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Abstract: Triangular mesh decimation is the process that uses local operations on geometry and topology to reduce the number of triangles in a triangle
mesh. Triangular meshes are used in many engineering applications where simple interpolation of discrete data replaces continuous and complex model
of reality. Furthermore, triangular meshes are standard input to numerical analysis tools based on Finite Element Method. Manipulation with large triangu-
lar meshes is a bottleneck in engineering applications hence appropriate simplifications are needed. Apart from intuitive manual techniques, mesh
decimation process is an attractive alternative providing optimal computer based solutions. The paper presents a fast algorithm for decimation of triangu-
lar meshes using vertex elimination approach. To speed-up the search for the vertex to be removed, a hash table is applied. Presented solution runs in
linear time and is suitable for different applications in practice. lts usefulness is increased by an introduction of an undecimation, i.e. a reverse process
restoring gradually the initial triangular mesh. An illustrative example from the analysis of a power line electric field is given.

Modeliranje inzenirskih podatkov s poenostavljanjem in
rekonstrukcijo trikotniskih mrez

Kiju¢ne besede: modeliranje inZenirskih podatkov, trikotniske mreze, poenostavijanje in rekonstrukcija trikotniskih mrez, sekijaina tabela.

Izvie€ek: Trikotniske mreze pogosto uporabliamo v inZenirskih aplikacijah, predvsem ko Zelimo interpolirati diskretne odbirke kompleksnih zveznih procesov.
Trikotniske mreZe so prav tako standarden vhod za razliéne numeriéne analize, ki temeljijo na metodi konénih elementov. Manipulacija z zelo velikimi
trikotniskimi mreZzami pa predstavlja ozko grlo pri inZzenirskih aplikacijah, zato is¢emo enostavnejse a Se zmeraj dovolj verne trikotniske mreze. Procesu, ko
z uporabo lokalnih operacij nad geometrijo in topologijo podane trikotniske mreze zmanjsamo stevilo vozlis¢ in trikotnikov, pravimo poenostavijanje triko-
tniske mreze. Postopek iskanja najprimernejse trikotniske mrezZe je obi¢ajno prepudéen uporabniku in temelji na njegovi intuiciji, zato predstavija racunal-
nisko podprt proces poenostavijanje zanimivo alternativo. V &lanku predstavimo uéinkovit algoritem za poenostavijanje trikotniskih mrez, ki temelji na
odstranjevanju oglis¢. Da bi pohitrili odloditev, katero izmed oglis¢ je najprimernejso za odstranitev, uporabimo sekljalno tabelo. Predstavijena resitev
deluje v linearnem casu in je primerna za razli¢ne aplikacije v praksi, predvsem tam, kjer potrebujemo hiter odziv sistema. Uporabnost pristopa poveéamo
z moznostjo postopnega vradanja odstranjenih oglis¢ - z rekonstrukcijo. Delovanje algoritma prikazemo z ilustrativnim primerom poenostavijanja trikotni-
Ske mreZe elektricnega polja daljnovoda.

compromise between the accuracy and the system limita-
tions. The main idea stems from the fact that a triangular

1 Introduction

Although natural phenomena are continuous, engineers
normally measure their values only at some discrete meas-
urement positions. The values at other positions are then
calculated by interpolation. In the applications where sca-
lar values (e.g., temperature, see level, electric field, ten-
sion) are measured in a plane, the most suitable interpola-
tion results in a triangular mesh /1/. Of course, the dens-
er the mesh, the better interpolation can be constructed.
Unfortunately, a huge number of measured points may
cause problems in manipulation with the corresponding
triangular meshes resulting in slow response time and con-
siderable computer memory requirement. This is especially
critical, when a triangulation mesh is used as an input into
numerical analysis based on FEM (Finite Element Meth-
od) /2/. Furthermore, by the widespread use of the inter-
net, large triangular meshes require long transfer time be-
tween collaborating parties. Because of that, triangulation
meshes are frequently simplified to made an acceptable

mesh can be simplified in regions with small or no variation
of the scalar values. This task is usually performed manu-
ally using experience and intuition of a user. An alternative
is the use of the so-called mesh decimation algorithms,
which simplify the triangular mesh automatically.

Triangular mesh decimation approaches, developed so far,
can be classified according to the elements they are tak-
ing from the mesh (i.e., vertices, edges, or triangles) /3,
4/:

- Vertex decimation methods are the most frequent-
ly used and are based on Schroeder simplification
algorithm /5/. The vertices are evaluated, and they
are incrementally removed from the mesh according
to their importance. Various techniques have been
proposed, and they differ on how vertices are evalu-
ated and what type of triangulation is required (see
/3/ for an overview).
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- Edge decimation methods eliminate edges, which
have been evaluated already /6/. The edge being re-
moved is replaced by a vertex. Triangles, which degen-
erate fo edges, are removed. One of the best edge dec-
imation methods is based on quadric error metrics /7/.

- Triangle decimation methods eliminate one or more
triangles. Although theoretically feasible, practical ap-
proaches using this possibility have not been reported.

In this paper we present an algorithm that combines two
mesh decimation approaches. Franc and Skala used a hash
table in a parallel environment for speeding-up the search
of the most suitable vertex to be removed /8/. They com-
bined the vertex and edge removal in the following way. At
first the most suitable vertex is selected, and then among
the edges incident to that vertex, the shortest one is con-
tracted. Our algorithm uses the pure vertex decimation sim-
ilar to the one proposed by Schroeder /5/, but using the
hash table as the acceleration technique. The heuristic
approach for creation of a hash table for engineering ap-
plications have been also developed. Beside that, our al-
gorithm is equipped by an undecimation feature, i.e. by an
incremental reconstruction possibility of the original mesh.
The algorithm is suitable for engineering data modelling.
Low time and space complexity make it even candidate for
embedded system applications.

2 The decimation algorithm

The proposed algorithm for triangular mesh decimation is

briefly sketched as follows:

1. Evaluate all vertices according to a chosen evalua-
tion criterion and arrange them into a hash table.

2. Select the most suitable vertex using the hash table
(for example, vertex vi in Figure 1a).

3. Remove the vertex from the triangular mesh.

4. Remove all triangles incident on the removed vertex
(Figure 1b).

5. Triangulate the area from where the triangles have
been removed (see Figure 1c¢).

6. Re-evaluate vertices incident to the removed vertex
(vertices v}, vk, Vi, Vm, vV in Figure 1c¢).

7. Return to step 2 until the termination criterion is met.

VA% AN
VO

Figure 1: Vertex decimation

2.1 Evaluation of vertices

Before the decimation process starts, the vertices have to
be evaluated. Let us take a look at Figure 2 where the
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triangles with small changes of scalar values in their verti-
ces can be reduced without much spoiling the presenta-
tion.

A triangular mesh

Figure 2:

The evaluation of vertices is done by investigating the neigh-
bourhood of the vertex under consideration. Different cri-
teria can be applied. Let us mention just two of them:

- Vector v;; connecting the examined vertex v; and its
neighbouring vertex v; is formed. The angle between
this vector and xy plane is calculated. The average
value of all angles defined by vertex v; is used as the
evaluation value ev;.

- The average difference of scalar values between the
examined vertex v; and the neighbouring vertices is
used as the evaluation value ev;.

Better results are obtained by the first criterion. That can
be confirmed by observing Figure 3a and Figure 3b, where
the scalar value against the two neighbours is the same on
both figures. If the first evaluation criterion is applied, the
situation in Figure 3a gives bigger evaluation value ev;than
in Figure 3b. Applying the second criterion gives the same
evaluation value ev;. In practice, however, the criterion with
average difference of scalar values is normally used.

Evaluation of vertices

Figure 3:

2.2 Selection of a vertex to be removed

The strategy is to remove vertices that cause the smallest
change in data representation. Therefore, the vertex with
the smallest evaluation value ev; is selected and removed
from the mesh. The evaluation values ev; of the neighbour-
ing vertices are changed and must be estimated again. In
the next iteration, the algorithm searches for the next ver-
tex with the smallest ev;. It can be selected easily by walk-
ing through the set of the remaining vertices, and select-
ing the one with the smallest ev;. Unfortunately, this meth-
od works in O(n?) time and considerably slows down the
algorithm. The second possibility, sorting at first all verti-
ces according to ev; and adjusting their position in the
sorted array according to the changed ev;works in expect-
ed O(n log n) time. The constant expected time complex-
ity can be achieved by introducing a hash-table /8/. How-
ever, in this case, the condition of selecting the vertex with
the smallest ev; has to be slightly relaxed. The vertices are
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organised in the hash table according to their evaluation
values ev;. Figure 4 schematically shows the structure of
the hash table. Vertices in each interval are stored in a
FIFO queue.

d, =ev,,
m-1 =34 List_Of Fertices i
a'm,,
d,.
2 = List Of Vertices [
d,
“ 1 fepd List Qf Vertices i
4, 9(‘{; - - List Of Vertices i
Figure 4: Arranging vertices into hash table

The hash table is usually organised according to the ex-
pected distribution of the input data. In our application,
the heuristics for linear, quadratic and exponential expect-
ed data distributions are prepared. It is important to note
that during the decimation process new evaluation values
of evj can become greater than maximal evaluation value
determined before the hash table has been formed. There-
fore, we have to add additional entry to the hash table ac-
cepting such possible cases. Having the hash table, the
next vertex to be removed from the triangular mesh is now
obtained easily. The algorithm always selects the first ver-
tex from the lowest non-empty FIFO queue and removes
it. The neighbouring vertices of the removed vertex are
evaluated again and inserted in the corresponding interval
at the end of the FIFO queues. In that way it is prevented
to perform decimation only locally. The hash table assures
constant time complexity of this part of the algorithm. By
storing a list of neighbouring vertices at each vertex of the
mesh, the neighbouring vertices are accessible without
any search (see Figure 5). As each vertex has | neighbour-
ing vertices, in general / << n, the update of the estimation
values is realised in O(l) = O(1) time.

ELS

TABLE_OF VERTICES

L 'I VV

vU
L o . List_Of Neighbouring _Vertices
Vg I

List Of Bordering Triangels

~
W3

TABLE _OF TRIANG,
=

Figure 5: Direct access of the vertex neighbours

It may be desired that the border vertices of the region are
eliminated from the decimation process. In this case, they
are not inserted into the hash table. Similarly, we can test
the shape of the newly created triangles according to the

application specific recommendation. For FEM analyses it
is desired, for example, that the rate of the triangle sides
does not fall below 1:1:10. If that happens, the consid-
ered vertex is not removed.

2.3 Triangulation of polygon area

After removing a vertex from the mesh, all the triangles in-
cident to it are eliminated (shaded part in Figure 1). The
empty region has to be filled by the new triangles. Franc
and Skala applied here a clever solution by selecting the
shortest edge from the removed vertex to their neighbours.
The shortest edge is contracted pulling all the edges de-
fined by the removed vertex to the opposite vertex of the
shortest edge /4/. However, this elegant method works
only when the obtained gap forms a convex polygon which
is not always the case. Therefore we applied in our solu-
tion a classical polygon triangulation algorithm. There are
many ways how a polygon can be triangulated: algorithms
based on diagonal insertion, restricted Delaunay algo-
rithms, and the algorithms using Steiner points (see /9/
for an overview). In our approach, the well-known ear-cut-
ting algorithm proposed by ElGindy et. al is used /10/.

3 Undecimation

Returning the removed vertices into the mesh in the re-
verse order of their elimination is an extremely useful fea-
ture in practice, giving the user the opportunity to experi-
ment with the mesh. The user may return step by step only
a few vertices instead of processing the whole set of verti-
ces again and trying different termination criteria. This fea-
ture (denoted as undecimation) can be realised easily
and very efficiently by the proper data structure as de-
scribed below.

At the beginning we have an array of vertices and an array
of triangles. The position of vertices remains the same,
they are just pulled-out from the mesh. The removed verti-
ces are marked by flags. When a vertex is removed, trian-
gles incident to it are removed, too. This is indicated in the
triangle array by a flag. There are always less new trian-
gles than original and they occupy the memory locations
of the old ones. Some of the locations (at least one) are
marked as empty. Figure Ba shows the state of the data
structure before and Figure 6b after removing vertex vp in
the example shown in Figure 1.

The undecimation process requires the knowledge how
the process of decimation was executed and what chang-
es in the triangular mesh occured at each step. The easi-
est solution would be to store a topology of each obtained
mesh. This would involve file operation and would slow
down the whole process. However, by the proper organi-
sation of data, the shape of the mesh could be easily re-
stored by a tolerable amount of additional memory. Figure
7 explains our solution. Two additional one-way linked lists
are introduced at each removed vertex. The first list stores
the indices of the removed triangles. It contains only two
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TABLE_OF VERTICES

TABLE_OF VERTICES

TABLE OF TRIANGLES
a) b)

The state of the data structure before (a)
and after (b) removing a vertex

TABLE _OF _TRIANGLES

Figure 6:

indices, because the third one is the removed vertex itself.
The second list stores the indices of the new triangles.
The process of undecimation is now extremely easy. The
vertex, which is going to be returned to the mesh, set-ups
the flag indicating that it belongs to the mesh again. Trian-
gles, which have been added by the polygon triangulation
process, are removed and the old triangles are restored
using the information from the list of the removed trian-
gles.

TABLE OF VERTICES

v, v,

v o V” e V;u » .
L B "V List Of Removed Triangles
Vi fVax Vo - - .
Vil( v}!i) vr!(,
=X SV 7N v, | List_Of Added Triangles
VI L Vf_?fl 4 ()
Figure 7: Additional lists by removed vertex

4 Results

4.1 Theoretical time and space
complexity

The proposed algorithm for mesh decimation consists of
the steps with the following complexity:

- evaluation of vertices is done in O(n), where n is the
number of the input vertices,

- removal of a vertex is realised in constant time O(1),

- triangulation of polygon using the ear-cutting is per-
formed in O(I7), where /; is the number of neighbour-
ing vertices of the removed vertex vi. However, /; <<
n, and therefore this step can be considered as be-
ing done in constant time regarding n.

- re-evaluation of the neighbouring vertices of the re-
moved vertex is done in constant time.

If k is the number of all vertices that are removed during
the decimation process and k < n, the required time com-
plexity becomes O(k) + O(n) = O(n). The same estimation
is obtained for the process of undecimation.
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Let us investigate the space complexity of the algorithm.
Atthe beginning, the space for n vertices and 2n triangles
is allocated (it is well-known that each triangulation con-
sists of at most 2n - h - 2 triangles, where h is the number
of vertices forming the convex hull of the given set of poly-
gons /11/). At each vertex vi being removed, /; records
the removed triangles and /i-a, 0 <a < [;, ;<< n, records
about the added triangles are needed. In this way, we ob-
tain linear space complexity O(n).

4.2 Practical results

Tests have been performed on various sets of engineering
data and on artificially generated data. As a case study,
consider the electric field of a power line borrowed from
/12/. In Figure 8a the initial triangular mesh consisting of
11213 vertices and 22010 triangles is shown. The shaded
triangular mesh is shown in Figure 8b.

Initial triangular mesh (a) shaded initial
triangular mesh (b)

Figure 8:

After that, we start the decimation process. At each step,
10% of vertices are removed from the triangular mesh. This
process is shown in Figure 9. Notice that despite the small-
er number of triangles, the shaded pictures do not differ
noticeably until only 20% of the initial vertices remain. In
this case, we obtained 2253 vertices and 4090 triangles.

To show how efficient the proposed algorithm is, we ar-
ranged the vertices in a regular grid, and triangular mesh-
es are constructed from them. The scalar values in the
vertices have been set randomly. 99% of the vertices have
at first been removed, and then, all of them are returned
(undecimated). The resuits are shown in Table 1 where
CPU time for mesh decimation and undecimation is given.
As seen from Figure 10, the proposed algorithm works in-
deed in linear time. Experiments have been performed on
a PC with Celeron 600 MHz processor and 384 MB of
RAM.

Table 1: Times needed for mesh decimation and mesh

undecimation
INPUT no. of vertices 10 40 90| 160y 250{ 360! 490{ 640{ 810
(x1000)
OUTPUT 112 of vertices 100} 400 900 1600] 2500] 3600] 4900| 6400! 8100
no. of triangles | 188] 7751 1772] 31671 4959 7156! 9748} 127421 16121
TIME (5) decin)gtiox} 0,140] 0,651| 1,583 2,774] 4,357] 6,340 8,742{11,526| 14,681
undecimation | 0,140 0,611 1,442] 2,583 | 4,086 5,9281 8,202|10,816{13,840

5 Conclusion

Huge surface meshes are produced in different fields like
volume visualisation in architecture, GIS, industrial design,
etc. In electronics, triangular meshes are used for model-
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Figure 9: Decimation process

ling temperature distribution and mechanical properties of
devices, as well as for visualisation of electrical parame-
ters. Even recent workstations face problems in interac-
tively displaying huge data sets often composed of more
than a million of triangles. Reducing the complexity of sur-
face meshes is therefore imperative for engineering appli-
cations. This hot topic motivated development of mesh
decimation algorithms based on different criteria following
specific objectives in practice. The algorithm proposed in
this paper combines the approaches of Schroeder /5/ and
Franc & Skala /8/. The resulting decimation process is
performed in linear time. The usefulness of the algorithm

16.0

14.0 >

120 > ot

10.0

tme {s}
]
@
Al

Q 100,000 200,000 300,000 400,000 500,000 600,000 760,000 BOO,000 800,000
number of removed vertices

140 %
R TS T OO OO OO C VO SR P OO s ’//
/V’
R e
g 80 = ac”
= &g //
///v
40 e
=
20 ol
/A’
co Poad 3 ¥ ¥ 1 g ¥ ¥
o 400,000 200,00C 300,000 400,000 500,065 800.002 700,008 800,CCD 900000
number of added varticss
Figure 10:  Graph of times needed for mesh

decimation (above) and undecimation (below)

has been demonstrated in a case study of modelling of
electric field of a power line. Its performance is character-
ised by an example of constructing artificial triangular mesh-
es. Low time and space complexity and efficient undeci-
mation feature illustrate the strengths of the algorithm and
make it a promising solution for modelling engineering data.
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