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The paper presents a grammatical approach to software development. It supports formal software specifi-
cation using attribute grammars, from which a rapid prototype can be generated, as well as the incremental
software development. Domain concepts and relationships among them have to be identified from a prob-
lem statement and represented as a context-free grammar. The obtained context-free grammar describes the
syntax of a domain-specific language whose semantics is the same as the functionality of the system under
implementation. The semantics of this language is then described using attribute grammars from which a
compiler is automatically generated. The execution of a particular program written in that domain-specific
language corresponds to the execution of a prototype of the system on a particular use case.

Povzetek: članek opisuje razvoj programov na osnovi slovnice.

1 Introduction

One of the well known properties of software systems is
that they are subject to frequent changes. A software de-
veloper needs to build a software system in such a manner
that he can easily adapt it to the user’s changeable require-
ments. Current object-oriented design techniques [7] [8]
are well suited for such design supporting changes. How-
ever, any changes during the software life cycle are costly.
Therefore, it is very important that the user is involved in
the software development process from the very beginning
and that the software system is delivered to the user before
his requirements have the opportunity to change. Rapid
prototyping enables the software developer to build exe-
cutable prototypes and to involve the user in an iterative
build-execute-modify loop until his requirements are vali-
dated. The prototype is then used to build the final version
of the software system through the use of the architecture
included in the prototype or it is simply thrown away [21].
In the latter case the prototype is used to clarify the user’s
needs until reaching a stable and convenient model for the
given problem.

The proposed approach, i.e. software development with
grammatical approach, rests on the success reached by at-
tribute grammars in the specification of language semantics

[12] [6] [16] and in the systematic implementation of lan-
guage processing tools [9] [10].

In the paper the grammatical approach to problem solv-
ing supported by an attribute grammar developed and writ-
ten in an object-oriented style (OOAG - object-oriented at-
tribute grammar) is proposed. One of the benefits of the
proposed approach is that it enables rapid prototyping and
the validation of the user’s requirements in a pragmatic
way. The idea is to translate the OOAG obtained in the
specification phase into the concrete syntax of a compiler
generator in order to create a simulator for that problem.
We can then write scenarios (in the domain-specific lan-
guage [17] [22] [24] defined by that OOAG) describing dif-
ferent uses of the system, and use the generated simulator
to process those scenarios computing the desired results.

The organization of the paper is as follows. In Section 2
related work is discussed. The software development with
grammatical approach is presented in detail in Section 3
followed by an example in the Section 4. A synthesis and
concluding remarks are presented in Section 5.
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2 Related Work

The grammatical approach to problem solving (software
development) can be seen as an extension (e.g. as in [15])
of object-oriented design methods [20] [7] [8] where a
problem domain model is developed from use cases and
class diagram. However, their main goal is to develop good
software models. Our goal is to develop rapid prototypes
and early validation of user’s requirements.
Our work is closely related to the Grammar-Oriented Ob-
ject Design (GOOD) [2] [14], where all valid object in-
teraction sequences of the cluster of objects are identi-
fied. Then a meta-model is constructed and represented
as a context-free grammar. Therefore, a context-free gram-
mar represents the set of all possible interactions (collab-
orations) of objects in a particular cluster in order to ful-
fill the domain goals. When a grammar is interpreted at
a run-time a cluster will dynamically bind the collabora-
tors to the collaborations. Hence, GOOD facilitates the
creation of dynamically configurable components, which
encapsulates volatile business rules. The rationale behind
this is that creating and representing a model of solutions is
more extensible, simpler and more scalable than just creat-
ing the single solution. Possible solutions are modeled with
a meta-model and represented as a context-free grammar.
If this grammar is available to the ”users” at run-time, then
they are able to customize the system behavior. Since the
interaction of objects is obtained from use case diagrams
that describe the functionality of a system, the author called
such a grammar a use case grammar. In other words, use
cases are described with a domain-specific language. In
the domain analysis the key abstractions are identified and
classified as interactions among subsystems that may be re-
alized as software components. The author in his work dis-
tinguishes two types of meta-models: the static (class dia-
gram) and the dynamic (valid object interaction sequences)
meta-model. The latter is described with a context-free
grammar. Our approach differs from [2] [14] since they
are using a context-free grammar to describe behavior of
the objects (methods), while in our case the structure of a
class (attributes) is described. An example of a production
rule in [2] [14] using the EBNF is:

ShoppingCartOperation ::=
{AddItem | DeleteItem |
SaveShoppingCart} CheckOut

Our approach has different goals and advantages. How-
ever, it can be seen as complementary to the GOOD ap-
proach. Combining both approaches to describe the behav-
ior and the structure with a domain-specific language, is
under investigation.

The grammatical approach to software development is
also related to the rapid prototyping research (e.g. [4]).
In [4] Two-Level Grammars (TLG) were proposed as an
object-oriented requirement specification language. Suc-
cessive refinement steps starting with natural language lead
to more detailed specifications that can be translated to

VDM++, which in turn is translated to Java, yielding a
rapid prototype of a system. With this approach it is pos-
sible to obtain the rapid prototype of a system from natu-
ral language specifications. Their Specification Develop-
ment Environment (SDE) has natural language parsing ca-
pabilities and can classify words into nouns (objects/class)
and verbs (operations) and their relationships. This initial
analysis of requirement documents provides the basis for
further refinement with an attempt to classify the domains
(classes) to which functions (operations) belong. In more
complex cases a rapid prototype is not completely automat-
ically derived since a sufficient degree of interaction with a
user is required to ensure a correct interpretation.

Resolving the semantical gap between use case diagram
and class diagram is also presented in [19]. From the use
case diagram agents state machines and values added in-
variants are derived. The term agent is used to represent
an actor collaborating with the system through specific use
case. Both techniques are collectively used in iterative con-
verting algorithm, which builds the OCL specification and
class diagram. The OCL specification (define a set of pre-
conditions, postconditions and actor invariants) are further
used to check the correctness of the model.

3 The Grammatical Approach

To achieve a good understanding of the user’s world we
need to understand the application domain. In other words,
we need to identify concepts and their relationships in the
problem domain. For this purpose object-oriented design
(OOD) employs use case diagrams (UCDs) and conceptual
class diagrams (CCDs) [7] which we will take as a starting
point for our approach.

The use case diagram [5][1] describes the functionality
of the system and its interaction with an environment. The
use case diagrams form foundations for further modelling
of developing system. They are also helpful for generating
system test cases.

While use case diagrams are narrative descriptions of
specific tasks, the conceptual class diagram captures con-
cepts and relationships between them. Guidelines for de-
veloping the conceptual class diagram can be found in [20].
To develop the conceptual class diagram one can apply it-
eratively the following steps:

– identification of potential classes (look for nouns in
the description of the problem),

– elimination of unnecessary (eg. redundant, irrelevant)
classes,

– identification of potential associations (any depen-
dency between two classes is an association),

– elimination of unnecessary associations,

– identification of attributes (attributes are properties of
individual objects),
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– elimination of unnecessary attributes,

– refining with inheritance.

From the use case diagram and from the conceptual class
diagram a design model is obtained which should be robust
with respect to changes of the user’s requirements.

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System
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Figure 1: High-level view of the grammatical approach

To identify concepts and their relationships in the prob-
lem domain our grammatical approach is not limited to
object-oriented design. Also other approaches, such as
entity-relation diagrams and data-flow diagrams, which
show the flow of work and the relationship between activ-
ities and deliverables, can be applied. However, OOD [3]
[8] is now almost the-facto standard for software system
design, and on account of that, it was also our choice.

Our approach (described in Fig. 1) is based on the fol-
lowing steps:

– describe the syntax of the problem (the structure of the
classes that characterise problem domain), deriving
the context-free grammar from the conceptual class
diagram,

– describe the semantics of the problem (the meaning of
the classes in problem domain), associating attributes
to every concept derived from the use cases and oper-
ational diagrams,

– generate a rapid prototype of the system, using a com-
piler generator and the attribute grammar obtained in
the two previous steps.

The steps above will be detailed in the next subsections.

3.1 Deriving a context-free grammar from a
conceptual class diagram

The role of non-terminals in a context-free grammar is two
fold. First, at higher abstraction level non-terminals are
used to describe different concepts in the programming lan-
guage (e.g. an expression or a declaration in a general-
purpose programming language). On the other hand, at a

more concrete level, non-terminals and terminals are used
to describe the structure of a concept (e.g. an expression
consists on two operands separated by an operator symbol,
or a variable declaration consists of a variable type and a
variable name). Therefore, both the concepts and relation-
ships between them, belonging to the specific problem do-
main, are captured in a context-free grammar. But, this is
also true for the conceptual class diagram which describes
concepts in a problem domain and their relationships. It is
clear that both formalisms can be used for the same purpose
and that some rough transformation from a conceptual class
diagram to a context-free grammar and vice versa should
exist. The transformation from a conceptual class diagram
to a context-free grammar is depicted in table 1 and table
2. In general, classes are mapped to non-terminal symbols
and instance variables are mapped to terminal symbols.

Transformation table shows how to derive a context-free
grammar from a conceptual class diagram. A class and a
non-terminal are basic concepts in a conceptual class di-
agram and in a context-free grammar. The mapping here
is self-evident. A conceptual class diagram contains in-
stance variables, which define the state of a class instance.
Instance variables are represented in a context-free gram-
mar as terminal symbols. In general, a class diagram con-
sists also of operations, which will be identified when the
semantics of context-free grammar is going to be defined.
Associations represent the interaction between classes and
have to be included in a context-free grammar. The naviga-
bility association can be shown with the production A→ B,
where the non-terminal A gets information about attributes
of the non-terminal B. Association has multiplicity. De-
scribing multiplicity with grammar productions is straight-
forward as shown in table 2. For generalization we propose
the production A→ B | C. The non-terminal A can be im-
plemented either with the non-terminal B or non-terminal
C. The composition and aggregation are shown as the navi-
gability association. In the composition the non-terminal B
can appear in other productions. On the other hand, in the
aggregation the non-terminal B is reachable only from the
non-terminal A.
Classes can collaborate with more than just one class. For
example, a class A associates with classes B, C and D. In
our approach, this collaboration is described with context-
free grammar production A→ B C D. The sequence of non-
terminals on right side of the production should be in natu-
ral order and depends on collaboration of entities in a given
problem domain.

3.2 Describing the semantics of each concept

To describe the semantics or the meaning of a concept an
attribute grammar is used. Attribute grammars [12] [6]
[16] are natural extensions of context-free grammars and
as such very well support our approach which is based
on context-free grammars. The syntax and semantics of
each symbol is specified in a module; modularity is, on
one hand, inherent to the class concept in OOD, and, on
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Description Class diagram element Grammar

attribute

Class A
A (non-terminal)

instance
variable (terminal)

Class

Class BClass AAssociation A→ B

Class BClass ANavigability A→ B

Generalization

Class B

Class A

Class C

A→ B | C

Class BClass A

A→ B
(¬∃X ∈ N,X ⇒ B)

∧X �= A
Composition

Class BClass AAggregation A→ B

Table 1: From a conceptual class diagram to a context-free grammar

Cardinality Class diagram element Grammar

Multiplicity
exactly one

Class BClass A
1

A→ B

Optional
multiplicity

Class BClass A
0..1

A→ B | ε

Class BClass A
0..*

A→MoreB
MoreB→MoreB B| εMultiplicity [0..m]

Class BClass A
1..*

A→MoreB
MoreB→MoreB B | BMultiplicity many

Table 2: Association multiplicity

the other hand, it is implicit to grammars (based on the lo-
cality associated with symbols and productions). The first
part of a module is the declaration of its attributes, divided
in two subsets, the inherited (context dependent) and the
synthesized (computed locally). The functions to be used
to evaluate each attribute are then defined, in the context of
each production. Also the contextual conditions, if any, that
express the data constraints are defined in the context of
each production. This step is intellectually most demand-
ing; therefore some additional supporting techniques based
on the use cases (diagrams and scenarios) should be used;
namely we suggest the use of the operational diagram that
is infered from the referred scenarios.

The result of this step is a complete attribute grammar
specification for a given problem.

3.3 Generating the rapid prototype of a
system

To generate the rapid prototype of a system our compiler-
generator LISA [18] has been used. The LISA system au-
tomatically generates a compiler or an interpreter and other
language-based tools—such as language-knowledgeable
editor, inspectors, and animators [10]—from an attribute
grammar specification. One of LISA’s most important fea-
ture is that it supports incremental development of specifi-
cations, which is especially important in particular tasks of
the software development described in this paper.

4 An Example: Video Store

The Video Store (VS) case study is one of the basic exam-
ples of the refactoring [7][23]. The case study represents
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a prototype program for customer charges at a video store.
The program calculates the charge, which depends on how
long a movie is rented and on the type of the movie. There
are three kinds of movies: regular, children and new re-
leases.

The problem specification: After the analysis of the
problem stated above, the discovering of the main function-
alities is to be done and present them as use case diagram.

Figure 2: Use case diagram

For the case study of the Video Store we identify three
main services represented with use cases Add movie, Add
customer and Rent (Fig. 2). To specify their functionali-
ties, the sequence of actions has to be defined. Therefore,
scenarios for use cases are written (description follows be-
low).

Scenario for Add movie use case:
1. Request for a movie title.
2. Request for a movie type.
3. Insert the movie in movie database.

Use case end.
ALT 3a: Movie title already contained

in movie database.
Inserting skipped. Use case end.

Scenario for Add customer use case:
1. Request for a customer name.
2. Insert the customer in customer

database. Use case end.
ALT 2a: Customer already contained in the

customer database. Inserting skipped.
Use case end.

Scenario for Rent use case:
1. Request the name of the customer.
2. Request the titles of rented movies.
3. Insert the list of rented movies in

customer’s database.
4. Calculate the charge for rental

service. Use case end.
ALT 1a: Name not in the customer

database. Insert new customer. Use

Add customer.
ALT 2a: Movie title unknown.

Go to step 2.

The Conceptual Class Diagram: The use case diagram
(Fig. 2) is crucial to find the basic entities and to derive
the conceptual class diagram. There are no specific rules to
support this derivation, but you can find many guidelines in
[11][13].

The structure of the problem domain can be defined in
terms of classes and relationships as depicted in the con-
ceptual class diagram in figure 3.

As shown on figure 3, the VideoStore is identified as the
main concept. The two other important concepts in the
management of the VideoStore are: Customer, and Movie.
Movie associates with class Price which describes the type
of a movie. Generalization class Price is further imple-
mented with classes New, Child, and Reg. The data for
each rental are kept in class Rental.

The Structure: Remember that, in our approach, a prob-
lem concept is denoted by a grammar symbol. The context-
free grammar below formalizes the problem syntax in the
sense that it specifies the structure of the problem domain,
relating the concepts among them. The following context-
free grammar is obtained using transformations described
in Section 3. To be able to read context-free grammar see
the transformation table 1 and table 2.

VIDEO_STORE -> MOVIES CUSTOMERS
MOVIES -> MOVIES MOVIE

| &
MOVIE -> title PRICE
CUSTOMERS -> CUSTOMERS CUSTOMER

| &
CUSTOMER -> name RENTALS
RENTALS -> RENTALS RENTAL

| &
RENTAL -> daysRented MOVIE
PRICE -> new | child | reg

To follow the transformations from table 1 abstract class
Price defines non-terminal PRICE and its subclasses (Fig.
3) define non-terminals in the production

PRICE -> NEW | CHILD | REG

Unfortunately, this subclasses have no terminals and repre-
sent the last classes in every traverse through the conceptual
class diagram. Described classes are named final classes.
Each non-terminal of final class can be replaced with ter-
minal in productions (see the above context-free grammar).

It may happen, that deriving context-free grammar from
a conceptual class diagram through transformations in ta-
ble 1 and table 2 does not show an optimal grammar. Such
grammar can have useless non-terminals, which can be re-
duced. Try to imagine the video store example as stated
above, except the rental service changes a bit. Now, the



398 Informatica 28 (2004) 393–404 T. Kosar et al.

Figure 3: Conceptual Class Diagram for Video Store

rental length for all movies of one customer is the same (in
our example the rental length is defined separately for each
movie).

CUSTOMER -> name daysRented RENTALS
RENTALS -> RENTALS RENTAL

| &
RENTAL -> MOVIE
MOVIE -> title PRICE
...

In the partial context-free grammar we have use-
less production for non-terminal MOVIE. The produc-
tion, that have just one non-terminal and no termi-
nal on right side, can be rearranged or even removed
(e.g. obtaining just the context-free grammar production
RENTAL -> title PRICE).

Removing the non-terminal from the context-free gram-
mar brings the question, if class is reasonable in the con-
ceptual class diagram at all. We believe that, if there is
no other association with this conceptual class, the class
can be removed. Looking from this prospective, building
context-free grammar can help in evolving the optimized
conceptual class diagram.

Semantics (1. phase): Capturing semantics of the do-
main is the most demanding part of the approach, therefore
an auxiliary (supporting) diagram is proposed.

The semantic constructs in attribute grammar are deter-
minated in Section 3.2. The starting point for finding them
the use case diagram is used. Use case diagram is fur-
ther described with scenarios, which define the interaction
between an actor and evolving system. Parsing the sce-
narios can bring most of the semantic information needed
for writing attribute grammar. To support the derivation of
semantic information from scenarios, the operational dia-
gram (Fig. 4) has been used.

Each collaboration of an actor and use case diagram is
introduced with operational diagram. In the diagram actor
shows up twice. First appearance on the left represents an
actor before using the system and on the right represents an
actor after collaboration with the system. In the middle the
name of influenced use case is noted.

Both actors are supported with semantical information,
which we get with parsing scenarios of involved use case.
Left actor possesses information that the actor needs to col-
laborate with the system. On the right we write information
that actor synthesize in collaboration with the use case.

Information represent semantics of the system and will
be further represented as inherited and synthesized at-
tributes in attribute grammar. Still, the open question is to
which non-terminals attributes are associated. Explanation
follows later in the paper.

The operational diagram brought some important infor-
mation about attributes and contextual conditions. The next
task is to associate attributes from operational diagram to
non-terminals in context-free grammar. The table 3 shows
the partial attribute mapping to non-terminals. In the first
column the attribute names that appeared in operational di-
agram are written. The next column represent the name of
the non-terminal to which attribute should be associated.
The column Side and column Terminal are crucial to de-
terminate, whether attribute should be inherited or synthe-
sized. The Side column represents the side where attribute
in operational diagram appears. If attribute appears on both
sides, attribute should be inherited, as well as synthesized.
If it appears on left side of operational diagram and is rep-
resented as terminal in context-free grammar, the attribute
should be defined as synthesized. If attributes appears on
the left side and no terminal can be found in context-free
grammar, the attribute should be inherited. The last case
is, when an attribute appears only on the right side of the
operational diagram. This attribute is synthesized.
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Add movie

[NOT (movie title IN movie list)]

- movie list

- movie title

- movie type

- movie list

Add customer

[NOT (customer name IN customer list)]

- customer list

- customer name
- customer list

Rent

[(movie title IN movie list) AND

(customer name IN customer list)]

- customer name

- customer list

- rental list (days

rented, movie title)

- customer list

- movie list

- income

Figure 4: The operational diagram

Operational diagram Non-terminal Side Terminal I(x) S(x)
movie list Movies left,right no inMS outMS
movie title Movie left yes title
movie type Price left yes type

customer list Customers left,right no inCS outCS
customer name Customer left yes name

days rented Rental left yes daysRented
income Rental right no income

Table 3: Attributes mapping to nonterminals

Attribute Starting non-terminal
outCS Video_Store
outMS Video_Store
income Video_Store

Table 4: Attributes in starting non-terminal Video_Store

The right side attributes from operational diagrams are
important to find information that should be present in
starting non-terminal VideoStore. In the case study of
Video Store, three distinct attributes are defined in op-
erational diagram: customer list, movie list and income.
Therefore all three attributes are synthesized in starting
non-terminal (Table 4). The table 5 shows attribute car-
rying between non-terminals in attribute grammar. In the
table attributes that must be carried to other non-terminals
are showed. To construct this mapping table the domain
must be understood well. Each attribute, synthesized or in-
herited must be considered separately. The main point is to
define where should each attribute be carried and with what
purpose.

The alternatives in use case scenarios are basics to find
the contextual conditions. The contextual conditions are

Attribute Other nonterminals

inMS
Customers,

Customer, Rentals
name Rentals
inCS Rentals, Customer

outCS
Customer,

Rentals
type Movie
title Rental

income
Rentals,

Customers, Customer

Table 5: Attributes in other nonterminals

inserted between square brackets (see Fig. 4) where ba-
sic boolean operator can be used. Contextual conditions
noted on operational diagrams must be also associated to
productions of attribute grammar. Their appearance in pro-
ductions is closely connected to the attributes which de-
fine the contextual conditions. Contextual conditions are
further implemented with functions which evaluates at-
tributes. The identification of functions are further de-
scribed in the next semantical phase.
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Semantics (2. phase): After detailed semantic descrip-
tion of the problem domain, we can write specifications
in attribute grammar. The only semantic part left, is to de-
fine function for attribute evaluation. The specifications are
broken into separate non-terminal descriptions.

The first production is VIDEO_STORE → MOVIES
CUSTOMERS. The non-terminal defines element of entity
MOVIES and CUSTOMERS. To keep video store informa-
tion we define two attributes for each entity. Both attributes
are of type TAB, which is a mapping function.

TABM = FF(string, (string, int))
TABC = FF(string, (string, int, TABR))

NonTerm VIDEO_STORE:
Inh: {}
Syn: {outMS: TABM, outCS: TABC,

income: int}

mkVideoStore(VIDEO_STORE ->
MOVIES CUSTOMERS):

VIDEO_STORE.outMS = MOVIES.outMS
MOVIES.inMS = {}
VIDEO_STORE.outCS = CUSTOMERS.outCS
CUSTOMERS.inCS = {}
CUSTOMERS.inMS = MOVIES.outMS
VIDEO_STORE.income = CUSTOMERS.income

For collecting the elements of entity Movie, we use
non-terminals MOVIES and MOVIE (see Section 3). The
semantic of the non-terminal is described with attributes
inMS and outMS, where first attribute inMS is inherited
and outMS synthesized. The function insert() adds an el-
ement of pair (name, type) to movie table. If the movie is
already in the collection, the element is not added in the
collection of movies. This is represented with contextual
condition (CC).

NonTerm MOVIES:
Inh: {inMS: TABM}
Syn: {outMS: TABM}

mkMovies(MOVIES -> MOVIES MOVIE):
MOVIES/1.inMS = MOVIES/0.inMS
MOVIES/0.outMS =
insert(MOVIES/1.outMS,

new Movie(MOVIE.title,
MOVIE.type))

CC: (NOT(MOVIE.title IN
MOVIES/1.outMS))

emptyMovies(MOVIES -> &):
MOVIES.outMS = MOVIES.inMS

Semantic constructs of non-terminal MOVIE are shown be-
low. The symbol MOVIE is semantically described with
two attributes that represent basic data of the Movie entity.

NonTerm MOVIE:
Inh: {}

Syn: {title: String, type: Price}

getMovie(MOVIE -> title PRICE):
MOVIE.title = title.lexval
MOVIE.type = PRICE.type

The entity Customer follows the same principle as shown
at the non-terminal MOVIES. The multiplicity 0..m brings
the use of the non-terminals CUSTOMERS and CUS-
TOMER.

NonTerm CUSTOMERS:
Inh: {inCS: TABC, inMS: TABM}
Syn: {outCS: TABC, income: int}

mkCustomers(CUSTOMERS ->
CUSTOMERS CUSTOMER):

CUSTOMERS/1.inCS =
CUSTOMERS/0.inCS

CUSTOMERS/0.outCS =
CUSTOMER.outCS

CUSTOMER.inMS =
CUSTOMERS/0.inMS

CUSTOMERS/1.inMS =
CUSTOMERS/0.inMS

CUSTOMER.inCS =
CUSTOMERS/1.outCS;

CUSTOMERS/0.income =
CUSTOMERS/1.income +
CUSTOMER.income

CC: (NOT(CUSTOMER.name IN
CUSTOMERS/1.outCS))

emptyCustomers(CUSTOMERS -> &):
CUSTOMERS.outCS = CUSTOMERS.inCS;
CUSTOMER.income = 0.0

Semantics constructs of non-terminal CUSTOMER con-
sist of attributes name (String type), inCS (inherited enu-
meration of Customers), outCS (synthesized enumeration
of Customers) and outMS (synthesized enumeration of
Movies).

NonTerm CUSTOMER:
Inh: {inCS: TABC, inMS: TABM}
Syn: {name: String, outCS: TABC,

income: int}
getCustomer(CUSTOMER ->

name RENTALS):
CUSTOMER.name = name.lexval
RENTALS.name = CUSTOMER.name
CUSTOMER.outCS = RENTALS.outCS
RENTALS.inCS = insert(
CUSTOMER.inCS,
new Customer(CUSTOMER.name))

RENTALS.inMS = CUSTOMER.inMS
CUSTOMER.income = RENTALS.income
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To define rental items, the non-terminal RENTALS holds
three distinct inherited attributes: inMS, inCS and name.
To keep the final value after mapping rentals to specific cus-
tomer, the synthesized attribute outCS is used. To support
the rental charging service, a synthesized attribute income
is applied.

TABR = FF(string, (MOVIE, int))

NonTerm RENTALS:
Inh: {inMS: TABM, inCS: TABC,

name: String}
Syn: {outCS: TABC, income: int}

mkRentals(RENTALS -> RENTALS RENTAL):
RENTALS/1.inCS = RENTALS/0.inCS
RENTALS/1.inMS = RENTALS/0.inMS
RENTALS/1.name = RENTALS/0.name
RENTALS/0.outCS =
addRental(RENTALS/1.outCS,
getCustomer(RENTALS/1.outCS,

RENTALS/0.name),
new Rental(getMovie(RENTALS/0.inMS,

RENTAL.title),
RENTAL.daysRented))

RENTALS/0.income = RENTALS/1.income +
getCharge(getMovie(RENTALS/0.inMS,

RENTAL.title),
RENTAL.daysRented)

CC: ((RENTAL.title IN RENTALS/0.inMS)
AND (RENTALS.name IN
RENTALS/0.inCS))

emptyRentals(RENTALS -> &):
RENTALS.outCS = RENTALS.inCS
RENTALS.income = 0.0

As shown above, for mapping the rental items to customer,
the function addRentals is defined. The mapping process
is prevented if rented movie is not present in inherited at-
tribute inMS and also if customer is not present in inherited
attribute inCS. This is shown above with contextual condi-
tion.

The semantic of non-terminal RENTAL is specified us-
ing the values returned by the scanner. Therefore, attributes
title (inherited from non-terminal MOVIE) and daysRented
are used.

NonTerm RENTAL:
Inh: {}
Syn: {title: String,

daysRented: int}

getRental(RENTAL -> daysRented MOVIE):
RENTAL.title = MOVIE.title
RENTAL.daysRented =
atoi (daysRented.lexval)

The non-terminal PRICE represents class Price from the
conceptual class diagram. This is an abstract class which

defines three subclasses, classes Reg, Child and New (non-
terminals REG, CHILD and NEW) in the conceptual class
diagram. Because of the final class rule (see Section 4),
non-terminals are replaced with terminals.

NonTerm PRICE:
Inh: {}
Syn: {type: Price}

getPriceNew(PRICE -> new):
PRICE.type = new New()

getPriceReg(PRICE -> reg):
PRICE.type = new Reg()

getPriceChild(PRICE -> child):
PRICE.type = new Child()

As described in above specifications, attribute evaluation
is derived through semantic functions. Functions open the
next question. Can this functions help to derive informa-
tion to obtain methods in class diagram (fig. 5). In that
case, the part of prototype could be reused in developing
the complete system. This part of our approach is under
investigation.

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System
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e

DSL Program =
Use Case

Use case diagram

Operational diagram

Class Diagram

Figure 5: Developing class methods from functions

The rapid prototype: The attribute grammar specified
in the previous step is then written using our compiler gen-
erator system LISA. The inherent modularity of attribute
grammars enables iterative design of prototype. Therefore,
more functionalities of a system can be implemented.

A part of these specifications is shown below. Note
the straightforward translation from above specifications to
LISA. Notice that, the contextual conditions are not shown
below. They are implemented with functions which appear
in the LISA method part.
language VIDEO_STORE {

lexicon {
daysRented [0-9]+
reserved new | reg | child
name [A-Z][A-Za-z0-9_]*
title [a-z][a-z0-9_]*
ignore [\ \0x0A\0x0D\0x09]+

}
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attributes
Hashtable *.outMS,*.inMS;
Hashtable *.outCS,*.inCS;
Price *.type;
String *.name;
String *.title;
int *.daysRented;

rule Store {
VIDEO_STORE ::= MOVIES CUSTOMERS
compute {
VIDEO_STORE.outMS = MOVIES.outMS;
MOVIES.inMS = new Hashtable();
VIDEO_STORE.outCS =

CUSTOMERS.outCS;
CUSTOMERS.inCS = new Hashtable();
CUSTOMERS.inMS = MOVIES.outMS;
VIDEO_STORE.income =

CUSTOMERS.income;
};

}
rule Movies {

MOVIES ::= MOVIES MOVIE compute {
MOVIES[1].inMS = MOVIES[0].inMS;
MOVIES[0].outMS = insert(

MOVIES[1].outMS,
new Movie(MOVIE.title,
MOVIE.type));

}
| epsilon compute {
MOVIES.outMS = MOVIES.inMS;

};
}
rule Movie {

MOVIE ::= #title PRICE compute {
MOVIE.title = #title.value();
MOVIE.type = PRICE.type;

};
}
rule Customers {

CUSTOMERS ::= CUSTOMERS CUSTOMER
compute {
CUSTOMERS[1].inCS =

CUSTOMERS[0].inCS;
CUSTOMERS[0].outCS =

CUSTOMER.outCS;
CUSTOMER.inMS =

CUSTOMERS[0].inMS;
CUSTOMERS[1].inMS =

CUSTOMERS[0].inMS;
CUSTOMER.inCS =

CUSTOMERS[1].outCS;
CUSTOMERS[0].income =

CUSTOMERS[1].income +
CUSTOMER.income;

}
| epsilon compute {
CUSTOMERS.outCS = CUSTOMERS.inCS;
CUSTOMERS.income = 0.0;

};
}
rule Customer {

CUSTOMER ::= #name RENTALS compute {

CUSTOMER.name = #name.value();
RENTALS.name = CUSTOMER.name;
CUSTOMER.outCS = RENTALS.outCS;
RENTALS.inCS =

insert(CUSTOMER.inCS,
new Customer(CUSTOMER.name));

RENTALS.inMS = CUSTOMER.inMS;
CUSTOMER.income = RENTALS.income;

};
}
rule Rentals {

RENTALS ::= RENTALS RENTAL compute {
RENTALS[1].inCS = RENTALS[0].inCS;
RENTALS[1].inMS = RENTALS[0].inMS;
RENTALS[1].name = RENTALS[0].name;
RENTALS[0].outCS = addRental(

RENTALS[1].outCS, getCustomer(
RENTALS[1].outCS,
RENTALS[0].name),

new Rental( getMovie(
RENTALS[0].inMS, RENTAL.title),

RENTAL.daysRented));
RENTALS[0].income =

RENTALS[1].income +
getCharge ( getMovie(
RENTALS[0].inMS, RENTAL.title),
RENTAL.daysRented);

}
| epsilon compute {
RENTALS.outCS = RENTALS.inCS;
RENTALS.income = 0.0;

};
}
rule Rental {

RENTAL ::= #daysRented MOVIE compute {
RENTAL.title = MOVIE.title;
RENTAL.daysRented = Integer.

valueOf( #daysRented.value())
.intValue();

};
}
rule Price {

PRICE ::= new compute {
PRICE.type = new New();

}
| reg compute {
PRICE.type = new Reg();

}
| child compute {
PRICE.type = new Child();

};
}
... // method part
} // Language

One of the possible scenarios is now described with the
following program:

jurassic_park child
road_trip reg
the_ring new
Andy 3 jurassic_park child 2 road_trip reg
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Mary 3 the_ring new

The meaning of the above program is the following
movie table (attribute outMS), customer table (attribute
outCS) and money income (attribute income).

outMS:{
jurassic_park={Jurassic_park, child},
road_trip={road_trip, reg},
the_ring={the_ring, new}}

outCS:{Mary=(Mary,{the_ring=(
(the_ring,new),3)},3.5),
Andy=(Andy,{road_trip=(
(road_trip,reg),3)},
jurassic_park=(
(jurassic_park,child),2)},
4.5)}

income:8.0

Note that for the same scenario the following Java program
has to be executed, which is much more verbose and less
intuitive for the end-user:

public static void main(String[] args){
double income = 0.0;
Movie m1 = new Movie(
"jurassic_park", Movie.CHILDRENS);

Movie m2 = new Movie(
"road_trip", Movie.REGULAR);

Movie m3 = new Movie(
"the_ring", Movie.NEW_RELEASE);

Customer c1 = new Customer("Andy");
Customer c2 = new Customer("Mary");
Rental r1 = new Rental(m1, 3);
Rental r2 = new Rental(m2, 2);
Rental r3 = new Rental(m3, 3);
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);
income += c1.evaluateCharge();
income += c2.evaluateCharge();

}

5 Conclusion

In the paper our approach to developing a formal specifica-
tion for a given problem using a complementary syntax/se-
mantics approach is described. Not least, our approach can
be also seen as a formal approach to program construction
with all benefits of formal approaches. The proposed ap-
proach can be also applied if the user’s requirements are
not well defined; more symbols or attributes (attribute rules
or constraints) can be easily added in a later phase (when
the user comes up with new requirements/functionalities),
and a new prototype will be immediately generated. The
essence of our approach is the development of a domain-
specific language that describes the user interaction with a
system or the functionality of a system. While executing
programs written in a specified domain-specific language

the functionality of a system and user’s requirements can
be validated. The starting point of our approach is the
identification of concepts in the problem domain. Here,
well known techniques from object-oriented design, such
as use case diagrams and conceptual class diagrams, are
used. However, our approach can be used also with data-
flow diagrams and entity-relation diagrams. In that case
just new transformation rules have to be defined, similar to
those presented in table 1 and table 2.

In our future work we would like to investigate the possi-
bility to obtain a domain-specific language only from a use
case diagram which describes the functionality of a system.
It is well known that use case diagrams and class diagrams
represent different views on a given problem and that there
is no direct transformation between those two techniques.
Has such context-free grammar some valuable information
for constructing a conceptual class diagram? Is it possible
that a context-free grammar of a domain-specific language,
derived from use case diagram, describes the class diagram
for a given problem? Such findings might have some im-
pact on current object-oriented design. Hence, our future
work is to explore this connection.
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