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Abstract. The paper addresses black-box conformance testing of objects specified as an arbitrary observable
finite-state machine. It proposes a new state-counting-based method for the construction of complete test suites.
The method brings new options for the definition of conformance, for assumptions on the object under test
and for test preambles, and a strategy against harmfully redundant members of the employed preamble sets.
Compared to similar methods, it is more widely applicable and customizable and in many cases able to produce
a much shorter test suite.
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Izboljšano na štetju stanj temelječe snovanje popolnih
nizov preizkusov za izvedbe končnih avtomatov

Članek obravnava preizkušanje skladnosti po principu črne
škatle za objekte, specificirane kot poljuben končni avtomat.
Predlaga novo na štetju stanj temelječo metodo za snovanje
popolnih nizov preizkusov. Metoda prinaša nove možnosti
za definicijo skladnosti, za predpostavke o preizkušanem
objektu in za uvodne dele preizkusov ter strategijo proti
škodljivo odvečnim članom uporabljenih množic uvodnih de-
lov preizkusov. V primerjavi s podobnimi je širše uporabna,
bolj prilagodljiva in v mnogih primerih sposobna zasnovati
dosti krajši niz preizkusov.

1 INTRODUCTION

Observable finite-state machines (OFSMs) are abstract
machines that to each input specified in their current
state reply with an output and the corresponding change
of the state. In model-based black-box testing, they are
widely employed both as models of what the object
under test is supposed to be and as models of what
it might be in the reality. In this paper, we propose
a new complete test suite (CTS) construction method
that is able to handle any specification OFSM and
for the OFSM under test assumes only that it has at
most a given number of reachable states and never
refuses a relevant input without previously producing
an erroneous output. Currently, the only such method is
the state-counting-based method of [1] (with a slight
improvement proposed in [2]), for which theoretical
foundations are laid in [3]. In the following, the method
of [1] improved as suggested in [2] is called ‘the old
method’.
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In the old method, the only two conformance relations
foreseen are quasi-equivalence and quasi-reduction, and
they are covered with two separate procedures. The new
method covers a much wider class of the conformance
relation, with a single procedure. Besides, it is able to
exploit additional assumptions on the extent to which
the specified input/output sequences (IOSs) diverge (i.e.,
lead the OFSM to different states) in the implementation.
As a third generalization, it is no longer assumed that
the members of the initially constructed sets of test
preambles must be IOSs taking the specification OFSM
to a definitely reachable state. Unlike the old method, the
new one also has a strategy against harmfully redundant
elements of the preamble sets.

The new method was developed in [4], as an efficient
specialization of our there proposed and formally proved
new generic CTS construction method. It is presented
in Section 3, after Section 2 presents our notation and
definitions. In Section 3, we formally specify also the
old method, by specifying its virtually only differences
from the new one. Section 4 provides examples showing
how useful the novelties of our method can be. Section 5
comprises a discussion and conclusions.

2 NOTATION AND DEFINITIONS

Definitions 1-5 introduce the basics of our notation.

Definition 1.
• X denotes the universe of inputs.
• An IO is a sequence of an input and an output.
• Q, s, x, X , y, U , z and Z, possibly decorated, denote,

respectively, an OFSM, a state, an input, an input set,
an output, an IO set, an IOS and an IOS set.

Definition 2. For each OFSM Q:
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• st(Q) denotes the set of all its reachable states.
• init(Q) denotes the initial state.
• For each state s ∈ st(Q), ios(s) denotes the set of

all IOSs executable from s.
• ios(Q) denotes ios(init(Q)).
• For each IOS z ∈ ios(Q), ios(Q, z) denotes the IOS

set {z′|zz′ ∈ ios(Q)}.
• For each IOS set Z ⊆ ios(Q), ioss(Q,Z) denotes

the IOS set set {ios(Q, z)|z ∈ Z}.
• For each IOS z ∈ ios(Q), in(Q, z) denotes the input

set {x|∃y : (zxy ∈ ios(Q))}.
• For each IOS z ∈ ios(Q) and input x, out(Q, z, x)

denotes the output set {y|zxy ∈ ios(Q)}.
• For each IOS set Z ⊆ ios(Q), end(Q,Z) denotes the

set of all states in which Q can be immediately after
executing from init(Q) a member of Z.

Definition 3. For each IOS z = x1y1x2y2 . . . xkyk:
• ln(z) denotes its length k, with ε denoting an IOS

of the length 0.
• pf (z) denotes the set of all IOSs that are its prefix.
• For each IOS z′, z′ < z iff (i.e. if and only if)
z′ ∈ (pf (z) \ {z}).

Definition 4. For each IOS set Z:
• max (Z) denotes the set
{z|(z ∈ Z) ∧ ¬∃z′ ∈ Z : (z < z′)} of all its
maximal members.
• pf (Z) denotes the IOS set
{z|∃z′ ∈ Z : (z ∈ pf (z′))}.
• For each IOS z ∈ pf (Z), io(Z, z) denotes the IO set
{xy|zxy ∈ pf (Z)}.

Definition 5. For each IO set U:
• in(U) denotes the input set {x|∃y : (xy ∈ U)}.
• For each input x, out(U, x) denotes the output set
{y|xy ∈ U}.
• For each input x, io(U, x) denotes the IO set
{xy|xy ∈ U}.
Definitions 6-9 gradually introduce our candidates for

the conformance relation.

Definition 6. A well-formed binary relation for IO
sets (WBRIO) is such a set R of IO set pairs that for
each IO set pair (U,U ′), all the following is true:
(1) (U,U ′) ∈ R iff (io(U, x), io(U ′, x)) ∈ R for each

input x ∈ in(U ′).
(2) (U,U ′) ∈ R only if out(U, x) ⊆ out(U ′, x) for

each input x ∈ in(U ′).
(3) If out(U, x) = out(U ′, x) for each input

x ∈ in(U ′), then (U,U ′) ∈ R.
(4) (U,U ′′) ∈ R for each IO set U ′′ with

((U,U ′) ∈ R) ∧ ((U ′, U ′′) ∈ R).

Definition 7. For each input set X , br(X) denotes the
WBRIO consisting of all IO set pairs (U,U ′) that for
each input x ∈ in(U ′) satisfy all the following:

(1) ∅ ⊂ out(U, x) ⊆ out(U ′, x)
(2) If x ∈ X then out(U, x) = out(U ′, x).

Definition 8. For each IOS set pair (Z,Z ′) and
WBRIO R:
• For each IOS z ∈ pf (Z ′), Z ⊒R,z Z ′ iff for each

IOS z′ with (z′ < z) ∧ (z′ ∈ pf (Z)),
(io(Z, z′), io(Z ′, z′)) ∈ R.
• For each IOS set Z ′′ ⊆ pf (Z ′), Z ⊒R,Z′′ Z ′ iff
Z ⊒R,z Z ′ for each IOS z ∈ Z ′′.
• Z ⊒R Z ′ iff Z ⊒R,Z′ Z ′.

Definition 9. For each OFSM pair (Q,Q′):
• For each WBRIO R and IOS z ∈ ios(Q′),
Q ⊒R,z Q′ iff ios(Q) ⊒R,z ios(Q′).
• For each WBRIO R and IOS set Z ⊆ ios(Q′),
Q ⊒R,Z Q′ iff ios(Q) ⊒R,Z ios(Q′).
• For each WBRIO R, Q ⊒R Q′ iff Q ⊒R,ios(Q′) Q

′.
• Q is quasi-equivalent to Q′ iff Q ⊒br(X ) Q

′.
• Q is a quasi-reduction of Q′ iff Q ⊒br(∅) Q

′.
Definitions 10-15 introduce concepts related to the

CTS construction.

Definition 10.

• M denotes the specification OFSM.
• N denotes the OFSM under test.
• ⊒A denotes the conformance relation, with A

presumably a given WBRIO.
• I denotes the set of all candidates for N ,

presumably the set of all OFSMs Q that satisfy all
the following:
(1) For each IOS z ⊆ (ios(M) ∩ ios(Q)),

in(M, z) ⊆ in(Q, z).
(2) |st(Q)| is not more than a given upper bound

m, presumably a non-zero natural.
(3) For each IOS set Z ⊆ (ios(M) ∩ ios(Q)),
|end(Q,Z)| is not more than a given upper
bound ub(Z), presumably a natural with
1 ≤ ub(Z) ≤ m whose default value is m.

Definition 11. For each OFSM Q:
• For each IOS z = x1y1x2y2 . . . xkyk, imp(Q, z)

denotes the set of all IOSs in ios(Q) that are of the
form x1y1x2y2 . . . xi−1yi−1xiy

′
i with 0 ≤ i ≤ k, i.e.,

the set representing the implementation of z in Q.
• For each IOS set Z, imp(Q,Z) denotes the IOS set
{z|∃z′ ∈ Z : (z ∈ imp(Q, z′))}.

Definition 12.

• A test is a member of ios(M).
• A test suite is a set of tests.
• A given OFSM Q passes a given test suite Z iff
Q ⊒A,Z M , i.e., iff Q ⊒A,max(imp(M,Z))\{ε} M .
• Accordingly, we define the length len(Z) of a given

test suite Z as Σz∈(max(imp(M,Z))\{ε})(1 + ln(z)),
counting also the resets that are assumed to precede
each test in max (imp(M,Z)) \ {ε}.
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• A given test suite Z is complete iff Q ⊒A M for
each OFSM Q ∈ I with Q ⊒A,Z M .

Definition 13. A given state s ∈ st(M) is definitely
reachable if there exists an IOS set Z ⊆ ios(M)
satisfying all the following:
(1) end(M,Z) = {s}
(2) Z ∩ Z ′ ̸= ∅ for each IOS set Z ′ ⊆ imp(M,Z)

with (Z ′ ⊒A imp(M,Z)) ∧ (pf (Z ′) = Z ′).

Definition 14. For each IOS set Z and IOS pair
{z, z′} ⊆ pf (Z), a (Z, z, z′)-distinguisher is a pair
(z′′, x) satisfying all the following:
(1) z′′ ∈ (ios(Z, z) ∩ ios(Z, z′))
(2) x ∈ (in(Z, zz′′) ∩ in(Z, z′z′′))
(3) out(Z, zz′′, x) ̸= out(Z, z′z′′, x)

Definition 15. For each IOS pair {z, z′} ⊆ ios(M), a
{z, z′}-separator is a set D satisfying all the following:
(1) Every member of D is an

(ios(M), z, z′)-distinguisher.
(2) For the IOS set

Z = {z′′z′′′xy|(z′′ ∈ {z, z′}) ∧ ((z′′′, x) ∈ D)∧
(y ∈ out(M, z′′z′′′, x))}

and each IOS set Z ′ ⊆ imp(M,Z) with
(Z ′ ⊒A imp(M,Z)) ∧ (pf (Z ′) = Z ′)∧
({z, z′} ⊆ Z ′),

at least one of the following is true:
• D comprises a (Z ′, z, z′)-distinguisher.
• D comprises a (z′′xyz′′′, x′) with (z′′, x) a
(Z ′, z, z′)-distinguisher.

3 THE NEW METHOD

The new method is specified in Fig. 1. The constructed
CTS is the T ′ conceived in Step 6. In Steps 1-5, one
constructs an IOS set T ⊆ ios(M) and a set D of IOS
pairs {z, z′} ⊆ ios(M) with a {z, z′}-separator. For
each IOS z ∈ T , T ′ is supposed to check N ⊒A,z M .
For each pair {z, z′} ∈ D, T ′ is supposed to check that
in the case of {z, z′} ⊆ ios(N), z and z′ diverge in N .
(T,D), hence, defines a set of very simple test goals,
the goals into which Steps 1-5 decompose the goal that
T ′ should check N ⊒A M . In Step 6, each of the simple
goals is satisfied in a most simple way.

The contributors of the elements of T and D are the
IOS sets K collected in the set K constructed in Steps 1-
3. The sets in K are subsets of ios(M) and we call
their elements preambles, because the tests in T ′ are
constructed by their extension. For the optimality of K,
there are conflicting criteria:
• It is desirable that it is small, but one must secure

that in the case of N ⊒A M , there is a K ∈ K
with K ⊆ ios(N). If there are multiple ways for
implementing ios(M) correctly, one might prefer a
K with more than one element. In any case, for each

1. With the Fig. 2 procedure, obtain a K.
2. K′ ← ∅
3. While one exists, take an IOS set K ∈ (K \ K′) for

which there is no IOS set K ′ ∈ (K \ K′) with
ioss(M,K) ⊂ ioss(M,K ′) and do the following:

i. With the Fig. 3 procedure, obtain the relevant
part K ′ of K and a plan (V,W ) for it.

ii. V K′ ← V ; WK′ ←W
iii. While one exists, delete from K an IOS set

K ′′ ∈ (K \ K′) with
ioss(M,K ′) ⊆ ioss(M,K ′′) ⊆ ioss(M,K)
and do the following:
a. K ′′′ ← {z|(z ∈ K ′′)∧

∃z′ ∈ K ′ :
(ios(M, z) = ios(M, z′))}

b. k(K ′′′)← K ′; K ← (K ∪ {K ′′′})
c. K ← {Z|(Z ∈ K) ∧ ¬∃Z ′ ∈ K : (Z ′ ⊂ Z)}
d. K′ ← (K′ ∪ {K ′′′})

4. T ← {αβ|∃K ∈ K, (α′, β) ∈ V k(K) :
(ios(M,α) = ios(M,α′))}

5. D ← {{α1z, α2z
′}

|∃K ∈ K, (α′
1, z, α

′
2, z

′) ∈W k(K) :
(({α1, α2} ⊆ K)∧
(ios(M,α1) = ios(M,α′

1))∧
(ios(M,α2) = ios(M,α′

2)))}
6. Let T ′ ← T and then for each IOS pair {z, z′} ∈ D:

1. Choose a {z, z′}-separator.
2. For each member (z′′, x) of the separator:

i. Choose an output y ∈ out(M, zz′′, x) and
an output y′ ∈ out(M, z′z′′, x).

ii. T ′ ← (T ′ ∪ {zz′′xy, z′z′′xy′})
Figure 1. The new method

IOS set pair {K,K ′} ⊆ K with K ⊂ K ′, K ′ is a
redundant member of K.

• For each K ∈ K, it is desirable that it is small, but it
must comprise at least ε and it can be helpful if it has
at least one large subset K ′ with a {z, z′}-separator
for each {z, z′} ⊆ K ′ with z ̸= z′. In any case, for
each subset {z, z′} of a K ∈ K with (z ̸= z′)∧ (z′ ̸=
ε) ∧ (ios(M, z) ⊒A ios(M, z′)), z′ is a redundant
member of K.

• The optimality of K also depends on the exact nature
of the available separators, but this is not considered
in the method.
In Step 1, the method constructs the initial version of

K, with the Fig. 2 procedure. Its strategy in the step is
to make K small, but still sufficient, and its individual
members K small, but still possessing a promising
end(M,K). Unlike in the old method, those IOSs in
ios(M) that do not lead M to a definitely reachable
state are also considered for inclusion into the elements
of K.

In Step 3 of the method, one forms a plan how
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1. S ← st(M)
2. While one exists, take a state pair {s, s′} ⊆ S with

(s ̸= init(M)) ∧ (s′ ̸= s) ∧ (ios(s′) ⊒A ios(s)) and
delete s from S.

3. For each state s ∈ S, choose a test set Zs satisfying
all the following:
(1) s ∈ end(M,Zs)
(2) Z ∩Zs ̸= ∅ for each IOS Z ⊆ imp(M,Zs) with

(Z ⊒A imp(M,Zs)) ∧ (pf (Z) = Z).
(3) If s = init(M) then Zs = {ε}.
The default is to minimize, in the given order,
|end(M,Zs)|, |Zs| and len(Zs).

4. P ← {z|∃s ∈ S : (z ∈ Zs)}
5. K ← {(P ∩ Z)|(Z ⊆ imp(M,P )) ∧ (pf (Z) = Z)∧

(Z ⊒A imp(M,P ))∧
6. K ← {Z|(Z ∈ K) ∧ ¬∃Z ′ ∈ K : (Z ′ ⊂ Z)}
7. For each IOS set K ∈ K:

i. K ← (K \ {K})
ii. While one exists, take an IOS pair {z, z′} ⊆ K

with (z ̸= ε) ∧ (z′ ̸= z)∧
(ios(M, z′) ⊒A ios(M, z))

and delete z from K.
iii. K ← (K ∪ {K})

8. K ← {Z|(Z ∈ K) ∧ ¬∃Z ′ ∈ K : (Z ′ ⊂ Z)}
Figure 2. Construction of the initial version of K

to accommodate individual K ∈ K, i.e., what their
contributions to T and D should be. Actually, for each
IOS set set Y ∈ {ioss(M,K)|K ∈ K}, one forms a
plan for just one K ∈ K with ioss(M,K) = Y , whereas
for the remaining K ′ ∈ K with ioss(M,K ′) = Y , one
just sets k(K ′) to K, thereby deciding that they will be
accommodated analogously. k(K) is also set to K.

Whenever the Fig. 1 procedure decides to construct
a plan for a K ∈ K, it calls the Fig. 3 procedure. The
procedure constructs the plan and possibly detects some
redundant members of K, so that the plan is actually
for K ′, the computed relevant part of K. After K ′ and
its plan are computed, the Fig. 1 procedure reduces K
to K ′, analogously reduces the remaining K ′′ ∈ K
with ioss(M,K ′) ⊆ ioss(M,K ′′) ⊆ ioss(M,K) and
deletes every member of K that consequently becomes
redundant.

In the Fig. 3 procedure, one builds the relevant part
K ′ of the given K and a plan (V,W ) for it gradually.
Initially, K ′ comprises just ε, whereas V and W are
empty sets. For each IOS α ∈ K already in K ′, giving
priority to the maximal ones among the yet unconsid-
ered current members of K ′, one then constructs the
following:

1. A set B comprising each IOS β ∈ ios(M,α) that
is just enough long that ios(M,αβ) = ∅ or one
can construct for it a specifically formed triplet
(L,C,W ′) (the conditions which the triplet is sup-

1. V ← ∅; W ← ∅; K ′ ← {ε}; K ′′ ← ∅
2. While one exists, add to K ′′ an IOS

α ∈ max (K ′ \K ′′) and do the following:
i. B ← {ε};

ii. While B ̸= ∅, delete from B an IOS β and then
if ios(M,αβ) = ∅ then let V ← (V ∪{(α, β)})
else if there is a triplet (L,C,W ′) satisfying all
the following:
(1) L ⊆ K
(2) ∅ ⊂ C ⊆ pf (αβ) \ pf (α)
(3) |C| > ub(L ∪ C)− |L|
(4) W ′ is a set of 4-tuples (α′, z, α′′, z′)

satisfying all the following:
(a) {α′, α′′} ⊆ (L ∪ {α})
(b) {α′z, α′′z′} ⊆ (L ∪ C)
(c) There is an {α′z, α′′z′}-separator.

(5) {α′, ε, α′′, ε} ∈W ′ for each IOS pair
{α′, α′′} ⊆ L with α′ ̸= α′′.

(6) {α, z, α, z′} ∈W ′ for each IOS pair
{αz, αz′} ⊆ C with
(z < z′) ∧ (ios(M,αz) ̸⊒A ios(M,αz′)).

(7) {α′, ε, α, z} ∈W ′ for each IOS pair
{α′, αz} with (α′ ∈ L) ∧ (αz ∈ C)∧
(ios(M,α′) ̸⊒A ios(M,αz)).

then do all the following:
a. Choose such a triplet (L,C,W ′). The

default is to minimize, in the given order,
|L \K ′| and |W ′ \W |.

b. K ′ ← (K ′ ∪ L)
c. V ← (V ∪ {(α, β)}); W ← (W ∪W ′)

else B ← (B ∪ {βxy|xy ∈ io(M,αβ)})
Figure 3. Computation of the relevant part K′ of a K and
conception of a plan (V,W ) for its contributions to (T,D)

posed to satisfy originate in a state-counting-based
conformance testing principle suggested in [3] and
improved and generalized in [4]). For each β ∈ B,
(α, β) is added to V , where it specifies that αβ is to
be included into T .

2. For each β ∈ B with ios(M,αβ) ̸= ∅, the required
(L,C,W ′). Note the following:

i. L is a subset of K and each of its members is
added to K ′.

ii. C is a subset of pf (αβ) with |C| > ub(L∪C)−
|L|. Unlike the old method, we foresee also the
possibility of ub(L∪C) < m. In such a case, β
can be shorter and C smaller.

iii. W ′ is a set of 4-tuples (α′, z, α′′, z′′) with
({α′, α′′} ⊆ (L ∪ {α})) ∧ ({α′z, α′′z′} ⊆ {L ∪
C} and an {α′z, α′′z′}-separator. Each such 4-
tuple is added to W , where it specifies that
{α′z, α′′z′} is to be included into D.

Note that the plan (V,W ) constructed for the final K ′,
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subsequently called (V K′
,WK′

), explicitly refers to
individual members of K ′. This is to make it possible
that the remaining K ′′ ∈ K with ioss(M,K ′) ⊆
ioss(M,K ′′) ⊆ ioss(M,K) are handled analogously
to K. Like the relevant part of K, their relevant parts
contribute to T and D only if they are not subsequently
deleted from K. In the old method, there is no optimiza-
tion of K beyond its initial version.

The ways in which the old method differs from
the new one are virtually just the following (plus the
consequently possible procedural simplifications):
1. For the conformance relation ⊒A, one assumes A ∈
{br(∅), br(X )}.

2. For each IOS set Z ⊆ ios(M), one assumes ub(Z) =
m.

3. In Step 1 of the Fig. 2 procedure, S is initialized not
to st(M), but to the set of all definitely reachable
states of M .

4. In Step 1 of the Fig. 3 procedure, K ′ is initialized
not to {ε}, but to K.

4 EXAMPLES SHOWING HOW USEFUL THE
NOVELTIES CAN BE

Each of the example OFSMs Q will be presented in the
usual way, as a rooted directed graph in which each state
of Q is represented as a vertex, the initial state of Q is
represented as the root vertex and each transition of Q,
executing an IO xy and leading from a state s to a state
s′, is represent as an edge labelled with x/y and leading
from the s vertex to the s′ vertex.

Example 1. The common property of quasi-equivalence
and quasi-reduction is that for each of the specified
inputs, the legal responses are only the specified alterna-
tive outputs. The difference is that in the first case, all
the alternatives need to be implemented in the OFSM
under test, whereas in the second case, it suffices to
implement just one. We observe that to instead prescribe
‘all or at least three’, for example, would also be a
practically interesting option. This conformance relation
also belongs to the class that the new method can handle.

Example 2. Suppose that M is the OFSM in Fig. 4(a),
A = br(∅), m = 2 and the IOSs starting with x1y1
are considered more important than those starting with
x1y2, for example because y1 is an alarm, whereas y2 is
not. The old method cannot be instructed to check the
implementation of the less important IOSs to a desired
extent less thoroughly, whereas the new method can. For
this, one would for each such IOS z set ub(pf (z)) to
an appropriate value of less than m, let’s say to 1. The
best T ′ that one can obtain with the new method is then
{x1y1x2y3x2y3, x1y2x3y4}, whereas with ub(Z) = m
for each IOS set Z ⊆ ios(M), the best possible T ′ is
{x1y1x2y3x2y3, x1y2x3y4x3y4}.

i = 1 . . . q

j = 1 . . . q

s 0s i , 1 s i , 2
r i / t i , 1 r i / t i , 2

a / v i , 1 a / v i , 2

c / n c / n

( b )

s 1

s 2

s 3
x 1 / y 2

x 1 / y 1

x 2 / y 3

x 3 / y 4

( a )

s 1

s 2 s 3

a / 0

b / 0

c / 0

( c )

Figure 4. Three example OFSMs

Example 3. Suppose that M is the OFSM depicted in
Fig. 4(b), with q a given non-zero natural. The OFSM
specifies, for example, an agent selling vouchers for
transactions of types 1 to q and acting as follows:
• For each 1 ≤ i ≤ q, the agent can in the initial

state accept a request ri for a voucher for a type i
transaction.

• For each voucher request ri, the agent first returns
its terms of sale, by an unknown algorithm choosing
between ti,1 and ti,2. By consequently changing its
state to si,1 or si,2, respectively, it records the offer
and waits for an input a indicating that the client
accepts the terms or an input c indicating that the
client cancels the request.

• Upon receiving a in a state si,j , the agent issues a
voucher vi,j for a type i transaction under terms ti,j
and returns to the initial state.

• Upon receiving c in a state si,j , the agent issues n, to
indicate its readiness for the next request, and returns
to the initial state.

Suppose that A = br(∅) and m ≥ 2q+1. If one executes
the new method optimally, one makes the following
choices:
• K ← {K|({ε} ⊆ K ⊆ ios(M)) ∧ (|K| = q + 1)∧

∀1 ≤ i ≤ q : ∃riti,j ∈ K}
• T ← {z|(z ∈ ios(M)) ∧ (ln(z) = 2(m− q) + 3)}
• D ← {{z, z′}|({z, z′} ⊆ pf (T ))∧

(|end(M, {z, z′})| = 2)∧
(s0 ̸∈ end(M, {z, z′}))}

• For each IOS pair {z, z′} ∈ D, the selected {z, z′}-
separator is {(ε, a)}.

• T ′ ← {zavi,j |(zavi,j ∈ ios(M))∧
(ln(z) = 2(m− q) + 3)}

The CTS T ′ is of the length (2(m−q)+5)q(4q)m−q+1.
For a comparison, if Step 1 of the Fig. 2 procedure is
executed as in the old method, the best choices that one
can make are the following:
• K ← {{ε}}
• T ← {z|(z ∈ ios(M)) ∧ (ln(z) = 2m)}
• D ← ∅
• T ′ ← T

Now len(T ′) is (2m+1)(4q)m. Note that for any fixed
m− 2q,

lim
q→∞

(2(m− q) + 5)q(4q)m−q+1

(2m+ 1)(4q)m
= 21−2qq2−q,
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meaning that for any given percentage p, there are
infinitely many pairs (q,m) for which the savings in
the CTS length thanks to the additional freedom for
preambles can be at least p.

Example 4. Suppose that M is the OFSM in Fig. 4(c),
A = br(∅) and m = 2. If one executes the new method
optimally, one makes the following choices:
• K ← {{ε, a0}}
• T ′ ← {a0b0c0b0c0}
For a comparison, if Step 1 of the Fig. 3 procedure is
executed as in the old method, the best choices that one
can make are the following:
• K ← {{ε, a0, a0b0}}
• T ′ ← {a0b0c0b0c0b0}
Obviously, a0b0 should better not be present in the only
member of K. Unlike the old method, the new one is
able to detect that.

5 DISCUSSION AND CONCLUSIONS

The current CTS construction methods similar to ours,
hereby called ‘the current methods’, are those of papers
[1]–[3], [5]–[24]. Here it is necessary to note that
papers [9], [11], [19], [24] describe an adaptive testing
process, in which CTS construction is interspersed with
applications of the already constructed part. For each
of the papers, what we call ‘the method of the paper’
is the method that it virtually proposes for test suite
completion, where we assume that the method is given
an empty test suite.

Unlike our method, the current ones are unable to han-
dle conformance relations other than quasi-equivalence
and quasi-reduction or exploit arbitrary upper bounds
given on the extent to which individual sets of the
specified IOSs diverge in the implementation. What they
do have in common with our method is that they consist,
at least implicitly, of two phases: decomposition of the
initial test goal into a set of simple test goals and
satisfaction of each of the simple goals. The initial goal
is to test the conformance, while each of the simple goals
is either to test the implementation of a given IOS or to
test the divergence of a given pair of IOSs.

The way in which the current methods decompose
the intial goal is virtually the same as in our method,
except that the latter does not restrict preambles to
IOSs leading the specification OFSM to a definitely
reachable state and has a strategy against harmfully
redundant members of the employed preamble sets. With
the constraint relaxation and the strategy, our method
potentially decomposes the initial goal into a simple goal
set that can be satisfied by a shorter test suite.

While our method has a more advanced goal-
decomposition procedure, its goal-satisfaction procedure
is the simplest possible. Many current methods have
a much better one, as they support also indirect goal

satisfaction [14]–[16], [18], [21], [23], [24]. In [25],
we proposed and proved an advanced goal-satisfaction
method that generalizes the goal-satisfaction procedures
of all current methods and can be easily combined with
our new goal-decomposition procedure. The method is
generic, but we are developing for it also an efficient
specialization. Another item for further study is how
the goal-decomposition phase of the CTS construction
could take into account the exact nature of the available
separators.
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