
Metodološki zvezki, Vol. 6, No. 2, 2009, 99-134

Evaluation of Direct and Indirect
Blockmodeling of Regular Equivalence in

Valued Networks by Simulations

Aleš Žiberna1

Abstract

The aim of the paper is to compare and evaluate different approaches to
detecting regular equivalence classes of valued networks. The evaluated
approaches include different versions of REGE (indirect approaches) and
generalized blockmodeling approaches (direct approaches). In addition to
the approaches designed to detect regular equivalence, some approaches
designed to detect structural equivalence are also included for comparison.

The evaluation is done by means of simulations. Networks of 11 and 25
units were generated based on different known (max-)regular blockmodels
and partitions. The obtained partitions were compared to the original
(known) partition using the Adjusted Rand Index.

The results show that homogeneity blockmodeling, implicit
blockmodeling and REGE are usually the best approaches for detecting
regular equivalence. The most surprising result is that methods for detecting
structural equivalence preformed relatively well on networks generated
based on (max)-regular equivalence, better then several approaches
designed to detect regular equivalence.

1 Introduction

The aim of this paper is to evaluate different approaches used for finding regular
equivalence (White and Reitz, 1983) classes in valued networks on artificially
generated valued networks. The evaluated approaches are direct (generalized)
blockmodeling (Batagelj, Doreian and Ferligoj, 1992; Doreian, Batagelj and
Ferligoj, 2005; Žiberna, 2007a, 2008) and some versions of REGE (White, 1985a;
1985b; Žiberna, 2008).

Some of these approaches, especially older ones, have been already applied to
several empirical datasets (Smith and White, 1992; Luczkovich et al., 2003;
Nordlund, 2007; Doreian, Batagelj and Ferligoj, 2005), while the newer ones
(Žiberna, 2007a, 2008) are still relatively untested. In this paper all these

1 Faculty of Social Sciences, University of Ljubljana, Kardeljeva pl. 5, SI-1000 Ljubljana;

ales.ziberna@fdv.uni-lj.si

100 Aleš Žiberna

approaches are applied to valued networks that are generated according to (max-)
regular equivalence (Žiberna, 2008) with some random error. In order to get more
reliable results the whole procedure (generating networks, applying methods, etc.)
was repeated at least 20 times. The aim of this work is to evaluate these
approaches and to identify which of these approaches is the most appropriate for
detecting (max-)regular equivalence classes? The simulations themselves were
split into two stages. In Stage 1 (the preliminary stage), the approaches were tested
on a larger number of settings on networks with only 11 units (or vertices). In
Stage 2, the number of units was increased to 25, while the number of different
settings was reduced based on the results of Stage 1. In most cases, only the results
of Stage 2 are reported.

Although the approaches that fall into the framework of generalized
blockmodeling (Batagelj, Doreian and Ferligoj, 1992; Doreian, Batagelj and
Ferligoj, 2005; Žiberna, 2007a, 2008) can be applied also to a number of other
problems, finding regular equivalence classes is probably one of more complex
tasks. Thus the evaluation of these approaches in the context of (max-)regular
equivalence can be also used to:

1. at least partly evaluate these (generalized blockmodeling) approaches in
more general setting of blockmodeling of valued networks,

2. determine whether the newer approached for generalized blockmodeling of
valued networks are indeed superior to generalized blockmodeling for
binary networks when applied to valued networks,

3. and assess alternative criterion functions (normalizations of block
inconsistencies) generalized blockmodeling.

In the next section the definition of (max-)regular equivalence for valued
networks that is used in the generation of simulated networks is presented (2). In
Section 3 the methods that are compared in simulations are described. The design
of simulations and the settings used in them) are presented in the following section
(4). The results of the simulations are presented in Section 5 and their limitations
are outlined in Section 6. At the end of the paper we discuss the obtained results
(7) and their implications and present ideas for future work (8).

2 (max)-regular equivalence

Regular equivalence was first defined by White and Reitz (1983): "Regularly
equivalent points (units) are connected in the same way to matching equivalents".
However this and also the more formal definition given by White and Reitz (1983)
and also later by Batagelj, Doreian and Ferligoj (1992) were suitable only for
binary networks and, as noted by Žiberna (2008), were understood or interpreted
differently even on binary networks. Borgatti and Everett (1992) provided a
formal definition of regular equivalence for valued networks. Algorithms

Evaluation of Direct and Indirect Blockmodeling of... 101

detecting regular equivalence in valued networks are also all based on some
definition of regular equivalence or imply a certain definition of regular
equivalence for valued networks, so definitions of regular equivalence can also be
obtained from the algorithms REGGE and REGDI (White, 1985a; 1985b) and from
implicit approach to blockmodeling of valued networks suggested by Batagelj and
Ferligoj (2000). This was done in Žiberna (2008) where all these definitions are
also given. Based on these definitions, Žiberna (2008) presented the definition of
f-regular equivalence as follows:

Suppose that we have a network N = (U, R2) and ≡ is an equivalence
relation on U that induces (or corresponds to) a partition C then ≡ is
an f-regular equivalence (where f is a selected function, like sum,
maximum, mean, etc.) if and only if for all a, b ∈ U and all X ∈ C, a

≡ b implies () ()bi
f
Xi

ai
f
Xi

r=r
∈∈

 and () ()ib
f
Xi

ia
f
Xi

r=r
∈∈

.

When the function f in this definition is maximum, the equivalence is called a
max-regular equivalence and is identical to the definition implied by the approach
suggested by Batagelj and Ferligoj (2000). This is also the definition used in this
paper. Basically, this definition says that a block perfectly complies with the
definition of max-regular equivalence, if all row maximums and all column
maximums are equal. If all blocks induced by a partition that corresponds to a
given equivalence satisfy this condition, that the equivalence is a max-regular
equivalence.

3 Evaluated methods

In this paper two groups of approaches that are capable of detecting regular
equivalence classes are evaluated. The approaches from the first group are part of
the generalized blockmodeling (Doreian, Batagelj, and Ferligoj, 2005) approach,
while the second group consists of different versions of REGE (White, 1985a;
1985b). All the approaches evaluated are described in Žiberna (2008) where they
are also applied to empirical networks.

3.1 Generalized blockmodeling

Generalized blockmodeling was first introduced by Doreian, Batagelj and Ferligoj
(1994), where the notion of generalized equivalence and several block types were
presented. The approach evolved from a direct approach to blockmodeling3, which
was already before capable of detecting regular equivalence clusters (Batagelj,

2 The relation R is represented by matrix R = [r ij]n x n.
3 Generalized blockmodeling still is a direct approach to blockmodeling.

102 Aleš Žiberna

Doreian and Ferligoj, 1992)4. Direct approaches directly search for a partition that
best fits the selected equivalence as measured by a criterion function (Batagelj,
Ferligoj and Doreian, 1992). The approach is described extensively by Doreian,
Batagelj and Ferligoj (2005). In generalized blockmodeling, the equivalence is
defined by the allowed block types and possibly their position.

However, it was still applicable only to binary and signed networks, although
Batagelj and Ferligoj (2000) have presented some ideas for extending this
approach to valued networks. Generalized blockmodeling for binary networks
(Doreian, Batagelj, and Ferligoj, 2005) is from now on referred to as binary
blockmodeling. Žiberna (2007a) presented valued and homogeneity
blockmodeling, two types of generalized blockmodeling suited to valued networks.
Later he also developed implicit blockmodeling Žiberna (2007b; 2008) based on
ideas presented by Batagelj and Ferligoj (2000). All these approaches to
generalized blockmodeling of valued networks are capable of detecting regular
equivalence classes in valued networks. The approaches are very briefly described
below. Longer descriptions can be found in the works cited above.

We can say that binary blockmodeling treats ties either as relevant or as
nonexistent (or irrelevant). The inconsistencies are in principle computed as the
number of times the tie is present where it is not assumed or vice versa. In the case
of regular equivalence, the allowed block types are regular and null. In an ideal
null blocks all values are 0, while in an ideal regular blocks there is at least one 1
in each row and each column. As it is here applied to valued networks, these have
to be first binarized5 using an appropriate threshold.

Valued blockmodeling is similar, yet if the tie is not nonexistent or fully
relevant, it assesses if a tie is closer to being relevant or closer to nonexistent. The
inconsistencies are in principle computed as the sum of differences between the
actual tie values and the assumed tie values (0 or the threshold that specifies when
a tie is considered relevant). While both of these approaches use the same
definition of regular equivalence that is used in this paper in the case of binary
networks, this is no longer completely true for valued networks.

Homogeneity blockmodeling addresses one of the main problems of valued
and binary blockmodeling. When using valued blockmodeling, a threshold must be
explicitly selected that tells us how strong a tie must be to be treated as relevant.
This threshold must also be the same for all blocks. A similar threshold must also
be selected when using binary blockmodeling, although it is sometimes implicitly
set to the minimum positive value (all ties that exist, meaning those higher than 0,
are treated as relevant). In homogeneity blockmodeling tie values (or some
statistics computed on them) are assumed to be homogenous (equal) within blocks.

4 For the purpose of this paper the approach presented in Batagelj, Doreian, and Ferligoj

(1992) is sufficient and other advances described in Doreian, Batagelj, and Ferligoj (1994) and
Doreian et al. (2005) are not necessary.

5 Converted to binary networks.

Evaluation of Direct and Indirect Blockmodeling of... 103

In the case of f-regular blocks, values of function f computed over rows/columns
are assumed to be homogeneous within rows and within columns. The
inconsistency of a block is some measure of variability computed on these values.
Depending on the measure of variability, two homogeneity blockmodeling
approaches are used. These are sum of squares6 homogeneity blockmodeling and
absolute deviations7.

Implicit blockmodeling is in computational terms very similar to valued
blockmodeling. The only differences are that the parameter specifying when a tie
is relevant is replaced by block maximum and that initially additional
normalization was used8. However, in its functioning, it is very similar to
homogeneity blockmodeling. The advantage of both homogeneity and implicit
blockmodeling is that they (can9) use the same definition of regular equivalence as
used in this paper (max-regular equivalence).

In addition to methods for regular equivalence, one method from the
framework of generalized blockmodeling designed for structural equivalence was
also used to detect regular equivalence. The method used falls into the
homogeneity generalized blockmodeling approach. More precisely, sum of squares
homogeneity blockmodeling with only complete blocks are used. The ideal
complete block within sum of squares blockmodeling is such that all values in the
blocks have the same value. The inconsistency of an empirical block to the ideal
block is computed as the sum of squared deviations of the values in the block from
the mean of these values.

Below the notation used to identify the above described methods in the results
is described:
1. Generalized blockmodeling approach:

- bin - Binary blockmodeling
- val - Valued blockmodeling
- ss – Sum of squares (homogeneity) blockmodeling
- ad – Absolute deviations (homogeneity) blockmodeling
- imp - Implicit blockmodeling

2. Equivalence:
- str – structural equivalence (only used with sum of squares blockmodeling)
- reg – (f-)regular equivalence
- wnull|reg – (f-)regular equivalence with null blocks (only used in implicit

blockmodeling) – indicate that null blocks are used when searching for
regular equivalence using implicit blockmodeling, although Žiberna (2008)
suggests that they should not be used.

6 The measure of variation used is the sum of squared deviations from the mean.
7 The measure of variation used is the sum of absolute deviations from the median.
8 In the ideas presented by Batagelj and Ferligoj, additional normalizations were used.

However, as argued by Žiberna (2008), they are not necessary.
9 Homogeneity blockmodeling uses the definition of f-regular equivalence with any function f.

104 Aleš Žiberna

- pre – pre-specified blockmodeling: the blockmodel used in the generation
of the binary network was used as the pre-specified blockmodel instead of
only specifying the allowed blocks.

3. Values of the threshold t used for binarization (binary blockmodeling)/the
parameter m (valued blockmodeling):
- halfmax/max – (half10) of the empirical maximum of tie values
- min/2min – (twice11) the second (the first one is usually 0) minimum of the

empirical distribution of all tie values
4. Function f used in f-regular blocks (not used with structural equivalence or

binary blockmodeling): max or mean (only used in homogeneity
blockmodeling)

5. Search procedures:
Local optimization with 20 random starting partitions – used unless stated
otherwise (this and the next option are the default ones and are therefore
not marked)

- Full search – checking all possible partitions (only used in Stage 1 for
two-cluster settings).

- 100 – Optimization of 100 random starting partitions
- OC – Optimization of the correct (the one used in generation of the

network) partition as the starting partition
- Cor – No optimization – the label indicates the results (the inconsistency12,

as the Adjusted Rand Index is 1 by default) for the correct partition
The versions of the blockmodeling methods are described by the series of

labels that are described above. The labels appear in the same order as they are
introduced. For example, a valued blockmodeling according to max-regular
equivalence where m is selected as the empirical maximum of the tie values is
referred to as "val|reg|max|max".

All the evaluated methods are implemented in the blockmodeling 0.1.2
package (Žiberna, 2006) for R statistical environment (R Development Core Team,
2006) and this implementation was used for all methods. The limitations that the
use of this still experimental software presents for the results obtained in this
paper are described in Section 6.

10 Binary blockmodeling
11 Valued blockmodeling
12 The inconsistency stands for the total inconsistency of the partition with an equivalence (can

be generalized), which is also the value of the criterion function (in generalized blockmodeling)

Evaluation of Direct and Indirect Blockmodeling of... 105

3.2 Indirect methods

Indirect approach means that first (dis)similarities compatible with the selected
equivalence are computed. Then, some clustering method is used on these
(dis)similarities to obtain a partition.

REGE is an algorithm for computing (dis)similarity in terms of regular
equivalence. There exists no "closed form13" measure of dissimilarity or similarity
compatible with regular equivalence. However, White (1985a, 1985b) developed
two iterative algorithms, REGGE and REGDI, for computing dissimilarities or
similarities (depending on the version) in terms of regular equivalence. As it is
explained in Žiberna (2008), these algorithms do not use the same definition of
regular equivalence (that is max-regular) equivalence as it is used in this paper.
Based on them Žiberna (2008) developed versions of these two algorithms that
either partly reduce this difference in definitions used (REGDI-OW, a modified
version of REGDI) or use exactly max-regular equivalence (REGGE-OW, a
modified version of REGGE). Only the versions of REGE designed for interval
valued networks were used. Therefore, the versions suggested by Borgatti and
Everett (1993) were not used, as they were designed for nominal valued networks.
In this paper the term REGE is used for all versions of the algorithm discussed
above.

REGE evaluates the (degree of) equivalence of units a and b by trying to match
every link (taking values into account) of unit a by the most similar link of unit b
to an equivalent / the most equivalent unit and vice versa (every link of unit b an
equivalent / the most equivalent link of unit a). The difference between the
original versions of the algorithm developed by White and the modified versions
developed by Žiberna is that in REGGE and REGDI (White, 1985a; 1985b) a link
refers to a pair of arcs – an incoming and an outgoing arc, while in REGGE-OW
and REGDI-OW (Žiberna, 2008) it only refers to one arc.

If the best match (link) does not have equal (or equal or greater, depending on
the version of REGE) values of ties, or if the other points (ends) of ties (from and
to a; from and to b) are not completely equivalent, the (dis)similarity depends on
the difference of the values (of ties) and on the (dis)similarity (in terms of regular
equivalence) of units a and b compared relative to their magnitude. REGE solves
the problem that regular equivalence does not demand that two units which are
equivalent be connected to the same number of equivalent units, by allowing that
different links of a can be matched by the same link of b. It should be mentioned
that all REGE algorithms are designed to find only the maximal regular partition
and not other regular partitions (Žiberna, 2008).

As mentioned above, all REGE algorithms are iterative algorithms. In the
simulations presented in this paper, the number of iterations was set to 3, while an
effect using more iterations was also tested later.

13 No measure exists that can be computed in closed form.

106 Aleš Žiberna

For blockmodeling purposes, this (dis)similarity matrix must be analyzed
using an appropriate clustering algorithm. Hierarchical clustering algorithms have
usually been used for this purpose. For example, Ucinet 5 (Borgatti, Everett and
Freeman, 1999) uses single linkage hierarchical clustering to find an appropriate
partition. However, based on my experience and results presented by Žiberna
(2008), Ward's (1963) clustering algorithm is used in this paper.

In addition to methods designed for regular equivalence, methods for structural
equivalence were also used on the same dataset. Within indirect approach the
method that was used was Ward’s hierarchical clustering on distances computed
using the Corrected Euclidean-like dissimilarity (Burt and Minor, 1983 in
Batagelj, Ferligoj, and Doreian, 1992) with p = 2.

The above described methods are indicated in the results as:
- sedist|str – Direct approach using structural equivalence
- REGGE, REGGE-OW, REGDI, REGDI-OW – The version of REGE

used.

4 Design of simulations

All simulations were done by repeating the following general procedure for a
given number of times for each setting:

1. Generation of a valued network based on a blockmodel and other
parameters

2. Application of different methods
3. Comparing the obtained partition(s) with the original partition using the

Adjusted Rand Index (Hubert and Arabie, 1985: 198)
The way networks are generated has a large effect on the performance of

evaluated approaches, so this is of great importance. The selected way of
generating networks was constructed based on a review of numerous social
networks, in particular networks of primary school pupils collected by Zemljič and
Hlebec (2001).

The networks were generated based on the following parameters:
• partition
• blockmodel
• parameter controlling the enforcement of strict regularity in the binary

network
• parameters of the beta distribution used for generation of the tie values;

one of them was always the same for the whole network, while the other
could be block-specific (in terms of the position of the block)

• multiplication factor (can be block-specific)
The more detailed procedure for generating a network is described in

Appendix 1. The meaning of the above parameters also becomes clearer when their

Evaluation of Direct and Indirect Blockmodeling of... 107

values in the individual settings are presented in the following sections. The
limitations of the results due to the way the networks were generated are discussed
in Section 6.

The result of each blockmodeling method is a partition (or sometimes a set of
partitions). These were compared with the original partition used in the generation
of the networks using the Adjusted Rand Index (Hubert and Arabie, 1985: 198).
The so computed Adjusted Rand Index is used as a measure of the ability of the
blockmodeling method to find the correct partition and therefore of its quality. As
a single measurement would be unreliable and could be heavily influenced by
random factors built into the procedure used for generating the networks, for each
different setting several14 networks were simulated and the same number of
measurements (one for each network) of the Adjusted Rand Index for each method
(or more precisely each version of each method) were obtained. Actually,
generalized blockmodeling can produce several partitions as a result of the
optimization process. In such cases, the mean of the Adjusted Rand Indices for the
partitions obtained on each network was first computed15. Then, the mean of these
Adjusted Rand Indices over all networks was computed for each method.

The simulations were accomplished in two stages. Stage 1 was used as a
preliminary stage, where a larger number of different settings and other options
were tested on very small networks with only 11 units. In Stage 2, the methods
were evaluated on more reasonably sized networks of 25 units, while the number
of different settings was reduced. Larger networks were not generated due to the
time required to run the simulations.

The simulations were conducted based on 25 settings that differed in the way
the networks were generated, that is in the values of the parameters partition,
blockmodel, parameters of the beta distribution and multiplication factor. Each
setting could be performed with regularity enforced or not. However, a number of
characteristics of the network generating procedure were also the same for all (or
most) settings. These characteristics are described first.

The basic characteristics are:
- The number of units is 11 in Stage 1 and 25 in Stage 2.
- The procedure (generation of a network, application of methods, etc.) was

repeated 20 times for each setting. In Stage 2 more simulations were conducted
(when possible due to the availability of commuters) to obtain more accurate
estimates (e.g. of the mean Adjusted Rand Index). In some cases, up to 100
repetitions were used.

- Two different partitions were used in each stage:
o Stage1:

14 For each settings at lest 20 networks were generated. In Stage 2, up to 100 networks were

generated per setting.
15 In the case where there were more than 50 ‘optimal’ partitions, only the first 50 were taken

into account. In addition, one additional partition was considered for each starting point.

108 Aleš Žiberna

• Two-cluster partition: 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2 and
• Three-cluster partition: 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3

o Stage1:
• Two-cluster partition: 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2 and
• Three-cluster partition: 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3
- shape1 parameter has values 10, 8, 6, 4, and 2 in Stage 1 and values 8 and 4 in

Stage 2. However, even in for Stage 1 only results for shape1 values 8 and 4
are reported.

- Optimizational procedure:
o Stage 1: In the case of two-cluster partitions, all possible partitions were

checked when using generalized blockmodeling (a full or exhaustive
search). In addition, a local search with 10 random starting partitions was
used in some settings to compare the results. In the case of three-cluster
partitions, only a local search with 20 random starting partitions was used.

o Stage 2: A local search with 20 random starting partitions was used to find
the partition with the lowest inconsistency in generalized blockmodeling. In
a few selected settings, 100 random starting partitions were used to check if
this would significantly improve the results.

- The number of iterations in REGE was initially set to 3. The effect of using
100 iterations was also tested in additional iterations.

- In some settings in Stage 1, the block size normalization was tested on all
generalized blockmodeling methods and maximum normalization on implicit
blockmodeling. The selected settings are indicated by ‘Norm ’ in Table 1 in the
"Stage 1 – add. methods" column.

- The methods (and additional settings) used can be divided into three groups in
terms of their use in Stage 2. The markings in bold at the start of the
paragraphs are used in Table 1 (least two columns) to indicate which methods
(and additional settings) were used on a given setting in Stage 2. If a setting
does not have any markings in the last two columns, this setting was not used
in Stage 2. Used methods are indicated separately for two variations of each
setting – when regularity was enforced when generating network and when it
was not enforced.
o C - Common methods – methods used in all settings in Stage 2. These

methods include both direct and indirect approaches. The indirect
approaches are the approach for structural equivalence and the four versions
of REGE. The direct approaches include several versions of binary, valued,
implicit and homogeneity blockmodeling. These methods are marked by the
following markings (explained in Subsection 3.1): ss|str, sedist|str,
bin|reg|halfmax, bin|reg|min, val|reg|max|2min, val|reg|max|max,

Evaluation of Direct and Indirect Blockmodeling of... 109

imp|reg|max, imp|wnull|reg|max, ad|reg|mean, ad|reg|max, ss|reg|mean,
ss|reg|max, REGDI, REGDI-OW, REGGE, and REGGE-OW.

o P - Pre-specified blockmodeling – Pre-specified blockmodeling was used
with binary, valued and implicit blockmodeling (markings: bin|pre|halfmax,
bin|pre|min, val|pre|max|max, val|pre|max|2min, imp|pre|max) in only a
subset of settings.

o 100 - 100 starting partitions – in some settings (with shape1 = 8 only) 100
starting partitions were used instead of the usual 20 to check if this could
improve the partition. In these settings, the correct partition (the one used to
generate the network) was also used (separately) as a starting partition to
see if this partition would be recognized as the optimal partition, which
means that no other partition with lower inconsistency would be found by a
local search. The inconsistency of the correct partition was also computed.

Other parameters (or those not ambiguously defined in the above list) used in
generation of the networks are shown in Table 1. The settings presented in Table 1
are referred to by their "names", which are composed by the values of parameters
k, blockmodel, shape2 and mf pasted together by the "|" character.

Values used to describe the blockmodel and parameters shape2 and mf in
Table 1(when not simple numbers) are explained in Table 2. When the value in
Table 1 for parameters shape2 and mf is a simple number, it is the value of the
parameter in all blocks. The most important distinction among the blockmodels
used is that only in blockmodels 1T and 13 is the partition that is searched for
maximal regular. In all others, the partition that is searched for is not maximal
regular and this makes it much harder to find. However, the approaches suited for
valued networks (all but binary blockmodeling) are usually quite successful at
finding it if additional information is provided in the form of either different
shape2 or mf parameters (which essentially makes the partitions that are searched
for maximal regular in the valued sense).

Based on this, the settings are separated into four settings classes, named
Clear pattern, Not max. regular (Not maximal regular), Diff. dist. par. (Different
distribution parameters), and Diff. block max. (Different block maximums). In the
first class (Clear pattern) there are settings with either blockmodel 1T or 13. Here
the partition that is searched for is maximal regular, even before the tie values are
added (in the process of generating the network). The second setting, Not maximal
regular, is quite the opposite. Here, the partition that is searched for is not
maximal regular, even after the values are added. This makes this partition the
hardest to find, especially for the REGE algorithms. In the last two settings,
additional information is added to the binary networks which are generated in the
same way as generated in class Not maximal regular. In the resulting networks, the
partition that is searched for is maximal regular when the tie values are taken into
account in most cases (the exception are settings "2|AR| 1| D" and
"2|AR|10| D"). This should make these two classes especially problematic for

110 Aleš Žiberna

binary blockmodeling. In the case of the class Different dist. par., the additional
information is provided in the form of the block-specific shape2 parameters, while
in the case of the class Different block max., the additional information is provided
in the form of the block-specific multiplication factors (mf). It is important to note
that the information in the form of different multiplication factors is much stronger
than that in the form of different shape2 parameters. It also affects all block types,
whereas the shape2 parameters do not affect the null block type.

Table 1: Settings used in the simulations.

Id k blockmodel*
shape2

*
mf
*

settings class
Stage 1
– add.

methods

Stage2

regularity
enforced

regularity
not

enforced
1 2 CP 1 10 Not max. reg. Norm C, P, 100 C, P, 100
2 2 CP 4 10 Not max. reg.
3 2 1T 1 10 Clear pattern Norm C, P, 100 C, P, 100
4 2 1T 4 10 Clear pattern C, P C
5 3 C2P G3 10 Diff. dist. par.
6 3 C2P 4 G3 Not max. reg.
7 3 2T G3 10 Diff. dist. par.
8 2 BG 4 10 Not max. reg. C C
9 2 BG 1 10 Not max. reg. Norm C, P, 100 C, P, 100
10 2 CP D 10 Diff. dist. par. Norm C, P C, P
11 2 CP R 10 Diff. dist. par. C
12 2 BG R 10 Diff. dist. par. Norm C, P C, P
13 2 CP 1 D Diff. block max. C C
14 2 CP 1 R Diff. block max. Norm
15 2 BG 1 R Diff. block max. C, P C, P
16 2 AR 1 D Diff. block max. Norm C C
17 2 AR 1 R Diff. block max. C C
18 2 AR D 10 Diff. dist. par. Norm C

19 2 AR R 10 Diff. dist. par. C

20 3 G3 G2 10 Diff. dist. par.
22 3 2V1 G1 10 Diff. dist. par. C C
23 3 13 1 10 Clear pattern C, P, 100 C, P
24 3 C O4 10 Diff. dist. par. C C
25 3 C 1 10 Not max. reg. C, P, 100 C, P

Legend:
k … the number of clusters
mf … multiplication factor
* the meaning of the values (in case of shape2 and mf only those that are not numbers)
is shown in Table 2.

Evaluation of Direct and Indirect Blockmodeling of... 111

Table 2: Values (codes) in Table 1.

blockmodel

BG (Between Groups):
 [,1] [,2]
[1,] "null" "reg"
[2,] "reg"
"null"

CP (Core-Periphery):
 [,1] [,2]
[1,] "reg" "reg"
[2,] "reg" "null"

1T (1 Tie):
 [,1] [,2]
[1,] "null" "reg"
[2,] "null"
"null"

AR (All Regular):
 [,1] [,2]
[1,] "reg" "reg"
[2,] "reg" "reg"

C2P (Core and 2 Peripheries):
 [,1] [,2] [,3]
[1,] "reg" "reg" "reg"
[2,] "reg" "null" "null"
[3,] "reg" "null" "null"

2T (2 Ties):
 [,1] [,2] [,3]
[1,] "null" "reg" "reg"
[2,] "null" "null" "null"
[3,] "null" "null" "null"

2V1 (2 Versus 1):
 [,1] [,2] [,3]
[1,] "reg" "reg" "null"
[2,] "reg" "reg" "null"
[3,] "null" "null" "reg"

G3 (Group 3 different - disconnected):
 [,1] [,2] [,3]
[1,] "reg" "reg" "null"
[2,] "reg" "reg" "null"
[3,] "null" "null" "null"

13 (Tie from 1 to 3):
 [,1] [,2] [,3]
[1,] "null" "null" "reg"
[2,] "null" "null" "null"
[3,] "null" "null" "null"

C (Cycle):
 [,1] [,2] [,3]
[1,] "null" "reg" "null"
[2,] "null" "null" "reg"
[3,] "reg" "null" "null"

shape2 when block-specific

R (Row):
 [,1] [,2]
[1,] 4 4
[2,] 1 1

G3 (Group 3 different) :
 [,1][,2][,3]
[1,] 1 1 4
[2,] 1 1 4
[3,] 4 4 4

D (Diagonal):
 [,1] [,2]
[1,] 1 4
[2,] 4 1

G2 (Group 2 different) :
 [,1][,2][,3]
[1,] 1 4 1
[2,] 4 4 4
[3,] 1 4 1

O4 (One tie with value 4):
 [,1][,2][,3]
[1,] 1 1 1
[2,] 1 1 4
[3,] 1 1 1

G1 (Group 1 different) :
 [,1][,2][,3]
[1,] 1 4 4
[2,] 4 4 4
[3,] 4 4 4

mf (multiplication factor) when block-specific

D (Diagonal):
 [,1] [,2]
[1,] 10 6
[2,] 6 10

R (Row):
 [,1] [,2]
[1,] 6 6
[2,] 10 10

G3 (Group 3 different) :
 [,1][,2][,3]
[1,] 10 10 6
[2,] 10 10 6
[3,] 6 6 6

5 Results

In Stage 1, blockmodeling methods were evaluated on networks with only 11
units. This can be thought of as a preliminary stage where several ideas were
tested. Therefore, it was possible to consider a wider range of settings and
methods. In addition, due to a very limited number of different partitions of 11
units into two clusters, a full search was possible.

As Stage 1 was really meant only as a preliminary stage, for most settings only
the main findings are reported here (see Žiberna (2007b) for all results). More
detailed results are only reported for settings that differ significantly from those
used in Stage 2. These are special settings that were designed to test the effects of
normalizations of inconsistencies on the generalized blockmodeling approaches.

112 Aleš Žiberna

Stage 2 was designed to be more realistic since networks of 25 units were
generated and analyzed, however on a smaller number of settings. As it was
evident from the results of Stage 1 that the relative performance of the methods is
similar for different values of the shape1 parameter, the simulations were run only
using two values of this parameter, namely, 8 and 4.

5.1 Figures used for representing results

In this paper, figures are used to present the results of simulations. As the number
of different methods used is too large for all of them to be presented on a single
graph, the methods are grouped and each group is presented in its own graph. Each
figure is separated into several sections, with each hosting a graph. All these
graphs have a common x axis, which is printed only once, at the bottom of the
figure. The x axis contains the settings, which define the way that the networks in
the simulations are generated. The label on the axis is comprised of the
information in columns 2 to 5 of Table 1, separated by ‘|’. This is preceded by ‘T|’
if regularity was enforced, and by ‘F|’ if it was not, and followed by ‘|’ and the
value of shape1 parameter. On the y axis, some statistic is usually represented. In
most figures (including Figure 1), this statistic is the mean of the Adjusted Rand
Indices computed as described in Section 4.

In each section, there is a graph of the results for one group (blockmodeling
type or group with some other common characteristics) of methods accompanied
by a legend for these methods. Each small graph contains the background and main
information. The background information comprises a background color and the
thin lines. The legend for the background colors is found at the top of the figure.
Each background color represents the different settings classes described in the
previous subsection. The thin lines that are also part of the background provide
information about the performance of methods from other groups. This is useful
for positioning a group of methods that is in focus within the remaining methods
based on their performance.

The main information is contained in the thicker lines, which are also the only
lines for which the legend is provided. They represent the information about the
performance (usually the Adjusted Rand Index) of the methods of the group that is
in focus in a certain graph. The information is provided in the form of lines so it is
easier to assess the performance of a method and to distinguish among methods.
By no means is it meant as an indication that the x axis has a continuous scale
since the settings are clearly measured on a nominal (discrete) scale.

The number of repetitions (varying from 20 to 100) used to obtain a certain
value of the Adjusted Rand Index (a point on a graph) is indicated by the size of
the point. The size of the point increases with the logarithm of the number of
repetitions used. The points in the graph have the same size as those in the legend
when 20 repetitions were used.

Evaluation of Direct and Indirect Blockmodeling of... 113

5.2 Results for common methods

In this subsection only results for Stage 2 are presented in detail. The results of
Stage 1 will only be presented in more detail in Subsection 0 where some
modifications of the methods were tested. Other results of Stage 1 are only
included as comments next to the results of Stage 2 if they differ significantly. The
results from Stage 2 for the common methods (as defined in Section 4) are
presented in Figure 1 for shape1 = 8 and in Figure 2 for shape1 = 4. In addition,
the results of additional simulations testing the effect of using more iterations in
the REGE algorithm are presented in Figure 3 for shape1 = 8 (the results for
shape1 = 4 follow a similar pattern). It should be noted that, as the effect the
number of iterations on REGE was tested in additional simulations, the results of
these simulations (of REGE with more iterations) cannot be directly compared to
the results of other approaches.

The conclusions based on the different groups of methods are:
Structural equivalence: Methods for structural equivalence perform surprisingly

well considering that the networks were generated based on regular equivalence.
For example, they usually perform better than binary or valued blockmodeling
(without pre-specified blockmodeling) for regular equivalence. However, they
are usually not as good as methods of regular equivalence within homogeneity
and implicit blockmodeling. When comparing the two methods used for
structural equivalence, it is clear that the direct approach in most cases performs
much better than the indirect approach and never worse.

Binary and valued blockmodeling (without pre-specified blockmodeling): Binary
blockmodeling performed very poorly (usually the worst of all methods) in all
settings. In most cases, valued blockmodeling performed only slightly better
than binary blockmodeling. The most notable exceptions are the two-cluster
settings from the class of settings Not maximal regular, where valued
blockmodeling performed worse than binary blockmodeling and the settings
with AR blockmodel and different block maximums by rows (of the
blockmodel), where valued blockmodeling produced good results, while binary
blockmodeling performed as poorly as in other settings. Some ideas for the bad
performance of these methods are presented at the end of this subsection. This
is in large contrast to the results of Stage 1 where binary blockmodeling
performed well especially with the Clear pattern settings with large values of
shape1 parameter. It also performed well in some Not maximal regular settings,
where it even outperformed valued blockmodeling.

114 Aleš Žiberna

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
A

dj
us

te
d

R
an

d
In

de
x

Methods

ss|str
sedist|str

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

bin|reg|halfmax
bin|reg|min
val|reg|max|2min
val|reg|max|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

ad|reg|max
ss|reg|max
ad|reg|mean
ss|reg|mean

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

imp|reg|max
imp|wnull|reg|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
1
T
|

4
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

T
|
2
|
B
G
|

4
|
1
0
|

8

T
|
2
|
A
R
|

D
|
1
0
|

8

T
|
2
|
C
P
|

D
|
1
0
|

8

T
|
2
|
A
R
|

R
|
1
0
|

8

T
|
2
|
B
G
|

R
|
1
0
|

8

T
|
2
|
C
P
|

R
|
1
0
|

8

T
|
3
|
G
3
|
G
1
|
1
0
|

8

T
|
3
|

C
|
O
4
|
1
0
|

8

T
|
2
|
A
R
|

1
|

D
|

8

T
|
2
|
C
P
|

1
|

D
|

8

T
|
2
|
A
R
|

1
|

R
|

8

T
|
2
|
B
G
|

1
|

R
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
3
|
1
3
|

1
|
1
0
|

8

F
|
2
|
1
T
|

4
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

F
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
B
G
|

4
|
1
0
|

8

F
|
2
|
C
P
|

D
|
1
0
|

8

F
|
2
|
B
G
|

R
|
1
0
|

8

F
|
3
|
G
3
|
G
1
|
1
0
|

8

F
|
3
|

C
|
O
4
|
1
0
|

8

F
|
2
|
A
R
|

1
|

D
|

8

F
|
2
|
C
P
|

1
|

D
|

8

F
|
2
|
A
R
|

1
|

R
|

8

F
|
2
|
B
G
|

1
|

R
|

8

Methods

REGDI
REGDI-OW
REGGE
REGGE-OW

Figure 1: Results of simulations in Stage 2 for all settings with shape1 = 8.

Evaluation of Direct and Indirect Blockmodeling of... 115

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
A

dj
us

te
d

R
an

d
In

de
x

Methods

ss|str
sedist|str

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

bin|reg|halfmax
bin|reg|min
val|reg|max|2min
val|reg|max|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

ad|reg|max
ss|reg|max
ad|reg|mean
ss|reg|mean

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

imp|reg|max
imp|wnull|reg|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

4

T
|
3
|
1
3
|

1
|
1
0
|

4

T
|
2
|
1
T
|

4
|
1
0
|

4

T
|
2
|
B
G
|

1
|
1
0
|

4

T
|
2
|
C
P
|

1
|
1
0
|

4

T
|
3
|

C
|

1
|
1
0
|

4

T
|
2
|
B
G
|

4
|
1
0
|

4

T
|
2
|
A
R
|

D
|
1
0
|

4

T
|
2
|
C
P
|

D
|
1
0
|

4

T
|
2
|
A
R
|

R
|
1
0
|

4

T
|
2
|
B
G
|

R
|
1
0
|

4

T
|
2
|
C
P
|

R
|
1
0
|

4

T
|
3
|
G
3
|
G
1
|
1
0
|

4

T
|
3
|

C
|
O
4
|
1
0
|

4

T
|
2
|
A
R
|

1
|

D
|

4

T
|
2
|
C
P
|

1
|

D
|

4

T
|
2
|
A
R
|

1
|

R
|

4

T
|
2
|
B
G
|

1
|

R
|

4

F
|
2
|
1
T
|

1
|
1
0
|

4

F
|
3
|
1
3
|

1
|
1
0
|

4

F
|
2
|
1
T
|

4
|
1
0
|

4

F
|
2
|
B
G
|

1
|
1
0
|

4

F
|
2
|
C
P
|

1
|
1
0
|

4

F
|
3
|

C
|

1
|
1
0
|

4

F
|
2
|
B
G
|

4
|
1
0
|

4

F
|
2
|
C
P
|

D
|
1
0
|

4

F
|
2
|
B
G
|

R
|
1
0
|

4

F
|
3
|
G
3
|
G
1
|
1
0
|

4

F
|
3
|

C
|
O
4
|
1
0
|

4

F
|
2
|
A
R
|

1
|

D
|

4

F
|
2
|
C
P
|

1
|

D
|

4

F
|
2
|
A
R
|

1
|

R
|

4

F
|
2
|
B
G
|

1
|

R
|

4

Methods

REGDI
REGDI-OW
REGGE
REGGE-OW

Figure 2: Results of simulations in Stage 2 for all settings with shape1 = 4.

116 Aleš Žiberna

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
A

dj
us

te
d

R
an

d
In

de
x

Methods

REGGE|reg
REGGE|i=100|reg
REGGE|i=3|reg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

REGGE-OW|reg
REGGE-OW|i=100|reg
REGGE-OW|i=3|reg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

REGDI|reg
REGDI|i=100|reg
REGDI|i=3|reg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|

1
T
|

1
|
1
0
|

8

T
|
3
|

1
3
|

1
|
1
0
|

8

T
|
2
|

1
T
|

4
|
1
0
|

8

T
|
2
|

B
G
|

1
|
1
0
|

8

T
|
2
|

C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

T
|
2
|

B
G
|

4
|
1
0
|

8

T
|
2
|

A
R
|

D
|
1
0
|

8

T
|
2
|

C
P
|

D
|
1
0
|

8

T
|
2
|

A
R
|

R
|
1
0
|

8

T
|
2
|

B
G
|

R
|
1
0
|

8

T
|
2
|

C
P
|

R
|
1
0
|

8

T
|
3
|

G
3
|
G
1
|
1
0
|

8

T
|
3
|

C
|
O
4
|
1
0
|

8

T
|
2
|

A
R
|

1
|

D
|

8

T
|
2
|

C
P
|

1
|

D
|

8

T
|
2
|

A
R
|

1
|

R
|

8

T
|
2
|

B
G
|

1
|

R
|

8

F
|
2
|

1
T
|

1
|
1
0
|

8

F
|
3
|

1
3
|

1
|
1
0
|

8

F
|
2
|

1
T
|

4
|
1
0
|

8

F
|
2
|

B
G
|

1
|
1
0
|

8

F
|
2
|

C
P
|

1
|
1
0
|

8

F
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|

B
G
|

4
|
1
0
|

8

F
|
2
|

C
P
|

D
|
1
0
|

8

F
|
2
|

B
G
|

R
|
1
0
|

8

F
|
3
|

G
3
|
G
1
|
1
0
|

8

F
|
3
|

C
|
O
4
|
1
0
|

8

F
|
2
|

A
R
|

1
|

D
|

8

F
|
2
|

C
P
|

1
|

D
|

8

F
|
2
|

A
R
|

1
|

R
|

8

F
|
2
|

B
G
|

1
|

R
|

8

Methods

REGDI-OW|reg
REGDI-OW|i=100|reg
REGDI-OW|i=3|reg

Legend: "i=x", where x is a number (3 or 100) indicating the number of iterations used in the
REGE algorithm. If this is not present, the result is from the original Stage 2 simulations where
the number of iterations was set to 3.

Figure 3: Testing the effect of the number of iterations in REGE.

Evaluation of Direct and Indirect Blockmodeling of... 117

Implicit blockmodeling (without pre-specified blockmodeling): Implicit
blockmodeling with regular blocks only performed similarly to homogeneity
blockmodeling according to max-regular equivalence, although slightly worse in
most settings. However, it also performed slightly better in some. Using null
blocks in addition to regular blocks led to considerably inferior results in most
settings. When using null blocks, the results were similar to those of valued
blockmodeling. On the other hand, in Stage 1 the use of null blocks slightly
improved the performance in some settings16 and reduced it in some settings17.

REGE with 3 iterations: REGE with 3 iterations performed relatively well in
most settings where the partitions that were searched for were maximal regular,
at least when valued information is taken into account (all settings except those
labeled Not maximal regular and setting ‘(T/F)|2|AR| 1| D’). This is
understandable as REGE was designed to find the maximal regular partition.
However, even in the settings where it performed well it usually performed
slightly worse than homogeneity and implicit blockmodeling, especially when
the shape1 parameter was 8 and regularity was not enforced. All four versions
performed similarly in most cases. Still, REGGE-OW performed on average
slightly better than the rest as it is also theoretically the most suitable REGE
version. That is, the networks that were generated based on partitions are more
similar to the ideal18 networks (based on these partitions) for that REGE
algorithm than to any other (REGE algorithm).

REGE with 100 iterations: As only 3 iterations might be inadequate, an
additional test about the effect of the number of iterations was performed and
the results for shape1 = 8 are presented in Figure 3 (the results for shape1 = 4
follow a similar pattern). Here, both results of the original simulations for
REGE are presented together with the results of additional simulations for
REGE with 3 and 100 iterations. The new results are not directly comparable
with those for other approaches (as they are based on different simulation runs).
However, we can assume that the effect of going from 3 to 100 iterations would
have been similar even on those runs. With more iterations REGE becomes one
of the best approaches (in particular REGDI-OW). What is very surprising is
that even in some Not maximal regular settings REGE can perform very well if
the number of iterations is increased (to 100), even so it seems that one of the
REGE approaches (i.e. REGDI-OW) is the best approach in these settings19.
Not only is this very strong effect surprising, but even more surprising is the
fact that REGE algorithms perform well in such settings. This actually means

16 E.g. settings ‘T|3| G3|G2|10| 8’, ‘T|3| 2T|G3|10| 8’ and ‘T|3|C2P|G3|10| 8’.
17 E.g. settings ‘T|2| CP| 1|10| 8’, ‘T|2| CP| 4|10| 8’ and ‘T|2| AR| D|10| 8’.
18 What kind of network is ‘ideal’ for most a versions of REGE algorithm is demonstrated in

Žiberna (2008).
19 As the effect the number of iterations on REGE was tested in additional simulations, the

results of these simulations (of REGE with more iterations) cannot be directly compared to the
results of other approaches.

118 Aleš Žiberna

that they do not perform as designed as they should find a maximal regular
partition and that is, in these settings, a partition with all units in one cluster.
This is actually completely true only for REGGE-OW since this is the only
version of REGE that is totally compatible with the way networks were
simulated in this study. Interestingly, for this version of REGE the effect of the
number of iterations is the smallest. The good performance of REGGE and
REGDI in the setting with blockmodel C is expected. The reason for the good
performance of REGE lies in the fact that the networks generated are not ideal
(they do not perfectly conform to regular equivalence, at least not when taking
values into account). As these imperfections are relatively small, they need
more iterations to have an effect. Further research is needed for a more precise
explanation. We can, however, conclude that for such relatively small networks
3 iterations is enough for a network where REGE is expected to perform well;
however, more iterations can improve the results for networks where the
structure is unclear to REGE. When using 100 iterations REGE performs
Three of the results presented above are most surprising. The first one is the

good performance of sum of squares blockmodeling according to structural
equivalence. The second is the bad performance of binary and valued
blockmodeling when used without pre-specified blockmodels. The third one is the
good performance of REGE with 100 iterations in settings Not maximal regular,
as it was not designed to perform well in such settings.

One possible reason for the good performance of sum of squares
blockmodeling according to structural equivalence lies in the fact that sum of
squares blockmodeling does not compare individual pairs of ties as indirect
approaches or searches for blocks where all tie values are either approximately
zero or over some pre-specified value (as values and binary blockmodeling). Sum
of squares blockmodeling instead searches for blocks that are relatively
homogeneous, where cell values are as close as possible to the mean of the cell
values in that block. Therefore, it tries to cluster most of the high values together
and most of the low values together. First, this allows it to identify null blocks.
Second, as it is usually impossible to find blocks with only high values the next
best thing to do is to find blocks where there is larger concentration of high values
than in other blocks. Sum of squares blockmodeling according to structural
equivalence can do that and these blocks are usually regular blocks that are
searched for or at least similar to them.

The poor performance of binary and valued blockmodeling, especially in the
class of settings Clear pattern and partly Not maximal regular when regularity
was enforced, is very surprising. Several factors may have contributed to such
results. Results of the evaluation of the optimization presented later in Subsection
0 indicate at least two possible factors. The first, that affects mainly binary
blockmodeling especially in the Not maximal regular class of settings when
regularity is enforced, is that binary blockmodeling simply does not measure the
inconsistency of a partition with ‘valued’ regular equivalence (that is in valued

Evaluation of Direct and Indirect Blockmodeling of... 119

networks) precisely enough. This is indicated by the fact that partitions other than
the correct partition and in fact very different from the correct one with no
inconsistencies (with the value of the criterion function or total inconsistency of
the partition equal to 0) were found. The applications of binary blockmodeling to
real valued networks (e.g. in Žiberna, 2007a, 2007b, 2008) have also shown its
tendency to find several partitions as ‘optimal’ when used to find relatively ‘loose’
equivalences such as regular equivalence. The other factor is that the optimization
procedure. As can be seen in Subsection 0, this factor is mostly present in the class
of settings Clear pattern when regularity is enforced (which are most suited out of
all the settings for both binary and valued blockmodeling). Figure 9 shows that in
these settings the correct partition has a smaller value of the total inconsistency
(criterion function) than the partition found using the local optimization of 20 (or
even 100) random starting partition. Obviously, the optimization procedure only
finds the local and not global minimums of the criterion function (total
inconsistency).

5.3 Results for pre-specified blockmodeling

The results for pre-specified blockmodeling are presented in Figure 4 for shape1 =
8 and in Figure 5 for shape1 = 4. As indicated in Table 1, pre-specified
blockmodeling was used in only some settings. Those on which it was used were
selected as representatives of appropriate classes of settings. More settings were
selected from the setting classes Clear pattern and Not maximal regular as these
were the two classes of settings where the poor performance of binary and valued
blockmodeling was the most surprising and where implicit blockmodeling (among
the settings where regularity was enforced) had much room for improvement.

As expected, pre-specified blockmodeling improved the performance of all
blockmodeling types where it was used (in the case of implicit blockmodeling only
if we compare it to its use with both null and regular blocks). The binary and
valued blockmodeling according to pre-specified blockmodel performed similarly,
although valued blockmodeling (with parameter m determined as the maximum tie
value in the network) performed slightly better, especially in settings where
shape1 = 4. Implicit blockmodeling according to a pre-specified blockmodel
performed worse than the binary and valued blockmodeling according to
pre-specified blockmodel. The methods according to pre-specified blockmodel
especially excelled in the class of settings Not maximal regular, where they
outperformed all other methods. Even in other settings, these blockmodeling types
with pre-specified blockmodeling performed reasonably well, especially when
shape1 = 8, particularly when compared to the terrible performance of binary and
valued blockmodeling without pre-specified blockmodeling. In Stage 1 these
approaches (with pre-specified blockmodeling) were even among the best
approaches in almost all settings.

120 Aleš Žiberna

5.4 Effects of normalizations

In addition to the main body of simulations, a few additional simulations were also
made to determine the effect of block size normalization on all generalized
blockmodeling approaches and maximum normalization on implicit
blockmodeling. These simulations were made as part of Stage 1 (smaller networks)
using only a selection of settings as indicated in Table 1 with the marking Norm.
An attempt was made to select settings as diverse as possible, while not using
those settings where the shape2 parameter was set to four in all blocks.

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

bin|reg|halfmax
bin|reg|min
bin|pre|halfmax
bin|pre|min

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

val|reg|max|2min
val|reg|max|max
val|pre|max|2min
val|pre|max|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
1
T
|

4
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

T
|
2
|
C
P
|

D
|
1
0
|

8

T
|
2
|
B
G
|

R
|
1
0
|

8

T
|
2
|
B
G
|

1
|

R
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
3
|
1
3
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

F
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
C
P
|

D
|
1
0
|

8

F
|
2
|
B
G
|

R
|
1
0
|

8

F
|
2
|
B
G
|

1
|

R
|

8

Methods

imp|reg|max
imp|wnull|reg|max
imp|pre|max

Figure 4: Results for pre-specified blockmodeling for selected settings where parameter

shape1 = 8.

Evaluation of Direct and Indirect Blockmodeling of... 121

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
A

dj
us

te
d

R
an

d
In

de
x

Methods

bin|reg|halfmax
bin|reg|min
bin|pre|halfmax
bin|pre|min

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

Methods

val|reg|max|2min
val|reg|max|max
val|pre|max|2min
val|pre|max|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

4

T
|
3
|
1
3
|

1
|
1
0
|

4

T
|
2
|
1
T
|

4
|
1
0
|

4

T
|
2
|
B
G
|

1
|
1
0
|

4

T
|
2
|
C
P
|

1
|
1
0
|

4

T
|
3
|

C
|

1
|
1
0
|

4

T
|
2
|
C
P
|

D
|
1
0
|

4

T
|
2
|
B
G
|

R
|
1
0
|

4

T
|
2
|
B
G
|

1
|

R
|

4

F
|
2
|
1
T
|

1
|
1
0
|

4

F
|
3
|
1
3
|

1
|
1
0
|

4

F
|
2
|
B
G
|

1
|
1
0
|

4

F
|
2
|
C
P
|

1
|
1
0
|

4

F
|
3
|

C
|

1
|
1
0
|

4

F
|
2
|
C
P
|

D
|
1
0
|

4

F
|
2
|
B
G
|

R
|
1
0
|

4

F
|
2
|
B
G
|

1
|

R
|

4

Methods

imp|reg|max
imp|wnull|reg|max
imp|pre|max

Figure 5: Results for pre-specified blockmodeling for selected settings where parameter
shape1 = 4.

The results that show the effect of block size normalization are shown in
Figure 6 for shape1 = 8. The effect was also tested for shape1 = 4; however, the
results are not shown due to space limitations. In general, there is no consistent
effect as the effect of the normalization can be either positive or negative.
However, the effect is relatively consistent (when present) within certain settings
(across different methods). For example, it is usually negative in settings 2|1T|
1|10 and 2|CP| D|10, while it is usually positive in setting F|2|AR| D|10.

Therefore, the use of maximum normalization is not advised. Regarding the
block size normalization, no clear advice can be given. However, we must be
aware that use of block size normalization has its pitfalls. It may lead to a
blockmodel where one large block contains all the inconsistencies, while the
remaining blocks are ideal (usually null, especially in sparse networks) blocks.

122 Aleš Žiberna

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

With block size normalization

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Without block size normalization

A
dj

us
te

d
R

an
d

In
de

x

Methods

ss|str|sizeNorm
ss|str
sedist|str

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With block size normalization

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Without block size normalization

A
dj

us
te

d
R

an
d

In
de

x

Methods

bin|reg|halfmax|sizeNorm
bin|reg|min|sizeNorm
bin|pre|halfmax|sizeNorm
bin|pre|min|sizeNorm
bin|reg|halfmax
bin|reg|min
bin|pre|halfmax
bin|pre|min

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With block size normalization

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Without block size normalization

A
dj

us
te

d
R

an
d

In
de

x

Methods

val|reg|max|2min|sizeNorm
val|reg|max|max|sizeNorm
val|pre|max|2min|sizeNorm
val|pre|max|max|sizeNorm
val|reg|max|2min
val|reg|max|max
val|pre|max|2min
val|pre|max|max

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With block size normalization

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Without block size normalization

A
dj

us
te

d
R

an
d

In
de

x

Methods

ad|reg|max|sizeNorm
ss|reg|max|sizeNorm
ad|reg|mean|sizeNorm
ss|reg|mean|sizeNorm
ad|reg|max
ss|reg|max
ad|reg|mean
ss|reg|mean

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With block size normalization

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|

1
T
|

1
|
1
0
|

8

T
|
2
|

B
G
|

1
|
1
0
|

8

T
|
2
|

C
P
|

1
|
1
0
|

8

T
|
2
|

A
R
|

D
|
1
0
|

8

T
|
2
|

C
P
|

D
|
1
0
|

8

T
|
2
|

B
G
|

R
|
1
0
|

8

T
|
2
|

A
R
|

1
|

D
|

8

T
|
2
|

C
P
|

1
|

R
|

8

F
|
2
|

1
T
|

1
|
1
0
|

8

F
|
2
|

B
G
|

1
|
1
0
|

8

F
|
2
|

C
P
|

1
|
1
0
|

8

F
|
2
|

A
R
|

D
|
1
0
|

8

F
|
2
|

C
P
|

D
|
1
0
|

8

F
|
2
|

B
G
|

R
|
1
0
|

8

F
|
2
|

A
R
|

1
|

D
|

8

F
|
2
|

C
P
|

1
|

R
|

8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Without block size normalization

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|

1
T
|

1
|
1
0
|

8

T
|
2
|

B
G
|

1
|
1
0
|

8

T
|
2
|

C
P
|

1
|
1
0
|

8

T
|
2
|

A
R
|

D
|
1
0
|

8

T
|
2
|

C
P
|

D
|
1
0
|

8

T
|
2
|

B
G
|

R
|
1
0
|

8

T
|
2
|

A
R
|

1
|

D
|

8

T
|
2
|

C
P
|

1
|

R
|

8

F
|
2
|

1
T
|

1
|
1
0
|

8

F
|
2
|

B
G
|

1
|
1
0
|

8

F
|
2
|

C
P
|

1
|
1
0
|

8

F
|
2
|

A
R
|

D
|
1
0
|

8

F
|
2
|

C
P
|

D
|
1
0
|

8

F
|
2
|

B
G
|

R
|
1
0
|

8

F
|
2
|

A
R
|

1
|

D
|

8

F
|
2
|

C
P
|

1
|

R
|

8

Methods

imp|reg|max|sizeNorm
imp|wnull|reg|max|sizeNorm
imp|pre|max|sizeNorm
imp|reg|max
imp|wnull|reg|max
imp|pre|max

Figure 6: Effects of block size normalization for selected settings with shape1 = 8.

Evaluation of Direct and Indirect Blockmodeling of... 123

5.5 Evaluation of optimization

The results obtained using the direct approach presented up till now were produced
using the local optimization of 20 random starting partitions. The aim of this
subsection is to try to evaluate if the poor performance of direct approaches (when
it occurred), especially the very poor performance of binary and valued
blockmodeling, might be caused by the fact that the optimization of 20 random
starting partitions finds only locally but not globally optimal partitions.

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.

With block size normalization Without block size normalization

W
it

h
 m

ax
im

u
m

 n
o

rm
.

W
it

h
o

u
t

m
ax

im
u

m
 n

o
rm

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|

1
T
|

1
|
1
0
|

8

T
|
2
|

B
G
|

1
|
1
0
|

8

T
|
2
|

C
P
|

1
|
1
0
|

8

T
|
2
|

A
R
|

D
|
1
0
|

8

T
|
2
|

C
P
|

D
|
1
0
|

8

T
|
2
|

B
G
|

R
|
1
0
|

8

T
|
2
|

A
R
|

1
|

D
|

8

T
|
2
|

C
P
|

1
|

R
|

8

F
|
2
|

1
T
|

1
|
1
0
|

8

F
|
2
|

B
G
|

1
|
1
0
|

8

F
|
2
|

C
P
|

1
|
1
0
|

8

F
|
2
|

A
R
|

D
|
1
0
|

8

F
|
2
|

C
P
|

D
|
1
0
|

8

F
|
2
|

B
G
|

R
|
1
0
|

8

F
|
2
|

A
R
|

1
|

D
|

8

F
|
2
|

C
P
|

1
|

R
|

8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|

1
T
|

1
|
1
0
|

8

T
|
2
|

B
G
|

1
|
1
0
|

8

T
|
2
|

C
P
|

1
|
1
0
|

8

T
|
2
|

A
R
|

D
|
1
0
|

8

T
|
2
|

C
P
|

D
|
1
0
|

8

T
|
2
|

B
G
|

R
|
1
0
|

8

T
|
2
|

A
R
|

1
|

D
|

8

T
|
2
|

C
P
|

1
|

R
|

8

F
|
2
|

1
T
|

1
|
1
0
|

8

F
|
2
|

B
G
|

1
|
1
0
|

8

F
|
2
|

C
P
|

1
|
1
0
|

8

F
|
2
|

A
R
|

D
|
1
0
|

8

F
|
2
|

C
P
|

D
|
1
0
|

8

F
|
2
|

B
G
|

R
|
1
0
|

8

F
|
2
|

A
R
|

1
|

D
|

8

F
|
2
|

C
P
|

1
|

R
|

8

Methods

imp|reg|max|sizeNorm|maxNorm
imp|wnull|reg|max|sizeNorm|maxNorm
imp|pre|max|sizeNorm|maxNorm
imp|reg|max|maxNorm
imp|wnull|reg|max|maxNorm
imp|pre|max|maxNorm
imp|reg|max|sizeNorm
imp|wnull|reg|max|sizeNorm
imp|pre|max|sizeNorm
imp|reg|max
imp|wnull|reg|max
imp|pre|max

Figure 7: Effects of block size and maximum normalization (and their interaction) on

implicit blockmodeling for selected settings with shape1 = 8.

The aim is also to assess if the correct partitions could be globally optimal
partitions. This is done only on a subset of settings (also indicated in Table 1) in
order to save time. Only settings from two classes of settings were selected, that is
from the classes Clear pattern and Not maximal regular, as these were the two
classes of settings where the poor performance of binary and valued
blockmodeling was the most surprising. These are also the two classes of settings
where other approaches have most room for improvement. In order to achieve this,
the Adjusted Rand Indices obtained using optimization of 20 random starting
partitions are compared with those obtained using the optimization of 100 starting
partitions and with those obtained with an optimization of the correct partition
(the one used in generation of the networks).

124 Aleš Žiberna

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.

Comparison with 100 starting points Comparison with optimization of correct partition

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

Methods

ss|str
ss|str|100
ss|str|OC

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x Methods

bin|reg|halfmax
bin|reg|min
bin|reg|halfmax|100
bin|reg|min|100
bin|reg|halfmax|OC
bin|reg|min|OC

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

Methods

val|reg|max|2min
val|reg|max|max
val|reg|max|2min|100
val|reg|max|max|100
val|reg|max|2min|OC
val|reg|max|max|OC

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x Methods

ad|reg|max
ss|reg|max
ad|reg|max|100
ss|reg|max|100
ad|reg|max|OC
ss|reg|max|OC

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

Methods

ad|reg|mean
ss|reg|mean
ad|reg|mean|100
ss|reg|mean|100
ad|reg|mean|OC
ss|reg|mean|OC

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

0.
0

0.
4

0.
8

A
dj

us
te

d
R

an
d

In
de

x

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

Methods

imp|reg|max
imp|wnull|reg|max
imp|reg|max|100
imp|wnull|reg|max|100
imp|reg|max|OC
imp|wnull|reg|max|OC

Figure 8: Results obtained by a local optimization of 20 and 100 random starting
partitions and of the correct partition.

Evaluation of Direct and Indirect Blockmodeling of... 125

Settings

Clear pattern Not maximal regular Different dist. par. Different block max.

Comparison with:

opt. of 100 starting points opt. of correct partition correct partition

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

Methods

ss|str
ss|str|100
ss|str|OC
ss|str|Cor

0
10

20
30

40
50

In
co

ns
is

te
nc

y

0
10

20
30

40
50

In
co

ns
is

te
nc

y

0
10

20
30

40
50

In
co

ns
is

te
nc

y

Methods

bin|reg|halfmax
bin|reg|min
bin|reg|halfmax|100
bin|reg|min|100
bin|reg|halfmax|OC
bin|reg|min|OC
bin|reg|halfmax|Cor
bin|reg|min|Cor

60
0

70
0

80
0

90
0

10
00

In
co

ns
is

te
nc

y

60
0

70
0

80
0

90
0

10
00

In
co

ns
is

te
nc

y

60
0

70
0

80
0

90
0

10
00

In
co

ns
is

te
nc

y

Methods

val|reg|max|2min
val|reg|max|max
val|reg|max|2min|100
val|reg|max|max|100
val|reg|max|2min|OC
val|reg|max|max|OC
val|reg|max|2min|Cor
val|reg|max|max|Cor

50
0

10
00

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

50
0

10
00

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

50
0

10
00

15
00

20
00

25
00

30
00

35
00

In
co

ns
is

te
nc

y

Methods

ad|reg|max
ss|reg|max
ad|reg|max|100
ss|reg|max|100
ad|reg|max|OC
ss|reg|max|OC
ad|reg|max|Cor
ss|reg|max|Cor

10
0

15
0

20
0

25
0

30
0

In
co

ns
is

te
nc

y

10
0

15
0

20
0

25
0

30
0

In
co

ns
is

te
nc

y

10
0

15
0

20
0

25
0

30
0

In
co

ns
is

te
nc

y

Methods

ad|reg|mean
ss|reg|mean
ad|reg|mean|100
ss|reg|mean|100
ad|reg|mean|OC
ss|reg|mean|OC
ad|reg|mean|Cor
ss|reg|mean|Cor

60
0

80
0

10
00

12
00

14
00

16
00

18
00

In
co

ns
is

te
nc

y

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

60
0

80
0

10
00

12
00

14
00

16
00

18
00

In
co

ns
is

te
nc

y

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

60
0

80
0

10
00

12
00

14
00

16
00

18
00

In
co

ns
is

te
nc

y

T
|
2
|
1
T
|

1
|
1
0
|

8

T
|
3
|
1
3
|

1
|
1
0
|

8

T
|
2
|
B
G
|

1
|
1
0
|

8

T
|
2
|
C
P
|

1
|
1
0
|

8

T
|
3
|

C
|

1
|
1
0
|

8

F
|
2
|
1
T
|

1
|
1
0
|

8

F
|
2
|
B
G
|

1
|
1
0
|

8

F
|
2
|
C
P
|

1
|
1
0
|

8

Methods

imp|reg|max
imp|wnull|reg|max
imp|reg|max|100
imp|wnull|reg|max|100
imp|reg|max|OC
imp|wnull|reg|max|OC
imp|reg|max|Cor
imp|wnull|reg|max|Cor

Figure 9: Comparison of inconsistencies.

126 Aleš Žiberna

The results are presented in Figure 8. However, here the comparison is not
made only according to the Adjusted Rand Indices but also to the (total)
inconsistencies20. The inconsistencies obtained using the local optimization of 20
random starting partitions are compared with those obtained using the local
optimization of 100 random starting partitions, with those obtained using the
optimization of the correct partitions, and with the inconsistencies of the correct
partitions. The values of the inconsistencies are presented in Figure 9.

The conclusions based on both measures are:
Structural equivalence: Using more random starting partitions did not have a

consistent effect on sum of squares blockmodeling according to structural
equivalence. When only using the correct partition as the starting partition, the
obtained partition was closer to the correct partition which is, of course, natural
as it served as a starting partition. Especially striking is the similarity of the
inconsistencies obtained with all four methods and that the inconsistencies of
the correct partitions are almost the same as those obtained using some form of
local optimization that nevertheless produced quite different partitions. Because
of such similarity of the obtained inconsistencies a possibility that and error has
been made when producing these figures was even considered. However, a
careful examination of the generated networks confirmed that all these
relatively different partitions have very similar inconsistencies. This indicates
that optimization was successful.

Binary blockmodeling (without pre-specified blockmodeling): Using 100 random
starting partitions instead of 20 improved the performance of binary
blockmodeling in two settings (although not enormously), while not having
much effect in the other settings. Using the correct partition as a starting
partition led to very good results, especially in those settings where regularity
was enforced. Settings where regularity was enforced using the correct partition
as a starting partition also led to smaller inconsistencies, indicating that the
convergence to a local (and not a global) maximum is a problem. In settings
where regularity was not enforced, these approaches led to higher
inconsistencies and the correct partition was associated with even higher ones,
indicating that binary blockmodeling is inappropriate for such networks.

Valued blockmodeling (without pre-specified blockmodeling): Using 100 random
starting partitions instead of 20 did not consistently improve the performance of
valued blockmodeling. On the other hand, using the correct partition as a
starting partition of the local optimization had a similarly favorable effect as on
binary blockmodeling. However, it did not consistently lower the
inconsistencies as was the case with binary blockmodeling, indicating that it
just led to more similar local optima. Also, the inconsistencies of the correct

20 Total inconsistency measures how inconsistent are all empirical blocks with the ideal blocks.

It represents the valued or the criterion function that is minimized in direct blockmodeling
approaches.

Evaluation of Direct and Indirect Blockmodeling of... 127

partitions were not consistently lower than of those obtained with a local
optimization with random starting partitions, indicating that it might not be an
appropriate approach to such problems.

Homogeneity blockmodeling: Increasing the number of random starting partitions
considerably improved the performance of sum of squares blockmodeling
according to max-regular equivalence in the class of settings Not maximal
regular (especially with regularity enforced), while it had little effect in other
settings and methods. Using the correct partition also considerably improved
the results. However, it also increased the inconsistencies in some settings,
although considerably in just two settings. The inconsistencies of the correct
partition were similar or slightly higher.

Implicit blockmodeling (without pre-specified blockmodeling): For implicit
blockmodeling very similar things could be stated as for homogeneity
blockmodeling, except the effect of the increased number of random starting
partitions is even smaller.
For most of the methods, the increase in the number of random starting

partitions did not have a considerable effect although there are some combinations
of settings and methods where an improvement was noted. Using the correct
partition almost always led to higher Adjusted Rand Indices as could expected
since the same partition used in comparison was also used as a starting partition.
However, in most cases use of the correct partition as a starting partition often led
to higher inconsistencies, with binary blockmodeling (when regularity was
enforced) being the most notable exception. The inconsistencies for the correct
partition were also often higher, with binary blockmodeling (when regularity was
enforced) again being the most notable exception. The inconsistencies of the
correct partition higher than the partitions obtained through local optimization are
especially problematic when the Adjusted Rand Indices of the partitions obtained
through local optimization are relatively low. In such situations, we can conclude
that those approaches where this occurs are inappropriate for partitioning the
networks generated in these simulations.

6 Limitations

The simulation study presented in this paper has several limitations. These
limitations are either due to the way the networks were generated or due to the
implementation of the methods used to analyze these networks. The following
aspects of the way the networks were simulated might have made the generated
networks less realistic and thus rendered the results less relevant:
The size of the networks: Only networks of size 11 and 25 units were generated.

Larger networks were not generated due to the time needed to analyze them
using generalized blockmodeling of valued networks. This is a serious

128 Aleš Žiberna

limitation of the study for two reasons. First, the study aims at evaluating
methods for detecting regular equivalence and therefore regular blocks.
However, regular blocks are defined as such blocks where there is at least one
tie (in the binary sense) in each row and in each column. When networks grow
larger (and at fixed number of clusters, also blocks), this requirement can be
fulfilled by increasingly sparser blocks. Therefore, they are presumably also
much harder to detect. The second reason is an empirical one. When comparing
results obtained on networks with 11 units with those with 25 units the
performance of all methods considerably worsened, indicating that the size of
the network definitively has an important impact on the results of the
evaluation. I assume that increasing the size of the network further would have
similar yet diminishing effect, although this should of course be tested with
further simulations.

Simulation of the ‘0’ ties: The ‘0’ ties were simulated from the beta distribution
described in Appendix 1. This might be problematic since practically none of
these ‘0’ ties had an exact value of 0. A tie value of 0 means that the tie does
not exist. Most real networks are, on the other hand, usually relatively sparse,
that is, they have a lot of pairs of units that are not connected, they have a lot
ties with value of exactly 0. There are also examples of real networks where
exact ‘0’ ties are rare, e.g. trade networks among countries. The affect of this
assumption was tested in Stage 1 (results are presented in Žiberna (2007b, 187-
188)) where it was shown that giving the exact value of 0 to 90% of the ‘0’ ties
improves the performance in most combinations of settings and methods.
However, the effect is not strong in those settings with a high shape1 parameter
(except for valued blockmodeling).

No binary inconsistencies in null blocks: The binary networks based on which
valued networks were obtained were generated without any inconsistencies in
null blocks. The assumption was that ties are rarely reported if not preset and
that the inconsistencies based on values added to these ‘0’ ties would be
sufficient. The problem with this assumption is that it contradicts the idea that
at least a large portion of the ‘0’ ties does not have to have a value of exactly 0.

Distribution used for generating the tie values: In the simulation, a beta
distribution with specific parameters was used to generate the tie values.
Although the choice of the distribution and the parameters was based on real
networks, they do not represent all networks. For certain types of networks,
different distributions or parameters are more appropriate. Also, the values in a
lot of the real social networks have a discrete tie value distribution, while here a
continuous distribution was used.
The implementation of the methods used in these simulations also affected the

results. This problem is especially relevant for generalized blockmodeling
methods. However, as the implementation of all generalized blockmodeling
approaches suffers from the same problems listed below, which means that the
results obtained in this paper can be used to compare them. The most problematic

Evaluation of Direct and Indirect Blockmodeling of... 129

aspects of implementing the generalized blockmodeling approaches in the
blockmodeling 0.1.2 package (Žiberna, 2006) are:
The experimental state of the package: the blockmodeling package is still

experimental. Most of the following limitations stem from this fact, e.g. little
effort was put into optimizing the code for speed, some procedures are still
being improved etc.

Speed of execution: one of the main problems of implementing the generalized
blockmodeling approaches used in this paper is the speed of execution. The
most serious affect this limitation of the implementation had on these
simulations is that usually local optimization was done on only 20 random
stating partitions. This is not only a problem of the methods (which are by
themselves very computationally intensive), but also of the implementation
since the implementation of binary blockmodeling in Pajek 1.11 (Batagelj and
Mrvar, 2006) is about 1000 times faster than the one in the package used. If
1000 random starting partitions could be optimized, we could be much more
confident that the partition(s) found using a local optimization is at least close
to the global optimum. However, this was not possible as even by optimizing
just 20 random points, about two weeks and 40 computers were needed to
complete the simulations.

Generation of the random starting partitions: One thing that was not
implemented well in version 0.1.2 is the procedure used to generate starting
partitions for the local optimization (used in generalized blockmodeling
approaches). In this version, the starting partitions were chosen so the
probabilities of belonging to a cluster are the same for all clusters. Such a
procedure has a tendency to generate partitions with approximately equally
sized clusters. In real applications, this is a serious shortcoming as the partitions
are often not even approximately equally sized. Although the partitions used in
this paper did not have clusters of extremely different sizes, this shortcoming
might still have some effect since partitions with unequal clusters may be a
more suitable starting partition. In any case, the same procedure was used to
select the starting partitions for all generalized blockmodeling approaches.
Another limitation of this study is that initially only 3 iterations were used in

the REGE algorithms. However as this might be inadequate, we later tested the
effect of using 100 iterations instead of 3. Based on these tests, we can conclude
that for such relatively small networks 3 iterations is enough for a network where
REGE is expected to perform well; however, more iterations can improve the
results for networks where the structure is unclear to REGE. These results were
also incorporated in the discussion of the main results and conclusion.

130 Aleš Žiberna

7 Conclusions

These conclusions are mainly based on the simulation of networks with 25 units.
While networks with only 11 units were also analyzed, 11 units are too few to
produce relevant results regarding regular equivalence. The difference between the
results based on networks with 11 and those based on networks with 25 units is
striking. Most methods, but especially binary and valued blockmodeling,
performed considerably better on a smaller network. Two factors are most likely
responsible for this. The first one is that the generated regular blocks are much
denser when they are smaller and denser blocks are easier to identify. The second
one is there are much less possible partitions into two or three clusters of 11 units
than of 25. Due to this, a full search was used when analyzing networks with 11
units to find two-cluster partitions. For three-cluster partitions a local optimization
with 20 random starting points was used, however this was sufficient for such a
small number of units. In contrast, 20 random starting partitions was shown to be
inadequate (Subsection 5.5) for partitions of 25 units into two or three clusters.

The most surprising result is the relative effectiveness of the methods for
structural equivalence on networks generated based on max-regular equivalence.
The sum of squares blockmodeling according to structural equivalence (direct
approach) performed especially well. Although this clearly also proves the
usefulness of these methods for the analysis of such networks, it also creates doubt
about whether the way the networks were generated was appropriate. This doubt is
also supported by some examples in Žiberna (2007b), as in most of them the
methods for structural equivalence often did not lead to satisfactory results. There
are however some arguments that explain the good performance of sum of squares
blockmodeling on regular networks, which were explained near the end of
Subsection 5.2. Therefore, we can conclude that the good performance of methods
for structural equivalence should be taken with caution, but not dismissed.

When comparing the two methods for structural equivalence, namely an
indirect approach for structural equivalence or, more precisely, Ward’s
hierarchical clustering of distances computed using Corrected Euclidean-like
dissimilarity (Burt and Minor, 1983 in Batagelj, Ferligoj and Doreian, 1992) and a
direct approach of sum of squares blockmodeling according to structural
equivalence, the second performed much better.

The simulation results have also shown that the homogeneity blockmodeling,
REGE and (although somewhat less) implicit blockmodeling are well suited for
identifying regular portions in valued networks (when regularity was enforced).
Until now, the REGE algorithm (the direct approach) was the only method
designed to find partitions in terms of regular equivalence in valued networks. We
have shown that homogeneity blockmodeling performs at least as well as REGE.
In addition, homogeneity blockmodeling like other methods of generalized
blockmodeling can, unlike REGE, also be used to partition the network based on

Evaluation of Direct and Indirect Blockmodeling of... 131

other kinds of equivalences (other than regular). It can be used with other allowed
block types (other than (max-)regular) and to some extent also with pre-specified
blockmodels. REGE (with 100 iterations) performed well in all settings for which
it was designed and in some where it was not supposed to, which itself calls for
further investigation. It was expected that REGE would perform well only in
settings where the partition that was searched for was maximal regular (at least
when taking the values of ties into account) as this is what it was designed for.
Implicit blockmodeling performed similarly as homogeneity blockmodeling and
REGE, although slightly worse.

Binary and valued blockmodeling performed relatively well in Stage 1,
especially when the partition searched for was not maximal regular and no
additional information in terms of tie values was provided. Unfortunately, they
usually performed terribly in Stage 2 (where a local search with 20 random starting
partitions was used in networks with 25 units). Especially in the case of binary
blockmodeling, there are indications that the problem is in the search procedure as
the correct partition usually had smaller inconsistency than the one found by a
local search. As mentioned at the beginning of this section, the number of random
stating partitions used (20) is too small for a network with 25 units. Also, the
random stating partitions might not have been chosen optimally. Both points are
discussed in the previous section.

However, the poor performance only occurs when these two blockmodeling
types were not used with pre-specified blockmodeling. When this additional
information was used, they were usually the best or among the best methods. The
use of pre-specified blockmodeling also considerably improved the results of
implicit blockmodeling in settings where the partition that was searched for was
not maximal regular.

8 Ideas for future work

The first set of ideas for further work of course deals with the limitations of the
simulations presented in this paper, as discussed in Section 6. However, in
addition to these more technical improvements, many questions that can also be
answered using simulations are still open and are presented below.

There is also a need for further simulation whereby blockmodeling methods
could be evaluated more thoroughly for networks generated based on generalized
equivalence. These networks should be generated based on blockmodels with
mixed types of blocks, which are blockmodels that include the block of type null
and of at least two block types among the following: regular, row- and column-
dominant, row- and column-functional etc.

Also, two of the open problem sets mentioned by Doreian (2006) are very
appropriate to be studied by simulations. These are the effects of missing data (or
more generally inaccurate data) and of the network boundary problem. The

132 Aleš Žiberna

network boundary problem arises when it is problematic to determine which units
should be included in the network.

In addition to extending the simulations by including networks with different
features as suggested above, it would also be useful to evaluate other methods
such as stochastic blockmodeling and other optimization procedures (within
generalized blockmodeling) in comparison to a local search.

References

[1] Batagelj, V., Doreian, P., and Ferligoj A. (1992): An optimizational approach
to regular equivalence. Social Networks, 14, 121–135.

[2] Batagelj, V. and Ferligoj, A. (2000): Clustering relational data. In W. Gaul,
O. Opitz, M. Schader (Eds.): Data Analysis, 3 – 15. New York:
Springer-Verlag.

[3] Batagelj, V., Ferligoj, A., and Doreian, P. (1992): Direct and indirect methods
for structural equivalence. Social Networks, 14, 63–90.

[4] Batagelj, V. and Mrvar A. (2006): Pajek 1.11, Available at
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ (January 6, 2006).

[5] Borgatti, S.P. and Everett, M.G. (1992): Regular blockmodels of multiway,
multimode matrices. Social Networks, 14, 91–120.

[6] Borgatti, S.P. and Everett, M.G. (1993): Two algorithms for computing
regular equivalence. Social Networks, 15, 361-376.

[7] Borgatti, S.P., Everett M.G., and Freeman L.C. (1999): Ucinet 5 for
Windows: Software for Social Network Analysis. Natic: Analytic
Technologies.

[8] Burt, R.S. and Minor M.J. (1983): Applied Network Analysis. Beverly Hills:
Sage.

[9] Doreian, P. (2006): Some Open Problem Sets for Generalized Blockmodeling.
In V. Batagelj, H.-H. Bock, A. Ferligoj, and A. Žiberna (Eds.): Data Science
and Classification, 119-130. Berlin: Springer-Verlag.

[10] Doreian, P., Batagelj, V., and Ferligoj, A. (1994): Partitioning networks on
generalized concepts of equivalence. Journal of Mathematical Sociology, 19,
1–27.

[11] Doreian, P., Batagelj V., and Ferligoj A. (2005): Generalized Blockmodeling.
New York: Cambridge University Press.

[12] Ferligoj, A. (1989): Razvrščanje v skupine, Teorija in uporaba v
družboslovju. Metodološki zvezki št. 4, Ljubljana.

[13] Hubert, L. and Arabie P. (1985): Comparing partitions. Journal of
Classification, 2, 193-218.

Evaluation of Direct and Indirect Blockmodeling of... 133

[14] Luczkovich, J.J., Borgatti, S.P., Johnson J.C., and Everett M.G. (2003):
Defining and measuring trophic role similarity in food webs using regular
equivalence. Journal of Theoretical Biology, 220, 303–321.

[15] Nordlund, C. (2007): Identifying regular blocks in valued networks: A
heuristic applied to the St. Marks carbon flow data, and international trade in
cereal products. Social Networks, 29, 59-69.

[16] R Development Core Team (2006). R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing.
Available at http://www.R-project.org (December 12, 2006).

[17] Ward, J.H. (1963): Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association, 58, 236-244.

[18] White, D.R. (1985a): Doug White's Regular Equivalence Program. Available
at http://eclectic.ss.uci.edu/~drwhite/REGGE/REGGE.FOR (May 12, 2005).

[19] White, D.R. (1985b): Doug White's Regular Equivalence Program. Available
at http://eclectic.ss.uci.edu/~drwhite/REGGE/REGDI.FOR (May 12, 2005).

[20] White, D.R. and Reitz K.P. (1983): Graph and semigroup homomorphisms on
networks of relations. Social Networks, 5, 193-234.

[21] Zemljič, B. and Hlebec, V. (2001): Zanesljivost mer središčnosti in
pomembnosti v socialnih omrežjih. Družboslovne razprave, XVII, 37-38 ,
191-212.

[22] Žiberna, A. (2006): blockmodeling 0.1.2: An R package for
Generalized and classical blockmodeling of valued networks. Available at
http://www2.arnes.si/~aziber4/blockmodeling/ (April 16, 2006).

[23] Žiberna, A. (2007a): Generalized blockmodeling of valued networks. Social
Networks, 29, 105-126.

[24] Žiberna, A. (2007b): Generalized Blockmodeling of Valued Networks.
Doctoral thesis. Ljubljana. Available at http://www2.arnes.si/~aziber4/
blockmodeling/Dissertation-final.pdf (June 22, 2009).

[25] Žiberna, A. (2008): Direct and indirect approaches to blockmodeling of
valued networks in terms of regular equivalence. Journal of Mathematical
Sociology, 32, 57-84.

134 Aleš Žiberna

Appendix 1: Procedure for generating a network

The networks were generated using the following procedure:

1. A binary network was generated based on a partition, a blockmodel, and the
parameter controlling the enforcement of strict regularity.
• the partition was used to split a (empty) network (a matrix of 0s) into

blocks and to determine the size of the network
• with blocks where the blockmodel indicated null blocks, nothing was

changed
• in regular blocks, each cell had a probability of becoming 1 equal to p:

o
1),min(

1

−
=

cr nn
p , where:

o nr is the number of rows in the blocks
o nc is the number of columns in the blocks

• if regularity was enforced the block was checked for regularity, that is,
each row and each column were checked if they had at least one 1 (tie).
If not, 1 was added to a randomly chosen cell from that row/column

2. A valued network was generated based on the binary network and the
remaining parameters (beta parameters and multiplication factor).
• Based on the binary network, the valued network was generated from

the beta distribution. Beta distribution has the density:

o () ()
() () () 11 1 −− −

ΓΓ
+Γ= ba xx

ba

ba
xf

o where a and b are two shape parameters and Γ is the Gamma
function. It can have positive values on the interval [0, 1].

o The values of the parameters a and b depend on the type of tie in
the binary network (0 or 1) and two additional parameters,
shape1 and shape2.

o For ‘0’ ties, the values were generated from the beta distribution
with parameter a always set to 1 and the parameter b set to
shape1. For ‘1’ ties, the values were generated from the beta
distribution with parameter a set to shape1 and the parameter b
set to shape2, which could be block specific. The parameter
shape2 was set to 1 in the most basic version, making the
distribution for ‘1’ ties mirror image of the distribution for ‘0’
ties. The other value used for the parameter shape2 was 4. The
parameter shape1 could take on values 10, 8, 6, 4 and 2, but was
often restricted to valued 8 and 4. The values of the parameters
shape1 and shape2 in individual settings are specified in
Subsection 5.1 for Stage 1 and in Subsection 6.1 for Stage 2.

• All values in certain blocks were then multiplied by the multiplication
factor (mf). Often, this was the same for all blocks and therefore made
no impact; however it could be block-specific.

