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Abstract: Within the framework of the simple one dimensional tight binding model of two coupled semiinfinite linear chains of atoms it is argued
that the intrinsic interface charge induced at the interface between the two chains in principle depends on the applied bias. Approximate
expressions in the limits of smail and large applied bias are explicitly given and the necessity of self-consistent treatment of the induced interface
charges is being discussed. In spite of the simplicity of the model, chosen as a first step towards investigation of the microscopic aspects of the
interface physical properties, the findings seem to be in general agreement with our recent measurements of the reverse excess capacitance of
the ionized cluster beam deposited Ag/p-Si(100) Schottky diode. Consequently, the findings might be relevant also to the theory of the disorder
induced gap states, as the derived resuilts imply that even at the given, lattice matched and undoped interface between the two {even identical)
semiconductors, a strong, approximately bell shaped, bias dependent electric field is expected in general to appear, of which the consequence
on the Fermi level pinning is presently unclear.

Modelski izracun odvisnosti induciranega naboja na
vmesni plasti od zunanje napetosti v polprevodniskih
strukturah narejenih z metodo curka ioniziranih skupkov
atomov

Kljuéne besede: vmesniki izolator-polprevodnik, vmesniki kovina-polprevodnik, DIGS stanja energijska nereda v rezi energijski, DIGS modeli,
SCHOTTKY strukture, ICB nanasanje s curkom skupkov ioniziranih, naboji etektricni vmesnika, povezave tesne, GREEN funkcije

lzvleéek: V okviru enostavnega enodimenzionalnega modela stika med dvema linearnima verigama atomov je raziskana odvisnost induciranega
naboja na stiku od zunanje napetosti. Podani so aproksimativni izrazi za odvisnost induciranega naboja pri velikih in majhnih vrednostih zunanje
napetosti ter vpliv samousklajenosti pri radunanju naboja na stiku. Ceprav izredno preprost, predstavija podani modet prvi korak k razumevanju
mikroskopskih mehanizmov nastanka naboja na stiku odvisnega od zunanje napetostiin kaze, da so grobirezultati v skladu z nasimi ugotovitvami,
ki temeljijo na izmerjenin karakteristikah kapacitete stikov Ag/p-Si(100) narejenih z metodo curka ioniziranih skupkov atomov. Predstavljeni
rezultati lahko prav tako pomagajo osvetliti problem vpetja Fermijevega nivoja in z neredom induciranih stanj na stiku med razlicnimi materiali v

okviru teorije DIGS.

1. Introduction

The unified model of disorder induced gap states
(DIGS) for insulator-semiconductor and metal-semi-
conductor interfaces as proposed by Hasegawa /1/
seems to be able to explain the salient features of the
metal-semiconductor interface formed either on the
bare or oxide covered semiconductor /2/.According to
DIGS model a deposition of either an insulator or a
metal (or even semiconductor) on a given semiconduc-
tor effectively produces a thin disordered semiconduc-
tor interlayer, characterized by fluctuations of bond
length and bond angles. The DIGS theory provides a
formal understanding of the weak Fermi level pinning
mechanism at semiconductor-metal junctions in terms
of the microscopic morphology of the interface and is
also, for a given metal-semiconductor junction, able to
give a clue as to how and why seems to be possible to
tailor Schottky barrier height /2/ over large interval, for
which the manifestation of the induced interface dipoles
might be most likely responsible /3/.

The problem of controlled variation of Schottky barrier
height throughout its entire range, ranks as one among
the important fundamental questions of semiconductor
device physics remaining to be solved, notwithstanding
also from the technological point of view. Although an
old one /4/, it seems to be best amenable to the experi-
mental investigation by utilizing the method of ionized
cluster beam deposition ICB /5, 6/, the results of which
seem to be strongly correlated to the basic assumption
of DIGS theory of ref. /1, 2/. In particular, it has been
found recently /7/ that the reverse excess capacitance
of suitable ICB deposited Ag and Pb/Si(100) Schottky
junctions could be understood in terms of the specific
(modeled) biased voltage dependent excess interface
charge density. Figure 1 shows the measured capaci-
tance spectra of ICB deposited Ag/p-Si(100) Schottky
structure (dots) and the calculated capacitance within
the model incorporating the bias dependent interface
charge density (full line). The detalls of the model and
explicit expression for the interface charge are given
elsewhere /7/. Although it is for the first time that such
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an explicit bias voltage dependent excess interface
charge density has been introduced for the successful
description of the measured low-frequency C-V data, its
implicit existence seems to be introduced and in differ-
ent context investigated by Darling /8/ and Gomila /9/.
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Fig. 1:  Experimentaly determined low frequency
capacitance of the ICB deposited
Ag/p-Si(100) Schottky junction (dots) and
calculated capacitance of the structure using
the bias dependent interface charge mode/
described in detail in /7/. As shown in |7/, the
reasonable agreement with the measured
spectra can only be achived by introducing

bias dependent interface charge density.

Since the effect of the externally supplied bias voltage
dependent interface charge density is expected
strongly to correlate with the equilibrium as well as
non-equilibrium transport properties of Schottky junc-
tions it seems most appropriate to investigate its occur-
rence and its bias voltage functional dependence form
thefirst principles, starting fromthe simple model of one
dimensional chain of atoms.

In this paper we are tying to argue on the basis of a
simple one dimensional model that the charge induced
at the interface is in principle bias dependent (thus
within certain interval of bias voltage always appearing
at the junction, i.e. site of a broken periodicity of inter-
atomic potential, even in cases of homojunctions, con-
trary to DIGS theory) and that special care should
therefore be taken when modeling devices that incor-
porate the interface charge. We propose that the total
interface charge in these models should be divided into
intrinsic which is present even in most simplified and
idealized models of homojunctions as shown below,
and extrinsic which is a consequence of the possible
disorder at the interface. In this note we are considering
only the intrinsic interface charge. The study of both
type of interface charges and possible effects of their
interaction is the subject of the forthcoming paper.

2. One dimensional microscopic model of
interface charge

Since we are interested in the charge localized near the
ideal interface it is appropriate to consider the junction
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in the local description. We choose a very simple and
highly idealized one dimensional model of the “device”
in the tight binding approximation with N identical at-
oms on both sides with a single energy level Eg. We
further postulate that the only effect of the explicit
change of the applied bias AU in the “device” is a rigid
shift of the atomic-state energies of N atoms on one side
with respectto atomic-state energies of atoms Eg on the
other side of the interface. The problem is to determine
the possible induced charge AZ on both sides of the
interface when AU = 0 and to study its dependence on
the change of the applied bias. The calculation follows
the approach used in obtaining heterojunction band
offset /10, 11/.

The interface in our modelis thought of as occurring on
account of an infinitely thin, lattice matched, interface
control layer /2/ imagined to be inserted at, say, at the
middle of the linear chain of 2N identical atoms and
consequently in the model it represents the region of
the space where expected induced charge AZ = 0. We
start with the brief description of the “perfect” case
when AU = 0, when the solution is well known /12, 13/.
The basis states are single localized atomic states
centered at each site

i>=cit 0>  or  dxx)=<xlct0>

where cit is the creation operator. The tight binding
Hamiltonian /13/ is:

i B4

and the solution of the Schrodinger equation is the
linear combination of the basis states /14,13/:

Wi :Zdi(k)|i> (2)

which are assumed to form the complete orthonormal
set. When only coupling $W_{ij}=W$ between the
nearest neighbors is considered the eigenvalues lie in
the energy band of width $4W$ /14, 13/

E(k)= Eg + 2W cos(ka) (3)

where k is the wave vector and a the distance between
the neighboring atoms. As soon as the bias is applied
to the “device” the periodicity of the problem is broken
and the solution cannot be so easily found. One pro-
ceeds along the steps as for instance presented in /17,
18/.

The quantity of interest when calculating the induced
charge at particular site m is the local density of states
normalized to unity /17, 18/:

LDOS,,(E) = z d;w(k)dm(k)S(E ~E(k)) (4)
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The perturbation induced by the applied bias changes
the LDOSm(E)in the vicinity of the interface with respect
to the unperturbed sites in the bulk. The occupied
electron states localized at the interface are assumed
to determine the induced interface charge AZm at the
particular site m. Since the eigenvalues E of the local-
ized energy states in one band model are found outside
the band |E-Eo}>2|W|, we have to inspect the part of the
perturbed local density of states which is extending
over the band edges with respect to unperturbed ideal
case. Thisis in accordance with /10/ where the interface
charge in the vicinity of the heterojunction is defined as
the difference between the local density of states in the
neighborhood of the interface and the local density of
states for an uniform (no interface) crystal summed over
all occupied states. In our case in non-perturbed state
(AU=0) the local density of states is the same for every
site and the sum over all band states serves as a
reference value. Finally the sum of the induced charge
AZm given with:

AZ,= |LDOS,(E)dE (5)

[E-E,l>2/W]

at particular sites m, is performed. The number of atoms
in the model N should be large enough to approxi-
mately ensure the bulk-like density of states sufficiently
far from the interface on either side (m turns out =15).
The approach we adopted here follows in some respect
the model studied in /16/ where the charge transfer
between two bands across the heterogap is considered
in a perturbative manner. In contrast to /16/ we focus
ourselves to a single (valence) band and specifically
consider the diagonal heterocoupling of the states on
opposite sides of the junction which was not investi-
gated in /16/.

3. Numerical results and approximate
solutions

In order to numerically obtain the bias induced interface
charge in the described one dimensional model, we
used exact diagonalization of the pertinent Hamiltonian
matrix with N=40 and from orthonormal eigenstates
calculate local density of states and induced charge at
each site for different values of the applied bias. Since
the in calculation of the induced interface charge in-
volves only the coefficients dij(k) of the linear combina-
tion of the basis states (2) and the eigenvalues, the
explicit set of basis states is not required. Because the
change of all atomic-state energies by a constant value
merely shifts the overall spectrum the only important
parameter in the model is the hopping integral between
the nearest neighbors W, which we take to be of the
order of 1 eV as it is appropriate for semi-conducting
materials /4/. Furthermore we assume that the change
in the applied bias does not affect the coupling between
nearest neighbors and that also the heterocoupiing
across the interface is of the same order as W /16/. In
addition, we found from our computations that only the
ratio of the applied bias and the hopping integral, or the
“scaled” bias, determines the induced charge. Further-
more, since both sides of the interface are identical,

apart for the rigid shift of atomic energies due to applied
bias, the interface charge forms the induced interface
dipole with equal amount of the total charge on both
sides to comply to the overall charge neutrality of the
problem as stated in /10/.

A further remark should be made considering the self-
consistency of the calculated charges. In the first ap-
proximation the induced charge AZm at site m changes
only the atomic-state energy of the atom by 6Vm due to
the intra-atomic or onsite interaction with energy J and
inter-atomic coulomb interactions /19/:

2
AZ
V. =JAZ, o n
ey nem bm,n

(6)

where bm n is the distance between the m-th and the
n-th atomic site. On the other hand adding the &8Vm to
the atomic energies changes the Hamiltonian matrix, so
the LDOSm(E) and consequently the induced charge
are implicit function of the perturbation:

AZm = ] LDOSm (E,8Vim)dE (7)

In order to find the self-consistent charges the egua-
tions (6) and (7) ought to be simultaneously solved. The
final self-consistent solution yields the applied potential
as shown in fig. 2. The change of the potential near the
interface extends only a few lattice sites far from the
interface, suggesting the screening of the interface
charge near the junction.
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Fig. 2:  Self-consistent applied potential in the
vicinity of the interface for AU=0.4eV.
Sufficiently far from the interface (m=>5) is the
induced self-consistent potential difference
practically equal to applied bias (dashed
lines), suggesting that the the induced
changes in the potential are effectively

screened.
Total induced charge on one side of the junction, (atthe

junction m=0):

. (8)
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as a function of the change in the scaled applied bias
AU/W is shown in fig. 3. It is evident that within this
model the numerically obtained interface charge shows
a distinct bias dependence with low values at low and
high bias and a pronounced maximum between this

two Himits.
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Above - Total induced charge in one
dimensional interface model on one side of
the interface (at N=40) vs. "scaled bias”
AUIW. The interface is situated between
N=40 identical atoms on each side and the
bias is assumed to affect only the
atomic-state energies. W is the hopping
integral between nearest neighbors.

Below - Total induced charge in one
dimensional interface model (full line) and
bias dependent interface charge function
o(AU) [7/ (dashed line) determined from
measured excess capacitance in ICB
deposited Ag/Si Schottky junctions, and
given by o(AU)=ns exp(-(AUNo + K2)) 17/
(used in model for the capacitance shown in
fig. 1), where ng, Vo, K are constants
determined from fitting to the experimentally
obtained capacitance spectrum. Both
functions are for comparison normalized to 1.

Fig. 3:

The bias dependence in the very low and high bias
regime can be qualitatively understood on the basis of
the following arguments. In the limit of small bias
AUW< <1 we assume that the perturbing constant
potential at one side of the interface simply rigidly shifts
the energy bands. The shift causes the part of the local
density of states near the interface to extend over the
non-perturbed band edges. The induced charge in this
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case can be approximated with the help of the expres-
sion for the local density of states in the infinite crystal
/17, 18/

Eo-2WiAU . 30
AZ, = JLDosm(E)dE ~ _‘/W 9)

T
Eo—2W

The specific square root functional dependence of the
induced charge on the bias is a consequence of the one
dimensional model. In more detailed three dimensional
models a linear dependence is expected /15/. The case
W/AU< <1 corresponds to the other limit of low values
of induced charge and can be described in perturbative
manner as shown /16/ for the case of two one dimen-
sional bands, where now instead of the heterogap the
applied bias is substituted in our model. In this limit the
induced charge is given with the expression /16/:

W V2
AZ:(Z\U] (10)

It is worth noting that the form (10) is equal to the
expression one obtains in the one dimensional semi-in-
finite lattice when the atomic-state energy of the first
atom is changed by Ey =AU with respect to others. ltis
well known (see for instance /17/) that if the difference
is larger than the hopping integral between nearest
neighbors E1>W, the localized state outside the energy
band exists with the energy Ejoc = Eq+W<9/Ey. The
weighting factor of this localized state |dj(Ejoc)l” on the
atoms at sites j>1 falls exponentially into the bulk /17/:

2(j~1) 2
2 (W W
|d| :(5—1) [1_?3] (11)

The sum over all atomic sites apart from the first is:

2 2 ) e " ,
Sal - Sl -lof - -8 <[
j=2 i=1 E, E,

(12)
which is equal to (10).

4. Analytic expressions for the intrinsic
induced interface charge in 1D model
semiconductor junction

Our model semiconductor junction consists of two
semi-infinite linear chains with identical atoms, which
are held separately at different electrical potentials so
that in each chain the thermal equilibrium is estab-
lished. Let the two different potentials be -AU/2 and
AU/2 respectively. The junction is formed when the
beginnings of the two parts are brought into inter-
atomic distance a so that the translational symmetry of
the lattice is conserved. Let s number the atoms insuch
a way that the n 2 1 counts the atoms to the right and
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n < 0 to the left of the interface. The one electron
properties of the system are described in the tight
binding approximation with the Hamiltonian given by
(1). The most idealized conditions one can imagine
occurs when all of the hopping integrals have the same
value W;;=W and when the formation of the system
does not influence the atomic energies in the vicinity of
the interface i.e. En=-AU/2 for n > 1 and Ey=AU/2 for
n <0. We have chosen Eg=0 for the origin from which
all energies are measured.

The local density of states is found from the elements
of the Green’s matrix or resolvent of the corresponding
Hamiltonian (1):

l
G:ﬂ , (13)

where | is the identity matrix and z=E+in. The diagonal
element of the Green s matrix is in this representation:

g(n,m:Z@%‘gl , (14)

k

where E(k) are the eigenvalues of the problem. Using
the identity:

fim —— — P[l]~in6(x), (15)
=0 X +1in X

where P is the Cauchy principal value of the integral, it
follows for the diagonal Green’s matrix element:

*

g(nn) = P[XM&(QJ ~in Y dy (k) (K)S(E ~E(k))

~ z-E )
(16)

Knowing the definition of the local density of states at
site n in the chain it follows immediately that the local
density of states is given with the imaginary part of the
diagonal element of the Green’s matrix. The explicit
expression for the local density of states is therefore:

LDOS, (E) = —%Img(n,n) (17)

In writing the matrix element of the resolvent G as
g(m,n)=<m|GIn> we always assume also the depend-
ence uponthe energy E+in and that the corresponding
limit of n—0 is always understood.

In order to calculate the matrix elements of G we rewrite
the equation for the resolvent as:

(H-z))G = -| (18)

First we calculate the bulk and surface Green’s func-
tions for the one dimensional linear chain with no ap-
plied potential. Since the tight binding Hamiltonian in

nearest neighbor approximation is a tridiagonal matrix,
the following set of difference equations for the matrix
elements g(m,n) is obtained /21, 22/

-Eg(m,n)+W(g(m+1,n)+g(m-1,n)) = -dmn
(19)

The general solution for the function g(m,n) can be
written as:

g(m,n)=apt™" + agp2™" . (20)

The right-side Green’s function g~ (m,n) for m>n is
matched to the left-side Green’s g« (m,n) for m<n at
m=n. p1 and po are the roots of the characteristic
equation:

Wp? - Ep+W = 0 (21)

and their explicit form is

E E )
=t | 1 22
P12 SW (2\/\/] (22)

Characteristics roots obey the relation pip2=1 s0 they
can always be chosen such that |p4]<1 and |pg|>1.

Let’s consider the “bulk” matrix element far from both
ends of the linear chain at some site n. Then g(m,n)
should approach zero when m is near the end. Thus
gs(m,n)=aop2™ " and g<(m,n)=asps"". Matching the
solutions at m=n yields:

g>(m,n)=g(n,np2"" and g<(m,n)=g(n,n)p;m™"
(23)

Substituting the above solutions into the equation for
the diagonal matrix element:

-Eg(n,n)+W(g(n+1,n)+g(n-1,n))=-1 (24)
yields the expression:

1
g(n.n)= E_oWp, (29)

With the site number n=1 the surface Green s function
is obtained:

-Eg(1,1)+Wg(2,1)=-1 (26)
and

1

_— 27
E-Wp, (27)

g(1n) =

To derive the interface Green s function for the modei
semiconductor junction under applied bias we separate
the total Hamiltonian H into two parts:
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H=Ho+V (28)

Hg describes the two linear chains separated at inter-
atomic distance kept at different potentials (-AU/2,
AU/2). V is the coupling between the two chains. When
there is no applied potential i.e. AU=0, the perfect
infinite linear chain is obtained and in this case the
operator V is

V = W(citcp+cotey) = W(1><0|+|0> <1Times New
Roman"Symbol'd).

We consider the idealized case when in the presence
of nonzero applied bias the coupling part of the Hamil-
tonian H (or more precisely the value of the hopping
integral W)} does not change. The perfect resolvent Gg
equals:

1
z-Hg

Gy (29)

and the total resolvent is

1 1

G:: =
z-H z-Hy-V

(30)

From the above expression the Dyson’s equation is
obtained connecting the two resolvents:

G = Go + GoVG. (31)

The interface Green’s function on the right-side of the
connected linear chain is given by diagonal matrix
element g(1,1) of G. Since Go represents the resolvent
of the perfect semi-infinite linear chain it follows that its
matrix elements go(0,1) and go(1,0) are zero by defini-
tion /23/ (n=1 denotes the right-side of the coupled
chain and n<0 denotes the left-side). The matrix ele-
ments go(1,1) and go(0,1) are given by the equations:

g(1,1) = go(1,1) + Wgo(1,1)g(0,1), (32)

g(0,1) = Wgo(0,0)g(1,1) (33)

From the two equations the expression for the interface
Green’s function follows:

]
©95'(11) - W2go(00)

Explicit expression suitable for practical calculations
are obtained by inserting the appropriate surface
Green’s functions (27) into the interface Green”s func-
tion. Inthe expressions for the surface Green s function
we now must transform E—-E-AU/2 on the right-side and
E—E+AU/2 onthe left. Also let p1,2 and g1,2 denote the
characteristics roots on the right and left respectively.
Using this we derive the following expression for the
interface Green’s function:

(34)

g(11)

1
T E-AU/2-W(p, +0p)

(1) (35)

94

The interface density of states as a function of applied
bias is:

LDOS, (E, AU/ 2) = IDOS(E, AU/ 2) = — - Img(11).
- _
(36)

The interface induced charge AZ is defined as the
charge given by the localized electron states at the
interface and is therefore given by the part of the local
density of states extending over the corresponding
“bulk” band edges. The important point one should
notice is that depending on the value of the energy the
characteristics roots are either real or complex. If the
energy falls into the interval Ec [-2W+AU/2,2W+AU/2]
the corresponding eigenstate is inside the “bulk” band
and represents the extended Bloch state. The charac-
teristic roots are in this case complex conjugated.

The interface density of states has two forms depending
on the energy. If AU/222W then for VEe [-2W+AU/2,
2W+AU/2] the characteristic roots on the left side (po)
are real and the interface density of states is:

IDOS(E,AU/2) =

RN
W 1__/E—J,\U/m2“)
B -

" Wz{ 1M{E—AU/2)2J2+(

E+aUj2
2W

;

P

2W

If AU/2<2W then if for VEe [2W-AU/2, 2W+AU/2] the
previous expression for the IDOS(E,AU/2) applies. If
Ee [-2W+AU/2, 2W-AU/2} then the correct expression
for the interface density of states becomes:

1 e(E,AU/2)
T (AU/2)? +€?(E AU/ 2)

IDOS(E,AU/2) =

(38)
where

2 2
o(E.AU/2) =W J1~(E‘AU/3] \/1(%) ]
2W oW
In the limit AU-0 the interface density of states takes

on the shape of the bulk density of states for the infinite
one dimensional crystal:

IDOS(E,AU/2 - 0)= !

" ow /1_(%)2 a9
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When applied bias takes on large values AU/2>>W
then the interface density of states has the form of the
surface local density of states:

g 2
IDOS(E, AU/ 25> W) = LW i ("2EW)
T

(40)

The induced interface charge AZ given by the electron
states with the energy lying outside the bulk band i.e.
|[E-AU/2|>2W is calculated as follows:

2W+AU/2
[IDOS(E AU/ 2)dE
—2W-+au/2

AZ =1~
(41)

The calculated interface induced charge according to
the previous expression is shown on figure 4.
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Fig. 4: Calculated induced interface charge from the

analytic expression for the interface density of
states.

As stated earlier, the complete interval of the applied
bias should be divided into two parts depending on the
ratio between the applied bias (AU/2) and the hopping
integral between nearest neighbors W. Let’s introduce
non-dimensional variables t=E/2W and s=(AU/2)/2W.
With these substitutions the integrals of the interface
density of states i.e. 1-AZ) are cast into the following
forms: for s21:

1 s

— £, (1,5)dt 42

2ns J‘2< >d (42)
—t+s

and for s<1:

1+s

1-s
2 1
= J-f1(t,s)dt+72-gs—1J. f(ts)dt . (43)
-5

-1+s

Functions fy and fp are given with:
\/1—(t—s)2 +\/1—(t+s)2
2
432+(\/1~(t—s)2 +\/1—(t+s)2)

fi(ts)=

(44)

and

fo(t,s) = 1—(t—s)2(t+s)+\/((1+s)2 —tz)(tz ~(1—s)2>
(45)

We are interested in the asymoptic behavior of the
interface charge bias dependence for large values of
applied bias, i.e. we seek the value of the above integral
for s>>1. Since the induced interface charge monoti-
cally limits to zero for large values of applied bias, it is
convenientto approximate the integrand with the power
series up to the first non-vanishing order in 1/(AU/2).
Introducing the new variable u=t-s, the following ex-
pression needs to be evaluated for s>>1.

/2 2
AZ:—Z— J‘ cos“u du .

Y
-1/2 os® u+( (sinu+2s)” —1- 25)

(46)
The power series of the part of the integrand containing
S is:

(sinu+25)2—1—23:sinu~k+2k25inu (47)

where k=1/4s=W/AU. Expanding the whole integrand
in power series to the second order in k and integrating
the obtained series yields:

2u+sin2u B 3COs U+ Cos Suk 2U+ sin 2u
21 3r 2%

k2

(48)

Evaluation of the obtained asymptotic expression at the
upper and lower integral boundary [-n/2,n/2] vyields:

2
AZ =k? = (_V\i) . (49)
AU

For the very low values of applied bias, which equals
the case when s< <1, the interface charge shows a
square root dependence on the applied bias:

Az:i\/g 2 ég

=— (50)
3n 3tV W
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The asymptotic expressions for the bias dependence
of the interface charge for small and large values of
applied bias are in accordance with the ones previously
presented in the numerical study of the induced inter-
face charge. The forms (50) and (49) were previously
obtained using simple yet plausible arguments of the
rigid band shift in case of small bias, and considering
the case of the seminfinite lattice with an adsorbed
atom.

The origin of the maximum in the bias dependence of
the interface charge reveals the structure of the expres-
sion (43) entering the calculation of the interface charge
for s<1 which is a sum of a monotonically increasing
and decreasing part. The sum of the two yields the
curve exhibiting a maximum pointinthe interval se {0,1].
The situation is illustrated in fig. 5.
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Fig. 5:  Partial contributions to the total induced

interface charge from the integrated density
of states over the appropriate energy interval.
The full curve shows the contribution of the
states with the energy
Ee[-2W+AU/2,2W-AUJ2] whereas the
dashed curve shows the integral over the
states from the energy interval
Ee|2W-AU/2,2W+AU/2).

5. Conclusions

Recently /7/ it has been realized that the measured
capacitance spectra of the ICB deposited Ag/p-Si(100)
can be suitable well described only if the charge model
for the capacitance of the structure incorporated the
bias dependent interface charge density. In this paper
the first step towards the microscopic picture of the
underlying physical processes is taken.

On the basis of the very simple model the bias depend-
ence ofthe induced charge atthe interface is calculated
in tight binding approximation. The expressions for the
limiting cases at small (9) and (50) and large (10) and
(49) values of the applied bias are shown inthe compact
form. For the intermediate values between the limits the
induced charge is expected to reach a maximum value.
Itis argued that the interface charge used in models of
semiconductor devices should in general be divided
into intrinsic, which is induced even in ideal heterojunc-
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tions and extrinsic, which is is a consequence of disor-
der present atthe junction between dissimilar materials.
In this study the effect of the disorder at the interface is
not considered and only the applied bias dependent
intrinsic induced interface charge is explored. As the
preliminary investigations show, the presence of the
disorder changes the bias dependence of the induced
charge in accordance with the model of disorder and
the details of the bonding so that the simple scaling of
the bias does not apply, but still the pronounced maxi-
mum of the induced interface charge is to be expected.
The detailed effects of the interface charges at the
interface in the charge transport in semiconductor junc-
tions is a subject of an ongoing research.

Note added in proof: Latest results show that the model
function for the interface charge density of the form:
c(aU)=ng@aU+b)exp(-(AU/Ng+K)2) included in the
model for the capacitance /7/ gives a suitable descrip-
tion of the published measured capacitance data /23,
24, 25/ of the ordinary (i.e. not |ICB deposited) Al/p-Si
and Mo/p-Si Schottky structures. The parameters used
to model the published data in absolute scale were:
for Al/p-Si: ng=0.007105 As/cm?, Vp=0.19V, K=25,
a=0.081V!, b=0.06 and

for Mo/p-Si: ng=0.000810 As/cm?, Vg=0.16V, K=1.6,
a=0.01V! b=0.51. As it seems, the proposed model
for the capacitance incorporating the bias dependent
interface charge density could have a general validity
for the metal/thin interlayer/semiconductor structures,
and not only for the ICB samples. A detailed presenta-
tion of these findings is to be published.
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