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Abstract: This paper outlines the techniques of on-line testing, error-mitigation and error recovery for SRAM-based FPGAs and gives 
guidelines how to make a small and efficient error recovery mechanism. The mechanism checks the configuration memory of the 
FPGA and reconfigures the FPGA if the error occurs. Triple-modular redundancy was applied to the mechanism to increase its reliabil-
ity. The error recovery mechanism was implemented in Virtex 5 FPGA and verified on two user applications.
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Sprotno testiranje in popravljanje sistemov  
osnovanih na vezjih FPGA
Izvleček: Uvodoma članek razloži tehnike sprotnega testiranja, izogibanja napak in popravljanja napak na vezjih FPGA osnovanih na 
statičnem pomnilniku, kasneje pa poda navodila za izdelavo majhnega in učinkovitega mehanizma za sprotno popravljanje napak. 
Mehanizem sproti pregleduje konfiguracijski spomin vezij FPGA in reprogamira vezje na mestu, kjer najde napako. Mehanizen je imple-
mentiran po metodi trojne modularne redundance, s čemer mu povečamo zanesljivost. Mehanizem za popravljanje napak je narejen 
in preverjen za Virtex 5 FPGA, vendar ga z manjšimi modifikacijami lahko prenesemo tudi na druge tipe FPGA vezij. .

Ključne besede: FPGA, napake SEU, sprotno testiranje, izogibanje napakam, popravljannje napak
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1. Introduction

SRAM-based FPGAs have become an attractive solu-
tion for many applications where a short develop-
ment time, low-cost for low-production volumes and 
in-the-field-programming ability are important issues. 
The flexibility of SRAM-based FPGAs comes from the 
adoption of a configuration memory that defines the 
operations of the circuit that the FPGA implements. It is 
therefore fundamental that the content of the configu-
ration memory preserves the correct values during the 
FPGA operation. An important concern for the reliabil-
ity and dependability of SRAM-based FPGAs are radia-
tion-induced soft-errors that corrupt the configuration 
memory (produce bit-flips). These errors often occur in 
the space environment; however, because of increas-
ing integration density they are also not uncommon at 
sea-level.

Different fault-tolerance techniques have been devel-
oped to increase the reliability and dependability of 
applications on FPGAs [1]. These techniques function 
concurrently (on-line) with the system to monitor its 

operation. On-line testing techniques detect the errors 
in the system, error mitigation techniques are able to 
enhance the system to work despite faults, and error-
recovery techniques recover the faults from the sys-
tem. The goals of the fault-tolerance techniques are to 
minimize the hardware, timing, and power overhead, 
and maximize the reliability of the system.

The paper is organized as follows. Section 2 describes 
how soft-errors corrupt the operation of SRAM-based 
FPGAs. Section 3 explains the state of the art fault tol-
erance techniques. In section 4 error recovery mecha-
nism (ERM) in different FPGAs is described. Section 5 
shows the implementation of the ERM in Xilinx Virtex 5 
FPGA and section 6 concludes the peper.

2. Soft errors in SRAM-based FPGAs

SRAM-based FPGAs are susceptible to radiation-in-
duced soft-errors. The main FPGA reliability concern is 
a type of soft-error called single-event upset (SEU). 
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A SEU occurs when a charged particle strikes a memory 
cell and changes its state. For example, a typical SRAM 
memory cell is comprised of four transistors shown in 
Figure 1. A memory cell has two stable states that rep-
resent one bit of stored information. In each state two 
transistors are turned off (SEU target drains). When a 
charged particle strikes a drain in an off state transistor 
as in Figure 1, it can generate a transient current pulse 
to turn the gate of the opposite transistor on, which 
changes the state of the memory cell. 

Figure 1:  SEU in a SRAM memory cell

Configuration memory of a SRAM-based FPGA is com-
prised of SRAM memory cells. A charged particle can 
cause a bit-flip in the configuration memory cell and 
consequently alter the FPGA functionality.

A configuration bit is associated with a particular part 
of the FPGA. It can be a part of an internal memory of 
the device like an internal RAM or flip-flop, or it can rep-
resent a functional part of the design, like a Logic Block 
(LB), or internal routing [4].

Figure 2:  SEU in an internal FPGA routing

The internal routing interconnects the LBs, I/O blocks 
and other functional blocks of the FPGA. The routing 
consists of switch boxes that connect the main wires 
and smaller wiring segments that connect the main 
wires to LBs, shown in Figure 2 a. These connections 
are determined by the logic state of their configuration 

bits. A SEU affecting these configuration bits could dis-
connect the original LB connection, or in another case, 
connect wrong LBs. For illustration, some typical faults 
are marked in Figure 2 b. 

The simplified structure of a LB is shown in Figure 3. 
The LB in Xilinx FPGA consists of a number of look-up 
tables, flip-flops and internal carry and control logic. 
The SEU can alter the logic function of the LUT, alter the 
connections inside the Carry and control logic, change 
the contents of the flip-flop, etc.

Figure 3:  SEU in Logic Block

3. On-line testing and fault tolerance 
techniques

Different techniques have been proposed to test and 
protect SRAM FPGAs from SEU. On-line testing tech-
niques detect errors during the normal operation of 
the system. On-line detection of errors shortens fault-
detection latency, which is very important in order to 
prevent the fault from propagating further through the 
system. On the other hand, error-mitigation techniques 
can tolerate faults that occur during the system opera-
tion. If a fault occurs in one part of the circuit, then a 
redundant part of the circuit is used to provide the cor-
rect and uninterrupted operation of the system. When 
a fault is detected inside a system it can be repaired (re-
covered) by error-recovery techniques.

On-line testing techniques

On-line testing is performed while the circuit is per-
forming its assigned task. Two types of on-line test are 
distinguished in the literature: the concurrent and the 
non-concurrent on-line test.

A non-concurrent on-line test is usually triggered in 
phases of system inactivity or in periodic and sched-
uled times when the normal function of the system 
is interrupted. Non-concurrent testing is used to de-
tect permanent faults (SEU) and cannot detect tran-
sient faults (SET), whose effects disappear quickly. The 
non-concurrent on-line test is performed only virtu-
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ally in parallel to system operation. Therefore, it is in 
some literature classified as an off-line technique. We 
give some examples of non-concurrent on-line test-
ing techniques. The authors in [5] used scan chains to 
periodically check the system while [6] used logic BIST. 
Authors in [7] implemented a periodic on-line test in an 
embedded microprocessor.

A concurrent on-line test runs in concurrence with the 
system and does not interrupt its normal operation. 
The concurrent testing techniques use different kinds 
of redundancies to detect errors. Time redundancy is 
normally used to detect a transient faults in combi-
national circuits, while hardware redundancy is used 
to detect a SEU in sequential circuits or configuration 
memory. The on-line testing principle is depicted in 
Figure 4. Test vectors are generated by the normal op-
erational inputs. Besides the original circuit there is a 
redundant part of the circuit that produces additional 
encoded outputs. A checker is monitoring these out-
puts and thus performs error detection. 

Figure 4:  Concurrent on-line testing principle

A system protected with the concurrent on-line testing 
technique is also called a self-checking system [8]. The 
desirable goal of self-checking systems is to achieve 
the so-called totally self-checking property. This prop-
erty requires that every fault in the system is detected 
before or at the time this fault produces an erroneous 
output. To achieve this goal the system has to meet the 
following criteria [9]:
•	 Fault secure criterion requires that any fault in the 

system produces erroneous outputs that can be 
detected at the output. This criterion assures that 
every single fault can be detected.

•	 Self-testing criterion requires that for each fault 
there is at least one input vector, occurring during 
normal operation of the circuit, which detects it.

The most straight forward hardware redundancy tech-
nique is duplication and comparison. The principle of 
the technique is that we make two copies of the circuit 
which run in parallel. The duplicates receive identical 
inputs. The outputs of the both circuits are compared 
by the comparator circuit.  This technique increases the 
hardware cost by more than 100%. Duplication and 
comparison is used in a variety of different systems. In 

this way, on-line testing of embedded processor cores 
was improved by [10]. Processor cores are duplicated 
and a checker monitors whether the outputs of both 
cores match. If the outputs mismatch the proces-
sor state is restored from the previously saved states 
(checkpoint and rollback recovery method). Applica-
bility of duplication and comparison in asynchronous 
circuits was investigated in [11]. Testing of finite-state 
machines using a technique similar to duplication and 
comparison was proposed in [12].

To reduce hardware cost, other more elaborate tech-
niques are employed.  These techniques use error-de-
tecting codes (EDC) with costs lower than the dupli-
cation. The EDCs are used in sequential circuits and in 
memories. The codes that are used for error detection 
are:  Parity codes, Hamming codes, Dual-rail codes, m 
out of n codes, Berger codes, and Arithmetic codes. 

The most commonly used codes for error detection in 
FPGA configuration memories are the so called Single-
error detection double-error correction (SEC-DED) 
Hamming codes [13] and Cyclic Redundancy Check 
(CRC) [14]. 

Error-mitigation techniques

For mission-critical systems it is sometimes not enough 
to only detect a fault, but also to operate in the pres-
ence of a fault which is possible by applying error-miti-
gation techniques. These techniques are also based on 
different kinds of redundancies.

The best-known hardware-redundancy mitigation 
technique is Triple Modular Redundancy (TMR). This 
technique is one of the n-modular redundancy tech-
niques which were derived by [15]. The basic TMR tech-
nique triplicates the entire circuit into three modules 
and places the majority voter at the output of the mod-
ules. This method is effective against SETs and SEUs 
that occur in a single design module. However, if the 
upset occurs in the majority voter circuit the basic TMR 
is ineffective and a wrong value will be presented at the 
output. The hardware overhead of this method is three 
times the original design plus the voter circuit. While 
the hardware overhead is large, some have proposed 
partial TMR techniques which are focused only tripli-
cating the specific sensitive logic [16].

The basic TMR solution does not avoid the accumula-
tion of upsets. The FPGAs cope with this problem by 
implementing an on-line error-recovery technique.

To apply the TMR technique effectively in the FPGA de-
vice additional restrictions have to be considered. The 
triplicated modules have to be placed isolated from 
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each other (different clock regions) and the internal 
signals have to be carefully routed to limit the possibil-
ity that an upset would affect more than one module. 
All the modules have to have separate clock and input 
signals. Routing the TMR design in the FPGA is a par-
ticularly hard problem. Various algorithms and design 
methods have been proposed to reduce the number of 
such errors [17,18].

For Xilinx FPGAs a special hardened TMR architecture 
has been proposed in [19]. This architecture can also be 
automatically generated by their tool (Xilinx TMRTool). 
The XTMR is exploited based on the states recovery 
TMR method and uses specific FPGA resources to im-
plement the majority voters. The Xilinx TMR is depicted 
in Figure 5:
•	 Inputs are connected outside of the FPGA and sep-

arated inside the FPGA.
•	 Combinational logic is triplicated.
•	 Sequential logic is implemented with majority vot-

ers and feedback loops.
•	 Outputs are implemented using tri-state output 

buffers in combination with minority voters.

Figure 5:  The architecture of Xilinx TMR

Error-recovery techniques in SRAM-based FPGAs

The configuration memory of the FPGA determines the 
functionality of the FPGA. The original configuration is 
downloaded into an FPGA at the power-up. During the 
operation of the device a SEU can occur, which changes 
the configuration of the FPGA. The error-recovery tech-
niques are used to recover the original state of the con-
figuration memory.

Simple error-recovery techniques (scrubbing tech-
niques) only periodically reconfigure the whole device 
from the external memory. The external memory has 
to be radiation hardened and reliable to assure the cor-
rectness of the original (“Golden copy”) configuration 
memory. The scrubbing period has to be adjusted to be 
less than the estimated mean time between two SEUs. 

More advanced error-recovery techniques check 
whether the configuration memory is correct during 
the normal operation of the user application and can 

be regarded as on-line recovery techniques. These 
techniques require an error-recovery mechanism that 
monitors the configuration memory and in the case of 
an error recovers only the faulty bits using the partial 
runtime reconfiguration of the FPGA.

The recovery mechanism uses different ECCs to check 
the configuration memory. In [20, 21] Hamming code 
is used. The Hamming check bits are stored within the 
configuration of the Xilinx FPGAs. Asadi et al. [22] used 
Cyclic Redundancy Check (CRC) of the configuration 
memory. The CRC values are stored separately inside 
the internal memory of the FPGA. 

Depending on which FPGA configuration interface is 
used to reconfigure the device, the recovery techniques 
are classified as either external or internal. The external 
techniques use one of the external configuration ports 
(i.e., JTAG, SelectMap). The external recovery technique 
requires a reliable recovery mechanism. Hulme et al. 
[23] proposed a radiation-hardened processor to con-
trol the recovery process, Asadi et al. [22] used a small 
auxiliary FPGA to check the main FPGA for errors, and 
Berg et al. [24] implemented a controller in ASIC.

An external recovery mechanism produces extra im-
plementation costs. Hence, internal SEU-recovery tech-
niques were proposed. They use internal configuration 
interface (for example, the internal-configuration-
access-port-ICAP). The internal recovery controller is 
implemented in the FPGA along with the user applica-
tion. It has to be small, fast and reliable. Heiner et al. 
[20] and Chapman [21] use an embedded microproces-
sor (PisoBlaze) as a configuration controller while Legat 
et. al. [25] use a small hardware mechanism based on 
finite state machine (FSM).

4. Mechanism for on-line test and  
recovery of errors in SRAM based  
FPGAs

In this section the knowledge of on-line testing, error 
mitigation and error recovery are used to show how 
to develop an efficient internal error-recovery mecha-
nism (ERM) for SRAM FPGAs. The ERM will be able to 
test the configuration memory of SRAM FPGAs during 
the operation of the device (on-line) and recover errors 
through reconfiguration. The mechanism will be imple-
mented in TMR to increase its reliability.

On-line test of the FPGA configuration memory

The functionality of a SRAM FPGA is determined by the 
state of its configuration memory (i.e., the SRAM cells). 
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The configuration memory in Xilinx, Atmel or Altera 
FPGA devices is organized in a network of configura-
tion frames that are laid out on a device according to 
their frame address. A configuration frame is the small-
est reconfigurable part of an FPGA. The content of the 
configuration memory is loaded through the configu-
ration interface at the initial configuration of the device 
and must remain unchanged during its operation.

The basic idea of the mechanism is to continuously read 
the contents of the configuration memory during the 
operation of the device through a configuration port 
and check its integrity. Some of the SRAM-based FPGA 
devices have an internal configuration port which can 
be directly accessed by the mechanism; other devices 
have to use an external connection to configuration 
pins.  

Figure 6: The structure of configuration memory in 
SRAM-based FPGAs

To validate the integrity of the configuration memory 
the mechanism reads the configuration memory frame 
by frame and checks the frame data using an ECC. Dif-
ferent FPGAs use different ECCs in their configuration 
frames. Figure 6 shows the structure of the configura-
tion frames of Xilinx and Altera FPGAs. 

Xilinx FPGAs
Each configuration frame in Xilinx FPGA device contains 
12 parity bits. These are the parity bits of the Hamming 
SEC-DED Error Correction Code (ECC). The parities are 
pre-calculated and stored with the configuration data. 
To perform the error-detection we have to implement 
a Hamming decoder. As the configuration frame is read 
through the configuration port the Hamming decoder 
calculates a syndrome value. The syndrome is calculated 
from the 12 parity bits and the rest of the read frame data. 
The first 11 bits of the syndrome value identify the loca-
tion of a single erroneous bit within the frame (including 
the errors in the parity bits), while the last bit of the syn-
drome value indicates the double error in the frame.

Altera FPGAs
Each configuration frame in Altera FPGA device con-
tains a CRC-16. The 16 check bits are pre-calculated 

and appended to the configuration data. For error-
detection we have to implement a LFSR. The LFSR 
uses 16 flip-flops and three XOR gates placed at the 
positions determined by the generator polynomial 
(x16+x15+x2+1). As the frame is read the configuration 
frame data is shifted through the LFSR and the output 
of the LFSR is checked at the end of the readback. The 
CRC can detect single and multiple faults in the frame, 
but it cannot determine the position of the error.

Error-recovery procedure

When an error is detected in a configuration frame, the 
mechanism triggers error recovery procedure. The er-
ror recovery is the process of correcting the configu-
ration memory through configuration port. The FPGA 
devices that do not have partial reconfiguration capa-
bilities have to stop and reconfigure the whole config-
uration memory. Some of the FPGA devices enable par-
tial runtime reconfiguration (newer Xilinx, Altera, and 
Atmel FPGAs). These devices can recover a single faulty 
frame during the operation of the device. The recovery 
procedure goes as follows:

In Xilinx FPGAs (Virtex family) the ERM does not require 
an external memory for the recovery of single faults.   
The SEC-DED Hamming ECC determines the location of 
a single error inside the configuration frame. The ERM 
corrects the faulty bit in the read configuration frame 
and reconfigures it. If a double error occurs in a config-
uration frame the recovery procedure is only possible 
from the external memory.

In Altera FPGAs (Stratix and Cyclone families) the loca-
tion of the error inside the frame is unknown; therefore 
the original frame data has to be stored in the external 
memory.  The corrupted frame is read from the external 
memory and reconfigured using partial runtime recon-
figuration.

Implementation of error recovery mechanism

The hardware architecture of ERM is shown in Figure 7. 
It consists of configuration port, ECC core, internal FPGA 
RAM, and control logic.

The FPGA device is configured by writing the configu-
ration commands into the configuration registers. The 
configuration user guides of particular FPGA devices 
give a detailed description of the register types and 
commands to perform the configuration operations. 

The configuration port can be internal or external. It 
has direct access to the configuration registers and 
configuration data. The error-recovery mechanism 
uses the port to read and write a configuration frame. 

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151
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The readback and reconfiguration operations are per-
formed using an appropriate sequence of configura-
tion commands sent to the inputs of the port. These 
commands are predefined and stored in the internal 
FPGA memory.

The ECC core is used to detect errors inside the FPGA 
configuration frame. Depending on the FPGA family 
this can be a Hamming decoder or a CRC LFSR. The ECC 
device checks the configuration frame while the frame 
is read through the configuration port.

The internal FPGA RAM contains the configuration 
commands and temporarily stores the current config-
uration frame. The internal RAM is also susceptible to 
SEU. To protect the integrity of the RAM content most 
of the FPGAs devices have an embedded Hamming 
SEC-DED ECC circuit.

The control logic manages the error detection-and-cor-
rection process. The controller is composed of a Finite 
State Machine (FSM) and a Frame address counter. The 
FSM controls the operation of the mechanism. When 
the next frame address is required the Frame address 
counter is incremented. When the frame address reach-
es the last frame, the counter is reset back to the initial 
value pointing to the first frame.

TMR implementation of the error recovery mecha-
nism

The internal error-recovery mechanism is also suscep-
tible to SEUs. A critical fault in the mechanism could 
cause a system-wide corruption of the configuration 
data. Therefore, it is essential that the logic of the ERM 
is protected by some SEU-mitigation technique.

The ERM can be implemented in TMR. The hardware 
architecture of the TMR is depicted in Figure 8. The 
TMR structure can be applied to the control logic, ECC 
core and the internal RAMs. These components of the 
ERM are triplicated in three design modules. A majority 
voter is placed at the inputs of the configuration port. 
The outputs of the configuration port are triplicated 
outside the FPGA are connected to the three design 
modules inside FPGA. The triplicated design modules 
are clocked by separate synchronous clock signals.

Figure 8:  Hardware architecture of the TMR version of 
the error-recovery mechanism

The majority voter can be regarded as a single point of 
failure. The recommended implementation of the ma-
jority voter in FPGAs is shown in Figure 8. This majority 
voter implementation is immune to the single points of 
failures. The majority voter is implemented using three 
output tri-state buffers that are a part of the FPGA OI 
blocks, and three minority voters. The operation of the 
voter is as follows: If the primary signal (P) of the minor-
ity voter is a part of the majority (see the minority voter 
truth table in Figure 8), then the minority voter will ena-
ble the corresponding (active low) output buffer allow-
ing the data on the output. If the primary path is not a 
part of the majority, then the output buffer is disabled 
placing its output in a high-impedance state allowing 
the redundant outputs to drive the correct data.

To apply the TMR technique effectively in the FPGA de-
vice additional restrictions have to be considered. The 
triplicated modules have to be placed in such a way 
that they are isolated from each other and the internal 
signals have to be carefully routed to limit the possibil-
ity that an upset would affect more than one module.

Figure 7:  Hardware architecture of the error-recovery 
mechanism

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151
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5. Implementation details and  
operation of ERM 

The proposed ERM was implemented in Xilinx Virtex 
5 (XC5VLX30) FPGA [25]. An internal-configuration ac-
cess-port (ICAP) was used to access the configuration 
memory. A frame ECC device was used to check the 
frame data and a FSM was built to control the process 
of configuration scan and recovery. The ERM was also 
implemented in TMR.

Implementation details of original ERM vs. TMR 
design 

Implementation details of the ERM implemented in Vir-
tex 5 are shown in Table 1. It occupies just 72 slices, 115 
Flip-flop registers and 1 internal block RAM. A total of 
36 kb of RAM is used with embedded ECC. The mech-
anism utilizes less than 1% of the resources available 
on the FPGA. Implementation can differ slightly when 
different options are selected in the synthesis tools. In 
comparison with the original version of the recovery 
mechanism TMR increases the number of occupied re-
sources by some more than three times.

The power consumption of both versions of ERM was 
analyzed using Xilinx XPower tool on Virtex 5 FPGA at 
100 MHz clock rate. The dynamic power consumption 
of the ERM is negligible in comparison with the static 
leakage of the FPGA. The TMR version of the mecha-
nism has approximately three times higher dynamic 
power consumption than the original mechanism. On 
the other hand, due to the high static power consump-
tion of the FPGA the total power consumption of the 
TMR version is only 4% higher than the power con-
sumption of the original mechanism. 

Table 1: Comparison of resources, power, and timing of 
the original and TMR version of ERM

Virtex 5 Original 
mechanism

TMR  
mechanism

Resources
Slices 72 321
Flip-flops 115 345
BRAM 1 3
Power consumption
Dynamic (mW) 20 56
Static leakage (mW) 894 895
Total (mW) 914 951
Timing
Max Clock (MHz) 282 261

Timing analysis was done using Xilinx ISE tool. The 
maximum clock frequency of the TMR version of the 
error recovery mechanism is 8% lower than the clock 
frequency of the original version. The decrease of the 
maximum clock frequency is the result of a slightly 
longer critical path. The frequency 261 MHz is still more 
than enough since the ICAP circuit which is used by the 
mechanism is recommended to run below 100 MHz.

Error-recovery time

The error-recovery time of the mechanism depends 
on the size of the configuration memory of particular 
FPGA device. One configuration frame is checked in 
41 clock cycles and recovered in 210 clock cycles. In 
our case the Virtex 5 (XC5VLX30) FPGA was used. This 
device has 5515 configuration frames. The worst case 
error detection time is 226115 clocks or with 100 MHz 
clock rate 2.3 ms.

Verification of ERM

The operation of error-recovery mechanism was veri-
fied by injecting faults into tested user applications and 
checking if the ERM recovered the errors. The fault in-
jection was performed by our fault injection tool [26].

Two user applications were used. The first device un-
der test was an Advanced Encryption Standard (AES) 
implementation from [27]. The AES core occupies 537 
LUTs, 165 Flip Flops and 3 internal RAM blocks. 337184 
single faults were injected in the part of FPGA where 
the AES was placed. The ERM recovered all the injected 
faults. The second device under test was a hardware 
implementation of a secure IEEE 1148.1 standard from 
[28]. The boundary scan core occupies 65 LUTs and 119 
Flip Flops. 181056 single faults were injected in this de-
vice and all the injected faults were recovered by the 
ERM. 

6. Conclusions 

An error-recovery mechanism for SRAM-based FPGAs 
was proposed. The guidelines for its implementation in 
different FPGA families are given including the imple-
mentation in triple-modular redundancy. The mecha-
nism was verified on Xilinx Virtex 5 FPGA using two 
case study applications. 

Future work includes a detailed analysis of TMR struc-
ture of the ERM. By performing a fault injection experi-
ment possible points of failure will be identified and 
further hardening solutions will be proposed.

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151
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