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Abstract

This paper describes development of artificial neural network models which can be used to correlate and predict diesel
fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward
and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane
index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total
aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels.

In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase trai-
ning algorithm was constantly the back propagation one, two second phase training algorithms were varied and compa-
red, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained us-
ing K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest
neighbour.

The number of hidden layer neurons and experimental data points used for the training set have been optimized for both
neural networks in order to insure good predictive ability by reducing unnecessary experimental work.

This work shows that developed artificial neural network models can determine main properties of diesel fuels simulta-
neously based on a single and fast IR or Raman measurement.
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1. Introduction

The present determination of diesel fuel properties
is based on standard methods such as ASTM, ISO and ot-
hers. These methods can be time consuming (gas and li-
quid chromatography, distillation, etc.) and may require
large sample size and the use of toxic and environmen-
tally hazardous chemicals.'”” Vibrational spectroscopic
methods (IR, NIR and Raman) may be an effective alter-
native to these standard procedures®'* since their utiliza-
tion allows development of analytical methodologies that
are fast and clean, use only a few millilitres of sample and
do not require extensive use of reagents.'> Multivariate re-
gression analysis and vibrational spectroscopy has already

been applied to predict the characteristics of gasoline.
Usually combines infrared spectroscopy and the PLS (e.g.
partial least squares, PLS) algorithm to determine proper-
ties of gasoline like research and motor octane number, '
aromatics, olefins and saturated hydrocarbons, oxygena-
tes, etc'’. Cooper et al. have used FT-Raman spectroscopy
and the PLS algorithm to determine the octane number
and Reid vapor pressure in commercial gasolines,'® and
also a combination of near-IR, mid-IR and Raman spec-
troscopy to determine BTEX and weight percent oxy-
gen. 1920

Some research dealing with the prediction of (bio)
diesel fuel properties has already been presented. Most of
published papers employ infrared spectroscopy and multi-
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variate regression analysis to predict the characteristics of
(bio) diesel fuel.”*!2

As an alternative to established laboratory proto-
cols, partial least squares (PLS) regression models based
on Fourier transform infrared (FTIR) spectra were develo-
ped for the rapid and simultaneous determination of seve-
ral middle distillate fuel properties.?! On the basis of this
work, the following middle distillate fuel properties may
be confidently estimated by FTIR: gravity, API, density,
viscosity, boiling point at 50% recovery, cetane index,
carbon, hydrogen, carbon-hydrogen ratio, heat of combu-
stion and aromatic compounds. Recently, infrared spec-
troscopy and multivariate calibration have been used to
predict cetane index and distillation temperatures at 10,
50, 85 and 90% recovery of diesel fuel.?> The infrared
spectroscopy and PLS algorithm have also recently been
used to predict properties of diesel/biodiesel blends.” Ar-
tificial neural networks (ANNSs) are also powerful model-
ling tools, which can be used to correlate and identify
highly complex relationships from input-output data only.
Regression problems can be solved using following net-
work types: multilayer feed forward (MLP), radial basis
function (RBF), and general regression neural network.
MLPs are most commonly used ones.>* There are many
algorithms for training MLP networks. The popular back
propagation (BP) algorithm is simple but has a problem
with slow convergence.?”” The second most commonly
used neural network architecture is RBF network. Compa-
red with MLP network, this network possesses certain ad-
vantages that make it very popular. The most important
advantages are the simplicity of the network structure and
the high speed of convergence during the training phase.”®

Some researches have already been conducted on
the analysis of gasoline*”*® and diesel fuel using ANN-
5.23% Neural networks were used to correlate and predict
the cetane number and the density of diesel fuel from its
chemical composition.31 In this study, mean absolute er-
rors with the test data set were 1.23 and 0.002 g/cm’ for
the cetane number and density, respectively. The diesel fu-
el lubricity has been determined using RBF network with
other fuel properties as inputs.*? The lubricity predicted
by this neural network gave a coefficient of determination
R? = 0.94, with more than 90% of the predicted lubricity
values lying within the 95% confidence limit.

Furthermore, the cold filter plugging point of blen-
ded diesel fuel was determined using input parameters of
kinematic viscosity, density, refractive intercept and the
specific distillation range.* Finally, the distillation profile
and cold properties of diesel fuel have been predicted em-
ploying mid-IR spectroscopy and MLP networks.?” The
developed models predict these properties based on the IR
signal, with the level of accuracy characteristic for the re-
peatability of standard methods.

Application of Raman spectroscopy in determina-
tion of diesel fuel properties is generally poorly represen-
ted. Raman spectroscopy has not been extensively applied

in the industry due to several constraints; high cost, low
S/N ratio when compared to near-IR or mid-IR, fluores-
cence problems, etc. Although Raman spectroscopy is still
quite expensive, most disadvantages have been solved
thanks to its combination with the Fourier transform, mo-
re powerful laser and multivariate chemometric techni-
ques.** One of the advantages of the Raman spectroscopy
is the capability of glass vials application in order to ob-
tain spectra, which compared to mid-IR spectroscopy ac-
celerated and simplified measurement procedure, while
near-IR spectroscopy is significantly less informative. In
the literature we have found only one article that combine
FT-Raman spectroscopy and MLP network for the predic-
tion of cetane index, density, viscosity, T50, T90 and total
sulphur content of diesel fuel.*> The aim of the present
work is to develop models based on infrared and Raman
spectroscopy combined with MLP and RBF networks for
rapid and accurate simultaneous determination of the
most important physico-chemical properties of diesel fu-
el: cetane number, cetane index, density, viscosity, distil-
lation temperatures at 10% (T10), 50% (T50) and 90%
(T90) recovery, the contents of total aromatics and
polycyclic aromatic hydrocarbons.

2. Theory

Neural networks are powerful modelling tools that
have the ability to identify underlying highly complex re-
lationships from input-output data only.** Using this ap-
proach it is possible to derive empirical models from a
collection of experimental data, especially if the data that
have to be correlated exhibit a complex nonlinear behavi-
our and cannot be described by linear mathematical mo-
dels. Such models are obtained by training, i.e., the net-
work is repeatedly presented with input/output pairs that
have to be correlated. Although the training procedure can
be quite time-consuming, once trained, the network pro-
duces an answer or prediction almost instantaneously.

Multilayer perceptrons (MLPs) and radial basis
function (RBF) networks are the two most commonly-
used types of feed forward network.*®’

2. 1. Multilayer Perceptron Neural Networks

MLP is one of the most popular network types, and
in many problem domains seem to offer the best possible
performance. It consists of several neuron layers: input la-
yer, one or more hidden layers, and the output layer. Each
MLP neuron performs a biased weighted sum of their in-
puts and passes this activation level through a transfer
function to produce their output. The neurons are arranged
in a layered feed forward topology. The network thus has
a simple interpretation as a form of input-output model,
with the weights and thresholds (biases) as free parame-
ters of the model. Such networks can model functions of
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almost arbitrary complexity, with the number of layers,
and the number of neurons in each layer, determining the
function complexity.*®

The number of neurons in the first layer is equal to
the number of input parameters and the values of input pa-
rameters are the layer’s output. In case of other layers out-
puts are obtained in a further way. Let yi’ be the output of
i"™ neuron of the /™ network layer, which can be computed
according to further formulas as:

N,
V=1 X w6 ()
J=1

where N represents number of neurons in specific layer.
Function f'is the activation function, wl..l weight of the link
between the j™ neuron of the / — 1% layer and i™ neuron of
the " layer, 0 the bias parameter of i neuron of the /" la-
yer. Usually, as activation function for hidden layer(s),
sigmoidal function is usually used, while linear function
is applied in case of output layer.

Once the number of layers, and number of units in
each layer, has been selected, the network’s weights and
must be set so as to minimize the prediction error made by
the network.*” This is the role of the training algorithms.
The error of a particular configuration of the network can
be determined by running all the training cases through
the network, comparing the actual output generated with
the desired or target outputs. The differences are combi-
ned together by an error function to give the network er-
ror. The most common error functions are the sum-squa-
red error, where the individual errors of output units on
each case are squared and summed together. Networks are
trained using iterative algorithms, of which the best
known is back propagation.*®* A considerable amount of
research has been conducted into improved algorithms for
training of multilayer perceptrons. The most influential of
these are the second-order optimization algorithms*#!
(conjugate gradient descent, quasi Newton). These algo-
rithms are usually described as converging far more
quickly than back propagation (one or two orders of mag-
nitude faster). Conjugate gradient descent usually per-
forms significantly better than , and it is the recommended
technique for any network with a large number of weights
(more than a few hundred) and/or multiple outputs and it
is also a highly effective generic algorithm with low com-
puter memory requirements and good stability. Quasi
Newton is usually a little faster than conjugate gradient
descent, but has substantially larger memory requirements
and it is occasionally numerically unstable.*’

2. 2. Radial Basis Function Neural Networks

A radial basis function (RBF) neural network has an
input layer, a hidden and an output layer. The hidden layer
neurons act as cluster centres, grouping similar training
cases. The neurons in the hidden layer contain Gaussian

transfer functions whose outputs are inversely proportio-
nal to the distance from the centre of the neuron.
The general form of the Gaussian function is:

2
Output = exp[_'—‘é] )

20

where 6 (standard deviation) controls the spread of the
function, and x is the Euclidean distance between the clu-
ster centre and the input vector.

A radial basis function network (RBF), therefore,
has a hidden layer of radial units, each actually modelling
a Gaussian response surface. Since these functions are
nonlinear, it is not actually necessary to have more than
one hidden layer to model any shape of function: suffi-
cient radial units will always be enough to model any
function.?’

RBF networks use a two stage training process —
first, assignment of the radial centres and their deviations;
second, optimization of the output layer. A classic RBF us-
es the identity activation function in the output layer, in
which case linear optimization (pseudo-inverse, SVD) can
be used, which is relatively quick compared with training.

Centres should be assigned to reflect the natural clu-
stering of the data. The two most common methods are:
sub-sampling and K-means algorithm. K-means algo-
rithm tries to select an optimal set of points that are placed
at the centroids of clusters of training data. Given K radial
units, it adjusts the positions of the centres so that: (i) each
training point belongs to a cluster centre; (ii) each training
point is nearer to the belonging cluster centre than to any
other centre. Once centres are assigned, deviations are set.
The three most common methods to determine deviation
(radial spread) are explicit deviation (chosen by the user),
isotropic deviation (same for all units and selected heuri-
stically to reflect the number of centres and the volume of
space they occupy) and K-nearest neighbour (each unit’s
deviation is individually set to the mean distance to its
K-nearest nf:ighbours).‘”"u’43 Hence, deviations are smal-
ler in tightly packed areas of space, preserving detail, and
higher in sparse areas of space.

RBF networks have a number of advantages over
MLPs. First, as previously stated, they can model any
nonlinear function using a single hidden layer, which re-
moves some design-decisions about numbers of layers.
Second, the simple linear transformation in the output la-
yer can be optimized fully using traditional linear model-
ling techniques, which are fast and do not suffer from
problems such as local minima which plague MLP trai-
ning techniques. RBF networks can therefore be trained
extremely quickly (i.e., orders of magnitude faster than
MLPs). However, RBF’s more eccentric response surface
requires more units to adequately model most functions
and, consequently, an RBF solution will tend to be slower
to execute and more space consuming. The second disad-
vantage of RBF networks is its disability to extrapolate

Bolanca et al.: Development of Artificial Neural Network Model

251



252

Acta Chim. Slov. 2012, 59, 249-257

beyond known data, since the response drops off rapidly
towards zero if data points far from the training data are
used. RBFs are also mores sensitive to the course of di-
mensionality and have greater difficulties if the number of
input data is large.*’

3. Experimental

3. 1. Samples and Experimental Procedures

93 diesel samples were collected from gas stations
and the storage tanks (Croatia)** during a period of four
months and stored in tightly sealed glass bottles at maximal
temperature of 4 °C. Before instrumental analysis, samples
were equilibrated at room temperature (22 + 5 °C).

The standard methods**~° were mainly used for de-
termination of the various diesel fuel properties. The sam-
ples were tested for: cetane number (internal method); ce-
tane index (ASTM D 4737); density (ASTM D 1298); vis-
cosity (ASTM D 445); distillation temperatures at 10%
(T10), 50% (T50) and 90% (T90) recovery (ASTM D 86);
and contents of total aromatics and polycyclic aromatic
hydrocarbons (EN 12916).

FTIR spectra with attenuated total reflectance
(ATR) and FT-Raman spectra were obtained on Nicolet
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Figure 1. Typical spectra of diesel fuels: (a) FTIR-ATR, (b) FT-Ra-
man.

6700 Fourier transform instrument (Thermo Fisher Scien-
tific Inc, USA). FTIR-ATR spectra were recorded using a
Smart Performer sampling accessory and ZnSe cell, 50
scans with a resolution of 6 cm™, covering the 4000-650
cm™! spectral range, DTGS detector and KBr beamsplitter.
Before measuring each sample, a background spectrum is
obtained using clean and dry cell following the same pro-
cess as for the samples. The FT-Raman spectra were re-
corded in quartz cuvettes with a Teflon stopper, covering
the 3700-350 cm™' spectral range, 50 scans with a resolu-
tion of 8 cm™. A liquid nitrogen cooled Ge detector was
used for signal detection. The laser excitation of 1064 nm
was provided by NdYAG laser and laser power was set to
0.400 W. Typical FTIR-ATR and FT-Raman spectra of
diesel fuels are presented in Figure 1.

3. 2. Neural Networks

The neural networks used in this work were MLP
and RBF networks. As independent input variables for net-
works, several IR absorbances and Raman intensities were
selected after visual examination of spectra (Figure 1).
Physico-chemical properties of diesel fuels are the result
of chemical composition. The main peaks observed in Fi-
gure 1 are associated with major functional groups present
in this type of fuel. Since mid-IR and Raman spectroscopy
are compatible techniques, spectral bands have similar wa-
venumbers, but show differences in intensity. Briefly, the
bands between 3200-3000 cm™ in the Raman spectrum
are attributed to the C-H stretching of aromatic com-
pounds and the region 30002800 cm™ corresponds to
C-H stretching of saturated n-alkyl groups. The bands in
the region of 1500 to 1400 cm™ are associated with the
C-H deformation of CH, and CH, groups, and region
700-900 cm™ is attributed to the C—H out of plane bending
in different types of substituted benzene rings. The band
around 1378 cm™ in the Raman spectrum represents ring
stretching of bicyclic aromatic fractions, and the maximum
at 1302 cm™ corresponds to twist and rock vibrations of n-
alkanes. The most prominent band, occurring at 1002
cm™', arose from the symmetrical (trigonal) ring-breathing
mode of monocyclic aromatic components in the fuel.

Based on assumed high correlation between spectral
information (described above) and corresponding fuel
properties it is possible to select 15 mid-IR absorbances
from FTIR-ATR spectra and 17 intensities form FT-Ra-
man spectra as input variables without additional need for
principal component analysis and unnecessary prolonga-
tion of calculation procedures.

The output layer consists of nine neurons represen-
ting properties of diesel fuels (cetane number, cetane in-
dex, density, viscosity, T10, T50, T90, contents of total
aromatics and polycyclic aromatic hydrocarbons) deter-
mined by standard methods.

The optimizations were performed in order to achie-
ve precise and accurate model with respect to minimiza-
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tion of unnecessary experimentation and time needed for
the ANN training calculations.

For MLP network, the training algorithm, number
of hidden layer neurons and number of experimental da-
ta points used for training were optimized. The advanta-
ge of the used MLP models was application of two-pha-
se training approach. Two-phase training is a combina-
tion of two training algorithms, which enables to use ad-
vantages of both algorithms in same training procedure,
resulting with better predictive ability obtained within
shorter calculation time.”' The first phase was 100 itera-
tion steps of error back propagation training in order to
achieve fast convergence to the region of global mini-
mum on error surface. The second phase algorithm was
varied between conjugate gradient (CG) and quasi New-
ton (QN) algorithm. The number of neurons in the hid-
den layer was varied from 2 to 14 (step 2) and number of
experimental data in training set was varied from 15 to

a)

b)

45 (step 5). The second phase training procedure had
been repeated until the global minimum on error surface
was found. The logistic function was used as activation
function connecting input and hidden layer and identity
function was used as activation function connecting hid-
den and output layer.

For the RBF network, the radial layer was trained
using K-means radial assignment algorithm and three dif-
ferent radial spread algorithms: explicit, isotropic, and K-
nearest neighbour. The parameters for the radial spread
training algorithms were optimized. The values 1, 1 and
10 were used for optimization as parameters for explicit;
isotropic and K-nearest neighbour algorithms, respecti-
vely. The number of hidden layer neurons and experimen-
tal data points used for the training set were also optimi-
zed. The number of neurons in the hidden layer was varied
from 5 to 17 (step 2) and number of experimental data in
training set was varied from 20 to 45 (step 5).

c)

Figure 2. Influence of number of hidden layer neurons and number of experimental data in training set on the correlation coefficient of the multi-
layer feedforward artificial neural network: (a) conjugate gradient training algorithm using FTIR-ATR spectral input data; (b) quasi Newton trai-
ning algorithm using FTIR-ATR spectral input data; (c) conjugate gradient training algorithm using FT-Raman spectral input data; (d) quasi New-

ton training algorithm using FT-Raman spectral input data.
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The predictive performance of developed neural
network models was tested using Pearson’s correlation
coefficient R (between the predicted and observed output
values), average error and average absolute error of the
output variable.

All ANN calculations in this work were performed
using Statistica 7.1 software (StatSoft Inc., USA).

4. Results and Discussion

The experimental data set was split into three sub-
sets: training set, selection set and validation set. The first
set was used to train networks, second one to prevent
over-training process, and the third one to validate predic-
tion ability of the developed ANN model. The physico-
chemical properties of diesel fuel were modelled simulta-
neously and the presented results describe average values
for correlation coefficients (for all modelled properties)
based on external validation data set only. In Figure 2, the
optimization for MLP models using FTIR-ATR and FT-
Raman spectral input data is illustrated, including the ef-
fects of the training algorithm, number of hidden layer
neurons and number of experimental data points used for
training.

As it can be seen, all correlation coefficients bet-
ween actual and predicted values were acceptable, for
both vibrational spectroscopies. When comparing these
two spectroscopy techniques, it is clearly visible that
FTIR-ATR/MLP model is slightly more accurate than the
FT-Raman/MLP model. Also, one can observe that neural
network models obtained by using CG training algorithm
give more stabile results and slightly higher correlation
coefficients than those obtained by using QN algorithm.
This indicates CG as highly effective algorithm with very
good stability.

However, MLP network that uses FTIR-ATR input
spectral data, CG training algorithm, 45 experimental data
points in the training set and 8 hidden layer neurons, pro-
duces model with maximal correlation coefficient (R =
0.9577; Figure 2a). It is generally preferable to diminish

the number of experimental data points used for training
in order to reduce the overall experimental effort. Figure 2
shows that the number of experimental data points used
for training procedure can be reduced to 30 without signi-
ficant impact on the model accuracy.

Figure 3 illustrates the results of optimization for
RBF models using FTIR-ATR and FT-Raman spectral in-
put data. However, the FTIR-ATR spectral input data gi-
ves better and more stabile results compared with FT-Ra-
man input data. It is probably a consequence of a very
small number of spectral vibrations of samples in Raman
spectra (Figure 1). It can be seen (Figure 3a) that maximal
correlation coefficient was obtained for FTIR-ATR input
data using K-means radial assignment algorithm in com-
bination with explicit radial spread algorithm. The Figure
3 also presents optimization of number of hidden layer
neurons and number of experimental data points needed
for the training set. The amount of experimental data used
for the training was varied from 20 to 45 and number of
hidden layer neurons from 5 to 17. It is also shown that
optimal configuration was achieved using maximal num-
ber of experimental data in the training set and maximal
number of hidden layer neurons.

From Figures 2 and 3 is clearly visible that MLP
models are more accurate than RBF ones. Furthermore,
use of CG training algorithm gives slightly better results
than QN one. In accordance with previous discussion, the
performance characteristic of optimal developed ANN
models in prediction diesel fuel properties are shown in
Table 1.

The optimal model (maximal average correlation
coefficient) using FTIR-ATR spectral input data were ac-
hieved using MLP network, CG training algorithm, 45 ex-
perimental data points in the training set, and 8 hidden la-
yer neurons. Furthermore, optimal models using FT-Ra-
man spectral input data was achieved using MLP neural
network, CG training algorithm, 45 experimental data
points in the training set, and 12 hidden layer neurons.

As it can be seen (Table 1), the correlation coeffi-
cient between actual and predicted values were acceptable
for all diesel fuel properties, but when comparing these

Table 1. The performance characteristic of optimal developed artificial neural network models to prediction diesel fuel properties.

FTIR-ATR FT-Raman
Diesel property Property Error Abs. Correlation Error Abs. Correlation
range mean error mean coefficient mean error mean coefficient
Cetane number 50.1-55.9 0.0301 0.3228 0.9597 0.0860 0.3669 0.9406
Cetane index 48.0-56.3 0.0708 0.3828 0.9820 —-0.0033 0.4304 0.9816
Density (kg/m®) 827.2-841.3 0.1441 0.7467 0.9315 0.0183 0.9399 0.9092
Viscosity (mm?*/s) 2.24-3.79 0.0159 0.0658 0.9815 0.0019 0.0969 0.9635
Total aromatics (Wt %) 23.2-34.3 0.0042 0.5709 0.9662 0.1274 0.6544 0.9644
PAH (wt %) 1.8-6.1 -0.0142 0.2887 0.9343 —-0.0411 0.2836 0.9509
T10 (C) 194.6-246.5 0.2400 3.3062 0.9792 0.3183 3.6331 0.9547
T50 (C) 253.9-288.9 0.4412 1.6811 0.9838 0.1047 2.0155 0.9772
T90 (C) 329.1-348.5 -0.1982 1.7768 0.9007 -0.1133 1.8389 0.8909
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Figure 3. Influence of number of hidden layer neurons and number of experimental data in training set on the correlation coefficient of the radial
basis function artificial neural network using K-means radial assignment algorithm and: (a) explicit radial spread algorithm using FTIR-ATR spec-
tral input data; (b) isotropic radial spread algorithm using FTIR-ATR spectral input data; (c) K-nearest neighbour radial spread algorithm using
FTIR-ATR spectral input data; (d) explicit radial spread algorithm using FT-Raman spectral input data; (e) isotropic radial spread algorithm using
FT-Raman spectral input data; (f) K-nearest neighbour radial spread algorithm using FT-Raman spectral input data.

Bolanca et al.: Development of Artificial Neural Network Model



Acta Chim. Slov. 2012, 59, 249-257

two spectroscopy techniques, it is clearly visible that mo-
del using FTIR-ATR spectral input data is more accurate
than model using FT-Raman input data. An exception was
the correlation coefficient for polycyclic aromatic hydro-
carbons that was slightly better using FT-Raman input da-
ta. The cause of this exception should be sought in a sepa-
rate well-defined maximum at 1378 cm™ in the Raman
spectrum that represents ring stretching of bicyclic aroma-
tic fractions in diesel fuel (Figure 1).

The obtained results are basically in agreement with
other recent publications (Santos et al. Santos et al.).
Although, the performance characteristic seems to be
comparable, the approaches based on singe neural net-
work model (presented in this work), predicting simulta-
neously all required properties include interactions mo-
delling. This could additionally raise the prediction abi-
lity.

The accuracy of the obtained models is comparable
to the reproducibility values of the standard methods,*>~*
which were used for experimental determination of diesel
fuels properties. Despite the relatively high value of corre-
lation coefficient for density (Table 1), the model values
are out-of-range due to the very small reproducibility of
the standard method.

Comparing the developed ANN models with the
standard methods they yielded good predictions and satis-
fied requirements of reproducibility, except in the deter-
mination of density. Density could be determined using
those models if less accuracy would be acceptable.

5. Conclusion

This work presents the development of models for
prediction of diesel fuels properties using MLP and RBF
neural networks. The developed models predict cetane
number, cetane index, density, viscosity, T10, T50, T90,
the contents of total aromatics and polycyclic aromatic
hydrocarbons based on FTIR-ATR and FT-Raman input
data. The training algorithms, number of hidden layer
neurons and experimental data points used for the training
set were optimized for both neural networks in order to in-
sure good predictive ability by reducing unnecessary ex-
perimental work.

MLP network using FTIR-ATR spectral data and
CG training algorithm, 45 experimental data points in the
training set and 8 hidden layer neurons produces model
with maximal correlation coefficient. It was found that
MLP models are more accurate than the RBF ones and the
usage of FTIR-ATR input spectral data gives slightly bet-
ter results in comparison to FT-Raman ones. Correlation
coefficients are ranged between 0.9007-0.9838 and
0.8909-0.9816 for the FTIR-ATR spectral input data, i.e.
the FT-Raman spectral input data. Obtained absolute error
mean of the neural network models are within range for
the reproducibility of standard methods. From these re-

sults it can be concluded that developed neural network
models can be used for rapid and simultaneous prediction
of main diesel fuels properties.
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Opisan je razvoj modelov za usklajevanje in napoved lastnosti dizelskega goriva iz absorbanc IR in Ramanskih intenzi-
tet kot vhodnih spremenljivk za umetne nevronske mreZe. Ve¢nivojska nevronska mreZa s progresivnim tokom podat-
kov ter radialno funkcijska nevronska mreZa sta bili uporabljeni za napoved cetanskega Stevila, cetanskega indeksa, go-
stote, viskoznosti, destilacijske temperature pri 10 % (T10), 50 % (T50) in 90 % (T90) obnovljivosti, vsebnost aroma-
tov in policikli¢nih aromati¢nih ogljikovodikov v komercialnih dizelskih gorivih.

V tej $tudiji smo uporabili dvostopenjski ucni algoritem. Prva stopnja je temelji na obi¢ajnem vzvratnem $irjenju napa-
ke, druga stopnja pa bodisi na konjugirani gradientni ali na kvazi Newtonovi metodi. Trije razli¢ni algoritmi, uporablje-
ni za dolocitev radialno bazne funkcije, so: eksplicitni, izotropni in K-najbliZnje-sosedni.

Stevilo nevronov v skritem nivoju in §tevilo uénih vzorcev smo oprimizirali pri vsaki uporabljeni metodi, tako da smo
zagotovili dobro napovedno zmogljivost ob zmanjSani potrebi po eksperimentalnem delu.

Pokazali smo, da modeli na osnovi nevronskih mreZ lahko doloc¢ajo glavne lastnosti dizelskega goriva simultano, na os-
novi ene same hitre meritve srednjega IR ali Ramenskega spektra.
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