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ABSTRACT

In pig farming, knowing the exact weight of each animal is critical for the owner. Such information can help determine the 
amount and type of feed that needs to be fed to a specific fattening pig. Weighing pigs has always been problematic, because 
it is highly time consuming, and herding the pigs on the scale is extremely cumbersome. Moreover, it causes stress to the 
animals. The aim of our study was to build an RGB-based system that could estimate the daily weight of pigs and individual 
animal weight. The study was set up in a 100-day rotation in a commercial pig farm where we monitored 32 pigs. We developed 
a system to identify the features of the pigs, more particularly the head, shoulder, belly, and rump part. Three different models 
were tested, and their main differences were linked to image processing and training data. Using these models, we received 
higher than 97% accuracy between the predicted and the manually recorded weight of the animals. This system allows owners 
to manage and monitor their pigs using our web interface, allowing them to make crucial decisions during the farming process.
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INTRODUCTION

The world is in protein scarcity and such shortage will rise 
due to the developing countries’ growing needs for proteins. 
Pork is one of the most important protein sources among 
the various plant and animal-based protein sources. In the 
last sixty years the production of pigs steadily grown along 
with growing yields due to the constant development of 
genetics and technology (feeding management, environment 
management). Nowadays, in traditional pork consuming 
countries there are more than 800 million heads at a time, 
about half of them in China, and a notable amount in EU 
countries and the USA. The pork industry entails intensive 
in-house farming, where the animals are kept away from 
the outdoors, securing the herd by keeping them away from 
pathogens as much as possible. This means that farmers try 
to keep human contacts with the animals as low as possible, 
but at the same time, they need information about the daily 
weight gain of the fattening group to manage feeding and to 
be able to plan the time when the animals will reach the ideal 
weight for processing. Farmers can gather this information 
with physical scales, but the method is labor intensive, time 
consuming and causes stress to the animals. As a result of 

these problems, most of the farmers only weighs few pigs at 
the end of the fattening process, to get some information. 
The lack of information leads to mistakes in planning and 
management, causing profit loss to the farmers.

Precision farming (PF) solutions have become increas-
ingly popular worldwide, in all sectors of agriculture, such as 
arable plant production, horticulture and livestock farming 
(Stafford, 2000; Zude-Sasse et al., 2016). Main purposes of 
PF in all sectors include decreasing environmental impact 
and cost of production, while increasing quality and yields. 
According to Andonovic et al. (2018), given the increase of 
the farm size in livestock farming, owners have less time 
to perform traditional practices. Therefore, they rely more 
on technological solutions, e.g., animal activity detection 
and fertility, moreover feed intake monitoring. Aquilani 
et al. (2022) complement that the main purposes with e.g., 
animal identification, body weight measurement, automat-
ic drafting systems, temperature and humidity data record, 
animal location detection and prevention of livestock theft. 
The authors highlighted that both single and multiple tools, 
information technologies, communication systems have 
high importance, particularly given the decrease of the price 
of the small size electronic devices. 
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Remote sensing methods are usually grouped as active 
and passive devices according to the structure of the device. 
Among the active devices, LiDAR, RaDAR are the most 
widespread, while within the passive devices RGB, thermal, 
near infrared, multispectral and hyperspectral cameras are 
involved in PF. RGB image analysis is one of the most wide-
spread methods to monitor livestock. Recently, Mollah et 
al. (2010) showed that predicted weight based on the broiler 
body surface area and real weight have high and significant 
correlation. Later, Szabo and Alexy (2022) reported valuable 
results about the image analysis-based weigh estimation of 
ducks. Pig weight estimation based on image analysis has 
been also in the focus of precision farming research. In the 
past years, several reports were published where different 
image capturing and data analysis were introduced. For 
example, Kongsro (2014) applied Kinect camera and found 
high accuracy between the predicted and measured weight. 
Later, Pezzuolo et al. (2018) used SfM (Structure from Motion) 
technique which generates 3D reconstruction from 2D 
images. To estimate the body size and weight, Zhang et al. 
(2021) applied depth camera and multiple output regression 
convolutional neural network (CNN). 

There are methods to calculate weight from the physical 
build of a swine, but these parameters are not measurable 
with a camera and this approach is not fully accurate, either. 
For this reason, we aimed to find appropriate methodology 
for the image capture, tracking, segmentation, and models 
for average daily weight and individual pig weight estimation. 

MATERIALS AND METHODS

Experimental farm 

The experiment was conducted on a pig barn in a commercial 
indoor system. The study was set up on a private farm in 
Németkér (Tolna county, Trans-Danubia, Hungary). We 
followed a complete pig fattening cycle (approximately for 100 
days) and run our experiment from August 2020 to November 
2020. It was important to have weight information for all 
training data so that it could be used as a label. To match 
the data from the image analysis with weight information, 
we needed manual weight measurements of the individual 
animals. Such exercise was performed at the farm using 
scales (DEMANDY, Hungária Mérleg Holding Ltd.). The official 
accuracy of the scale is 0.5 kg. The pigs were identified by 
marking each animal with unique paint markers. Initially, 
there were 32 pigs involved in the experiment, but two animals 
needed to be removed from the investigations due to illness. 
One week before the end of the experiment, 10 pigs were sold 
(on 10 November 2020) as they reached the required weight. 
In summary, starting from 25 August 2020, there were 32 pigs. 
After 7 days, two pigs were eliminated. As such, between 1 
September and 9 November 2020, all together 30 animals were 

monitored. As from 10 November 2020, further animals were 
removed: only 20 animals were left in the pen. The camera 
setup can be seen on Figure 1. 

Figure 1: Camera installation on the experimental farm

Image capturing 

During the experiment, four different Dahua cameras were 
set up and tested (Dahua IPC-HFW1230S-S4, IPC-HFW1230S-
0280B-S5, IPC-HFW1230S-0280B-S4 and IPC-HFW1235S-
W-0280B-S2). These cameras have different fields of view, 
CMOS sensor sizes and focal lengths, so we had to consider 
all these parameters to be able to transform the images as 
they had been taken by the same camera. The market of PoE 
security cameras is ever-changing and, as such, a solution 
was developed to transform the image from one camera’s 
perspective to another.

To capture images, we placed cameras over the target 
pig pens at a fixed height. Since cameras distort images, we 
needed to individually calibrate them after installation. The 
parameters calculated during calibration were used in the 
pipeline to undistort our data. For more accurate weight 
prediction, 10 pictures were taken every 1 minute with a 
one-second difference. Thus, we managed to get multiple 
pictures from the same animal. For animal tracking, the 
Kalman filter was used, first described by Swerling (1958), 
Kalman (1960) and Kalman and Bucy (1961). Every camera 
was hooked up to a Raspberry Pi 4 model which was re-
sponsible for creating the images. The Raspberry Pi 4 Model 
B 4Gb (https://www.raspberrypi.com/products/raspber-
ry-pi-4-model-b/) usually controlled 4 cameras, 40 image are 
taken every minute, 10 from each camera: first camera – 1-10 
seconds; second camera – 16-25 seconds; third camera – 31-40 
seconds; fourth camera – 46-55 seconds. The images were 
stored temporarily on the edge device which uploaded them 
to a cloud-based server for further calculations and perma-
nent storage. There are feeders in the middle of the pen and 
on the wall, where it is accessible from two pens. For these 
reasons, two camera setting were applied (Figure 2). 
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Weight estimation

Accurately measuring swine weight by relying on cutting-edge 
technology involves a number of steps – we believe the most 
critical ones are segmentation, Pretty Contour Picker (PCP), 
feature extraction, tracking and aggregation. Below we shortly 
address each of them. 

Segmentation

The server first segmented the images using a neural network 
architecture, Mask R-CNN (He et al., 2017). The model identified 
three classes: (i) standing animal – 5062 contours, (ii) lying 
animal – 4758 contours, (iii) to be discarded – 38500 contours 
(for maximum precision, only contours on which pigs are 
standing and clearly visible were used in future calculation). 
80% of the dataset were used as training data, while the 
remaining 20% (divided into 10%-10%) of the images were used 
for testing and validation, respectively. The model was trained 
using our custom dataset, for which data had been captured 
with a test camera. 

The pictures were annotated with outlines, then classi-
fied into the previously mentioned groups, and finally, they 
were filtered to only contain valid and clean training data. 
We wrote a special program for annotating images and val-
idating these annotations, which sped up the process sig-
nificantly. A custom class was written for data preparation 
and loading. To train the neural network, we used weights 
pretrained on the COCO dataset (Lin et al., 2014). The pre-
trained weight data allowed our model to converge faster. 
We used augmentation (rotation) to increase the size of the 
standing and lying contours dataset for higher accuracy. To 
avoid overfitting, we used the “early stopping” technique. 
The augmentation parameters were:

• hsv hue modification probability: 0.015

• hsv value modification probability: 0.4

• rotation: 90 degrees

• translate: 0.1

• scale: 0.5

• flip upside-down probability: 0.5

• flip left to right probability: 0.5

• mosaic probability (create collage from images): 0.5

• copy paste probability (cut animals out and put them on 
other images): 0.5

Training for a large quantity of images over multiple 
epochs may take days so we only modified hyperparameters 
conservatively, exploring only the most common changes. 
Model weights were exported in „saved model” format for 
usage with TensorFlow Serving. As such, we created a docker 
image using our custom weight data based on the GPU image 
of TensorFlow serving. The Segmentator container connect-
ed with a single (or more, depending on the settings) docker-
ized Mask R-CNN model which inferenced images that had 
been previously created by a Raspberry Pi endpoint. After in-
ference, processed images were saved in a separate database. 
During optimization, the precision of the detected contours 
was evaluated using F1 score by comparing the result area to 
that of the annotated contours.

Transformation

To avoid and solve camera lens distortion, each camera was 
calibrated, and images were transformed prior to weight 
calculations. This was crucial because, as noted above, all 

Figure 2: Proposed camera setup according to the position of the feeder: (a) feeder is in the middle of the pen and (b) feeder is 
between two pens where 1: cameras, 2: area seen by the camera
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cameras had varying distortion. To make our final calculations 
consistent and “camera-agnostic” across different pig pens and 
piggeries, we needed the images and contours to be distortion-
free and identical in scale.

Each camera needed to be calibrated after installation. 
The values calculated during calibration could be added to 
the pipeline – as a result, the images ended up being un-
distorted in the transformation phase. We used a plain A4 
sheet placed exactly under the camera to calculate the dis-
tortion of the lens (Figure 3).

For calibration we had to put a A4 paper exactly under 
the camera. From there, we could calculate the required 
calibration of the image.

Tracking

Detecting and predicting single contours and treating them 
separately did not prove to be the most accurate approach. 
A pig may stay in the same position, or it can walk around 
the cameras’ field of view and may appear in multiple 
images taken every second. To factor this situation into our 
calculations, we created a tracking solution: if the same pig is 
detected across multiple images, its final weight is calculated 
using these detections. The tracking helped us estimate the 
weight of the pig with higher accuracy. 

Our tracking algorithm consisted of four steps.
1. A segmentation service that detected contours on “neigh-

bouring” images.

2. For every pair of contours between “neighbouring” 
images, the IOU was calculated (intersection over union 
= it is a double value between 0 and 1). After calculating 
the IOU, the “maximum pairing” algorithm connects the 
contours with highest pairing (https://en.wikipedia.org/
wiki/Jaccard_index).

3. A bipartite graph was created. Then, an assignment was 
created with the help of the “Hungarian method”, max-
imizing the overall IOU sum (https://en.wikipedia.org/
wiki/Hungarian_algorithm). 

4. The result of the “Hungarian algorithm” linked the 
contours with the tracking list.

On figure 4, there are images of the same animal, where 
different colors visualize the previous and next contours (red 
and green contours). On the picture, the topmost value is 
the predicted weight, the values below represent the values 
of different features. 

PCP

The Pretty Contour Picker’s (PCP) is a service to filter out 
contours which are not to be used for weight estimation, 
through flagging all of them. Contours are considered faulty 
if features can only be calculated on them in a way different 
from usual, the precise method is described in the “Featurizer” 
part. This can happen if a pig is situated on the edge of an 
image, or it is in an unusual position. PCP is based on a Multi-
Layer Perceptron (MLP) architecture and allows operators 
to determine the position and shape of a pig contour. The 
following parameters were determined using MLP and some 
algorithmic evaluation:

Figure 3: Calibration of a camera by means of A4 paper

We chose a specific camera which would serve as the 
standard image. The scaling for this camera was [1,1] (we cal-
culated both x and y scaling factors). For all other cameras 
we calculated the scaling factor to get the same pixel length 
for the same object, no matter the camera type. For this 
purpose, we computed how many mm we had in one pixel 
(standard A4 paper has 210×297 mm size, its area is 62370 
mm2). Next, we measured the pixel size of the A4 on the 
photo under the camera. 

The CMOS sensor size was a critical piece of informa-
tion, as this parameter determined the field of view of the 
camera. With larger field of view (and same resolution) the 
same A4 paper hasless pixels, so the whole scaling should 
be decreased by the difference in cmos sensor. As such, the 
whole difference between lenses could be formalized as:
• diff_lens= scaling + diff_cmos

• scaling = diff_lens – diff_cmos

The diff_cmos is the difference between cmos sensor size 
to the second power. To calculate the scale factor of length, 
we should take root of the scaling. Here is an example for 
two cameras. Camera1 has 1/2.8” CMOS sensor, the A4 paper 
sizes are [159,222], the camera2 has 1/2.7” CMOS sensor, the A4 
paper sizes are [110,158]. The scaling factor would be:
• scaling = (159×222)/(110×158) – ((2.82 − 2.72)/2.82)=1.96

The linear scaling factor would be: 
• linear_scaling = √scaling = √1.96 = 1.4
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• is_in_middle – the fisheye distortion of the camera on the 
edges of the picture is too strong to be able to estimate 
the animal’s weight precisely

• is_lied_down – is the animal standing or lying

• has_leg – is a leg visible under the spine

For weight estimation we use only contours where 
• is_in_middle = True

• is_lied_down = False

• has_leg = False

As mentioned previously, during segmentation, the 
Mask R-CNN model had been already trained to classify the 
contours based on their shape and color. In most cases, it 
was capable to separate unreliable data from useful ones. 
When it failed, the PCP served as our “backup” to make sure 
that the contour is useable. 

Featurizer

The Featurizer algorithmically fits features on the detected 
contours. To successfully accomplish this, it first matches a 
„Pig Model” to each contour. The model consists of a head, a 
shoulder, a belly and a rump part. The model’s parts consist 
of six primitive shapes: (i) circle (tail, hip); (ii) oval (back, 

stomach); (iii) circle (shoulder) and (iv) rectangle with two 
triangles (neck, head), the size of which may differ for higher 
precision fitting. 

Once the model was fitted to the contour, features 
are easily calculated based on the pigs’ assumed orienta-
tion and the positions of the model’s parts. The following 
features were extracted: hip width, waist width, stomach 
width, „heart” width (the width of the animal’s back below 
shoulder), shoulder width, total length (from neck to hip), 
contour area (only in Model V3), and contour perimeter 
(only in Model V3). There is an image of an animal on Figure 
5 with estimated weight, calculated feature lengths. 

Figure 4: Different contours of the same animal with different 
feature values and different estimated weight

Figure 5: Visualisation of different features

Weight Estimator

The weight estimator, similarly, to the PCP, is based on MLP 
architecture. The architecture’s size and its parameters 
have been finetuned. The training data was calculated on 
previously segmented images, which were used for training 
the Mask R-CNN network, while the input data were the 
features that had been calculated previously in the pipeline 
by the Featurizer. The data was scaled to a specified minimum 
and maximum range and was augmented by creating extra 
inputs in a way so that it contains equally sized weight groups. 
Features were checked for importance; irrelevant features 
have been excluded from the training process for example: 
width of neck, max contour length. 

We chose the most appropriate input vector by adding 
attributes to the training process one by one until the results 
were improved. Given the relatively small size of the dataset 
with only a few features, we used Early Stopping to avoid over-
fitting. We used Tensorboard to monitor the training process 
and chose the best performing model. Multiple models with 
differing layer sizes, types, activation functions were tested. 
Precision was evaluated by calculating the percentage-based 
deviation between the predicted and actual values. For this 
purpose, a “validation” dataset was used. On Figure 6, the 
actual data is compared with our predictions with respect to 
the validation dataset. Outliers can be ignored which further 
improves precision-focused efforts.
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• average daily weight of the pigs, and

• individual weight estimation.

Knowing the average weight of all pigs in the pen is 
critical. However, this information is not enough to decide 
when and how many pigs should be sent to the slaughter-
house – we had to calculate the standard deviation of the 
weight estimations and learnt the exact number of animals 
in the pen. The average weight was calculated as average of 
the aforementioned pig weight estimations. 

We defined a derived parameter, average accuracy, which 
we calculated using equation:

1− ABS d
a
( ) (1)

where ’d’ was the difference of our calculated average weights 
from the measured average weights and ’a’ was our calculated 
average weight.

RESULTS

In this experiment RGB based image analysis was established 
to estimate the pig weight according to the contour of the 
animals. A 100-day long rotation was monitored following the 
weight change of the animals.

Average weight estimation 

During the investigated period, the lowest accuracy of the 
system was 95.72% (Model V1 on 8 September 2020 at 54.77 kg 
weight), while the highest accuracy was achieved with 99.91% 
(Model V3 on 30 September 2020 at 80.5 kg). Overall accuracy of 
the models was 98.54%, 98.63% and 97.94% for the three model 
V3, V2, and V1 respectively. Table 1 indicates that although 
version 3 (V3) had the highest number of precise days, it could 
not be regarded as reliable due to inconsistencies on certain 
days (2020.08.25., 2020.10.16.). Version 1 (V1) was mostly accurate; 
however, it predicts poorly on larger weights (end of rotation). 
Version 2 (V2) was preferred due to its overall consistency and 
highest average accuracy. The actual weight of each animal 
was measured manually by means of analog weight (Demandy 
AM02-da-22).

Individual weight estimation

Knowing the actual weight of all pigs in the pen allowed 
us to calculate how well the models estimated the weight 
of these pigs individually. In Table 2, the three different 
versions of pipelines are shown, where first row represent 
the manually measured weight of each pig for the given day, 

Figure 6: Weight estimator validation

Weight Aggregator

With the use of tracking, it became possible to predict 
the weight of a single pig multiple times by assigning 
identification for each animal. This technique allowed us 
to analyze the predictions, the minimum and maximum 
value of a series of predictions on the same animal and its 
deviation. Our main goal was to estimate the daily average 
weight and standard deviation of all pigs in a pen. The daily 
weight estimation consisted of five steps: (i) Get all weight data 
from all cameras for the specific pen for the specific day, (ii) 
Get all image metadata for these weights, (iii) Get all tracking 
data for all images from point 2, (iv) for weights associated to 
the same tracking get the average of this weights, and (v) Get 
the average weight and standard deviation for this dataset. 

Applied models 

We evaluated three different models as follows. 
• Model V1 used the basic versions of the services. 

• Model V2: the weight estimator has been trained on a 
training set, which contained more examples of large 
weights. 

• Model V3: this method used an alternative version of 
feature extractor, which extracted not only the length 
and width of the pig in different points but also the area 
and perimeter of the contour. 

The microservice architecture approach allowed us to 
compare different approaches with little effort, as only 1-2 
services should be modified for creating a new model version 
while all other services stayed intact. On Figure 7, the micro-
services and the data flow between them is visualized. 

All three models were compared from the two perspec-
tives below:
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while underneath the tracked, grouped, and averaged weight 
figures of each pig is indicated. The % row contains the weight 
deviation of the calculated weights from the measured one. 
Highest accuracy was achieved in the case of Model V2 as it 
provided 99.9% correct weight prediction at 73 kg of the pig 
in the end of the rotation. The lowest accuracy was recorded 
in the case of Model V3 at 47.5 kg pig weight as the value was 
93.4%. According to the patterns of differences, the system is 
less accurate when the pigs have lower weight. 

Similarly, to the daily average calculation, we also eval-
uated the aggregated results, over every day of the rotation. 
The results can be seen in Table 3. Each row represents a 
day when pigs were measured on a scale. The “Mean” column 
contains the average precision values of the given pipeline on 
the given day of the rotation. The “Min” column shows the 
least accurate precision figures on the given day and “Max 

Diff” numbers indicate the corresponding deviation. Similar-
ly, to average weight computation, the Model V1 is particu-
larly accurate regarding small weight figures, while Model V3 
did not deliver reliable results. The Model V2 performs best at 
the average weight over 110 kg, as it was expected. 

DISCUSSION 

Given the increasing farm sizes in livestock production, there is 
a growing need for automatization in feeding, and evaluation 
of the pig weight has been of rising importance (Milligan 
et al., 2001; 2002; Szabó and Bilkei, 2002; Wongsriworaphon 
et al., 2015; Shi et al., 2016) yet it is highly time consuming 
and stressful for the animals. Several studies showed that 
no-contact weight estimation could be a solution to address 
animal stress. For this reason, several image analysis systems 

Figure 7: RGB pig weight estimation pipeline

Table 1: Example of daily average calculation

Date of measurement Real pig weight (kg) Model V3 Model V2 Model V1
2020.08.25. 40.27 96.43% 98.04% 99.45%
2020.09.01. 46.0 97.59% 98.33% 98.51%
2020.09.08. 54.77 98.24% 97.12% 95.72%
2020.09.15. 60.6 98.97% 99.59% 98.98%
2020.09.22. 68.46 98.76% 97.11% 96.48%
2020.09.30. 80.5 99.91% 98.06% 97.82%
2020.10.06. 85.68 99.65% 99.47% 99.45%
2020.10.16. 99.6 96.96% 98.95% 99.17%
2020.10.20. 104.3 97.68% 99.50% 99.83%
2020.10.27. 113.6 99.82% 99.61% 97.85%
2020.11.03. 122.6 99.84% 98.91% 96.19%
2020.11.11. 119.20 98.64% 98.89% 95.83%
Overall mean 98.54% 98.63% 97.94%
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Table 2: Example of individual weights calculation for day 2020.09.15.

Real pig weight (kg) 44.5 47.5 51.5 54.5 58.5 60.0 61.5 64.0 65.0 65.5 65.5 73.0

Model V1 prediction (kg) 44.3 50.11 52.51 54.96 57.54 60.21 61.61 63.39 64.04 65.18 66.62 74.04

Difference (kg) 0.20 −2.61 −1.01 −0.46 0.96 −0.21 −0.11 0.61 0.96 0.32 −1.12 −1.04

Accuracy (%) 99.5 94.5 98.0 99.1 98.3 99.6 99.8 99.0 98.5 99.5 98.2 98.6

Model V2 prediction (kg) 42.58 48.59 52.44 54.76 58.36 60.24 61.21 62.6 63.65 64.45 65.69 72.97

Difference (kg) 1.92 −1.09 −0.94 −0.26 0.14 −0.24 0.29 1.40 1.35 1.05 −0.19 0.03

Accuracy (%) 95.6 97.7 98.1 99.5 99.8 99.6 99.5 97.8 97.9 98.4 99.7 99.9

Model V3 prediction (kg) 44.17 50.63 52.86 55.33 57.32 59.02 59.88 61.63 62.49 63.54 64.71 72.39

Difference (kg) 0.33 −3.13 −1.36 −0.83 1.18 0.98 1.62 2.37 2.51 1.96 0.79 0.61

Accuracy (%) 99.3 93.4 97.4 98.5 97.9 98.4 97.4 96.3 96.1 97.0 98.79 99.2

Table 3: Example of Individual weights averaged over the whole rotation

Date
Real pig  

weight (kg)

Model V3 Model V2 Model V1

Mean (kg) Min (kg) Max diff. (kg) Mean (kg) Min (kg) Max diff. (kg) Mean (kg) Min (kg) Max diff. (kg)

2020.08.25. 40.27 0.96 0.92 3.2 0.97 0.93 2.24 0.97 0.93 2.1

2020.09.01. 46.0 0.97 0.93 3.24 0.98 0.95 2.56 0.98 0.95 2.09

2020.09.08. 54.77 0.98 0.95 2.47 0.96 0.92 4.08 0.96 0.91 4.62

2020.09.15. 60.6 0.98 0.94 2.61 0.98 0.96 2.25 0.97 0.93 3.13

2020.09.22. 68.46 0.96 0.94 4.25 0.96 0.91 4.82 0.96 0.93 4.5

2020.09.30. 80.5 0.98 0.95 3.7 0.97 0.95 3.83 0.97 0.95 4.25

2020.10.06. 85.68 0.98 0.91 5.93 0.98 0.90 6.91 0.98 0.93 5.05

2020.10.16. 99.6 0.96 0.91 9.67 0.97 0.93 5.59 0.98 0.96 4.01

2020.10.20. 104.3 0.98 0.94 6.64 0.97 0.93 5.72 0.98 0.95 4.49

2020.10.27. 113.6 0.98 0.93 9.16 0.98 0.96 5.57 0.97 0.94 6.45

2020.11.03. 122.6 0.98 0.97 3.79 0.98 0.96 5.42 0.96 0.93 8.25

2020.11.11. 119.20 0.98 0.94 6.61 0.99 0.95 5.54 0.96 0.93 8.01

were developed (Li et al., 2014). Accuracy of these systems are 
high with help of advanced technology and data evaluation. 

He et al. (2021) applied 3D image (depth images) based 
system that could eliminate the influence of the envi-
ronment and achieved 95.1% average accuracy on the test 
dataset, where the accuracy ranged from 89.5% to 100%. 
Zhang et al. (2021) investigated the body length, shoulder 
width, shoulder height, hip width, and hip height using a 
multiple output regression convolutional neural network 
and found that coefficient of determination between the 
estimated and measured data ranged between 0.9879–0.9973. 
In this study, we tested different models according to most 
important information we could give for end users: average 
weight of the pen and individual weight estimation in 
the pen. We have created a robust, scalable model which 
could automatically predict the weight of pigs with on 
average >97% accuracy. Changes and improvements could 
be easily made to the system thanks to the microservice 
architecture. The RGB image-based system is affordable 
to install and easy to use which makes it highly valuable 
to any farmer. It offers a fast and stress-free method of 

measuring pig weights which can be useful in determin-
ing food amount and type used or when a pig is ready to 
be slaughtered. Using of a specific contour classifier (PCP) 
helps us discard all contours which we cannot reliably use 
for feature extraction: pigs lying on their side, and “chunks” 
of animals which are visible under other pigs. Our experi-
ence shows that there are seemingly valid contours that 
the PCP does not discard. But they are also damaged – they 
contain only part of the pig, because shadows are casted on 
the animal, or one animal covers the other. The outliers 
are managed with the help of tracking through which we 
filtered these figures. The Model V1 performed well, though 
it was clear that as the average weight of the pigs grew 
the overall accuracy of the weight estimator decreased. We 
annotated a few larger pigs and retrained our model. As a 
result, this Model V2 was performed way better with respect 
to the larger pigs and was overall better in our opinion. The 
Model V3 did not fulfill our expectation as to more data on 
the animal improves the accuracy of the weight estima-
tor neural network. Though there was a high correlation 
between contour area, parameter and weight of the pig, the 
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area and the perimeter have excessive deviation to help us 
to estimate the pig weight more accurately. 

There are still a lot of possibilities to improve the 
accuracy of the models. More training data can be collected 
to train a new model or more images can be acquired from 
the camera to get more weight data. The main bottleneck 
of the model is the server, which has limited resources. One 
may look for more efficient neural network architectures 
which requires less calculations therefore it is possible to 
collect more data from a camera per day to improve the 
overall accuracy.

CONCLUSION 

Precision livestock farming technologies play and important 
role in the pig production. To reduce the stress during the 
weight estimation and fasten the process, several methods 
were introduced in the past years. In this experiment an RGB 
image-based weight estimation technique was developed 
and tested with different camera types, and data evaluation 
methods. Our findings showed great potential of remote 
sensing-based methodology to accurately predict the weight 
of pigs. We consider that the technology would provide 
valuable information for the farmers. The system needs to be 
tested on other pig fattening facilities with different camera 
setups, feeders and lightening conditions.
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Ocena teže prašičev z analizo slike RGB

IZVLEČEK

V prašičereji je poznavanje dejanske telesne mase posamezne živali ključnega pomena za rejca. Tovrstne informacije lahko 
pomagajo določiti ustrezno količino in vrsto krme za določenega prašiča pitanca. Tehtanje prašičev je bilo že od nekdaj 
problematično, saj je zamudno, priganjanje prašičev na tehtnico pa je tudi izjemno naporno. Poleg tega je postopek tehtanja 
za živali stresen. Cilj te raziskave je bil vzpostaviti RGB sistem, s katerim bi lahko ocenili dnevno telesno maso vseh prašičev 
in telesno maso posamezne živali. Raziskava je bila zastavljena v 100-dnevni rotaciji na komercialni prašičji farmi, kjer smo 
spremljali 32 prašičev. Razvili smo sistem za prepoznavanje značilnosti prašičev in sicer na predelu glave, pleč, trebuha in 
zadnjega dela telesa. Preizkušeni so bili trije različni modeli, pri čemer so bile glavne razlike med njimi povezane z obdelavo slike 
in kalibracijskimi podatki. S pomočjo modelov smo dobili več kot 97% ujemanje med telesno maso, napovedano z RGB modelom 
in ročno zabeleženo maso živali. V raziskavi razviti sistem rejcu omogoča, da upravlja in spremlja svoje prašiče z uporabo 
spletnega vmesnika, na osnovi česar lahko sprejema ključne odločitve v procesu reje.

Ključne besede: obdelava slik, velikost prašiča, sistem za podporo pri odločanju, precizna živinoreja

 


