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Abstract. Random manufacturing process variations can affect the performance of an integrated circuit to the
extent that a significant number of the manufactured circuits must be discarded because they fail to satisfy
the specifications. To increase the yield, random variations must be taken into account in the design phase.
This can be achieved by choosing appropriate values for the parameters accessible to the circuit designer. This
process (circuit sizing) can be automated by means of parametric optimization. As simulators do not compute
sensitivities, derivative-free optimization algorithms, like mesh adaptive direct search (MADS), are well suited
for optimizing circuits. We propose an MADS-based approach for finding a circuit that satisfies the minimum
yield requirement. The approach is tested on two integrated circuit-sizing problems. The results demonstrate its
effectiveness and speed.
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Optimizacija izplena z adaptivnim mrežnim
direktnim optimizacijskim postopkom

Naključne variacije postopka izdelave integriranih vezij
lahko vplivajo na lastnosti vezja do te mere, da pre-
cejšnje število izdelanih vezij ne izpolnjuje specifikacij.
Ta vezja morajo biti zavržena. Da bi povečali iz-
plen, moramo te variacije upoštevati pri načrtovanju
vezja. To lahko dosežemo z izbiro ustreznih vrednosti
načrtovalskih parametrov med dimenzioniranjem vezja.
Le tega lahko avtomatiziramo s pomočjo parameterske
optimizacije. Ker simulatorji ne računajo občutljivosti,
so brezgradientni postopki, kot so adaptivni mrežni
optimizacijski postopki, primerni za optimizacijo vezij.
V prispevku predlagamo pristop k dimenzioniranju vezij,
ki izpolnjujejo zahtevo po nekem minimalnem izplenu.
Predlagani pristop preizkusimo na načrtovanju dveh in-
tegriranih vezij. Rezultati kažejo, da je pristop učinkovit
in hiter.

1 INTRODUCTION

Due to random variations of the integrated circuit (IC)
manufacturing process not all produced circuits satisfy
the design requirements over the declared range of op-
erating conditions resulting in a yield that is lower than
100%. With shrinking transistor dimensions, the effect
of these variations is increasing with every new process
node. Therefore, it is necessary to account for random
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manufacturing process variations during the design stage
[1], [2], [3].

The effect of process variations can be reduced by
increasing the transistor size that contributes most to
the variability of the circuit performance. On the other
hand, increased transistor sizes result in a larger and
more expensive circuit. The process of choosing the
transistor dimensions (circuit sizing) can be automated
by using optimization algorithms [4]. Unfortunately,
computing the metric subject to optimization (yield) is
by itself a computationally intensive task, particularly
when classical methods, like Monte Carlo analysis, are
employed. Furthermore, Monte Carlo analysis requires a
large number of samples for reaching a reasonable level
of confidence when the circuit yield is close to 100%.

Random variations of the manufacturing process can
be modeled with statistical parameters. Yield estimation
can be significantly accelerated if deterministic methods
are used [5]. These methods involve an optimization in
the space of statistical and operating parameters. The
resulting worst-case point can be used for estimating the
circuit yield. Finding the optimal values of the circuit
design parameters (i.e. parameters that can be chosen
by the circuit designer) is also an optimization problem.
This task is commonly referred to as circuit sizing.

Mesh adaptive direct search (MADS) [6] is a family of
optimization algorithms that do not require the deriva-
tives of the function subject to optimization. Because
most circuit simulators do not compute sensitivities (i.e.
derivatives), MADS is a good candidate for estimating
the yield with a deterministic approach [5] as well as
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finding the optimal design parameter values.
The paper is organised as follows. Section 2 estab-

lishes the connection between the worst-case distance
and the circuit yield. Section 3 introduces a methodology
for automating the circuit-sizing process with the goal
of achieving the target yield. Section 4 gives a brief
overview of MADS used for estimating the circuit yield
and sizing the circuit. The results obtained on two
circuit-sizing problems are given in Section 5.

2 WORST-CASE PERFORMANCE AND
PARAMETRIC YIELD

The m performances of a circuit (e.g. gain, phase
margin, swing, etc.) are given by vector f . Every per-
formance fi depends on three groups of parameters:
operating parameters xO, statistical parameters xS , and
design parameters xD. The operating parameters define
the environment in which a circuit operates (e.g. ambient
temperature, supply voltage, bias current, etc.). The
statistical parameters model random variations of the
manufacturing process). Finally, the design parameters
are the ones that can be adjusted by a designer (e.g.
transistor channel widths and lengths, resistances of
resistors, etc.).

A circuit satisfies the design requirements at a partic-
ular combination of the operating, statistical, and design
parameters if all performances satisfy inequalities of the
form fi (xO,xS ,xD) ≥ Gi, where Gi is the target
value.

Typically, a circuit must satisfy all the design require-
ments over a given range of the operating parameters.
This range is specified with lower (xLO) and upper (xHO )
bounds on the operating parameters. Let xW,iO (xS ,xD)
denote the operating parameters corresponding to the
worst performance at given statistical and design pa-
rameters.

xW,iO (xS ,xD) = arg min
xL
O≤xO≤xH

O

fi (xO,xS ,xD) . (1)

The inequality applies to vectors component-wise. To
simplify the notation, we define

fWi (xS ,xD) = fi

(
xW,iO (xS ,xD) ,xS ,xD

)
(2)

For given design parameter values (xD) point xS in
the space of the statistical parameters belongs to the
acceptance region of fi (denoted by xS ∈ Ai (xD)) if
fWi (xS ,xD) ≥ Gi.

The statistical parameters originate from random vari-
ations of the manufacturing process. By transforming
the process parameters, one can obtain independent
normally-distributed random variables with zero mean
and variance one. We refer to these variables as sta-
tistical parameters. The joint probability density of the
statistical parameters is

p (xS) = (2π)−nS/2e−‖xS‖2/2, (3)

where nS denotes the number of the statistical parame-
ters. The origin in the space of the statistical parameters
(xS = 0) corresponds to the nominal process parame-
ters.

If a particular xS does not belong to the acceptance
region of fi, the manufactured circuit corresponding
to xS must be discarded. Consequently the parametric
yield of a circuit drops below 100%. The designer tries
to maximize the acceptance region (and consequently
the parametric yield) by adjusting the design parame-
ters. The parametric yield of fi can be computed by
integrating (3) over Ai (xD) as

Yi (xD) =

∫
xS∈Ai(xD)

p (xS) dσ, (4)

where dσ is a differential volume element in the space
of the statistical parameters. This integral cannot be ex-
pressed analytically. Usually, the numerical approaches,
like Monte Carlo analysis, are used for estimating (4).

The worst-case point xW,iS (xD) is the point on the
boundary of the acceptance region closest to the origin
of the statistical parameters. Computing the worst-case
point is an optimization problem given by

xW,iS =

{
arg minxS /∈Ai(xD) ‖xS‖2, 0 ∈ Ai (xD)

arg minxS∈Ai(xD) ‖xS‖2, otherwise.
(5)

The distance of the worst-case point from the origin is
reflected in the worst-case distance which is defined as

βi (xD) =

{
‖xW,iS (xD) ‖, 0 ∈ Ai (xD)

−‖xW,iS (xD) ‖, otherwise.
(6)

Figure 1 illustrates the worst-case point and the worst-
case distance when 0 ∈ Ai (xD). It is possible to
compute a good analytical approximation of (4) by
linearizing the circuit performance in the neighborhood
of the worst-case point xW,iS (xD). Integration of (3)
over the acceptance region obtained with a linearized
circuit performance (shaded in light grey) results in the
approximate yield

Ỹi(xD) =
1

2

(
1 + erf

(
βi (xD) /

√
2
))
≈ Yi (xD) .

(7)
The error of this approximation is equal to the integral
of (3) over the region shaded in dark grey in Figure
1. In most cases, this error is small [5]. Therefore, it
is reasonable to expect that maximizing the worst-case
distance maximizes the parametric yield.

3 FINDING A CIRCUIT WITH A GIVEN
MINIMUM YIELD

Suppose one wants to find the design parameters for
which

Yi (xD) ≥ Y0, i = 1, 2, ...,m, (8)
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Figure 1. Worst case point xW,i
S in the space of the statistical

parameters for nS = 2 at the design parameters given by xD .
The boundary of the acceptance region (shaded) is depicted by
a thick line. Linearization of the boundary at the worst-case
point (dashed line) makes it possible to analytically compute
the approximate yield. The error corresponds to the integral of
(3) over the region shaded in dark grey.

where Y0 is the target yield. By replacing Yi with Ỹi,
we can approximate (8) with

βi (xD) ≥ β0, i = 1, 2, ...,m, (9)

where β0 is the worst case-distance that corresponds to
approximate yield Y0. It can be obtained by solving

Y0 =
1

2

(
1 + erf

(
β0/
√

2
))

. (10)

For (9) to hold, the m worst-case points must satisfy
‖xS‖ ≥ β0. Consequently,

fWi (xS ,xD) ≥ Gi for ‖xS‖ ≤ β0 (11)
and i = 1, 2, ...,m.

Requirement (11) can be reformulated as

min
‖xS‖≤β0

xL
O≤xO≤xH

O

fi (xO,xS ,xD) ≥ Gi, i = 1, 2, ...,m. (12)

A point in the space of the operating and statis-
tical parameters represented by tuple (xO,xS) where
fi (xO,xS ,xD) attains its minimal value is also referred
to as a corner point. To simplify the notation, we use
fi (c,xD) instead of fi (xO,xS ,xD) where c is a corner
point (xO,xS).

Corners c = (xO,xS) and c′ = (x′O,x
′
S) are consid-

ered to be similar (c ≈ c′) if the following requirements

are satisfied:

|‖xS‖ − ‖x′S‖| ≤ 0.01, (13)
∠ (xS ,x

′
S) ≤ 10◦, (14)

|xO,i − x′O,i|
xHO,i − xLO,i

≤ 0.01. (15)

Algorithm 1: Design for yield.

C0
i ← ∅ for i = 1, ...,m;

x0
D is the initial point;
k ← 1;
while True do

/* Update the sets of corner points */
newcorner← False;
for i← 1 to m do

c← arg min ‖xS‖≤β0

xL
O≤xO≤xH

O

fi
(
xO,xS ,x

k−1
D

)
;

if fi
(
c,xk−1

D

)
< Gi or Ck−1

i = ∅ then
if ∃c′ ∈ Ck−1

i : c′ ≈ c then
Cki ←

(
Ck−1
i \ {c′}

)
∪ {c};

else
Cki ← C

k−1
i ∪ {c};

newcorner← True;
end

end
end
if newcorner is False then

Exit with success, return xk−1
D ;

end
/* Circuit sizing problem */
Starting from xk−1

D find xkD such that
fi
(
c,xkD

)
≥ Gi ∀c ∈ Cki and i = 1, ...,m;

/* Circuit sizing problem ends here */
if no such xkD found then

Exit with failure;
end
k ← k + 1;

end

A circuit designer searches for xD such that (12) is
satisfied (i.e. all the worst-case performances satisfy the
corresponding design requirements). This is not a trivial
task because the worst-case performance depends on
xD. Such a design problem can be solved by iteratively
introducing the corner points and solving a sequence of
circuit-sizing problems. A set of the corner points (Ci)
is associated with every circuit performance. Algorithm
1 searches for the design parameters for which (8)
(i.e. (12)) is satisfied. The initial value of the design
parameters is denoted by x0

D. The circuit-sizing problem
is solved by formulating a weighted penalty function [4]
for the m design requirements over the corresponding
corners in sets Ci. The penalty function is then mini-
mized to obtain xkD which is used as the initial point
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for the circuit-sizing problem in the next iteration of
Algorithm 1.

Algorithm 2: Size a circuit over corners
Let Ci denote the set of corners for design
requirement fi ≥ Gi;
Set B0

i = ∅ for i = 1, ...,m;
x0
D is the initial point;
k ← 1;
while True do

added← False;
for i← 1 to m do

c← arg minc∈Ci fi
(
c,xk−1

D

)
;

if c ∈ Bk−1
i then

Exit with failure;
else
Bki ← B

k−1
i ∪ {c};

added← True;
end

end
if added is False then

Exit with success, return xk−1
D ;

end
Starting from xk−1

D find xkD such that
fi
(
c,xkD

)
≥ Gi ∀c ∈ Bi and i = 1, ...,m;

if no such xkD found then
Exit with failure;

end
k ← k + 1;

end

A circuit performance in one corner is evaluated from
the results of one or more simulations. Solving the
circuit sizing problem requires many evaluations of all
circuit performances (fi) over the corresponding corners
in Ci. As the number of the corners grows with the
number of the outer loop iterations of Algorithm 1, it
makes sense to identify the corner cWi ∈ Ci with the
lowest (worst) value of fi at xkD. It is sufficient to size
the circuit with the corner sets reduced to just this one
element (i.e. Ci =

{
cWi
}

). Algorithm 2 identifies this
corner iteratively. A corner set used in the k-th iteration
of Algorithm 2 (denoted by Bki ) is a superset of the set
used in iteration k−1. This strategy makes the outer loop
finite and generally reduces the number of the required
simulations. In most cases, two iterations are sufficient
for solving the circuit-sizing problem corresponding to
one iteration of the outer loop of Algorithm 1.

4 MESH ADAPTIVE DIRECT SEARCH

MADS [6] is a family of derivative-free optimization
algorithms [7] that rely on a dense set of normalized
poll directions for guaranteeing convergence properties

on nonsmooth and constrained optimization problems of
the form

min
x∈Ω⊆Rn

f(x) (16)

The points examined in the k-th iteration lie on mesh
Mk which has a finite countable intersection with any
bounded subset of the search space. The mesh density
is controlled by the mesh size parameter (∆m

k ) which
approaches zero in the limit (i.e. the mesh becomes in-
finitely dense). Note that the superscript m is a standard
notation used in papers on MADS and has nothing to do
with the number of the circuit performances. The length
of the steps taken by MADS is controlled by the step size
parameter ∆p

k. The step size parameter approaches zero
at a slower rate compared to the mesh size parameter
(∆m

k /∆
p
k → 0).

MADS can handle constraints with the extreme barrier
approach where f is replaced with fΩ which is equal to
f if x ∈ Ω and +∞ otherwise. The incumbent solution
and the corresponding value of fΩ in iteration k are
denoted by xk and fk.

Algorithm 3: Iteration k of a MADS algorithm
using the extreme barrier approach.

/* Search step */
Evaluate fΩ on a finite subset Sk ⊂ Ω;
/* Poll step */
Evaluate fΩ (xk + d) for all d ∈ D;
/* Update incumbent solution, ∆m

k , and ∆p
k */

Let x′ be the point with the lowest value of fΩ

evaluated in this iteration;
if fΩ (x′) < fk then

xk+1 ← x′;
Choose ∆p

k+1 ≥ ∆p
k and ∆m

k+1 ≥ ∆m
k ;

else
xk+1 ← xk;
Choose ∆p

k+1 < ∆p
k and ∆m

k+1 < ∆m
k ;

end

The algorithm outline is given by Algorithm 3. Set
D is a set of the scaled poll steps in iteration k.
Note that its members are chosen in such manner that
xk + d ∈ Mk. The convergence properties of MADS
are guaranteed by the poll step if certain requirements
are satisfied [6]. The search step does not affect the
convergence properties, but it can significantly speed up
the algorithm. In our implementation, the members of Sk
are chosen using a quadratic model of the objective and
constraint functions. An overview of the convergence
properties and implementation details can be found in
[8]. MADS is used for solving the optimization problem
in the inner loop of Algorithm 1 [9] and for solving the
circuit-sizing problem. It can also be used for computing
the worst-case distance (by solving problem (5) and
inserting the obtained result into (6)).
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5 EXAMPLES AND RESULTS

The proposed algorithm is implemented in Python as
part of the PyOPUS library [10]. SPICE OPUS [11] is
used as the circuit simulator. The algorithm is paral-
lelized where possible (i.e. evaluation of the m worst-
case points in Algorithm 1 and evaluations of a circuit
over multiple corners in Algorithm 2). All experiments
are performed on a 3.2GHz Intel XEON processor with
four cores and eight threads. One thread is reserved for
the manager task and the remaining seven threads serve
as workers.

The proposed approach is tested by sizing two op-
erational transconductance amplifiers (OTA) [12]. Both
circuits are sized for a 0.18µm manufacturing process.
The Pelgrom model of the device mismatch [1] is used.
Global variations are not taken into account.

Vdd

Vss

inp inn out

Mp1 Mp2 Mp3

Mn1 Mn2 Mn3

Mn4 Mn5

R
C

Ibias

Figure 2. Miller OTA.

The first circuit (Figure 2) is a simple Miller OTA. The
circuit has 13 design parameters (11 transistor channel
widths and lengths, one resistance, and one capacitance),
16 statistical parameters (two parameters for every tran-
sistor), and two operating parameters (temperature and
supply voltage). The bias current (Ibias) is set to 100µA.
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Figure 3. Folded cascode OTA.

The second circuit (Figure 3) is a folded cascode
OTA (FCOTA) with 11 design parameters, 32 statistical
parameters, and two operating parameters. The bias
current is set to 5µA.

Table 1. Operating parameters.
Low High Nominal

Tempetarure [◦C] 0 100 25
Supply voltage [V] 1.7 2.0 1.8

The ranges and the nominal values of the operating
parameters are given in Table 1. All transistors are
required to operate in the staturation region at the operat-
ing point. This results in two additional requirements for
every transistor (i.e. VGS ≥ VT and VDS ≥ VGS − VT ).
These requirements are enforced in all corners, but
they are not subject to the worst-case analysis or yield
optimization.

Every circuit is first sized at the nominal operating
and nominal statistical parameter values (i.e. xS = 0).
The resulting design parameters are used as a starting
point for Algorithm 1. The target yield is set to 99.87%
(β0 = 3).

Table 2. Results for the Miller OTA optimization.
Goal Final WCD

Area [µm2] ≤ 9000 2117 -
Supply current [µA] ≤ 1000 175 > 8
Swing [V] ≥ 1.0 1.21 > 8
Gain [dB] ≥ 60 77.8 > 8
UGBW [MHz] ≥ 10 11.0 6.1
Phase margin [◦] ≥ 50 56.6 > 8
CMRR [dB] ≥ 90 90.1 3.3
PSRR VDD [dB] ≥ 60 84.9 > 8
PSRR VSS [dB] ≥ 60 84.5 > 8
Overshoot ↓ [%] ≤ 10 8.4 > 8
Overshoot ↑ [%] ≤ 10 9.5 > 8
Tset ↓ [µs] ≤ 1 0.784 > 8
Tset ↑ [µs] ≤ 1 0.831 > 8
Slew rate ↓ [V/µs] ≥ 2 2.02 4.4
Slew rate ↑ [V/µs] ≥ 2 2.01 3.7

The results of the Miller OTA optimization are listed
in Table 2. The final optimization result is verified
by computing the worst-case distances of the circuit
performances. All the worst-case distances are greater
than β0 implying that the target yield is exceeded. The
process of circuit sizing takes 57 minutes.

Table 3. Results for the FCOTA optimization.
Goal Final WCD

Area [µm2] ≤ 2000 1637 -
Supply current [µA] ≤ 400 63.8 > 8
Offset (low) [mV] ≥ −20 −8.39 7.1
Offset (high) [mV] ≤ 20 8.56 7.1
Swing [V] ≥ 0.3 4.09 > 8
Gain [dB] ≥ 70 70.2 4.2
UGBW [MHz] ≥ 4 4.04 3.9
Phase margin [◦] ≥ 60 61.4 6.2
CMRR [dB] ≥ 100 126 > 8
PSRR VDD [dB] ≥ 70 140 > 8
PSRR VSS [dB] ≥ 70 71.0 > 8
Overshoot ↓ [%] ≤ 10 4.8 > 8
Overshoot ↑ [%] ≤ 10 0.34 > 8
Tset ↓ [µs] ≤ 2.5 0.189 > 8
Tset ↑ [µs] ≤ 2.5 0.319 > 8
Slew rate ↓ [V/µs] ≥ 2 6.07 > 8
Slew rate ↑ [V/µs] ≥ 2 4.08 > 8

The results of the FCOTA optimization are listed in
Table 3. The process of circuit sizing takes 9.5 minutes.
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The final result is verified with the worst-case distance
computation which confirms that the final yield is greater
than the target yield.

6 CONCLUSION

Designing circuits that exhibit a high parametric yield
is an important task in the process of the analog inte-
grated circuit design. Computing the yield as well as
finding the design parameters that satisfy the minimum
yield requirement is an optimization problem. As circuit
simulators do not compute sensitivities, the derivatives
of the function subject to optimization are not available.
Therefore, it makes sense to use derivative-free methods
for solving such optimization problems.

An automated design methodology is proposed based
on a set of corners that represent the operating condi-
tions and manufacturing process variations where the
circuit exhibits the worst performance. The corners are
computed by solving an optimization problem. The
optimal design parameter values are found by solving
an optimization problem obtained from the circuit-sizing
problem by using a penalty function-based approach.
The set of corners is built iteratively by repeatedly
solving the two optimization problems. The process
stops when all the design requirements are satisfied and
there are no new corners found.

For each optimization a mesh adaptive direct search
optimization algorithm is used. The proposed approach
is tested on two analog circuit-sizing problems. The
results show that the approach is effective and capa-
ble of finding a circuit satisfying the minimum yield
requirement.
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