+n−2)! · · · N !
(N+1)! 1

N !
(N+n)!

N !
(N+n−1)! · · · N !

(N+2)!
N !

(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.4)

The determinant expression for the classical Bernoulli numbersBn = B1,n was discovered
by Glaisher ([11, p. 53]).

In this paper, we introduce and study the hypergeometric degenerate Bernoulli num-
bers as total generalizations of degenerate Bernoulli numbers and hypergeometric Bernoulli
numbers in the aspects of determinants. By applying Trudi’s formula and the inversion for-
mula, we show several arithmetical and combinatorial identities. The coefficients of the
polynomial βn(λ) were completely determined by Howard in 1996. We determine the co-
efficients of the polynomial βN,n(λ). The constant term and the leading coefficient are
exactly equal to Hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers,
respectively.
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2 Definition and preliminary results
Denote the generalized falling factorial by for n ≥ 1

(x|α)n = x(x− α)(x− 2α) · · ·
(
x− (n− 1)α

)
with (x|α)0 = 1. When α = 1, (x)n = (x|1)n is the ordinary falling factorial. Define
hypergeometric degenerate Bernoulli polynomials βN,n(λ, x) by(

2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
(1 + λt)x/λ =

∞∑
n=0

βN,n(λ, x)
tn

n!
, (2.1)

where 2F1(a, b; c; z) is the Gauss hypergeometric function defined by

2F1(a; b; z) =

∞∑
n=0

(a)(n)(b)(n)

(c)(n)
zn

n!
.

When x = 0 in (2.1), βN,n(λ) = βN,n(λ, 0) are the hypergeometric degenerate Bernoulli
numbers. When λ → 0, BN,n(x) = limλ→0 βN,n(λ, x) are the hypergeometric Bernoulli
polynomials in (1.3). Since

t

(1 + λt)1/λ − 1
= t

( ∞∑
n=1

(1− λ|λ)n−1
n!

tn

)−1
in (1.1), we can write

2F1

(
1, N − 1

λ
;N + 1;−λt

)

=

(
(1− λ|λ)N−1

N !
tN
)( ∞∑

n=N

(1− λ|λ)n−1
n!

tn

)−1

= 1 +

∞∑
n=1

(1− λ|λ)N+n−1N !

(1− λ|λ)N−1(N + n)!
tn

= 1 +

∞∑
n=1

(1−Nλ|λ)n
(N + n)n

tn .

(2.2)

When N = 1, βn(λ, x) = βN,1(λ, x) are degenerate Bernoulli polynomials, defined by(
1 +

∞∑
n=1

(1− λ|λ)n
(n+ 1)!

tn

)−1
(1 + λt)x/λ =

∞∑
n=0

βn(λ, x)
tn

n!
.

When N = 1 and λ→ 0, Bn(x) = limλ→0 βN,1(λ, x) are the classical Bernoulli polyno-
mials, defined by (

1 +

∞∑
n=1

tn

(n+ 1)!

)−1
ext =

∞∑
n=0

Bn(x)
tn

n!
.

The definition (2.1) may be obvious or artificial for the readers with different backgrounds.
One of our motivations is mentioned in Section 5.
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We have the following recurrence relation of hypergeometric degenerate Bernoulli
numbers βN,n(λ).

Proposition 2.1. For N,n ≥ 1, we have

βN,n(λ) = −
n−1∑
k=0

n!(1−Nλ|λ)n−kN !

(N + n− k)!k!
βN,k(λ)

with βN,0(λ) = 1.

Proof. By (2.1) with (2.2), we get

1 =

(
1 +

∞∑
l=1

(1−Nλ|λ)lN !

(N + l)!
tl

)( ∞∑
n=0

βN,n(λ)
tn

n!

)

=

∞∑
n=0

βN,n(λ)
tn

n!
+

∞∑
n=1

n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!
βN,k(λ)

k!
tn .

Comparing the coefficients on both sides, we obtain for n ≥ 1

βN,n(λ)

n!
+

n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!
βN,k(λ)

k!
= 0 .

We can use Proposition 2.1 to give an explicit expression for βN,n(λ).

Theorem 2.2. For N,n ≥ 1,

βN,n(λ) = n!

n∑
k=1

(−N !)k
∑

i1+···+ik=n

i1,...,ik≥1

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

. (2.3)

Remark 2.3. When λ→ 0, Theorem 2.2 is reduced to

BN,n = n!

n∑
k=1

∑
i1+···+ik=n

i1,...,ik≥1

(−N !)k

(N + i1)! · · · (N + ik)!
, (2.4)

as seen in [2, 18]. When λ → 0 and N = 1, there is a combinatorial interpretation of
Bernoulli numbers in terms of the cardinality of Z2-graded groupoids [4, Corollary 45].

Proof of Theorem 2.2. The proof is by induction on n. From Proposition 2.1 with n = 1,

βN,1(λ) = −
(1−Nλ)N !

(N + 1)!
βN,0(λ) = −

N !(1−Nλ)
(N + 1)!

.

This matches the expression (2.1) when n = 1. Assume that the result is valid up to n− 1.
For simplicity, put

Sk(n) =
∑

i1+···+ik=n

i1,...,ik≥1

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

. (2.5)
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Then by Proposition 2.1

βN,n(λ)

n!
= −

n−1∑
l=0

(1−Nλ|λ)n−lN !

(N + n− l)!
βN,l(λ)

l!

= − (1−Nλ|λ)nN !

(N + n)!
−
n−1∑
l=1

(1−Nλ|λ)n−lN !

(N + n− l)!

l∑
k=1

(−N !)kSk(l)

= − (1−Nλ|λ)nN !

(N + n)!
−
n−1∑
k=1

(−N !)k
n−1∑
l=k

(1−Nλ|λ)n−lN !

(N + n− l)!
Sk(l)

= − (1−Nλ|λ)nN !

(N + n)!
−

n∑
k=2

(−N !)k−1
n−1∑
l=k−1

(1−Nλ|λ)n−lN !

(N + n− l)!
Sk−1(l)

= − (1−Nλ|λ)nN !

(N + n)!
+

n∑
k=2

(−N !)kSk(n)

=

n∑
k=1

(−N !)kSk(n) .

Here, we put n− l = ik in the second last equation.

There is an alternative form of βN,n(λ) using binomial coefficients. The proof may be
similar to that of Theorem 2.2, but a different proof is given.

Theorem 2.4. For N,n ≥ 1,

βN,n(λ) = n!

n∑
k=1

(−N !)k
(
n+ 1

k + 1

) ∑
i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

.

Proof. Put

1 + w = 2F1

(
1, N − 1

λ
;N + 1;−λt

)
.

By the definition (2.1) with x = 0, we have

βN,n(λ) =
dn

dtn
(1 + w)−1

∣∣∣∣
t=0

=
dn

dtn

( ∞∑
l=0

(−w)l
)∣∣∣∣∣

t=0

=

n∑
l=0

dn

dtn
(−w)l

∣∣∣∣
t=0

=

n∑
l=0

l∑
k=0

(−1)k
(
l

k

)
dn

dtn

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))k∣∣∣∣∣
t=0

.

By (2.2), we get

dn

dtn

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))k∣∣∣∣∣
t=0

=
dn

dtn

( ∞∑
l=0

(1−Nλ|λ)l
(N + l)l

tl

)k∣∣∣∣∣∣
t=0

= n!Rk(n) ,
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where

Rk(n) =
∑

i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)i1

· · · (1−Nλ|λ)ik
(N + ik)ik

.

Thus, we have

βN,n(λ) =

n∑
l=0

l∑
k=0

(−1)k
(
l

k

)
n!Rk(n)

= n!

n∑
k=0

(−1)kRk(n)
n∑
l=k

(
l

k

)

= n!

n∑
k=0

(−1)kRk(n)
(
n+ 1

k + 1

)

= n!

n∑
k=1

(−1)k
(
n+ 1

k + 1

)
Rk(n)

= n!

n∑
k=1

(−N !)k
(
n+ 1

k + 1

) ∑
i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

.

3 Hypergeometric degenerate Bernoulli polynomials
In this section, a relation between hypergeometric degenerate Bernoulli polynomials and
numbers and some more related properties are shown.

Theorem 3.1. For N ≥ 1 and n ≥ 0,

βN,n(λ, x+ y) =

n∑
k=0

(
n

k

)
(y|λ)n−kβN,k(λ, x) .

Proof. By the definition in (2.1),

∞∑
n=0

βN,n(λ, x+ y)
tn

n!

=

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
(1 + λt)(x+y)/λ

=

( ∞∑
n=0

βN,n(λ, x+ y)
tn

n!

)( ∞∑
l=0

(
y/λ

l

)
(λt)l

)

=

( ∞∑
n=0

βN,n(λ, x+ y)
tn

n!

)( ∞∑
l=0

(y|λ)l
tl

l!

)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(y|λ)n−kβN,k(λ, x)

)
tn

n!
.

Comparing the coefficients on both sides, we get the desired result.



T. Komatsu: Hypergeometric degenerate Bernoulli polynomials and numbers 169

By specializing y = 0 in Theorem 3.1, we have a relation between the hypergeometric
degenerate Bernoulli polynomials and numbers.

Corollary 3.2. For N ≥ 1 and n ≥ 0,

βN,n(λ, x) =

n∑
k=0

(
n

k

)
(x|λ)n−kβN,k(λ) .

Theorem 3.3. For N ≥ 1 and n ≥ 0,

d

dx
βN,n(λ, x) =

n−1∑
k=0

(−λ)n−k−1n!
(n− k)k!

βN,k(λ, x) .

Proof. By the definition in (2.1),

d

dx

∞∑
n=0

βN,n(λ, x)
tn

n!

=

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
d

dx
(1 + λt)(x)/λ

= log(1 + λt)1/λ
∞∑
n=0

βN,n(λ, x)
tn

n!

=

(
1

λ

∞∑
l=1

(−1)l−1 (λt)
l

l

)( ∞∑
n=0

βN,n(λ, x)
tn

n!

)

=

∞∑
n=1

(
n−1∑
k=0

(−λ)n−k−1

(n− k)k!
βN,k(λ, x)

)
tn .

Comparing the coefficients on both sides, we get the desired result.

4 A determinant expression of hypergeometric degenerate Bernoulli
numbers

Theorem 4.1. For N,n ≥ 1, we have

βN,n(λ)

= (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1−Nλ)N !
(N+1)! 1 0

(1−Nλ|λ)2N !
(N+2)!

(1−Nλ)N !
(N+1)!

...
...

. . . 1 0
(1−Nλ|λ)n−1N !

(N+n−1)!
(1−Nλ|λ)n−2N !

(N+n−2)! · · · (1−Nλ)N !
(N+1)! 1

(1−Nλ|λ)nN !
(N+n)!

(1−Nλ|λ)n−1N !
(N+n−1)! · · · (1−Nλ|λ)2N !

(N+2)!
(1−Nλ)N !
(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Remark 4.2. When λ→ 0 in Theorem 4.1, we get a determinant expression of hypergeo-
metric Bernoulli numbers BN,n in (1.4). If λ→ 0 and N = 1 in Theorem 4.1, we recover
the classical determinant expression of the Bernoulli numbers Bn ([11, p. 53]).

Proof of Theorem 4.1. For simplicity, we put β̃N,n = (−1)nβN,n(λ)/n! and

f(i, j) =


(1−Nλ|λ)i−j+1N !

(N + i− j + 1)!
if i ≥ j;

1 if i = j − 1;

0 otherwise

and shall prove that
β̃N,n = |f(i, j)|1≤i,j≤n . (4.1)

From Proposition 2.1, we have

β̃N,n =

n−1∑
m=0

(−1)n−m−1(1−Nλ|λ)n−mN !

(N + n−m)!
β̃N,m

=

n−1∑
m=0

(−1)n−m−1f(n−m, 1)β̃N,m .

(4.2)

When n = 1, it is trivial because by Theorem 2.2

β̃N,1 = − (1−Nλ)N !

(N + 1)!
.

Assume that (4.1) is valid up to n−1. By expanding along the first row, the right-hand side
of (4.1) is equal to

f(1, 1)β̃N,n−1 −

∣∣∣∣∣∣∣∣∣∣∣

f(2, 1) 1 0
f(3, 1) 1

...
...

. . . 1 0
f(n− 1, 1) f(n− 1, 3) · · · f(n− 1, n− 1) 1
f(n, 1) f(n, 3) · · · f(n, n− 1) f(n, n)

∣∣∣∣∣∣∣∣∣∣∣
= f(1, 1)β̃N,n−1 − f(2, 1)β̃N,n−2 + · · ·+ (−1)n−2

∣∣∣∣ f(n− 1, 1) 1
f(n, 1) f(n, n)

∣∣∣∣
=

n−1∑
m=0

(−1)n−m−1f(n−m, 1)β̃N,m = β̃N,n .

Here, we used the relation (4.2) with β̃N,0 = 1.

5 Applications of Trudi’s formula and inversion relations
One motivation of this paper comes from a 1989 paper of Cameron [6], in which he con-
sidered the operator A defined on the set of sequences of non-negative integers as follows:
for x = {xn}n≥1 and z = {zn}n≥1, set Ax = z, where

1 +

∞∑
n=1

znt
n =

(
1−

∞∑
n=1

xnt
n

)−1
. (5.1)
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Suppose that x enumerates a class C. Then Ax enumerates the class of disjoint unions
of members of C, where the order of the “component” members of C is significant. The
operator A also plays an important role for free associative (non-commutative) algebras.
More motivations and background together with many concrete examples (in particular, in
the aspects of graph theory) by this operator can be seen in [6].

Though only nonnegative numbers in the sequence are treated with combinatorial inter-
pretations in [6], the transformation in (5.1) can be extended to negative or rational numbers
too. Some combinatorial interpretations for rational numbers can be found in [3, 4], where
a categorical setting is proposed. In the sense of Cameron’s operator A, we have the fol-
lowing relations.

A

{
− 1

(n+ 1)!

}
=

{
Bn
n!

}
A

{
− 1

(N + n)n

}
=

{
BN,n
n!

}
A

{
− (1− λ|λ)n

(n+ 1)!

}
=

{
βn(λ)

n!

}
A

{
− (1−Nλ|λ)n

(N + n)n

}
=

{
βN,n(λ)

n!

}
These relations are interchangeable in the sense of determinants too.

We shall use Trudi’s formula to obtain different explicit expressions and inversion rela-
tions for the numbers βN,n(j).

Lemma 5.1. For n ≥ 1, we have∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0
an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−a0)n−t1−···−tnat11 a

t2
2 · · · atnn ,

where
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! are the multinomial coefficients.

This relation is known as Trudi’s formula [24, Vol. 3, p. 214], [25] and the case a0 = 1
of this formula is known as Brioschi’s formula [5], [24, Vol. 3, pp. 208–209].

In addition, there exists an inversion formula (see, e.g. [22]). From Cameron’s operator
Ax = z in (5.1),

∞∑
n=0

n∑
k=0

(−1)n−kxn−kzk = 1 .

Hence, for n ≥ 1
n∑
k=0

(−1)n−kxn−kzk = 0 .

When x0 = z0 = 1, we have the following inversion formula.
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Lemma 5.2.

If xn =

∣∣∣∣∣∣∣∣∣∣
z1 1

z2
. . .

. . .
...

. . .
. . . 1

zn · · · z2 z1

∣∣∣∣∣∣∣∣∣∣
, then zn =

∣∣∣∣∣∣∣∣∣∣
x1 1

x2
. . .

. . .
...

. . .
. . . 1

xn · · · x2 x1

∣∣∣∣∣∣∣∣∣∣
.

From Trudi’s formula, it is possible to give the combinatorial expression

xn =
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnzt11 z

t2
2 · · · ztnn .

By applying these lemmas to Theorem 4.1, we obtain an explicit expression for the hyper-
geometric degenerate Bernoulli numbers.

Theorem 5.3. For N,n ≥ 1,

βN,n(λ) = n!
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)t1+···+tn

×
(
(1−Nλ)N !

(N + 1)!

)t1 ( (1−Nλ|λ)2N !

(N + 2)!

)t2
· · ·
(
(1−Nλ|λ)nN !

(N + n)!

)tn
.

Theorem 5.4. For N,n ≥ 1,

(−1)n(1−Nλ|λ)nN !

(N + n)!
=

∣∣∣∣∣∣∣∣∣∣∣∣

βN,1(λ) 1 0
βN,2(λ)

2! βN,1(λ)
...

...
. . . 1 0

βN,n−1(λ)
(n−1)!

βN,n−2(λ)
(n−2)! · · · βN,1(λ) 1

βN,n(λ)
n!

βN,n−1(λ)
(n−1)! · · · βN,2(λ)

2! βN,1(λ)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the Trudi’s formula in Lemma 5.1 to Theorem 5.4, we get the inversion rela-
tion of Theorem 5.3.

Theorem 5.5. For N,n ≥ 1,

(1−Nλ|λ)nN !

(N + n)!
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)t1+···+tn

× (βN,1(λ))
t1

(
βN,2(λ)

2!

)t2
· · ·
(
βN,n(λ)

n!

)tn
.
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6 Coefficients of hypergeometric degenerate Bernoulli numbers
Hypergeometric Cauchy polynomials cN,n(x) ([20]) have similar properties. The generat-
ing function is given by

1

(1 + t)x2F1(1, N ;N + 1;−t)
=

∞∑
n=0

cN,n(x)
tn

n!
. (6.1)

When x = 0 in (6.1), cN,n = cN,n(0) are the hypergeometric Cauchy numbers ([12, 13,
14, 15, 19]). When N = 1 in (6.1), cn(x) = c1,n(x) are the ordinary Cauchy polynomials
(e.g., [9]). When x = 0 andN = 1 in (6.1), cn = c1,n(0) are the classical Cauchy numbers
(see, e.g., [10, Chapter VII]), defined by

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
. (6.2)

The number cn/n! is sometimes referred to as the Bernoulli number of the second kind
(see, e.g. [16]). A determinant expression of hypergeometric Cauchy numbers ([1, 23]) is
given by

cN,n = n!

∣∣∣∣∣∣∣∣∣∣∣

N
N+1 1 0
N
N+2

N
N+1

...
...

. . . 1 0
N

N+n−1
N

N+n−2 · · · N
N+1 1

N
N+n

N
N+n−1 · · · N

N+2
N
N+1

∣∣∣∣∣∣∣∣∣∣∣
. (6.3)

The determinant expression for the classical Cauchy numbers cn = c1,n was discovered by
Glaisher ([11, p. 50]). A more general case is considered in [21].

From the expression in Theorem 5.3, the hypergeometric degenerate Bernoulli number
βN,n is a polynomial in λ with rational coefficients and degree at most n. Thus, we can
write

βN,n(λ) = dn,nλ
n + dn,n−1λ

n−1 + · · ·+ dn,1λ+ dn,0 . (6.4)

In this section, we give some coefficients explicitly. By this theorem, we can see that
hypergeometric degenerate Bernoulli numbers are closely related with both hypergeometric
Bernoulli numbers and hypergeometric Cauchy numbers.

Theorem 6.1. For N ≥ 1 and n ≥ 0, we have

dn,n = cN,n and dn,0 = BN,n .

Remark 6.2. When N = 1, Theorem 6.1 is reduced to [16, Theorem 3.1]. This implies
that the leading coefficient of βn(λ) is equal to the n-th Cauchy number cn and the constant
term is equal to the n-th Bernoulli number Bn.

Proof of Theorem 6.1. Since

(1−Nλ|λ)n−k = λn−k
n−k∑
l=0

(−1)n−k−l
[
n− k
l

](
1

λ
−N

)l

=

n−k∑
l=0

[
n− k
l

] l∑
i=0

(−1)n−k−i
(
l

i

)
λn−k−iN l−i ,
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by Proposition 2.1 we obtain for n ≥ 1

βN,n(λ)

n!

= −
n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!k!
βN,k(λ)

= −
n−1∑
k=0

N !βN,k(λ)

(N + n− k)!k!

n−k∑
l=0

[
n− k
l

] l∑
i=0

(−1)n−k−i
(
l

i

)
λn−k−iN l−i .

(6.5)

Note that βN,0(λ) = 1.
For constant term of the polynomial in λ, as i = n− k in (6.5)

d0,0
n!

= −
n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!k!
dk,0(λ)

= −
n−1∑
k=0

N !dk,0
(N + n− k)!k!

n−k∑
l=0

[
n− k
l

](
l

n− k

)
N l−n+k

= −
n−1∑
k=0

N !dk,0
(N + n− k)!k!

.

Hence,
n∑
k=0

(
N + n

k

)
dk,0 = 0

with d0,0 = 1. Since the hypergeometric Bernoulli numbers BN,n satisfies the same recur-
rence relation, namely,

n∑
k=0

(
N + n

k

)
BN,k = 0

with BN,0 = 1 ([2, Proposition 1], [18, (6)]), we can conclude that

dn,0 = BN,n .

For the leading coefficient, that is, the coefficient of λn of the polynomial in λ, as i = 0
in (6.5)

dn,n
n!

= −
n−1∑
k=0

(−1)n−kN !dk,k
(N + n− k)!k!

n−k∑
l=0

[
n− k
l

]
N l

= −
n−1∑
k=0

(−1)n−kN !(N)(n−k)

(N + n− k)!k!
dk,k

= −
n−1∑
k=0

(−1)n−kN
(N + n− k)k!

dk,k .

Thus, for n ≥ 1
n∑
k=0

(−1)n−kN
(N + n− k)k!

dk,k = 0
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or
n∑
k=0

(−1)k

(N + n− k)k!
dk,k = 0

with d0,0 = 1. Since the hypergeometric Cauchy numbers cN,n satisfies the same recur-
rence relation, namely,

n∑
k=0

(−1)k

(N + n− k)k!
cN,k = 0

with cN,0 = 1 ([20, Proposition 1]), we can conclude that

dn,n = cN,n .

6.1 Another method

Howard [16] found explicit formulas for all the coefficients by proving the following. For
n ≥ 2

βn(λ) = cnλ
n +

n∑
j=1

(−1)n−j n
j
Bj

[
n− 1

j − 1

]
λn−j , (6.6)

where
[
n
k

]
are the Stirling numbers of the first kind, determined by

x(x− 1) · · · (x− n+ 1) =

n∑
k=0

(−1)n−k
[n
k

]
xk . (6.7)

and cn are the Cauchy numbers (of the firs kind), defined by the generating function

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
. (6.8)

We have another expression of the coefficients of βN,n(λ) directly from Theorem 2.2.
Since by (6.7)

(1−Nλ|λ)i =
i∑

j=0

(−1)i−j
i∑
l=1

[
i

l

](
l

j

)
N l−j · λi−j

=

i∑
j=0

(−1)i−j
i∑
l=j

[
i

l

](
l

j

)
N l−j · λi−j ,

we have for j = 0, 1, . . . , n

dn,n−j = n!

n∑
k=1

(−N !)k(−1)n−j

j!

∑
i1+···+ik=n

i1,...,ik≥1

1

(N + i1)! · · · (N + ik)!

× dj

dxj

((
i1∑
l1=1

[
i1
l1

]
xl1

)
· · ·

(
ik∑
lk=1

[
ik
lk

]
xlk

))∣∣∣∣∣
x=N

.

(6.9)
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If j = n in (6.9), we get the coefficient of the constant in λ as

dn,0 = n!

n∑
k=1

(−N !)k
∑

i1+···+ik=n

i1,...,ik≥1

n!

n!(N + i1)! · · · (N + ik)!
,

which is equal to BN,n by (2.4). If j = 0 in (6.9), we get the leading coefficient in λ as

dn,n = n!
n∑
k=1

(−N !)k(−1)n
∑

i1+···+ik=n

i1,...,ik≥1

(N)(i1)

(N + i1)!
· · · (N)(ik)

(N + ik)!

= n!

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

Nk

(N + i1) · · · (N + ik)
,

which is equal to cN,n in [1, 23].
However, it seems difficult to express other terms of βN,n(λ) in any explicit form,

except the leading coefficient and the constant.
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Abstract

We prove that every finite arc-transitive graph of valency twice a prime admits a non-
trivial semiregular automorphism, that is, a non-identity automorphism whose cycles all
have the same length. This is a special case of the Polycirculant Conjecture, which states
that all finite vertex-transitive digraphs admit such automorphisms.

Keywords: Arc-transitive graphs, polycirculant conjecture, semiregular automorphism.

Math. Subj. Class. (2020): 20B25, 05E18

1 Introduction
All graphs in this paper are finite. In 1981, Marušič asked if every vertex-transitive digraph
admits a nontrivial semiregular automorphism [13], that is, an automorphism whose cycles
all have the same length. This question has attracted considerable interest and a generali-
sation of the affirmative answer is now referred to as the Polycirculant Conjecture [4]. See
[1] for a recent survey on this problem.

One line of investigation of this question has been according to the valency of the graph
or digraph. Every vertex-transitive graph of valency at most four admits such an automor-
phism [7, 14], and so does every vertex-transitive digraph of out-valency at most three [9].
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Every arc-transitive graph of prime valency has a nontrivial semiregular automorphism [10]
and so does every arc-transitive graph of valency 8 [17]. Partial results were also obtained
for arc-transitive graphs of valency a product of two primes [18]. We continue this theme
by proving the following theorem.

Theorem 1.1. Arc-transitive graphs of valency twice a prime admit a nontrivial semiregu-
lar automorphism.

2 Preliminaries
If G is a group of automorphisms of a graph Γ and v is a vertex of Γ, we denote by Gv the
stabiliser in G of v, by Γ(v) the neighbourhood of v, and by GΓ(v)

v the permutation group
induced by Gv on Γ(v). We will need the following well-known results.

Lemma 2.1. Let Γ be a connected graph and G 6 Aut(Γ). If a prime p divides |Gv| for
some v ∈ V(Γ), then there exists u ∈ V(Γ) such that p divides |GΓ(u)

u |.

Proof. Since p divides |Gv|, there exists an element g of order p in Gv . As g 6= 1, there
are vertices not fixed by g. Among these vertices, let w be one at minimal distance from v.
Let P be a path of minimal length from v to w and let u be the vertex preceding w on P .
By the definition of w, we have that u is fixed by g, so g ∈ Gu. On the other hand, g does
not fix the neighbour w of u, so gΓ(u) 6= 1 hence |gΓ(u)| = p and the result follows.

Lemma 2.2. Let G be a permutation group and let K be a normal subgroup of G such
that G/K acts faithfully on the set of K-orbits. If G/K has a semiregular element Kg of
order r coprime to |K|, then G has a semiregular element of order r.

Proof. See for example [17, Lemma 2.3].

Lemma 2.3. A transitive group of degree a power of a prime p contains a semiregular
element of order p.

Proof. In a transitive group of degree a power of a prime p, every Sylow p-subgroup is
transitive. A non-trivial element of the center of this subgroup must be semiregular.

Recall that a permutation group is quasiprimitive if every non-trivial normal subgroup
is transitive, and biquasiprimitive if it is transitive but not quasiprimitive and every non-
trivial normal subgroup has at most two orbits.

3 Arc-transitive graphs of prime valency
In the most difficult part of our proof, the arc-transitive graph of valency twice a prime will
have a normal quotient with prime valency. We will thus need a lot of information about
arc-transitive graphs of prime valency, which we collect in this section. We start with the
following result, which is [3, Theorem 5]:

Theorem 3.1. Let Γ be a connectedG-arc-transitive graph of prime valency p such that the
action of G on V(Γ) is either quasiprimitive or biquasiprimitive. Then one of the following
holds:

(1) G contains a semiregular element of odd prime order;
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(2) |V(Γ)| is a power of 2;

(3) Γ = K12, G = M11 and p = 11;

(4) |V(Γ)| = (p2−1)/2s and G = PSL2(p) or PGL2(p), where p is a Mersenne prime
and s is a proper divisor of (p−1)/2 but also a multiple of the product of the distinct
prime divisors of (p− 1)/2;

(5) |V(Γ)| = (p2 − 1)/s and G = PGL2(p), where p and s are as in part (4), and Γ is
the canonical double cover of the graph given in (4).

(Recall that the canonical double cover of a graph Γ is Γ×K2.) We note that in cases
(4) and (5), we must have p > 127, since this is the smallest Mersenne prime p such that
(p− 1)/2 is not squarefree. This fact will be used at the end of Section 4.

Corollary 3.2. Let Γ be a connected G-arc-transitive graph of prime valency. Then one of
the following holds:

(1) G contains a semiregular element of odd prime order;

(2) |V(Γ)| is a power of 2;

(3) G contains a normal 2-subgroup P such that (Γ/P,G/P ) is one of the graph-group
pairs in (3–5) of Theorem 3.1.

Proof. Suppose that |V(Γ)| is not a power of 2. If G is quasiprimitive or biquasiprimitive
on V(Γ), then the result follows immediately from Theorem 3.1 (with P = 1 in case
(3)). We thus assume that this is not the case and let P be a normal subgroup of G that
is maximal subject to having at least three orbits on V(Γ). In particular, P is the kernel
of the action of G on the set of P -orbits. Hence G/P acts faithfully, and quasiprimitively
or biquasiprimitively on V(Γ/P ). Since Γ has prime valency, is connected and G-arc-
transitive, [12, Theorem 9] implies that P is semiregular. We may thus assume that P
is a 2-group. (Otherwise P contains a semiregular element of odd prime order.) If G/P
contains a semiregular element of odd prime order, then Lemma 2.2 implies that so does
G. We may assume that this is not the case. Similarly, we may assume that |V(Γ/P )| is
not a power of 2. (Otherwise, |V(Γ)| is a power of 2.) It follows that Γ/P and G/P are as
is (3–5) of Theorem 3.1.

We will now prove some more results about the graphs that appear in (3–5) of Theo-
rem 3.1. Let us first recall the notion of coset graphs. Let G be a group with a subgroup
H and let g ∈ G such that g2 ∈ H but g /∈ NG(H). The graph Cos(G,H,HgH) has
vertices the right cosets of H in G, with two cosets Hx and Hy adjacent if and only if
xy−1 ∈ HgH . Observe that the action of G on the set of vertices by right multiplication
induces an arc-transitive group of automorphisms such that H is the stabiliser of a vertex.
Moreover, every arc-transitive graph can be constructed in this way [16, Theorem 2].

Lemma 3.3. The graphs in (3) and (4) of Theorem 3.1 have a 3-cycle.

Proof. Clearly K12 has a 3-cycle so suppose that Γ is one of the graphs given in (4). Let
G be as in Theorem 3.1 and let v ∈ V(Γ). Then G is one of PSL2(p) or PGL2(p) and
acts arc-transitively on Γ. In both cases, let X = PSL2(p), so G = X or |G : X| = 2.
By [3, Lemma 5.3], we have that Gv ∼= Cp o Cs if G = PSL2(p), and Cp o C2s if
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G = PGL2(p). By [5, pp. 285–286], PGL2(p) has a unique conjugacy class of subgroups
of order p and the normaliser of such a subgroup is isomorphic to Cp o Cp−1, which is
the stabiliser in PGL2(p) of a 1-dimensional subspace of the natural 2-dimensional vector
space. The intersection of this subgroup with X is isomorphic to Cp o C(p−1)/2, which
has odd order. It follows that if |G : X| = 2, then Gv is not contained in X . Thus, in both
cases, X is transitive on V(Γ). Since X is normal in G, Xv 6= 1 and Γ has prime valency,
it follows that X is arc-transitive on Γ and so Γ = Cos(X,H,HgH) where H ∼= Cp oCs
and g ∈ X\NX(H) such that HgH is a union of p distinct right cosets of H .

Since H has a characteristic subgroup Y of order p, it follows that NX(H) normalises
Y and so NX(H) 6 NX(Y ) ∼= Cp o C(p−1)/2. Since NX(Y )/Y is cyclic it follows
that NX(H) = NX(Y ). Also note that NX(H) is the stabiliser in X of a 1-dimensional
subspace and so the action of X on the set of right cosets of NX(H) is 2-transitive and
the stabiliser of any two 1-dimensional subspaces is isomorphic to C(p−1)/2. Let x ∈ X .
The stabiliser in X of the coset Hx is Hx and so the orbit of Hx under H has length
|H : H ∩ Hx|. In particular, H fixes the coset Hx if and only if x ∈ NX(H), and so H
fixes |NX(H) : H| = (p(p − 1)/2)/ps = (p − 1)/2s points of V(Γ). Moreover, since
the stabiliser of two 1-dimensional subspaces is isomorphic to C(p−1)/2 it follows that if
x /∈ NX(H) then H ∩Hx ∼= C(p−1)/2 and so |H : H ∩Hx| = p. Thus the points of V(Γ)
that are not fixed by H are permuted by H in orbits of size p and so for any g /∈ NX(H)
we have that HgH is a union of p distinct right cosets of H .

For each x ∈ NX(H) define the bijection λx of V(Γ) by Hy 7→ x−1Hy = Hx−1y.
Since X acts on V(Γ) by right multiplication, we see that λx commutes with each element
of X . Moreover, λx is nontrivial if and only if x /∈ H . Let C = {λx | x ∈ NG(H)} 6
Sym(V(Γ)). Since X acts transitively on V(Γ) and C centralises X , it follows from [6,
Theorem 4.2A] thatC acts semiregularly on V(Γ). Now |C| = |NX(H) : H| = (p−1)/2s
and X × C 6 Sym(V(Γ)). Since C E X × C, the set of orbits of C forms a system of
imprimitivity for X × C and hence for X . Moreover, since C is semiregular, comparing
orders yields that C has |V(Γ)|/|C| = p + 1 orbits. One of these orbits is the set of
fixed points of H and H transitively permutes the remaining p orbits of C. In particular, it
follows that C transitively permutes the nontrivial orbits ofH and so the isomorphism type
of Γ does not depend on the choice of the double coset HgH .

Let Z be the subgroup of scalar matrices in SL2(p) and let Ĥ be the subgroup of the
stabiliser in SL2(p) of the 1-dimensional subspace 〈(1, 0)〉 such that H = Ĥ/Z. Note that

ĥ =

(
1 0
1 1

)
∈ Ĥ and let ĝ =

(
0 1
−1 0

)
. In particular, letting h = ĥZ and g = ĝZ

we have that g /∈ NX(H) and so we may assume that Γ = Cos(X,H,HgH). Now Hg
and Hgh are both adjacent to H and one can check that g(gh)−1 = hgh ∈ HgH and so
{H,Hg,Hgh} is a 3-cycle in Γ.

Definition 3.4. Let Γ be a graph and let S0 be a subset of V(Γ). Let S = S0. If a vertex u
outside S has at least two neighbours in S, add u to S. Repeat this procedure until no more
vertices outside S have this property. If at the end of the procedure, we have S = V(Γ),
then we say that Γ is dense with respect to S0.

It is an easy exercise to check that denseness is well-defined.

Corollary 3.5. Let Γ be a graph in (3) or (4) of Theorem 3.1 and let S0 = {u, v} be an
edge of Γ. Then Γ is dense with respect to S0.
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Proof. Since Γ is arc-transitive of prime valency p, the local graph at v (that is, the sub-
graph induced on Γ(v)) is a vertex-transitive graph of order p and thus vertex-primitive.
By Lemma 3.3, Γ has a 3-cycle so the local graph has at least one edge and thus must
be connected. It follows that, running the process described in Definition 3.4 starting at
S = S0, eventually S will contain all neighbours of v. Repeating this argument and using
connectedness of Γ yields the desired conclusion.

The following is immediate from Definition 3.4.

Lemma 3.6. Let Γ be a graph and S0 be a set of vertices such that Γ is dense with respect
to S0. Then the canonical double cover of Γ, with vertex-set V(Γ)× {0, 1}, is dense with
respect to S0 × {0, 1}.

Proof. Let Si be the sequence of subsets of V(Γ) obtained when running the procedure
from Definition 3.4 starting with S0 and ending with Sn for some n. Since Γ is dense with
respect to S0, we have Sn = V(Γ). For i ∈ {1, . . . , n}, let vi = Si \Si−1. (In other words,
v1 is the first vertex added to S0 to get S1, then v2 is added to S1 to get S2, etc.)

Now, let Γ′ = Γ×K2 be the canonical double cover of Γ and let S′0 = S0 × {0, 1} ⊆
V(Γ′). We now run the procedure from Definition 3.4 starting at S′0. At the first step, we
note that, since v1 was added to S0, it must have at least two neighbours in S0, say u1 and
w1. It follows that both (v1, 0) and (v1, 1) also have at least two neighbours in S′0 (for
example, (u1, 1) and (w1, 1), and (u1, 0) and (w1, 0), respectively). We thus add (v1, 0)
and (v1, 1) to S′0 to get S′1 = S′0 ∪ {(v1, 0), (v1, 1)}. Note that S′1 = S1 × {0, 1}. We then
repeat this procedure, preserving the condition S′i = Si × {0, 1} at each iteration. At the
end of this process, we have S′n = Sn × {0, 1} = V(Γ) × {0, 1} = V(Γ′) and so Γ′ is
dense with respect to S0 × {0, 1}.

4 Proof of Theorem 1.1
Let p be a prime, let Γ be an arc-transitive graph of valency 2p and let G = Aut(Γ).
We may assume that Γ is connected. If G is quasiprimitive or bi-quasiprimitive, then G
contains a nontrivial semiregular element, by [8, Theorem 1.2] and [10, Theorem 1.4]. We
may thus assume that G has a minimal normal subgroup N such that N has at least three
orbits. In particular, Γ/N has valency at least 2.

If N is nonabelian, then G has a nontrivial semiregular element by [18, Theorem 1.1].
We may therefore assume that N is abelian and, in particular, N is an elementary abelian
q-group for some prime q.

We may also assume that N is not semiregular that is, Nv 6= 1 for some vertex v. It
follows from Lemma 2.1 that 1 6= N

Γ(v)
v E G

Γ(v)
v . As Γ is G-arc-transitive, we have that

G
Γ(v)
v is transitive and so the orbits of NΓ(v)

v all have the same size, either 2 or p. Since N
is a q-group, this size is equal to q. Writing d for the valency of Γ/N , we have that either
(d, q) = (2, p) or (d, q) = (p, 2).

If d = 2 and q = p, then it follows from [15, Theorem 1] that Γ is isomorphic to the
graph denoted by C(p, r, s) in [15]. By [15, Theorem 2.13], Aut(C(p, r, s)) contains the
nontrivial semiregular automorphism % defined in [15, Lemma 2.5].

We may thus assume that d = p and q = 2. In this case, if u is adjacent to v, then u has
exactly 2 = 2p/d neighbours in vN . Let K be the kernel of the action of G on N -orbits.
By the previous observation, the orbits of KΓ(v)

v have size 2 and thus it is a 2-group. It
follows from Lemma 2.1 that Kv is a 2-group and thus so is K = NKv .
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Now, G/K is an arc-transitive group of automorphisms of Γ/N , so we may apply
Corollary 3.2. If G/K has a semiregular element of odd prime order, then so does G, by
Lemma 2.2. If |V(Γ/N)| is a power of 2, then so is |V(Γ)| and, in this case, G contains
a semiregular involution by Lemma 2.3. We may thus assume that we are in case (3) of
Corollary 3.2, that is, G/K contains a normal 2-subgroup P/K such that (Γ/P,G/P ) is
one of the graph-group pairs in (3–5) of Theorem 3.1. Note that P is a 2-group. LetM be a
minimal normal subgroup of G contained in the centre of P . Note that M is an elementary
abelian 2-group. We may assume that M is not semiregular hence Mv 6= 1 and so by
Lemma 2.1, MΓ(v)

v 6= 1. Moreover, |M | 6= 2 as otherwise Mv = M and we would deduce
that M fixes each element of V(Γ), a contradiction. Since M is central in P , Mv fixes
every vertex in vP .

Note that the G-conjugates of Mv must cover M , otherwise M contains a nontriv-
ial semiregular element. By the previous paragraph, the number of conjugates of Mv is
bounded above by the number of P -orbits, that is |V(Γ/P )|, so we have

|M | 6 |Mv||V(Γ/P )|.

Since Γ is connected and G-arc-transitive, there are no edges within P -orbits. As
M

Γ(v)
v 6= 1, there exists g ∈ Mv such that w and wg are distinct neighbours of v. Let

u be the other neighbour of w in vP . Since Mv fixes every element of vP it follows that
u is also a neighbour of w and wg and so {v, w, u, wg} is a 4-cycle in Γ. Thus the graph
induced between adjacent P -orbits is a union of C4’s.

If x is a vertex and yP is a P -orbit adjacent to x, then there is a unique C4 containing
x between xP and yP , and thus a unique vertex z antipodal to x in this C4. We say that z
is the buddy of x with respect to yP . The set of buddies of v is equal to Γ2(v) ∩ vP , which
is clearly fixed setwise by Gv . Moreover, each vertex has the same number of buddies.
Furthermore, since Gv transitively permutes the set of p P -orbits adjacent to vP , either v
has a unique buddy or it has exactly p buddies.

If v has a unique buddy z, then Γ(v) = Γ(z), and so swapping every vertex with its
unique buddy is a nontrivial semiregular automorphism. Thus it remains to consider the
case where v has p buddies. We first prove the following.

Claim. If X is a subgroup of M that fixes pointwise both aP and bP , and cP is a P -orbit
adjacent to both aP and bP , then X fixes cP pointwise.

Proof. Suppose that some x ∈ X does not fix c. Now x fixes aP pointwise, so cx must be
the buddy of c with respect to aP . Similarly, cx must be the buddy of c with respect to bP .
These are distinct, which is a contradiction. It follows that X fixes c and, since X 6 M ,
also cP .

Let s > 1, let α = (v0, . . . , vs) be an s-arc of Γ and let α′ = (v0, . . . , vs−1). Now
|vsMvs−1 | = 2, so |Mvs−1

: Mvs−1vs | = 2 and |Mα′ : Mα| 6 2. Applying induction yields
that

|Mv0 : Mα| 6 2s. (4.1)

We first assume that Γ/P andG/P are as in (3) or (4) of Theorem 3.1. Let {u, v} be an
edge of Γ. By the previous paragraph, we have |Mv : Muv| 6 2. Recall that Mv fixes all
vertices in vP , soMuv fixes all vertices in vP∪uP . Combining the claim with Corollary 3.5
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yields that Muv = 1 and thus |Mv| = 2. It follows that |M | 6 |Mv||V(Γ/P )| so |M | 6
2|V(Γ/P )|. Since M is minimal normal in G, it is an irreducible G-module over GF(2),
of dimension at least two. In fact, since M is central in P , it is also an irreducible (G/P )-
module. Since G/P is nonabelian simple or has a nonabelian simple group as an index
two subgroup, this implies that M is a faithful irreducible (G/P )-module over GF(2). If
G/P = M11, then |M | > 210 [11, Theorem 8.1], contradicting |M | 6 2 · 12 = 24. If
G/P = PSL2(p) or PGL2(p) then by [2, Section VIII], |M | > 2(p−1)/2. Recall that
p > 127 and so this contradicts |M | 6 2(p2 − 1)/2s < p2 − 1.

Finally, we assume that Γ/P is in (5) of Theorem 3.1, that is, Γ/P is the canonical
double cover of a graph Γ′ which appears in (4) of Theorem 3.1. In particular, V(Γ/P ) =
V(Γ′) × {0, 1}. By Lemma 3.3, Γ′ has a 3-cycle, say (u, v, w). By Corollary 3.5 and
Lemma 3.6, Γ/P is dense with respect to {u, v} × {0, 1}. Now, let

α = ((u, 0), (v, 1), (w, 0), (u, 1), (v, 0)).

Since α contains {u, v} × {0, 1}, Γ/P is dense with respect to α. Note that α is a 4-arc of
Γ/P . Let α be a 4-arc of Γ that projects to α. Since Γ/P is dense with respect to α, arguing
as in the last paragraph yields Mα = 1. On the other hand, if v ∈ V(Γ) is the the initial
vertex of α, then by (4.1), we have |Mv : Mα| 6 24 and thus |Mv| 6 24. Since |M | 6
|Mv||V(Γ/P )| it follows that |M | 6 24(p2 − 1)/s. As above, M is a faithful irreducible
(G/P )-module over GF(2) of dimension at least two. Since G/P = PGL2(p) we have
from [2] that |M | > 2(p−1)/2, which again contradicts |M | 6 24(p2 − 1)/s < 24(p2 − 1).
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[13] D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981), 69–81, doi:10.1016/
0012-365x(81)90174-6.
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