MetodoloSki zvezki, Vol. 6, No. 2, 2009, 99-134

1

The aim of this paper is to evaluate different awhes used for finding regular

Evaluation of Direct and Indirect
Blockmodeling of Regular Equivalence in
Valued Networks by Simulations

Ales Ziberna

Abstract

The aim of the paper is to compare and evaluatiemdiht approaches to
detecting regular equivalence classes of valuedvords. The evaluated
approaches include different versions of REGE (iecti approaches) and
generalized blockmodeling approaches (direct apgres). In addition to
the approaches designed to detect regular equivalesome approaches
designed to detect structural equivalence are ialsloded for comparison.

The evaluation is done by means of simulationswéeks of 11 and 25
units were generated based on different knomax)regular blockmodels
and partitions. The obtained partitions were compato the original
(known) partition using the Adjusted Rand Index.

The results show that homogeneity blockmodeling, pliait
blockmodeling and REGE are usually the best appreacfor detecting
regular equivalence. The most surprising resutha methods for detecting
structural equivalence preformed relatively well oetworks generated
based on rgaX-regular equivalence, better then several appresch
designed to detect regular equivalence.

Introduction

equivalence (White and Reitz, 1983) classes in elaetworks on artificially

generated valued networks. The evaluated approaehesdirect (generalized)
blockmodeling (Batagelj, Doreian and Ferligoj, 199Roreian, Batagelj and
Ferligoj, 2005; Ziberna, 2007a, 2008) and someivessof REGE (White, 1985a;

1985b; Ziberna, 2008).

Some of these approaches, especially older one® heen already applied to

several empirical datasets (Smith and White, 19B@¢zkovich et al., 2003;

Nordlund, 2007; Doreian, Batagelj and Ferligoj, 8DOwhile the newer ones
(Ziberna, 2007a, 2008) are still relatively untestdd this paper all these
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approaches are applied to valued networks thaganerated according tangx)
regular equivalence (Ziberna, 2008) with some ramdwror. In order to get more
reliable results the whole procedure (generatingvaeks, applying methods, etc.)
was repeated at least 20 times. The aim of thiskwigr to evaluate these
approaches and to identify which of these approsiceehe most appropriate for
detecting fhax)regular equivalence classes? The simulations $leéves were
split into two stages. In Stage 1 (the preliminalageg), the approaches were tested
on a larger number of settings on networks withyobl units (or vertices). In
Stage 2, the number of units was increased to 2blewthe number of different
settings was reduced based on the results of Stalgemost cases, only the results
of Stage 2 are reported.

Although the approaches that fall into the framekvoof generalized
blockmodeling (Batagelj, Doreian and Ferligoj, 199Roreian, Batagelj and
Ferligoj, 2005; Ziberna, 2007a, 2008) can be appkdéso to a number of other
problems, finding regular equivalence classes isbably one of more complex
tasks. Thus the evaluation of these approachesencontext of fhax)regular
equivalence can be also used to:

1. at least partly evaluate these (generalized bloclatiod) approaches in

more general setting of blockmodeling of valuetwuorks,

2. determine whether the newer approached for gerze@lblockmodeling of
valued networks are indeed superior to generalibbztkmodeling for
binary networks when applied to valued networks,

3. and assess alternative criterion functions (normagions of block
inconsistencies) generalized blockmodeling.

In the next section the definition ofm@x)regular equivalence for valued
networks that is used in the generation of simulatetworks is presented (2). In
Section 3 the methods that are compared in simariatare described. The design
of simulations and the settings used in them) aesgnted in the following section
(4). The results of the simulations are presente&ection 5 and their limitations
are outlined in Section 6. At the end of the paperdiscuss the obtained results
(7) and their implications and present ideas fdaurfe work (8).

2 (max)-regular equivalence

Regular equivalence was first defined by White aneitR (1983): "Regularly
equivalent points (units) are connected in the sarag to matching equivalents”.
However this and also the more formal definitiomagi by White and Reitz (1983)
and also later by Batagelj, Doreian and Ferligoj92Pwere suitable only for
binary networks and, as noted by Ziberna (2008), wargerstood or interpreted
differently even on binary networks. Borgatti andektt (1992) provided a
formal definition of regular equivalence for valuedetworks. Algorithms
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detecting regular equivalence in valued networke also all based on some
definition of regular equivalence or imply a certamefinition of regular
equivalence for valued networks, so definitiong@jular equivalence can also be
obtained from the algorithms REGGE and REGDI (Whii@85a; 1985b) and from
implicit approach to blockmodeling of valued netk®rsuggested by Batagelj and
Ferligoj (2000). This was done in Ziberna (2008)en all these definitions are
also given. Based on these definitions, Ziberna20&@resented the definition of
f-regular equivalence as follows:

Suppose that we have a network NU; R?) and= is an equivalence

relation onU that induces (or corresponds to) a partit©nhen= is

an f-regular equivalencgwheref is a selected function, likeum

maximum mean etc.) if and only if for ala, b/7U and allXO C, a

=bimplies e (rai): e (rbi) and e (ria): e (rib)'

When the functiorf in this definition is maximum, the equivalence &led a
maxregular equivalence and is identical to the déifom implied by the approach
suggested by Batagelj and Ferligoj (2000). Thisls® dhe definition used in this
paper. Basically, this definition says that a blookrfpctly complies with the
definition of maxregular equivalence, if all row maximums and ablumn
maximums are equal. If all blocks induced by a pimi that corresponds to a
given equivalence satisfy this condition, that thguigalence is amaxregular
equivalence.

3 Evaluated methods

In this paper two groups of approaches that arealol®p of detecting regular
equivalence classes are evaluated. The approachwsthe first group are part of
the generalized blockmodeling (Doreian, Batagetjd d&erligoj, 2005) approach,
while the second group consists of different vemsiof REGE (White, 1985a,;
1985b). All the approaches evaluated are describefiberna (2008) where they
are also applied to empirical networks.

3.1 Generalized blockmodeling

Generalized blockmodeling was first introduced byr&an, Batagelj and Ferligoj
(1994), where the notion of generalized equivaleacd several block types were
presented. The approach evolved from a direct aggprdo blockmodelinty which

was already before capable of detecting regular vedeimce clusters (Batagelj,

2 The relationR is represented by matrix R #[n xn.
% Generalized blockmodeling still is a direct apprioac blockmodeling.
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Doreian and Ferligoj, 1992)Direct approaches directly search for a partitioat
best fits the selected equivalence as measured tnytexion function (Batagelj,
Ferligoj and Doreian, 1992). The approach is désdiextensively by Doreian,
Batagel] and Ferligoj (2005). In generalized blodduling, the equivalence is
defined by the allowed block types and possibly tipesition.

However, it was still applicable only to binary andreed networks, although
Batagel] and Ferligoj (2000) have presented someasdfor extending this
approach to valued networks. Generalized blockmiadefor binary networks
(Doreian, Batagelj, and Ferligoj, 2005) is from nam referred to asinary
blockmodeling Ziberna (2007a) presented valued and homogeneity
blockmodeling, two types of generalized blockmodglguited to valued networks.
Later he also developed implicit blockmodeling Zite (2007b; 2008) based on
ideas presented by Batagel] and Ferligoj (2000). Hlese approaches to
generalized blockmodeling of valued networks arpatde of detecting regular
equivalence classes in valued networks. The appexmare very briefly described
below. Longer descriptions can be found in the warked above.

We can say that binary blockmodeling treats ties egiths relevant or as
nonexistent (or irrelevant). The inconsistencies ar principle computed as the
number of times the tie is present where it isasdumed or vice versa. In the case
of regular equivalence, the allowed block types mgular and null. In an ideal
null blocks all values are 0, while in an ideal ukg blocks there is at least one 1
in each row and each column. As it is here applesalued networks, these have
to be first binarizetlusing an appropriate threshold.

Valued blockmodeling is similar, yet if the tie itnnonexistent or fully
relevant, it assesses if a tie is closer to be@lguwant or closer to nonexistent. The
inconsistencies are in principle computed as thm s differences between the
actual tie values and the assumed tie values (Beothreshold that specifies when
a tie is considered relevant). While both of themgproaches use the same
definition of regular equivalence that is used lmstpaper in the case of binary
networks, this is no longer completely true for veadunetworks.

Homogeneity blockmodeling addresses one of the npagblems of valued
and binary blockmodeling. When using valued blockelody, a threshold must be
explicitly selected that tells us how strong a tiastnbe to be treated as relevant.
This threshold must also be the same for all bloéksimilar threshold must also
be selected when using binary blockmodeling, altlioiigs sometimes implicitly
set to the minimum positive value (all ties thats¢xmeaning those higher than 0,
are treated as relevant). In homogeneity blockmodeliie values (or some
statistics computed on them) are assumed to be genutus (equal) within blocks.

* For the purpose of this paper the approach preseirt Batagelj, Doreian, and Ferligoj
(1992) is sufficient and other advances describedaoreian, Batagelj, and Ferligoj (1994) and
Doreian et al. (2005) are not necessary.

® Converted to binary networks.
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In the case of-regular blocks, values of functidncomputed over rows/columns
are assumed to be homogeneous within rows and mwittolumns. The
inconsistency of a block is some measure of varigbdomputed on these values.
Depending on the measure of variability, two homagsn blockmodeling
approaches are used. These are sum of squlaoesogeneity blockmodeling and
absolute deviatioris

Implicit blockmodeling is in computational terms ryesimilar to valued
blockmodeling. The only differences are that theapaster specifying when a tie
is relevant is replaced by block maximum and thaitially additional
normalization was usé&d However, in its functioning, it is very similar to
homogeneity blockmodeling. The advantage of botmdgeneity and implicit
blockmodeling is that they (cdnuse the same definition of regular equivalence as
used in this papemn{axregular equivalence).

In addition to methods for regular equivalence, omethod from the
framework of generalized blockmodeling designed gtuctural equivalence was
also used to detect regular equivalence. The methedd falls into the
homogeneity generalized blockmodeling approach. Mweeisely, sum of squares
homogeneity blockmodeling with only complete blockee aused. The ideal
complete block within sum of squares blockmodelimguch that all values in the
blocks have the same value. The inconsistency odrapirical block to the ideal
block is computed as the sum of squared deviatodribe values in the block from
the mean of these values.

Below the notation used to identify the above ddmtimethods in the results
is described:

1. Generalized blockmodeling approach:

- bin - Binary blockmodeling

- val - Valued blockmodeling

- ss— Sum of squares (homogeneity) blockmodeling

- ad — Absolute deviations (homogeneity) blockmodeling

- imp - Implicit blockmodeling
2. Equivalence:

- str — structural equivalence (only used with sum ofasgs blockmodeling)

- reg - (f-)regular equivalence

- wnullreg — (f-)regular equivalence with null blocks (only usedimmplicit

blockmodeling) — indicate that null blocks are useten searching for
regular equivalence using implicit blockmodelindthaugh Ziberna (2008)
suggests that they should not be used.

® The measure of variation used is the sum of squdeyiations from the mean.

" The measure of variation used is the sum of altsaleviations from the median.

In the ideas presented by Batagelj and Ferligajdittonal normalizations were used.
However, as argued by Ziberna (2008), they arenecessary.

° Homogeneity blockmodeling uses the definitionf-wégular equivalence with any functidn
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- pre — pre-specified blockmodeling: the blockmodel usedhe generation
of the binary network was used as the pre-specifiedkmodel instead of
only specifying the allowed blocks.

3. Values of the threshold used for binarization (binary blockmodeling)/the
parametem (valued blockmodeling):

- halfmax/max — (half°) of the empirical maximum of tie values

- min/2min — (twicé") the second (the first one is usually 0) minimuntted
empirical distribution of all tie values

4. Functionf used inf-regular blocks (not used with structural equivakeror
binary blockmodeling): max or mean (only used in homogeneity
blockmodeling)

5. Search procedures:

Local optimization with 20 random starting partrige— used unless stated
otherwise (this and the next option are the defanks and are therefore
not marked)

- Full search — checking all possible partitions fomised in Stage 1 for
two-cluster settings).

- 100- Optimization of 100 random starting partitions

- OC - Optimization of the correct (the one used in egyation of the
network) partition as the starting partition

- Cor — No optimization — the label indicates the resijthe inconsistency
as the Adjusted Rand Index is 1 by default) for¢berect partition

The versions of the blockmodeling methods are desdr by the series of
labels that are described above. The labels apipetre same order as they are
introduced. For example, a valued blockmodeling oagimg to maxregular
equivalence wheren is selected as the empirical maximum of the tidues is
referred to as "val|reg|max|max".

All the evaluated methods are implemented inthecknmodel i ng 0.1.2
package (Ziberna, 2006) for R statistical environin@® Development Core Team,
2006) and this implementation was used for all mdth The limitations that the
use of this still experimental software presents tloe results obtained in this
paper are described in Section 6.

% Binary blockmodeling

1 valued blockmodeling

2 The inconsistency stands for the total inconsisyenf the partition with an equivalence (can
be generalized), which is also the value of théecidon function (in generalized blockmodeling)
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3.2 Indirect methods

Indirect approach means that first (dis)similastieompatible with the selected
equivalence are computed. Then, some clusteringhodeis used on these
(dis)similarities to obtain a partition.

REGE is an algorithm for computing (dis)similarity iterms of regular
equivalence. There exists no "closed fGtnmeasure of dissimilarity or similarity
compatible with regular equivalence. However, Whit®85a, 1985b) developed
two iterative algorithms, REGGE and REGDI, for camtipg dissimilarities or
similarities (depending on the version) in termsrefular equivalence. As it is
explained in Ziberna (2008), these algorithms do m®e the same definition of
regular equivalence (that imaxregular) equivalence as it is used in this paper.
Based on them Ziberna (2008) developed versionghese two algorithms that
either partly reduce this difference in definitionsed (REGDI-OW, a modified
version of REGDI) or use exactljmaxtegular equivalence (REGGE-OW, a
modified version of REGGE). Only the versions of RE@esigned for interval
valued networks were used. Therefore, the versisuggested by Borgatti and
Everett (1993) were not used, as they were desigmedominal valued networks.
In this paper the term REGE is used for all versiai the algorithm discussed
above.

REGE evaluates the (degree of) equivalence of uni@sdb by trying to match
every link (taking values into account) of umitby the most similar link of unib
to an equivalent / the most equivalent unit ancewersa (every link of unib an
equivalent / the most equivalent link of ura). The difference between the
original versions of the algorithm developed by Wh#nd the modified versions
developed by Ziberna is that in REGGE and REGDI (/hi985a; 1985b) a link
refers to a pair of arcs — an incoming and an oangarc, while in REGGE-OW
and REGDI-OW (Ziberna, 2008) it only refers to ome.a

If the best match (link) does not have equal (anadpr greater, depending on
the version of REGE) values of ties, or if the atpbeints (ends) of ties (from and
to a; from and tob) are not completely equivalent, the (dis)similanitgpends on
the difference of the values (of ties) and on ttis)similarity (in terms of regular
equivalence) of unite andb compared relative to their magnitude. REGE solves
the problem that regular equivalence does not dentaat two units which are
equivalent be connected to the same number of atgnv units, by allowing that
different links ofa can be matched by the same linkboflt should be mentioned
that all REGE algorithms are designed to find orilg maximal regular partition
and not other regular partitions (Ziberna, 2008).

As mentioned above, all REGE algorithms are iteeatalgorithms. In the
simulations presented in this paper, the numbeéteoftions was set to 3, while an
effect using more iterations was also tested later.

3 No measure exists that can be computed in cloged.f
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For blockmodeling purposes, this (dis)similarity npatmust be analyzed
using an appropriate clustering algorithm. Hieracahclustering algorithms have
usually been used for this purpose. For examplenéich (Borgatti, Everett and
Freeman, 1999) uses single linkage hierarchicasteling to find an appropriate
partition. However, based on my experience and tespiesented by Ziberna
(2008), Ward's (1963) clustering algorithm is usedhis paper.

In addition to methods designed for regular equewak, methods for structural
equivalence were also used on the same datasehinMindirect approach the
method that was used was Ward’s hierarchical ctugjeon distances computed
using the Corrected Euclidean-like dissimilarity (Buand Minor, 1983 in
Batagelj, Ferligoj, and Doreian, 1992) wiph= 2.

The above described methods are indicated in theltseas:

- sedist|str— Direct approach using structural equivalence

- REGGE, REGGE-OW, REGDI, REGDI-OW - The version of REGE

used.

4 Design of simulations

All simulations were done by repeating the followiggneral procedure for a
given number of times for each setting:

1. Generation of a valued network based on a blockmoaled other

parameters

2. Application of different methods

3. Comparing the obtained partition(s) with the ormjirpartition using the

Adjusted Rand Index (Hubert and Arabie, 1985: 198)

The way networks are generated has a large effecthenperformance of
evaluated approaches, so this is of great impoetanthe selected way of
generating networks was constructed based on aewewf numerous social
networks, in particular networks of primary schoapgs collected by Zeml§ and
Hlebec (2001).

The networks were generated based on the followargmeters:

e partition

* blockmodel

« parameter controlling the enforcement of strictulagity in the binary

network

+ parameters of the beta distribution used for gemmraof the tie values;

one of them was always the same for the whole né&wwhile the other
could be block-specific (in terms of the positiointiee block)

* multiplication factor (can be block-specific)

The more detailed procedure for generating a neétwis described in
Appendix 1. The meaning of the above parameteis la¢€omes clearer when their
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values in the individual settings are presentedthia following sections. The
limitations of the results due to the way the netvgowere generated are discussed
in Section 6.

The result of each blockmodeling method is a parit{or sometimes a set of
partitions). These were compared with the origipaitition used in the generation
of the networks using the Adjusted Rand Index (Hulaad Arabie, 1985: 198).
The so computed Adjusted Rand Index is used as asume of the ability of the
blockmodeling method to find the correct partitiand therefore of its quality. As
a single measurement would be unreliable and cdw@dheavily influenced by
random factors built into the procedure used fomegating the networks, for each
different setting severdl networks were simulated and the same number of
measurements (one for each network) of the AdjuRedd Index for each method
(or more precisely each version of each method) webg¢ained. Actually,
generalized blockmodeling can produce several fian8 as a result of the
optimization process. In such cases, the meaneAtfjusted Rand Indices for the
partitions obtained on each network was first cotedd. Then, the mean of these
Adjusted Rand Indices over all networks was comgute each method.

The simulations were accomplished in two stagesg&tl was used as a
preliminary stage, where a larger number of différsettings and other options
were tested on very small networks with only 11 units Stage 2, the methods
were evaluated on more reasonably sized network&bainits, while the number
of different settings was reduced. Larger networkse not generated due to the
time required to run the simulations.

The simulations were conducted based on 25 settimgsdiffered in the way
the networks were generated, that is in the valofeshe parametergartition,
blockmodel, parameters of the beta distributiamd multiplication factor Each
setting could be performed with regularity enforagdnot. However, a number of
characteristics of the network generating procedueee also the same for all (or
most) settings. These characteristics are descfibstd

The basic characteristics are:

- The number of units is 11 in Stage 1 and 25 in &tag
- The procedure (generation of a network, applicatcdnmethods, etc.) was
repeated 20 times for each setting. In Stage 2 rsionellations were conducted

(when possible due to the availability of commutetis)obtain more accurate

estimates (e.g. of the mean Adjusted Rand Index)sdme cases, up to 100

repetitions were used.

- Two different partitions were used in each stage:

0 Stagel:

“For each settings at lest 20 networks were genérdte Stage 2, up to 100 networks were
generated per setting.

3 |n the case where there were more than 50 ‘optipaititions, only the first 50 were taken
into account. In addition, one additional partitimas considered for each starting point.
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* Two-cluster partition: 1, 1, 1, 1, 2, 2, 2, 2, 2,2and
e Three-cluster partition: 1, 1, 1, 2, 2, 2, 3, 3333
0 Stagel:
 Two-cluster partition: 1,1, 1,1,1,1,1,1,1,22,2,2,2,2,2, 2,2,
2,2,2,2,2,2and
e Three-cluster partition: 1, 1, 1, 1,1, 1, 2, 2222, 2,2, 2, 3, 3, 3, 3,
3,3333,3,3

- shapelparameter has values 10, 8, 6, 4, and 2 in Stagedlvalues 8 and 4 in
Stage 2. However, even in for Stage 1 only resudtsshapelvalues 8 and 4
are reported.

- Optimizational procedure:

o Stage 1: In the case of two-cluster partitions, pabksible partitions were
checked when using generalized blockmodeling (d ful exhaustive
search). In addition, a local search with 10 randsiarting partitions was
used in some settings to compare the results. éncése of three-cluster
partitions, only a local search with 20 random s$tarpartitions was used.

o Stage 2: A local search with 20 random startingipans was used to find
the partition with the lowest inconsistency in gaiered blockmodeling. In
a few selected settings, 100 random starting panstwere used to check if
this would significantly improve the results.

- The number of iterations in REGE was initially set3. The effect of using
100 iterations was also tested in additional iters.

- In some settings in Stage 1, the block size nomasilbn was tested on all
generalized blockmodeling methods and maximum né&ma@on on implicit
blockmodeling. The selected settings are indicagdNorm’ in Table 1 in the
"Stage 1 — add. methad€olumn

- The methods (and additional settings) used canilidetl into three groups in
terms of their use in Stage 2. The markings in batdthe start of the
paragraphs are used in Table 1 (least two colutm#&)dicate which methods
(and additional settings) were used on a givenirggtin Stage 2. If a setting
does not have any markings in the last two coluntims, setting was not used
in Stage 2. Used methods are indicated separatelywio variations of each
setting — when regularity was enforced when genegatietwork and when it
was not enforced.

o C - Common methods — methods used in all settingStage 2. These
methods include both direct and indirect approach&be indirect
approaches are the approach for structural equicaland the four versions
of REGE. The direct approaches include severalioassof binary, valued,
implicit and homogeneity blockmodeling. These methade marked by the
following markings (explained in Subsection 3.1)s|str, sedist|str,
bin|reg|halfmax, bin|reg|min, val|reg|max|2min, |regl|max|max,
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imp|reg|lmax, imp|wnulljreg|max, ad|reg|mean, apt@g ss|reg|mean,
ss|reglmax, REGDI, REGDI-OW, REGGE, and REGGE-OW.

o P - Pre-specified blockmodeling — Pre-specified klmodeling was used
with binary, valued and implicit blockmodeling (mamgs: bin|pre|halfmax,
bin|pre|min, val|lprejmax|max, val|pre|max|2min, [prggmax) in only a
subset of settings.

o 100- 100 starting partitions — in some settings (wstiapel= 8 only) 100
starting partitions were used instead of the u@@ako check if this could
improve the partition. In these settings, the corpgartition (the one used to
generate the network) was also used (separately) starting partition to
see if this partition would be recognized as theirogl partition, which
means that no other partition with lower inconsistewould be found by a
local search. The inconsistency of the correct partiwas also computed.

Other parameters (or those not ambiguously defimethé above list) used in
generation of the networks are shown in Table le 3éttings presented in Table 1
are referred to by their "names", which are compdsgdhe values of parameters
k, blockmodel, shapeendmf pasted together by the "|" character.

Values used to describe the blockmodel and parasiesteape2and mf in
Table 1(when not simple numbers) are explained abl& 2. When the value in
Table 1 for parametershape2and mf is a simple number, it is the value of the
parameter in all blocks. The most important didfim among the blockmodels
used is that only in blockmodels 1T and 13 is thetipan that is searched for
maximal regular. In all others, the partition thatsearched for is not maximal
regular and this makes it much harder to find. Heeve the approaches suited for
valued networks (all but binary blockmodeling) arsually quite successful at
finding it if additional information is provided inhe form of either different
shape2or mf parameters (which essentially makes the partitibias are searched
for maximal regular in the valued sense).

Based on this, the settings are separated into $ettings classesnamed
Clear pattern Not max. regular (Not maximal regulariff. dist. par. (Different
distribution parameters)andDiff. block max. (Different block maximumsy the
first class Clear patterr) there are settings with either blockmodel 1T 8r Here
the partition that is searched for is maximal regueven before the tie values are
added (in the process of generating the network® Jecond settindgyot maximal
regular, is quite the opposite. Here, the partition thatsiearched for is not
maximal regular, even after the values are adddds Takes this partition the
hardest to find, especially for the REGE algorithnirs.the last two settings,
additional information is added to the binary netkgwhich are generated in the
same way as generated in clds®t maximal regularin the resulting networks, the
partition that is searched for is maximal reguldrew the tie values are taken into
account in most cases (the exception are settifgdl ARl 1| D' and
"2| AR| 10| D"). This should make these two classes especiallglgnoatic for
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binary blockmodeling. In the case of the cl&fferent dist. par, the additional
information is provided in the form of the blockespfic shape2parameters, while
in the case of the clagsifferent block max.the additional information is provided
in the form of the block-specific multiplicationdtors (nf). It is important to note
that the information in the form of different mydtication factors is much stronger
than that in the form of differerghape2parameters. It also affects all block types,
whereas theshape2parameters do not affect the null block type.

Table 1. Settings used in the simulations.

Stage:
shape2| mf . Stage 1 . regularit
Id | k| blockmodel* " " settings class | —add. | regularity 9 y
methods| enforced not
enforced
1 |2 CP 1 10 Not max. reg. Norm C, P, 100 C, P, 100
2 |2 CP 4 10 Not max. reg.
3 |2 1T 1 10 Clear pattern Norm C, P, 100 C, P, 100
4 | 2 1T 4 10 Clear pattern C,P C
5 |3 C2P G3 10 Diff. dist. par.
6 |3 C2P 4 G3 Not max. reg.
7 13 2T G3 10 | Diff. dist. par
8 |2 BG 4 10 Not max. reg. C C
9 |2 BG 1 10 Not max. reg. Norm C, P, 100 C, P, 100
10 | 2 CP D 10 Diff. dist. par. Norm C,P C,P
11 |2 CP R 10 Diff. dist. par. C
12 | 2 BG R 10 Diff. dist. par. Norm C,P C,P
13 |2 CP 1 D | Diff. block max. C C
14 | 2 CP 1 R | Diff. block max. Norm
15 | 2 BG 1 R Diff. block max. C, P C,P
16 | 2 AR 1 D | Diff. block max. Norm C C
17 | 2 AR 1 R | Diff. block max. C C
18 | 2 AR D 10 Diff. dist. par. Norm C
19 | o AR R 10 | Diff. dist. par. C
20 | 3 G3 G2 10 Diff. dist. par.
22 | 3 2V1 G1 10 Diff. dist. par. C C
23 | 3 13 1 10 Clear pattern C, P, 100 C,P
24 | 3 C 04 10 | Diff. dist. par C C
25 | 83 C 1 10 Not max. rec C, P, 10t C F
Legend:

k ... the number of clusters

mf ... multiplication factor

* the meaning of the values (in casesbBpe2andmf only those that are not numbers)
is shown in Table 2.
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Table 2 Values (codes) in Table 1.

blockmodel

BG (Between Groups):  C2P (Core and 2 Peripheries): G3 (Group 3 different - disconnected):

[.1 [,2] [, [,2] [,3] (.11 [,2] [,3]
[1,] "null"™ "reg" [1,] "reg" "reg" "reg" [1,] "reg" "reg" "null"
[2,] "reg" [2,] "reg" "null"™ "null" [2,] "reg" "reg" "null"
"nul 1" [3,] "reg" "null"™ "null" [3,] "null™ "null"™ "null"
CP (Core-Periphery): 2T (2 Ties): 13 (Tie from 1 to 3):

[.1] [.2] (.1 [.21  [.3] (.1 [.2] [,3]
[1,] "reg" "reg" [1,] "null"™ "reg" "reg" [1,] "null™ "null" "reg"
[2,] "reg" "null"™ [2,] "null"™ "null" "null" [2,] "null™ "null" "null"

. [3,] "null™ "null" "null" [3,] "null™ "null"™ "null"
1T (1 Tie):

[,1] [,2] 2V1 (2 Versus 1): C (Cycle):
[1,] "null” "reg" (11 [.2] [,3] (b1 [.2] [,3]
[2,] "null™ [1,] "reg" "reg" "null" [1,] "null™ "reg" "null"
“nul I'" [2,] "reg" "reg" "null" [2,] "null™ "null" "reg"

[3,] "null™ "null" "reg" [3,] "reg" "null" "null"

AR (All Regular):

[.1] [.2]

[1,] "reg" "reg"
[2,] "reg" "reg"

shape2when blocl-specific

D (Diagonal): 04 (One tie with value 4):

[.1] [.2] [.1] [.2] [.210.2][, 3]
[1.] 4 4 [1,] 1 4 [1,] 1 1 1
[2,] 1 1 [2,] 4 1 [2,] 1 1 4
[3,] 1 1 1
G3 (Group 3 different) : G2 (Group 2 different) : G1 (Group 1 different) :

[.10.2]1[,3] (10,210, 3] (10,210, 3]
1 1 4 1 4 1 1 4 4

[1,] [1,] [1,]

[2] 1 1 4 [2] 4 4 4 [2,] 4 4 4

[3,] 4 4 4 [3] 1 4 1 [3,] 4 4 4

mf (multiplication factor) when bloc-specific

D (Diagonal): R RO\[N? '1] [,2] G3 (Group 3 different) :
(.1 [.2] [1,] 6 6 (.10, 211, 3]

[1,] 10 6 [2,] 10 10 [1,] 10 10 6

[2,] 6 10 [2,] 10 10 6

[3] 6 6 6
5 Results

In Stage 1, blockmodeling methods were evaluatednetworks with only 11
units. This can be thought of as a preliminary stagere several ideas were
tested. Therefore, it was possible to consider dewirange of settings and
methods. In addition, due to a very limited numbérddferent partitions of 11
units into two clusters, a full search was possible

As Stage 1 was really meant only as a preliminaryestéyy most settings only
the main findings are reported here (see Ziberr@07R) for all results). More
detailed results are only reported for settings héfer significantly from those
used in Stage 2. These are special settings thed designed to test the effects of
normalizations of inconsistencies on the generdlizZlckmodeling approaches.
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Stage 2 was designed to be more realistic sincevarks of 25 units were
generated and analyzed, however on a smaller nurabesettings. As it was
evident from the results of Stage 1 that the reaperformance of the methods is
similar for different values of thehapd parameter, the simulations were run only
using two values of this parameter, namely, 8 and 4.

5.1 Figures used for representing results

In this paper, figures are used to present thelt®sd simulations. As the number
of different methods used is too large for all bémn to be presented on a single
graph, the methods are grouped and each grougsepted in its own graph. Each
figure is separated into several sections, withhehosting a graph. All these
graphs have a common x axis, which is printed omlgep at the bottom of the
figure. The x axis contains the settings, whichimefthe way that the networks in
the simulations are generated. The label on thes agi comprised of the
information in columns 2 to 5 of Table 1, separabgd|. This is preceded by ‘T|’
if regularity was enforced, and by ‘F|" if it was nand followed by ‘| and the
value ofshapelparameter. On the y axis, some statistic is usualpyesented. In
most figures (including Figure 1), this statistscthe mean of the Adjusted Rand
Indices computed as described in Section 4.

In each section, there is a graph of the resultsofee group (blockmodeling
type or group with some other common characteristidsmethods accompanied
by a legend for these methods. Each small graphacmthe background and main
information. The background information comprisebackground color and the
thin lines. The legend for the background colorgoignd at the top of the figure.
Each background color represents the differentirsgdtclasses described in the
previous subsection. The thin lines that are alad pf the background provide
information about the performance of methods frotineo groups. This is useful
for positioning a group of methods that is in foauighin the remaining methods
based on their performance.

The main information is contained in the thickerds, which are also the only
lines for which the legend is provided. They repreasthe information about the
performance (usually the Adjusted Rand Index) ofrtiethods of the group that is
in focus in a certain graph. The information is\ydded in the form of lines so it is
easier to assess the performance of a method addstinguish among methods.
By no means is it meant as an indication that thexds has a continuous scale
since the settings are clearly measured on a nondisdrete) scale.

The number of repetitions (varying from 20 to 10@ed to obtain a certain
value of the Adjusted Rand Index (a point on a fjaig indicated by the size of
the point. The size of the point increases with thgarithm of the number of
repetitions used. The points in the graph havestrae size as those in the legend
when 20 repetitions were used.
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5.2 Results for common methods

In this subsection only results for Stage 2 are qganeed in detail. The results of
Stage 1 will only be presented in more detail in Sadiion O where some
modifications of the methods were tested. Othemlissof Stage 1 are only
included as comments next to the results of Stagehy differ significantly. The
results from Stage 2 for the common methods (asnddfin Section 4) are
presented in Figure 1 faahapel= 8 and in Figure 2 foshapel= 4. In addition,
the results of additional simulations testing tlite@ of using more iterations in
the REGE algorithm are presented in Figure 3 shapd = 8 (the results for
shapd = 4 follow a similar pattern). It should be notdtht, as the effect the
number of iterations on REGE was tested in addé&isimulations, the results of
these simulations (of REGE with more iterationshroat be directly compared to
the results of other approaches.
The conclusions based on the different groups dahous are:

Structural equivalence Methods for structural equivalence perform swsiprgly
well considering that the networks were generat@seld on regular equivalence.
For example, they usually perform better than binaryalued blockmodeling
(without pre-specified blockmodeling) for regulaguévalence. However, they
are usually not as good as methods of regular etpnica within homogeneity
and implicit blockmodeling. When comparing the twoethods used for
structural equivalence, it is clear that the dir@gproach in most cases performs
much better than the indirect approach and nevesevo

Binary and valued blockmodeling(without pre-specified blockmodelingBinary
blockmodeling performed very poorly (usually the woo$tall methods) in all
settings. In most cases, valued blockmodeling peréa only slightly better
than binary blockmodeling. The most notable excemiare the two-cluster
settings from the class of settingdot maximal regular where valued
blockmodeling performed worse than binary blockmadgland the settings
with AR blockmodel and different block maximums byws (of the
blockmodel), where valued blockmodeling produceddjoesults, while binary
blockmodeling performed as poorly as in other sgiinrSome ideas for the bad
performance of these methods are presented atntthefethis subsection. This
is in large contrast to the results of Stage 1 whbmary blockmodeling
performed well especially with th€lear patternsettings with large values of
shapelparameter. It also performed well in soiet maximal regulasettings,
where it even outperformed valued blockmodeling.
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Settings
O Clear pattern O Not maximal regular O Different dist. par. O Different block max.
Methods
x Q| =@= ss|str
2 =@ sedist|str
=4
S <9
=
I
14
- X
L
%]
':S
=N
<
Methods

=@= Din|reg|halfmax
=®= bin|reg|min

=@ vallreg|max|2min
=@ vallreg|max|max

Adjusted Rand Index

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0

Methods
=@= ad|reg|max
=®= ss|reg|max
=@ ad|reg|mean
~® ss|reg|mean

Adjusted Rand Index

Methods

== imp|reg|max
=®= imp|wnull|reg|max

Adjusted Rand Index

Methods

8= REGDI
=& REGDI-OW
-® REGGE
-® REGGE-OW

Adjusted Rand Index

o

-

— - < "4 86 — — - < 0186 —
ForF0o 00 E0a O E0Fm 000 0mO0EEa 0
C 8o n0 " a<0<adB8°<c0<caclons " 003" 25<m
NOANNNONNNNNNOONNNNNONNNONNNOONNN N

FFFFFFFFFFFFFFFFRFFOOOOCCCOCCCCCCC

Figure 1: Results of simulations in Stage 2 for all setsvgth shapel= 8.
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Figure 2: Results of simulations in Stage 2 for all settvgth shapel= 4.
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Legend: "i=x", where x is a number (3 or 100) irating the number of iterations used in the
REGE algorithm. If this is not present, the redslfrom the original Stage 2 simulations where
the number of iterations was set to 3.

Figure 3: Testing the effect of the number of iterationdREGE.
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Implicit blockmodeling (without pre-specified blockmodeling) Implicit
blockmodeling with regular blocks only performed #damly to homogeneity
blockmodeling according tmaxregular equivalence, although slightly worse in
most settings. However, it also performed slightgtter in some. Using null
blocks in addition to regular blocks led to consaldy inferior results in most
settings. When using null blocks, the results wsirmailar to those of valued
blockmodeling. On the other hand, in Stage 1 the ok null blocks slightly
improved the performance in some settfigsid reduced it in some settings

REGE with 3 iterations: REGE with 3 iterations performed relatively well in
most settings where the partitions that were sesrdbr were maximal regular,
at least when valued information is taken into actoall settings except those
labeled Not maximal regularand setting (T/ F) | 2| AR] 1| D). This is
understandable as REGE was designed to find themahxegular partition.
However, even in the settings where it performed| wteusually performed
slightly worse than homogeneity and implicit blocknetidg, especially when
the shapelparameter was 8 and regularity was not enforcetdfir versions
performed similarly in most cases. Stil, REGGE-OWrfprmed on average
slightly better than the rest as it is also theamdty the most suitable REGE
version. That is, the networks that were generét@sed on partitions are more
similar to the ided?f networks (based on these partitions) for that REGE
algorithm than to any other (REGE algorithm).

REGE with 100 iterations: As only 3 iterations might be inadequate, an
additional test about the effect of the numbertefdtions was performed and
the results forshapel= 8 are presented in Figure 3 (the resultssfoapel= 4
follow a similar pattern). Here, both results ofetloriginal simulations for
REGE are presented together with the results ofit@aél simulations for
REGE with 3 and 100 iterations. The new results rave directly comparable
with those for other approaches (as they are basatifterent simulation runs).
However, we can assume that the effect of goinghfBoto 100 iterations would
have been similar even on those runs. With momatitens REGE becomes one
of the best approaches (in particular REGDI-OW). atVts very surprising is
that even in somélot maximal regulassettings REGE can perform very well if
the number of iterations is increased (to 100),nese it seems that one of the
REGE approaches (i.e. REGDI-OW) is the best apprdacthese settindgd
Not only is this very strong effect surprising, bwtea more surprising is the
fact that REGE algorithms perform well in such sgf$. This actually means

8 E.g. settings ‘T|3| G3|G2|10| &', ‘T|3| 2T|G3|80and ‘T|3|C2P|G3|10] 8.

"E.g. settings ‘T|2| CP| 1]10| 8', ‘T|2| CP| 4R0jnd ‘T|2| AR| D|10] 8.

'8 What kind of network is ‘ideal’ for most a vers®f REGE algorithm is demonstrated in
Ziberna (2008).

19 As the effect the number of iterations on REGE wested in additional simulations, the
results of these simulations (of REGE with morerdteons) cannot be directly compared to the
results of other approaches.
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that they do not perform as designed as they shauldl & maximal regular
partition and that is, in these settings, a pamitivith all units in one cluster.

This is actually completely true only for REGGE-OW @nthis is the only

version of REGE that is totally compatible with tlveay networks were
simulated in this study. Interestingly, for this sien of REGE the effect of the
number of iterations is the smallest. The good genbince of REGGE and

REGDI in the setting with blockmodel C is expectdthe reason for the good

performance of REGE lies in the fact that the neksogenerated are not ideal

(they do not perfectly conform to regular equivalenaeleast not when taking

values into account). As these imperfections atdatireely small, they need
more iterations to have an effect. Further rese&ameeded for a more precise
explanation. We can, however, conclude that fothsuatatively small networks
3 iterations is enough for a network where REGExXpected to perform well;
however, more iterations can improve the results fietworks where the
structure is unclear to REGE. When using 100 iterst REGE performs

Three of the results presented above are mostisurgr The first one is the
good performance of sum of squares blockmodelingoating to structural
equivalence. The second is the bad performance iofaryp and valued
blockmodeling when used without pre-specified blocklels. The third one is the
good performance of REGE with 100 iterations intisgs Not maximal regular
as it was not designed to perform well in suchisgs.

One possible reason for the good performance of saim squares
blockmodeling according to structural equivalengeslin the fact that sum of
squares blockmodeling does not compare individuairsp of ties as indirect
approaches or searches for blocks where all ti@eslare either approximately
zero or over some pre-specified value (as valueskanary blockmodeling). Sum
of squares blockmodeling instead searches for Ilslo¢ckat are relatively
homogeneous, where cell values are as close asbpmde the mean of the cell
values in that block. Therefore, it tries to clusteost of the high values together
and most of the low values together. First, thiewas$ it to identify null blocks.
Second, as it is usually impossible to find blockishwonly high values the next
best thing to do is to find blocks where thereasyer concentration of high values
than in other blocks. Sum of squares blockmodelaggpording to structural
equivalence can do that and these blocks are yswalular blocks that are
searched for or at least similar to them.

The poor performance of binary and valued blockmiodglespecially in the
class of settinglear patternand partlyNot maximal regularwhen regularity
was enforced, is very surprising. Several factors/ rhave contributed to such
results. Results of the evaluation of the optimmatpresented later in Subsection
0 indicate at least two possible factors. The fidtat affects mainly binary
blockmodeling especially in thé&lot maximal regularclass of settings when
regularity is enforced, is that binary blockmodelisighply does not measure the
inconsistency of a partition with ‘valued’ regulaquevalence (that is in valued
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networks) precisely enough. This is indicated by fiet that partitions other than
the correct partition and in fact very different from theorrect one with no
inconsistencies (with the value of the criteriomdtion or total inconsistency of
the partition equal to 0) were found. The applicas of binary blockmodeling to
real valued networks (e.g. in Ziberna, 2007a, 2Q@®08) have also shown its
tendency to find several partitions as ‘optimal’ whesed to find relatively ‘loose’
equivalences such as regular equivalence. The d#otor is that the optimization
procedure. As can be seen in Subsection 0, thisrfas mostly present in the class
of settingsClear patternwhen regularity is enforced (which are most suived of
all the settings for both binary and valued blockmlaty). Figure 9 shows that in
these settings theorrect partition has a smaller value of the total incotesisy
(criterion function) than the partition found usitige local optimization of 20 (or
even 100) random starting partition. Obviously, th®imization procedure only
finds the local and not global minimums of the eribn function (total
inconsistency).

5.3 Results for pre-specified blockmodeling

The results for pre-specified blockmodeling arespreged in Figure 4 foshapel=

8 and in Figure 5 forshapel= 4. As indicated in Table 1, pre-specified
blockmodeling was used in only some settings. Tharsevhich it was used were
selected as representatives of appropriate classsesttings. More settings were
selected from the setting class@kear patternand Not maximal regularas these
were the two classes of settings where the podiopaance of binary and valued
blockmodeling was the most surprising and whereliegitpblockmodeling (among
the settings where regularity was enforced) had nroom for improvement.

As expected, pre-specified blockmodeling improvéeé performance of all
blockmodeling types where it was used (in the cdseplicit blockmodeling only
if we compare it to its use with both null and régublocks). The binary and
valued blockmodeling according to pre-specifieddiilmodel performed similarly,
although valued blockmodeling (with parametedetermined as the maximum tie
value in the network) performed slightly better, esiplly in settings where
shapel= 4. Implicit blockmodeling according to a pre-spgeed blockmodel
performed worse than the binary and valued blockrindeaccording to
pre-specified blockmodel. The methods accordingpte-specified blockmodel
especially excelled in the class of settingst maximal regular where they
outperformed all other methods. Even in other sg#j these blockmodeling types
with pre-specified blockmodeling performed reasdpawell, especially when
shapel= 8, particularly when compared to the terriblefpenance of binary and
valued blockmodeling without pre-specified blockmtdg. In Stage 1 these
approaches (with pre-specified blockmodeling) weseen among the best
approaches in almost all settings.
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5.4 Effects of normalizations

In addition to the main body of simulations, a fedd#aional simulations were also
made to determine the effect of block size nornalan on all generalized
blockmodeling approaches and maximum normalizatioon implicit
blockmodeling. These simulations were made as @giastage 1 (smaller networks)
using only a selection of settings as indicated abl& 1 with the markingNorm.
An attempt was made to select settings as divesspaoassible, while not using
those settings where tlshapeZparameter was set to four in all blocks.
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Figure 4: Results for pre-specified blockmodeling for selecsettings where parameter
shapel= 8.



Evaluation of Direct and Indirect Blockmodeling .of. 121
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Figure 5: Results for pre-specified blockmodeling for sééetsettings where parameter
shapel= 4.

The results that show the effect of block size nairation are shown in
Figure 6 forshapel= 8. The effect was also tested &hrapel= 4; however, the
results are not shown due to space limitationsgéneral, there is no consistent
effect as the effect of the normalization can béhesi positive or negative.
However, the effect is relatively consistent (wheegent) within certain settings
(across different methods). For example, it is liguaegative in setting®| 1T]|
1| 10 and2| CP| DJ 10, while it is usually positive in settinlg| 2| AR| D] 10.

Therefore, the use of maximum normalization is advised. Regarding the
block size normalization, no clear advice can beegi However, we must be
aware that use of block size normalization has pigalls. It may lead to a
blockmodel where one large block contains all tlhheonsistencies, while the
remaining blocks are ideal (usually null, especiallgparse networks) blocks.
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Figure 6: Effects of block size normalization for selectsettings withshapel= 8.
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5.5 Evaluation of optimization

The results obtained using the direct approachemtes! up till now were produced
using the local optimization of 20 random startipgrtitions. The aim of this
subsection is to try to evaluate if the poor perfante of direct approaches (when
it occurred), especially the very poor performance lwhary and valued
blockmodeling, might be caused by the fact that ep&mization of 20 random
starting partitions finds only locally but not globabptimal partitions.
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Figure 7: Effects of block size and maximum normalizati@amd their interaction) on
implicit blockmodeling for selected settings wighapel= 8.

The aim is also to assess if therrect partitions could be globally optimal
partitions. This is done only on a subset of se#if@so indicated in Table 1) in
order to save time. Only settings from two classkesettings were selected, that is
from the classe€lear patternand Not maximal regularas these were the two
classes of settings where the poor performance ofarp and valued
blockmodeling was the most surprising. These ase #&he two classes of settings
where other approaches have most room for impronénie order to achieve this,
the Adjusted Rand Indices obtained using optimmatof 20 random starting
partitions are compared with those obtained ushegdptimization of 100 starting
partitions and with those obtained with an optintigza of the correct partition
(the one used in generation of the networks).
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Figure 8: Results obtained by a local optimization of 2@ d&®0 random starting
partitions and of the correct partition.
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Figure 9: Comparison of inconsistencies.
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The results are presented in Figure 8. Howevere ltke comparison is not
made only according to the Adjusted Rand Indices hld#o to the (total)
inconsistenci€d. The inconsistencies obtained using the localmjatation of 20
random starting partitions are compared with thadeained using the local
optimization of 100 random starting partitions, lwithose obtained using the
optimization of the correct partitions, and withetinconsistencies of the correct
partitions. The values of the inconsistencies ass@nted in Figure 9.

The conclusions based on both measures are:

Structural equivalence Using more random starting partitions did not &av
consistent effect on sum of squares blockmodeliogoeding to structural
equivalence. When only using the correct partitignttee starting partition, the
obtained partition was closer to the correct pamitwhich is, of course, natural
as it served as a starting partition. Especiallykstg is the similarity of the
inconsistencies obtained with all four methods &malt the inconsistencies of
the correct partitions are almost the same as tbbsaned using some form of
local optimization that nevertheless produced qgdiféerent partitions. Because
of such similarity of the obtained inconsistencigsossibility that and error has
been made when producing these figures was evesidened. However, a
careful examination of the generated networks aaomdd that all these
relatively different partitions have very similar onsistencies. This indicates
that optimization was successful.

Binary blockmodeling (without pre-specified blockmodelinglsing 100 random
starting partitions instead of 20 improved the perfance of binary
blockmodeling in two settings (although not enormigy while not having
much effect in the other settings. Using the cdrrpartition as a starting
partition led to very good results, especially indbcettings where regularity
was enforced. Settings where regularity was enforcs#tdg the correct partition
as a starting partition also led to smaller inceteicies, indicating that the
convergence to a local (and not a global) maximgna iproblem. In settings
where regularity was not enforced, these approached to higher
inconsistencies and the correct partition was dased with even higher ones,
indicating that binary blockmodeling is inappropedor such networks.

Valued blockmodeling (without pre-specified blockmodelinglsing 100 random
starting partitions instead of 20 did not consisieimprove the performance of
valued blockmodeling. On the other hand, using toerect partition as a
starting partition of the local optimization hadianilarly favorable effect as on
binary blockmodeling. However, it did not consistgntlower the
inconsistencies as was the case with binary bloclatiogl, indicating that it
just led to more similar local optima. Also, thecamsistencies of theorrect

2 Total inconsistency measures how inconsistentafirempirical blocks with the ideal blocks.
It represents the valued or the criterion functidrat is minimized in direct blockmodeling
approaches.
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partitions were not consistently lower than of thosetained with a local
optimization with random starting partitions, indting that it might not be an
appropriate approach to such problems.

Homogeneity blockmodeling:Increasing the number of random starting partsgion
considerably improved the performance of sum of segiablockmodeling
according tomaxregular equivalence in the class of settindgst maximal
regular (especially with regularity enforced), while it héttle effect in other
settings and methods. Using the correct partititso aonsiderably improved
the results. However, it also increased the incstesicies in some settings,
although considerably in just two settings. The mgistencies of the correct
partition were similar or slightly higher.

Implicit blockmodeling (without pre-specified blockmodeling)For implicit
blockmodeling very similar things could be stated fi@ homogeneity
blockmodeling, except the effect of the increaseanher of random starting
partitions is even smaller.

For most of the methods, the increase in the nunmdferandom starting
partitions did not have a considerable effect altftothere are some combinations
of settings and methods where an improvement wasdnoUsing the correct
partition almost always led to higher Adjusted Randices as could expected
since the same partition used in comparison was ased as a starting partition.
However, in most cases use of the correct partitisra starting partition often led
to higher inconsistencies, with binary blockmodelifgghen regularity was
enforced) being the most notable exception. Thenscstencies for the correct
partition were also often higher, with binary bloakdeling (when regularity was
enforced) again being the most notable exceptiolme Thconsistencies of the
correct partition higher than the partitions obtained thgh local optimization are
especially problematic when the Adjusted Rand Inglioéthe partitions obtained
through local optimization are relatively low. Incdusituations, we can conclude
that those approaches where this occurs are inpppte for partitioning the
networks generated in these simulations.

6 Limitations

The simulation study presented in this paper hasersévlimitations. These

limitations are either due to the way the networksravgenerated or due to the

implementation of the methods used to analyze thesevorks. The following

aspects of the way the networks were simulated migive made the generated

networks less realistic and thus rendered the tesess relevant:

The size of the networks:Only networks of size 11 and 25 units were genelate
Larger networks were not generated due to the tmmeded to analyze them
using generalized blockmodeling of valued networkhis is a serious
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limitation of the study for two reasons. First, teeudy aims at evaluating
methods for detecting regular equivalence and fbeee regular blocks.
However, regular blocks are defined as such blogkere there is at least one
tie (in the binary sense) in each row and in eadoroa. When networks grow
larger (and at fixed number of clusters, also b&)ckhis requirement can be
fulfilled by increasingly sparser blocks. Therefotbgy are presumably also
much harder to detect. The second reason is anremlpone. When comparing
results obtained on networks with 11 units with g@owith 25 units the
performance of all methods considerably worsenedicating that the size of
the network definitively has an important impact @he results of the
evaluation. | assume that increasing the size efrtbtwork further would have
similar yet diminishing effect, although this shoudd course be tested with
further simulations.

Simulation of the ‘0’ ties: The ‘0’ ties were simulated from the beta distribuat
described in Appendix 1. This might be problematicce practically none of
these ‘0’ ties had an exact value of 0. A tie vatded means that the tie does
not exist. Most real networks are, on the otherdharsually relatively sparse,
that is, they have a lot of pairs of units that aogé connected, they have a lot
ties with value of exactly 0. There are also exarmpé real networks where
exact ‘O’ ties are rare, e.g. trade networks amoagntries. The affect of this
assumption was tested in Stage 1 (results are pre$én Ziberna (2007b, 187-
188)) where it was shown that giving the exact gabdi O to 90% of the ‘0’ ties
improves the performance in most combinations aftisgs and methods.
However, the effect is not strong in those settimgth a highshapelparameter
(except for valued blockmodeling).

No binary inconsistencies in null blocks:The binary networks based on which
valued networks were obtained were generated witlamy inconsistencies in
null blocks. The assumption was that ties are yareported if not preset and
that the inconsistencies based on values addedchdset ‘0’ ties would be
sufficient. The problem with this assumption isttitacontradicts the idea that
at least a large portion of the ‘O’ ties does navénto have a value of exactly O.

Distribution used for generating the tie values:In the simulation, a beta
distribution with specific parameters was used w@neyate the tie values.
Although the choice of the distribution and the graeters was based on real
networks, they do not represent all networks. Fatate types of networks,
different distributions or parameters are more appate. Also, the values in a
lot of the real social networks have a discreteviikie distribution, while here a
continuous distribution was used.

The implementation of the methods used in thesailsitions also affected the
results. This problem is especially relevant for gmatzed blockmodeling
methods. However, as the implementation of all gelwed blockmodeling
approaches suffers from the same problems listddwhewhich means that the
results obtained in this paper can be used to coenfjem. The most problematic
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aspects of implementing the generalized blockmadeliapproaches in the

bl ockmodel i ng 0. 1. 2 package (Ziberna, 2006) are:

The experimental state of the packagethe blockmodeling package is still
experimental. Most of the following limitations stefrom this fact, e.g. little
effort was put into optimizing the code for spest®dme procedures are still
being improved etc.

Speed of execution:.one of the main problems of implementing the geheed
blockmodeling approaches used in this paper isgeed of execution. The
most serious affect this limitation of the implemaiion had on these
simulations is that usually local optimization waené on only 20 random
stating partitions. This is not only a problem oktmethods (which are by
themselves very computationally intensive), but atfothe implementation
since the implementation of binary blockmodelingRajek 1.11 (Batagelj and
Mrvar, 2006) is about 1000 times faster than the anthe package used. If
1000 random starting partitions could be optimizea could be much more
confident that the partition(s) found using a looatimization is at least close
to the global optimum. However, this was not poksiks even by optimizing
just 20 random points, about two weeks and 40 cdarguwere needed to
complete the simulations.

Generation of the random starting partitions: One thing that was not
implemented well in version 0.1.2 is the procedused to generate starting
partitions for the local optimization (used in geamé&ed blockmodeling
approaches). In this version, the starting pamsiowere chosen so the
probabilities of belonging to a cluster are the eafar all clusters. Such a
procedure has a tendency to generate partitions eqbroximately equally
sized clusters. In real applications, this is amey shortcoming as the partitions
are often not even approximately equally sized. Alfto the partitions used in
this paper did not have clusters of extremely ddfdrsizes, this shortcoming
might still have some effect since partitions withequal clusters may be a
more suitable starting partition. In any case, thmes procedure was used to
select the starting partitions for all generalizdédckmodeling approaches.

Another limitation of this study is that initially n3 iterations were used in
the REGE algorithms. However as this might be impdee, we later tested the
effect of using 100 iterations instead of 3. Basadthese tests, we can conclude
that for such relatively small networks 3 iteratiaesenough for a network where

REGE is expected to perform well; however, morgat®ns can improve the

results for networks where the structure is unck®aREGE. These results were

also incorporated in the discussion of the maimlitssand conclusion.
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7 Conclusions

These conclusions are mainly based on the simulaifometworks with 25 units.
While networks with only 11 units were also analyzéd, units are too few to
produce relevant results regarding regular equivade The difference between the
results based on networks with 11 and those basedetworks with 25 units is
striking. Most methods, but especially binary and ueal blockmodeling,
performed considerably better on a smaller netwdsko factors are most likely
responsible for this. The first one is that the grated regular blocks are much
denser when they are smaller and denser blocksaamiereto identify. The second
one is there are much less possible partitions twt or three clusters of 11 units
than of 25. Due to this, a full search was usedmwaealyzing networks with 11
units to find two-cluster partitions. For three-sfar partitions a local optimization
with 20 random starting points was used, howevés tas sufficient for such a
small number of units. In contrast, 20 random stgripartitions was shown to be
inadequate (Subsection 5.5) for partitions of 2Baumto two or three clusters.

The most surprising result is the relative effeetiess of the methods for
structural equivalence on networks generated basethaxregular equivalence.
The sum of squares blockmodeling according to $tmat equivalence (direct
approach) performed especially well. Although thikacly also proves the
usefulness of these methods for the analysis of setiorks, it also creates doubt
about whether the way the networks were generatedappropriate. This doubt is
also supported by some examples in Ziberna (200@&)jn most of them the
methods for structural equivalence often did netdi¢o satisfactory results. There
are however some arguments that explain the goddmeance of sum of squares
blockmodeling on regular networks, which were expta near the end of
Subsection 5.2. Therefore, we can conclude thagtuoa performance of methods
for structural equivalence should be taken withtmay but not dismissed.

When comparing the two methods for structural eglgmce, namely an
indirect approach for structural equivalence or, renoprecisely, Ward’s
hierarchical clustering of distances computed usi@grrected Euclidean-like
dissimilarity (Burt and Minor, 1983 in Batagelj, Figoj and Doreian, 1992) and a
direct approach of sum of squares blockmodelingoetiog to structural
equivalence, the second performed much better.

The simulation results have also shown that the dgemeity blockmodeling,
REGE and (although somewhat less) implicit blockeloty are well suited for
identifying regular portions in valued networks (wheegularity was enforced).
Until now, the REGE algorithm (the direct approachas the only method
designed to find partitions in terms of regular eqlence in valued networks. We
have shown that homogeneity blockmodeling performmkast as well as REGE.
In addition, homogeneity blockmodeling like other thmeds of generalized
blockmodeling can, unlike REGE, also be used tdipan the network based on
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other kinds of equivalences (other than regulartah be used with other allowed
block types (other thanmax)regular) and to some extent also with pre-spedifi
blockmodels. REGE (with 100 iterations) performediiwn all settings for which
it was designed and in some where it was not sugbds, which itself calls for
further investigation. It was expected that REGEuldoperform well only in
settings where the partition that was searchedwfas maximal regular (at least
when taking the values of ties into account) as ki what it was designed for
Implicit blockmodeling performed similarly as homagsty blockmodeling and
REGE, although slightly worse.

Binary and valued blockmodeling performed relativelell in Stage 1,
especially when the partition searched for was na@tximal regular and no
additional information in terms of tie values wasoyided. Unfortunately, they
usually performed terribly in Stage 2 (where a losdrch with 20 random starting
partitions was used in networks with 25 units). &splly in the case of binary
blockmodeling, there are indications that the peoblis in the search procedure as
the correct partition usually had smaller inconsisie than the one found by a
local search. As mentioned at the beginning of #astion, the number of random
stating partitions used (20) is too small for awmtk with 25 units. Also, the
random stating partitions might not have been chosgtimally. Both points are
discussed in the previous section.

However, the poor performance only occurs when these blockmodeling
types were not used with pre-specified blockmodelifghen this additional
information was used, they were usually the bestrooreg the best methods. The
use of pre-specified blockmodeling also consideraihproved the results of
implicit blockmodeling in settings where the padit that was searched for was
not maximal regular.

8 Ideas for future work

The first set of ideas for further work of courseats with the limitations of the
simulations presented in this paper, as discussedeaction 6. However, in
addition to these more technical improvements, maugstions that can also be
answered using simulations are still open and aesented below.

There is also a need for further simulation wherébyckmodeling methods
could be evaluated more thoroughly for networks gatesl based on generalized
equivalence. These networks should be generateddbas blockmodels with
mixed types of blocks, which are blockmodels thatlude the block of type null
and of at least two block types among the followinggular, row- and column-
dominant, row- and column-functional etc.

Also, two of the open problem sets mentioned by xore(2006) are very
appropriate to be studied by simulations. Thesetlageeffects of missing data (or
more generally inaccurate data) and of the netwookinbdary problem. The
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network boundary problem arises when it is probléeetat determine which units
should be included in the network.

In addition to extending the simulations by incluglinetworks with different
features as suggested above, it would also be usefevaluate other methods
such as stochastic blockmodeling and other optitrona procedures (within
generalized blockmodeling) in comparison to a lcsedrch.
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Appendix 1: Procedure for generating a network

The networks were generated using the followingcpdure:
1. A binary network was generated based on a partiadnlockmodel, and the
parameter controlling the enforcement of strictulagity.

the partition was used to split a (empty) networkn{atrix of 0s) into
blocks and to determine the size of the network
with blocks where the blockmodel indicated null ¢ks, nothing was
changed
in regular blocks, each cell had a probability o€t®®ing 1 equal to p:
1
P= min(n,,n.)-1"
o nris the number of rows in the blocks
0 nc is the number of columns in the blocks
if regularity was enforced the block was checked riegularity, that is,
each row and each column were checked if they hddaat one 1 (tie).
If not, 1 was added to a randomly chosen cell frbat row/column

o] where:

2. A valued network was generated based on the binatywark and the
remaining parameters (beta parameters and muléifpic factor).

Based on the binary network, the valued network geserated from
the beta distribL(ltion.)Beta distribution has theslgy:

_ MNa+b a-1 b-1
f(x)— I'(a)l'(b)x (1 x)

o where a and b are twshapeparameters and is the Gamma
function. It can have positive values on the ingdf0, 1].

0 The values of the parameters a and b depend otypleeof tie in
the binary network (0 or 1) and two additional paesens,
shapd andshape.

o For ‘0’ ties, the values were generated from thealbstribution
with parameter a always set to 1 and the parametsetbto
shapd. For ‘1’ ties, the values were generated from Heta
distribution with parameter a set shhapd and the parameter b
set to shape, which could be block specific. The parameter
shap® was set to 1 in the most basic version, making th
distribution for ‘1’ ties mirror image of the distution for ‘0’
ties. The other value used for the parameteap& was 4. The
parameteshapd could take on values 10, 8, 6, 4 and 2, but was
often restricted to valued 8 and 4. The valueshef parameters
shapd and shape in individual settings are specified in
Subsection 5.1 for Stage 1 and in Subsection &.5fage 2.

All values in certain blocks were then multipliegt the multiplication
factor (mf). Often, this was the same for all blocks and ¢fi@re made
no impact; however it could be block-specific.
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