
144

Scientific original paper

On-line Testing and Recovery of Systems on
SRAM-based FPGA
Uroš Legat

Jožef Stefan Institute, Ljubljana, Slovenia

Abstract: This paper outlines the techniques of on-line testing, error-mitigation and error recovery for SRAM-based FPGAs and gives
guidelines how to make a small and efficient error recovery mechanism. The mechanism checks the configuration memory of the
FPGA and reconfigures the FPGA if the error occurs. Triple-modular redundancy was applied to the mechanism to increase its reliabil-
ity. The error recovery mechanism was implemented in Virtex 5 FPGA and verified on two user applications.

Keywords: FPGA, single-event upset, on-line testing, error-mitigation, error-recovery

Sprotno testiranje in popravljanje sistemov
osnovanih na vezjih FPGA
Izvleček: Uvodoma članek razloži tehnike sprotnega testiranja, izogibanja napak in popravljanja napak na vezjih FPGA osnovanih na
statičnem pomnilniku, kasneje pa poda navodila za izdelavo majhnega in učinkovitega mehanizma za sprotno popravljanje napak.
Mehanizem sproti pregleduje konfiguracijski spomin vezij FPGA in reprogamira vezje na mestu, kjer najde napako. Mehanizen je imple-
mentiran po metodi trojne modularne redundance, s čemer mu povečamo zanesljivost. Mehanizem za popravljanje napak je narejen
in preverjen za Virtex 5 FPGA, vendar ga z manjšimi modifikacijami lahko prenesemo tudi na druge tipe FPGA vezij. .

Ključne besede: FPGA, napake SEU, sprotno testiranje, izogibanje napakam, popravljannje napak

* Corresponding Author’s e-mail: uros.legat@ijs.si

Journal of Microelectronics,
Electronic Components and Materials
Vol. 42, No. 3 (2012), 144 – 151

1. Introduction

SRAM-based FPGAs have become an attractive solu-
tion for many applications where a short develop-
ment time, low-cost for low-production volumes and
in-the-field-programming ability are important issues.
The flexibility of SRAM-based FPGAs comes from the
adoption of a configuration memory that defines the
operations of the circuit that the FPGA implements. It is
therefore fundamental that the content of the configu-
ration memory preserves the correct values during the
FPGA operation. An important concern for the reliabil-
ity and dependability of SRAM-based FPGAs are radia-
tion-induced soft-errors that corrupt the configuration
memory (produce bit-flips). These errors often occur in
the space environment; however, because of increas-
ing integration density they are also not uncommon at
sea-level.

Different fault-tolerance techniques have been devel-
oped to increase the reliability and dependability of
applications on FPGAs [1]. These techniques function
concurrently (on-line) with the system to monitor its

operation. On-line testing techniques detect the errors
in the system, error mitigation techniques are able to
enhance the system to work despite faults, and error-
recovery techniques recover the faults from the sys-
tem. The goals of the fault-tolerance techniques are to
minimize the hardware, timing, and power overhead,
and maximize the reliability of the system.

The paper is organized as follows. Section 2 describes
how soft-errors corrupt the operation of SRAM-based
FPGAs. Section 3 explains the state of the art fault tol-
erance techniques. In section 4 error recovery mecha-
nism (ERM) in different FPGAs is described. Section 5
shows the implementation of the ERM in Xilinx Virtex 5
FPGA and section 6 concludes the peper.

2. Soft errors in SRAM-based FPGAs

SRAM-based FPGAs are susceptible to radiation-in-
duced soft-errors. The main FPGA reliability concern is
a type of soft-error called single-event upset (SEU).

145

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

A SEU occurs when a charged particle strikes a memory
cell and changes its state. For example, a typical SRAM
memory cell is comprised of four transistors shown in
Figure 1. A memory cell has two stable states that rep-
resent one bit of stored information. In each state two
transistors are turned off (SEU target drains). When a
charged particle strikes a drain in an off state transistor
as in Figure 1, it can generate a transient current pulse
to turn the gate of the opposite transistor on, which
changes the state of the memory cell.

Figure 1: SEU in a SRAM memory cell

Configuration memory of a SRAM-based FPGA is com-
prised of SRAM memory cells. A charged particle can
cause a bit-flip in the configuration memory cell and
consequently alter the FPGA functionality.

A configuration bit is associated with a particular part
of the FPGA. It can be a part of an internal memory of
the device like an internal RAM or flip-flop, or it can rep-
resent a functional part of the design, like a Logic Block
(LB), or internal routing [4].

Figure 2: SEU in an internal FPGA routing

The internal routing interconnects the LBs, I/O blocks
and other functional blocks of the FPGA. The routing
consists of switch boxes that connect the main wires
and smaller wiring segments that connect the main
wires to LBs, shown in Figure 2 a. These connections
are determined by the logic state of their configuration

bits. A SEU affecting these configuration bits could dis-
connect the original LB connection, or in another case,
connect wrong LBs. For illustration, some typical faults
are marked in Figure 2 b.

The simplified structure of a LB is shown in Figure 3.
The LB in Xilinx FPGA consists of a number of look-up
tables, flip-flops and internal carry and control logic.
The SEU can alter the logic function of the LUT, alter the
connections inside the Carry and control logic, change
the contents of the flip-flop, etc.

Figure 3: SEU in Logic Block

3. On-line testing and fault tolerance
techniques

Different techniques have been proposed to test and
protect SRAM FPGAs from SEU. On-line testing tech-
niques detect errors during the normal operation of
the system. On-line detection of errors shortens fault-
detection latency, which is very important in order to
prevent the fault from propagating further through the
system. On the other hand, error-mitigation techniques
can tolerate faults that occur during the system opera-
tion. If a fault occurs in one part of the circuit, then a
redundant part of the circuit is used to provide the cor-
rect and uninterrupted operation of the system. When
a fault is detected inside a system it can be repaired (re-
covered) by error-recovery techniques.

On-line testing techniques

On-line testing is performed while the circuit is per-
forming its assigned task. Two types of on-line test are
distinguished in the literature: the concurrent and the
non-concurrent on-line test.

A non-concurrent on-line test is usually triggered in
phases of system inactivity or in periodic and sched-
uled times when the normal function of the system
is interrupted. Non-concurrent testing is used to de-
tect permanent faults (SEU) and cannot detect tran-
sient faults (SET), whose effects disappear quickly. The
non-concurrent on-line test is performed only virtu-

146

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

ally in parallel to system operation. Therefore, it is in
some literature classified as an off-line technique. We
give some examples of non-concurrent on-line test-
ing techniques. The authors in [5] used scan chains to
periodically check the system while [6] used logic BIST.
Authors in [7] implemented a periodic on-line test in an
embedded microprocessor.

A concurrent on-line test runs in concurrence with the
system and does not interrupt its normal operation.
The concurrent testing techniques use different kinds
of redundancies to detect errors. Time redundancy is
normally used to detect a transient faults in combi-
national circuits, while hardware redundancy is used
to detect a SEU in sequential circuits or configuration
memory. The on-line testing principle is depicted in
Figure 4. Test vectors are generated by the normal op-
erational inputs. Besides the original circuit there is a
redundant part of the circuit that produces additional
encoded outputs. A checker is monitoring these out-
puts and thus performs error detection.

Figure 4: Concurrent on-line testing principle

A system protected with the concurrent on-line testing
technique is also called a self-checking system [8]. The
desirable goal of self-checking systems is to achieve
the so-called totally self-checking property. This prop-
erty requires that every fault in the system is detected
before or at the time this fault produces an erroneous
output. To achieve this goal the system has to meet the
following criteria [9]:
•	 Fault secure criterion requires that any fault in the

system produces erroneous outputs that can be
detected at the output. This criterion assures that
every single fault can be detected.

•	 Self-testing criterion requires that for each fault
there is at least one input vector, occurring during
normal operation of the circuit, which detects it.

The most straight forward hardware redundancy tech-
nique is duplication and comparison. The principle of
the technique is that we make two copies of the circuit
which run in parallel. The duplicates receive identical
inputs. The outputs of the both circuits are compared
by the comparator circuit. This technique increases the
hardware cost by more than 100%. Duplication and
comparison is used in a variety of different systems. In

this way, on-line testing of embedded processor cores
was improved by [10]. Processor cores are duplicated
and a checker monitors whether the outputs of both
cores match. If the outputs mismatch the proces-
sor state is restored from the previously saved states
(checkpoint and rollback recovery method). Applica-
bility of duplication and comparison in asynchronous
circuits was investigated in [11]. Testing of finite-state
machines using a technique similar to duplication and
comparison was proposed in [12].

To reduce hardware cost, other more elaborate tech-
niques are employed. These techniques use error-de-
tecting codes (EDC) with costs lower than the dupli-
cation. The EDCs are used in sequential circuits and in
memories. The codes that are used for error detection
are: Parity codes, Hamming codes, Dual-rail codes, m
out of n codes, Berger codes, and Arithmetic codes.

The most commonly used codes for error detection in
FPGA configuration memories are the so called Single-
error detection double-error correction (SEC-DED)
Hamming codes [13] and Cyclic Redundancy Check
(CRC) [14].

Error-mitigation techniques

For mission-critical systems it is sometimes not enough
to only detect a fault, but also to operate in the pres-
ence of a fault which is possible by applying error-miti-
gation techniques. These techniques are also based on
different kinds of redundancies.

The best-known hardware-redundancy mitigation
technique is Triple Modular Redundancy (TMR). This
technique is one of the n-modular redundancy tech-
niques which were derived by [15]. The basic TMR tech-
nique triplicates the entire circuit into three modules
and places the majority voter at the output of the mod-
ules. This method is effective against SETs and SEUs
that occur in a single design module. However, if the
upset occurs in the majority voter circuit the basic TMR
is ineffective and a wrong value will be presented at the
output. The hardware overhead of this method is three
times the original design plus the voter circuit. While
the hardware overhead is large, some have proposed
partial TMR techniques which are focused only tripli-
cating the specific sensitive logic [16].

The basic TMR solution does not avoid the accumula-
tion of upsets. The FPGAs cope with this problem by
implementing an on-line error-recovery technique.

To apply the TMR technique effectively in the FPGA de-
vice additional restrictions have to be considered. The
triplicated modules have to be placed isolated from

147

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

each other (different clock regions) and the internal
signals have to be carefully routed to limit the possibil-
ity that an upset would affect more than one module.
All the modules have to have separate clock and input
signals. Routing the TMR design in the FPGA is a par-
ticularly hard problem. Various algorithms and design
methods have been proposed to reduce the number of
such errors [17,18].

For Xilinx FPGAs a special hardened TMR architecture
has been proposed in [19]. This architecture can also be
automatically generated by their tool (Xilinx TMRTool).
The XTMR is exploited based on the states recovery
TMR method and uses specific FPGA resources to im-
plement the majority voters. The Xilinx TMR is depicted
in Figure 5:
•	 Inputs are connected outside of the FPGA and sep-

arated inside the FPGA.
•	 Combinational logic is triplicated.
•	 Sequential logic is implemented with majority vot-

ers and feedback loops.
•	 Outputs are implemented using tri-state output

buffers in combination with minority voters.

Figure 5: The architecture of Xilinx TMR

Error-recovery techniques in SRAM-based FPGAs

The configuration memory of the FPGA determines the
functionality of the FPGA. The original configuration is
downloaded into an FPGA at the power-up. During the
operation of the device a SEU can occur, which changes
the configuration of the FPGA. The error-recovery tech-
niques are used to recover the original state of the con-
figuration memory.

Simple error-recovery techniques (scrubbing tech-
niques) only periodically reconfigure the whole device
from the external memory. The external memory has
to be radiation hardened and reliable to assure the cor-
rectness of the original (“Golden copy”) configuration
memory. The scrubbing period has to be adjusted to be
less than the estimated mean time between two SEUs.

More advanced error-recovery techniques check
whether the configuration memory is correct during
the normal operation of the user application and can

be regarded as on-line recovery techniques. These
techniques require an error-recovery mechanism that
monitors the configuration memory and in the case of
an error recovers only the faulty bits using the partial
runtime reconfiguration of the FPGA.

The recovery mechanism uses different ECCs to check
the configuration memory. In [20, 21] Hamming code
is used. The Hamming check bits are stored within the
configuration of the Xilinx FPGAs. Asadi et al. [22] used
Cyclic Redundancy Check (CRC) of the configuration
memory. The CRC values are stored separately inside
the internal memory of the FPGA.

Depending on which FPGA configuration interface is
used to reconfigure the device, the recovery techniques
are classified as either external or internal. The external
techniques use one of the external configuration ports
(i.e., JTAG, SelectMap). The external recovery technique
requires a reliable recovery mechanism. Hulme et al.
[23] proposed a radiation-hardened processor to con-
trol the recovery process, Asadi et al. [22] used a small
auxiliary FPGA to check the main FPGA for errors, and
Berg et al. [24] implemented a controller in ASIC.

An external recovery mechanism produces extra im-
plementation costs. Hence, internal SEU-recovery tech-
niques were proposed. They use internal configuration
interface (for example, the internal-configuration-
access-port-ICAP). The internal recovery controller is
implemented in the FPGA along with the user applica-
tion. It has to be small, fast and reliable. Heiner et al.
[20] and Chapman [21] use an embedded microproces-
sor (PisoBlaze) as a configuration controller while Legat
et. al. [25] use a small hardware mechanism based on
finite state machine (FSM).

4. Mechanism for on-line test and
recovery of errors in SRAM based
FPGAs

In this section the knowledge of on-line testing, error
mitigation and error recovery are used to show how
to develop an efficient internal error-recovery mecha-
nism (ERM) for SRAM FPGAs. The ERM will be able to
test the configuration memory of SRAM FPGAs during
the operation of the device (on-line) and recover errors
through reconfiguration. The mechanism will be imple-
mented in TMR to increase its reliability.

On-line test of the FPGA configuration memory

The functionality of a SRAM FPGA is determined by the
state of its configuration memory (i.e., the SRAM cells).

148

The configuration memory in Xilinx, Atmel or Altera
FPGA devices is organized in a network of configura-
tion frames that are laid out on a device according to
their frame address. A configuration frame is the small-
est reconfigurable part of an FPGA. The content of the
configuration memory is loaded through the configu-
ration interface at the initial configuration of the device
and must remain unchanged during its operation.

The basic idea of the mechanism is to continuously read
the contents of the configuration memory during the
operation of the device through a configuration port
and check its integrity. Some of the SRAM-based FPGA
devices have an internal configuration port which can
be directly accessed by the mechanism; other devices
have to use an external connection to configuration
pins.

Figure 6: The structure of configuration memory in
SRAM-based FPGAs

To validate the integrity of the configuration memory
the mechanism reads the configuration memory frame
by frame and checks the frame data using an ECC. Dif-
ferent FPGAs use different ECCs in their configuration
frames. Figure 6 shows the structure of the configura-
tion frames of Xilinx and Altera FPGAs.

Xilinx FPGAs
Each configuration frame in Xilinx FPGA device contains
12 parity bits. These are the parity bits of the Hamming
SEC-DED Error Correction Code (ECC). The parities are
pre-calculated and stored with the configuration data.
To perform the error-detection we have to implement
a Hamming decoder. As the configuration frame is read
through the configuration port the Hamming decoder
calculates a syndrome value. The syndrome is calculated
from the 12 parity bits and the rest of the read frame data.
The first 11 bits of the syndrome value identify the loca-
tion of a single erroneous bit within the frame (including
the errors in the parity bits), while the last bit of the syn-
drome value indicates the double error in the frame.

Altera FPGAs
Each configuration frame in Altera FPGA device con-
tains a CRC-16. The 16 check bits are pre-calculated

and appended to the configuration data. For error-
detection we have to implement a LFSR. The LFSR
uses 16 flip-flops and three XOR gates placed at the
positions determined by the generator polynomial
(x16+x15+x2+1). As the frame is read the configuration
frame data is shifted through the LFSR and the output
of the LFSR is checked at the end of the readback. The
CRC can detect single and multiple faults in the frame,
but it cannot determine the position of the error.

Error-recovery procedure

When an error is detected in a configuration frame, the
mechanism triggers error recovery procedure. The er-
ror recovery is the process of correcting the configu-
ration memory through configuration port. The FPGA
devices that do not have partial reconfiguration capa-
bilities have to stop and reconfigure the whole config-
uration memory. Some of the FPGA devices enable par-
tial runtime reconfiguration (newer Xilinx, Altera, and
Atmel FPGAs). These devices can recover a single faulty
frame during the operation of the device. The recovery
procedure goes as follows:

In Xilinx FPGAs (Virtex family) the ERM does not require
an external memory for the recovery of single faults.
The SEC-DED Hamming ECC determines the location of
a single error inside the configuration frame. The ERM
corrects the faulty bit in the read configuration frame
and reconfigures it. If a double error occurs in a config-
uration frame the recovery procedure is only possible
from the external memory.

In Altera FPGAs (Stratix and Cyclone families) the loca-
tion of the error inside the frame is unknown; therefore
the original frame data has to be stored in the external
memory. The corrupted frame is read from the external
memory and reconfigured using partial runtime recon-
figuration.

Implementation of error recovery mechanism

The hardware architecture of ERM is shown in Figure 7.
It consists of configuration port, ECC core, internal FPGA
RAM, and control logic.

The FPGA device is configured by writing the configu-
ration commands into the configuration registers. The
configuration user guides of particular FPGA devices
give a detailed description of the register types and
commands to perform the configuration operations.

The configuration port can be internal or external. It
has direct access to the configuration registers and
configuration data. The error-recovery mechanism
uses the port to read and write a configuration frame.

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

149

The readback and reconfiguration operations are per-
formed using an appropriate sequence of configura-
tion commands sent to the inputs of the port. These
commands are predefined and stored in the internal
FPGA memory.

The ECC core is used to detect errors inside the FPGA
configuration frame. Depending on the FPGA family
this can be a Hamming decoder or a CRC LFSR. The ECC
device checks the configuration frame while the frame
is read through the configuration port.

The internal FPGA RAM contains the configuration
commands and temporarily stores the current config-
uration frame. The internal RAM is also susceptible to
SEU. To protect the integrity of the RAM content most
of the FPGAs devices have an embedded Hamming
SEC-DED ECC circuit.

The control logic manages the error detection-and-cor-
rection process. The controller is composed of a Finite
State Machine (FSM) and a Frame address counter. The
FSM controls the operation of the mechanism. When
the next frame address is required the Frame address
counter is incremented. When the frame address reach-
es the last frame, the counter is reset back to the initial
value pointing to the first frame.

TMR implementation of the error recovery mecha-
nism

The internal error-recovery mechanism is also suscep-
tible to SEUs. A critical fault in the mechanism could
cause a system-wide corruption of the configuration
data. Therefore, it is essential that the logic of the ERM
is protected by some SEU-mitigation technique.

The ERM can be implemented in TMR. The hardware
architecture of the TMR is depicted in Figure 8. The
TMR structure can be applied to the control logic, ECC
core and the internal RAMs. These components of the
ERM are triplicated in three design modules. A majority
voter is placed at the inputs of the configuration port.
The outputs of the configuration port are triplicated
outside the FPGA are connected to the three design
modules inside FPGA. The triplicated design modules
are clocked by separate synchronous clock signals.

Figure 8: Hardware architecture of the TMR version of
the error-recovery mechanism

The majority voter can be regarded as a single point of
failure. The recommended implementation of the ma-
jority voter in FPGAs is shown in Figure 8. This majority
voter implementation is immune to the single points of
failures. The majority voter is implemented using three
output tri-state buffers that are a part of the FPGA OI
blocks, and three minority voters. The operation of the
voter is as follows: If the primary signal (P) of the minor-
ity voter is a part of the majority (see the minority voter
truth table in Figure 8), then the minority voter will ena-
ble the corresponding (active low) output buffer allow-
ing the data on the output. If the primary path is not a
part of the majority, then the output buffer is disabled
placing its output in a high-impedance state allowing
the redundant outputs to drive the correct data.

To apply the TMR technique effectively in the FPGA de-
vice additional restrictions have to be considered. The
triplicated modules have to be placed in such a way
that they are isolated from each other and the internal
signals have to be carefully routed to limit the possibil-
ity that an upset would affect more than one module.

Figure 7: Hardware architecture of the error-recovery
mechanism

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

150

5. Implementation details and
operation of ERM

The proposed ERM was implemented in Xilinx Virtex
5 (XC5VLX30) FPGA [25]. An internal-configuration ac-
cess-port (ICAP) was used to access the configuration
memory. A frame ECC device was used to check the
frame data and a FSM was built to control the process
of configuration scan and recovery. The ERM was also
implemented in TMR.

Implementation details of original ERM vs. TMR
design

Implementation details of the ERM implemented in Vir-
tex 5 are shown in Table 1. It occupies just 72 slices, 115
Flip-flop registers and 1 internal block RAM. A total of
36 kb of RAM is used with embedded ECC. The mech-
anism utilizes less than 1% of the resources available
on the FPGA. Implementation can differ slightly when
different options are selected in the synthesis tools. In
comparison with the original version of the recovery
mechanism TMR increases the number of occupied re-
sources by some more than three times.

The power consumption of both versions of ERM was
analyzed using Xilinx XPower tool on Virtex 5 FPGA at
100 MHz clock rate. The dynamic power consumption
of the ERM is negligible in comparison with the static
leakage of the FPGA. The TMR version of the mecha-
nism has approximately three times higher dynamic
power consumption than the original mechanism. On
the other hand, due to the high static power consump-
tion of the FPGA the total power consumption of the
TMR version is only 4% higher than the power con-
sumption of the original mechanism.

Table 1: Comparison of resources, power, and timing of
the original and TMR version of ERM

Virtex 5 Original
mechanism

TMR
mechanism

Resources
Slices 72 321
Flip-flops 115 345
BRAM 1 3
Power consumption
Dynamic (mW) 20 56
Static leakage (mW) 894 895
Total (mW) 914 951
Timing
Max Clock (MHz) 282 261

Timing analysis was done using Xilinx ISE tool. The
maximum clock frequency of the TMR version of the
error recovery mechanism is 8% lower than the clock
frequency of the original version. The decrease of the
maximum clock frequency is the result of a slightly
longer critical path. The frequency 261 MHz is still more
than enough since the ICAP circuit which is used by the
mechanism is recommended to run below 100 MHz.

Error-recovery time

The error-recovery time of the mechanism depends
on the size of the configuration memory of particular
FPGA device. One configuration frame is checked in
41 clock cycles and recovered in 210 clock cycles. In
our case the Virtex 5 (XC5VLX30) FPGA was used. This
device has 5515 configuration frames. The worst case
error detection time is 226115 clocks or with 100 MHz
clock rate 2.3 ms.

Verification of ERM

The operation of error-recovery mechanism was veri-
fied by injecting faults into tested user applications and
checking if the ERM recovered the errors. The fault in-
jection was performed by our fault injection tool [26].

Two user applications were used. The first device un-
der test was an Advanced Encryption Standard (AES)
implementation from [27]. The AES core occupies 537
LUTs, 165 Flip Flops and 3 internal RAM blocks. 337184
single faults were injected in the part of FPGA where
the AES was placed. The ERM recovered all the injected
faults. The second device under test was a hardware
implementation of a secure IEEE 1148.1 standard from
[28]. The boundary scan core occupies 65 LUTs and 119
Flip Flops. 181056 single faults were injected in this de-
vice and all the injected faults were recovered by the
ERM.

6. Conclusions

An error-recovery mechanism for SRAM-based FPGAs
was proposed. The guidelines for its implementation in
different FPGA families are given including the imple-
mentation in triple-modular redundancy. The mecha-
nism was verified on Xilinx Virtex 5 FPGA using two
case study applications.

Future work includes a detailed analysis of TMR struc-
ture of the ERM. By performing a fault injection experi-
ment possible points of failure will be identified and
further hardening solutions will be proposed.

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

151

References

1.	 Lima Kastensmidt, F.; Carro, L.; Reis, R. Fault-Toler-
ance Techniques for SRAM-Based FPGAs (Springer,
Dordrecht, 2006).

2.	 Schrimpf, R. D.; Fleetwood, D. M. Radiation Effects
And Soft Errors In Integrated Circuits and Electronic
Devices (World Scientific, London, 2004).

3.	 Messenger, G. C. Collection of charge on junction
nodes from ion tracks. IEEE Trans. On Nuclear Sci-
ence 29, 2024 (1982).

4.	 Rebaudengo, M.; Sonza Reorda, M.; Violante, M. A
new functional fault model for FPGA Application-
Orianted testing. In: Proceedings of Defect and
Fault Tolerance in VLSI Systems. 372–380 (2002).

5.	 Al-Asaad, H.; Shringi, M. On-line built-in self-test
for operational faults. In: Proceedings of IEEE AU-
TOTESTCON. 28–32 (2000).

6.	 Yang, F.; Chakravarty, S.; Devta-Prasanna, N.; Red-
dy, S. M.; Pomeranz, S. M. R. An Enhanced Logic
BIST Architecture for Online Testing. In: Proceed-
ings of 14th IEEE Int. On-Line Testing Symp-IOLTS.
10–15 (2008).

7.	 Paschalis, A.; Gizopoulos, D. Effective software-
based self-test strategies for on-line periodic test-
ing of embedded processors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems 24, 88 (2005).

8.	 Nicolaidis, M.; Zorian, Y., On-Line Testing for VLSI-
A Compendium of Approaches. Journal of Elec-
tronic Testing 12, 7 (1998).

9.	 Carter, W. C.; Schneider, P. R. Design of dynami-
cally checked computers. In: Proceedings of 4th IFIP
Congress. 878–883 (1968).

10.	 Violante, M.; Meinhardt, C.; Sonza Reorda, M.; Reis,
R. A Low-Cost Solution for Deploying Processor
Cores in Harsh Environments. IEEE Transactions on
Industrial Electronics 58, 2617 (2011).

11.	 Verdel, T.; Makris, Y. Duplication-based concurrent
error detection in asynchronous circuits: short-
comings and remedies. In: Proceedings of 17th
IEEE Int. Symp. Defect and Fault Tolerance in VLSI
Systems-DFT. 345–353 (2002).

12.	 Drineas, P. and Makris, Y. SPaRe: selective partial
replication for concurrent fault-detection in FSMs.
IEEE Transactions on Instrumentation and Measure-
ment 52, 818733 (2003).

13.	 Hamming, R. W. Error detecting and correcting
codes. Bell System Technical Journal 29, 147 (1950).

14.	 Peterson, W. Error-correcting codes (The Mit Press,
Cambridge, 1980).

15.	 Von Neumann, J. Probabilistic logics and synthe-
sis of reliable organizms from unreliable compo-
nents. In: Automata Studies. 43–98 (NJ: Princeton
Univ. Press, New York, 1956).

16.	 Pratt, B. et al., Fine-Grain SEU Mitigation for FPGAs
Using Partial TMR, IEEE Transactions on Nuclear
Science 55, 2274 (2008).

17.	 Lima Kastensmidt, F.; Sterpone, L.; Sonza Reorda,
M.; Carro, L. On the Optimal De-sign of Triple
Modular Redundancy Logic for SRAM-Based FP-
GAs. In: IEEE Proc. Design, Automation and Test in
Europe Conference. 1290–1295 (2005).

18.	 Sterpone, L.; Violante, M. A New Algorithm for the
Analysis of the MCUs Sensitiveness of TMR Archi-
tectures in SRAM-Based FPGAs. IEEE Transactions
on Nuclear Science 55, 2019 (2008).

19.	 Carmichael, C. Triple Module Redundancy Design
Techniques for Virtex® Series FPGA. Xilinx Applica-
tion manual XAPP 197 (2000).

20.	 Heiner, J.; Collins, N.; Wirthlin, M. Fault Tolerant
ICAP Controller for High-Reliable Internal Scrub-
bing. In: IEEE Aerospace Conf. 1–10 (2008).

21.	 Chapman, K. SEU strategies for Virtex-5 Devices.
Xilinx Application manual XAPP864 (2010).

22.	 Asadi, H.; Tahoori, M. B. Soft error mitigation for
SRAM-based FPGAs. In: 23rd IEEE VLSI Test Symp.
207–212 (2005).

23.	 Hulme, C. A.; Loomis, H. H.; Ross, A.; Rong Yuan,
A. Configurable fault-tolerant processor (CFTP)
for spacecraft onboard processing. In: Proc. IEEE
Aerospace Conf. 2269–2276 (2004).

24.	 Berg M. et al. Effectiveness of Internal Versus Ex-
ternal SEU Scrubbing Mitigation Strategies in a
Xilinx FPGA: Design, Test, and Analysis. IEEE Trans-
actions on Nuclear Science 55, 2259 (2008).

25.	 Legat, U.; Biasizzo, A.; Novak, F. Self-reparable sys-
tem on FPGA for single event upset recovery. In:
Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC). 1–6 (2011).

26.	 Legat, U.; Biasizzo, A.; Novak, F. Automated SEU
fault emulation using partial FPGA reconfigura-
tion. Design and Diagnostics of Electronic Circuits
and Systems (DDECS). 24–27 (2010).

27.	 Legat, U.; Biasizzo, A.; Novak, F. A compact AES
core with on-line error-detection for FPGA appli-
cations with modest hardware resources. Micro-
processors & Microsystems 35, 405 (2011).

28.	 Novak, F.; Biasizzo, A. Security Extension for IEEE
Std 1149.1. Journal of Electronic Testing 22, 301
(2006).

Arrived: 16. 08. 2012
Accepted: 23. 09. 2012

U. Legat et al; Informacije Midem, Vol. 42, No. 3 (2012), 144 – 151

