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Abstract
The aim of the optimization is to find out the optimal parameters for complex system such as synthesis of the com-
pounds, chemical reactions, analytical methods, property of the products or chemical processes. The parameters that we
want to determine are the values, which describe the system. The SIMPLEX is one of the most simple and general opti-
mization method. It is used to predict the experiments that in quickest way lead to an optimum.
In this work the SIMPLEX method was used to optimize the parameters of the counter-propagation neural network
model constructed for the prediction of the ozone concentration as one of the most outstanding air pollution parameters
in the Buenos Aires region. The network was trained with the data available for 980 collected samples; each of them was
described by the concentrations of 7 pollutants: CO, SO2, O3, NOx, NO, NO2, and PM10, and 8 weather related variables:
cloudiness, rainfall, insolation factor, temperature, pressure at two locations, and wind intensity with direction. The
evaluation function as the optimization criterion of the model was thus the correlation coefficient between the experi-
mental and predicted ozone concentrations.

Keywords: Air quality; SIMPLEX optimization method; Insolation factor; Artificial Neural Networks; Ozone forma-
tion; Pollutants

1. Introduction

In the literature, there are many papers devoted to
different optimization methods for a variety of complex
systems. The applications of optimization algorithms can
be found in references.1–6 In general the optimization pro-
cedure allows us that from any state Xs (or point) of the
system described in the m-dimensional space Xs = (xs1,
xs2, ... xsm) with the use of an evaluation function f(Xs) the
next state of the system Xs + 1 = (xs + 1,1, xs + 1,2, ... xs + 1,m)
can be calculated. The result of the evaluation function
f(Xs + 1) should be better than the result of the previous
function f(Xs). If f(Xs + 1) is worse than f(Xs), the opti-
mization procedure should direct the procedure towards
better Xs + 1 and at the same time offer the criteria needed
to stop the optimization.7

The standard SIMPLEX method is one of the non-
gradient optimization techniques, which are frequently

employed in chemistry. Its generalization was provided by
Price in the middle of the seventies.8 He introduced the
significant notion that a population of points is considered
and from this population the SIMPLEX set is randomly
selected. Very important reference focused on SIMPLEX
algorithm is also the article writen by Nelder and Mead.9

In the reference the SIMPLEX is decribed as a numerical
method for minimizing an objective function in a many-
dimensional space. One of the basic concepts of the SIM-
PLEX optimization method is that from the initial (or cur-
rent) set of points (temporary SIMPLEX solutions) a new
point (a new solution) is constructed by a reflection of the
worst point through the gravity point of the remaining
points. The reflection point is used for a conditional up-
dating of the SIMPLEX set, which is initially randomly
selected from the population of possible points, i.e. possi-
ble experiments. At each step of the optimization process
the reflected point updates the set of existing SIMPLEX
points so that it conditionally substitutes the point with the
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worst value. The value of each point is always determined
either by the measurement or using an evaluation func-
tion. Dragovi} et al show in their article10 the applicability
of the SIMPLEX for the optimization of the training pa-
rameters of a three-layer feed-forward artificial neural
networks with a back-propagation algorithem that was ad-
ditionally used for prediction of minimum detectable ac-
tivity of radionuklides in environmental soil samples. The
interested reader can find more about the applicability of
the SIMPLEX method for other systems in the refer-
ences.11–14

The behavior of the ozone in relation to the other
pollutants and weather data, which is investigated in this
work has been studied by many authors. Most of the refer-
ences are focused on the use of different modeling tech-
niques such as Multiple Regression Analysis,15,16 Partial
Least Squares Regression,17 Principal Component Analy-
sis (PCA)18 and Artificial Neural Network.19–21 These
methods are applicable to the modeling and analysis of
any data where an effect (for example, pollution of the
city, damage to plants) is caused by a number of variables
with a non-linear influence. To obtain better models, some
authors have tried to improve the information content by
using the combination of above mentioned statistical
methods.16, 22, 23 Central point of another very interesting
article written by @abkar et al is the applicability of the Q2

learning method (Qualitatively faithful quantitative learn-
ing) on numerical data where the QUIN program was em-
ployed to induce a qualitative model for the analysis and
prediction of ozone concentrations in the city of Ljubljana
and Nova Gorica.24

In the present work about 1000 samples (data
records) each presented as a 15-dimensional vector (con-
centrations of 7 pollutants: CO, SO2, O3, NOx, NO, NO2,
and PM10, and 8 weather related variables: cloudiness,
rainfall, insolation factor, temperature, pressure, and wind
intensity with direction)25–28 were used. The first variable
x1, being the ozone concentration, was studied as the re-
sponse variable of the model. To find the best correlation
between the air pollutants and weather conditions the se-
mi-supervised modeling technique, so called counter-
propagation neural network14 was used. The SIMPLEX
method was simultaneously employed to obtain the opti-
mal parameters for the training of each selected counter-
propagation neural network.

2. Methods 
and Experimental Section

2. 1. Predictive Kohonen Neural Network

The main goal of Kohonen neural networks (Koh-
NN) is to map objects from m-dimensional into n-dimen-
sional space. The primary neuron for weight modification
is chosen by a competition.14,29 The learning algorithm

modifies the weights wji of the neuron Wj having the most
intense output, or whose weights are most similar to the
input signal XS. At the same time the learning algorithm
smoothes the weights in all weight levels (including
SOM) by making modulated changes to neurons in a de-
fined “neighborhood” of the Wj. The Kohonen learning is
an unsupervised learning. The correction on the i-th
weight of the j-th neuron Wj after the excited neuron We
has been chosen by the object Xs = (xs1, xs2, …, xsm) is car-
ried out using the equation:

(1)

Parameter η determines the rate of learning; it is max-
imal at the beginning (t = 1, η = α

max
) and minimal at the

end of the Koh-NN learning procedure (t = tmax, η = α
min

).
The function b(dc–dj) in equation (1) describes how the cor-
rection of the weights wji decreases with increasing topo-
logical distance between the central neuron and the neuron
being corrected. Index j specifies individual neuron and
runs from 1 to n. Topological distance of the j-th neuron
from the central one is defined according to the topology
used for the distribution of neurons in the plane. The mini-
mal distance is zero (j = c, dc–d j = 0), which corresponds to
the maximal correction function (b = 1). The maximal dis-
tance (d

c
–d

max
) to which the correction is applied is shrink-

ing during the learning procedure. The correction function
at maximal distance is minimal (b = 0). At the beginning the
dc–dmax covers the entire network, while at the end, at t =
tmax, it is limited only to the central neuron.14

In the network there are different types of neighbor-
hood relations. In our case the objects are described by 14
active variables composed of concentration and meteoro-
logical data. The missing values were marked with a spe-
cial key (–9999.), which enables our adapted Kohonen
and counter-propagation neural network software to han-
dle the missing data.30,31

The concentration of O3 is regarded as the non-ac-
tive dependent variable that does not enter the distance
calculations and forms the top map (SOM). Although the
goal of this study was preliminary exploration of the data
(finding relations between the input variables) and not the
generation of a model, we have treated the ozone data as
the target data and input them on the output side virtually
achieving the counter-propagation neural network instead
of the Kohonen one. Predictive Kohonen neural network
is comparable to the counter-propagation neural network
(CP-ANN).30 The training parameters were chosen by the
SIMPLEX method. The top map (SOM) and all weight
maps were obtained after 1900 epochs of training. One
epoch of the training process was completed after all 980
data records (concentrations and weather data) were sent
through the network once all necessary weight corrections
in the network were made after the input of each data
record. More detailed description of the Kohonen map
formation can be found in the textbooks.14, 29



2. 2. SIMPLEX Optimization

The SIMPLEX is one of the most simple and gener-
al optimization method. It is used to predict the experi-
ments that mostly lead to an optimum on a few steps.

The most important value in the optimization proce-
dure is the evaluation function or optimization criterion
(OC). It depends upon one (simple evaluation function) or
more (complex evaluation function) properties of the system.

To get the numerical value of the evaluation function
for a defined system response variables have to be meas-
ured or a mathematical model, which predicts the proper-
ties of the system, has to be found and incorporated into
the optimization process.11

SIMPLEX optimization method works best with rel-
ative low number of variables (3 to 20).11, 14, 32, 33 The idea
of SIMPLEX optimization is to obtain from a given set of
points {Xi} in the m-dimensional space a new point B by
reflecting the worst point T of the entire set {Xi} through
the gravity point G of the set without the worst point. By
omitting the worst point T and adding the new “best”
point B to the set {Xi} the SIMPLEX is “crawling” in the
m-dimensional space towards the optimum (Figure 1).

The mathematical formula for the calculation of the
new point B is given in the following way:

B = G + a (G–T) = G + aG – a T = (1 + a)G – aT

If a = 1      B = 2G – T (2)

Figure 1: Schematic presentation of the SIMPLEX. B – object
with the best response, G – gravity point (average value of all ob-
jects without the object with the worst response), T – object with
the worst response, a – expansion coefficient (start; a = 1).

Rules for the SIMPLEX algorithm:
1. For a m-variate problem select or generate m +1 initial

objects Xi (SIMPLEX)
2. Measure or calculate OCi for all objects Xi in the SIM-

PLEX
3. Find the object T having the worst OC

worst
4. Calculate the “gravity object” G using m remaining ob-

jects {Xi}’ G = (g
1
, g

2
,…g

m
),     g

m
= (1/m) Σ’xi

5. Calculate the new object B using: 
B = (a + 1) G – a T (a = 1)

6. Drop T and include B into the SIMPLEX
7. Repeat algorithm at step 3.

When the reflection of the worst point through the
gravity point leads no more to the higher value of the OC,
but to the lower one, the SIMPLEX must be narrowed.
The new object B is calculated by the same equation (2),
except the value of the coefficient a changes to lower ones
(i.e. a = 0.5, –0.5). The SIMPLEX is then defined by the
following equations:

If a = 0.5;      B = (a + 1) G – a T = 1.5 G – 0.5 T (3)

If a = –0.5;    B = 0.5 G + 0.5 T (4)

3. Results and Discussion

3. 1. Environmental Data Optimized 
by SIMPLEX Method

The 15-variable environmental data (7 concentra-
tions: CO, SO

2
, O

3
, NOx, NO, NO

2
, particulate matter

smaller than 10 µm (PM
10

), and 8 weather data: cloudi-
ness, rainfall, insolation factor (Isf

i
), temperature, pressure

at two locations, and wind intensity with direction) in a
period of 45 days with 1 hour intervals were extracted
from a larger data base of concentrations recorded in the
minute intervals for the same time period. The monitoring
site was located in the City of Buenos Aires in a relatively
heavy traffic crossroad of two avenues in the time span
from August 11th 2003 0.0 a.m. to September 24th 2003
2.0 p.m. The data required special pretreatment where the
hourly content of rain, wind intensity, wind velocity, and
cloudiness were concerned.

Due to the fact that multivariate handling of data de-
pends on the normalization of variables the data were nor-
malized with the use of the equation written under and
was applied to all 15 variables xi, i = 1 … 15, in a contin-
uous space:

(5)

The PM10 values were normalized only for the avail-
able data, while the (–9999) key for the missing values
was kept on place.

The new variable named insolation factor (relative
UV radiation) was calculated on the basis of general me-
teorological data, geographic position of the monitoring
site, cloudiness, date, and time of the recording was com-
posed34. The relative intensity of UV radiation was mod-
eled by a Gaussian function multiplied by a cloudinessi
with the factor (1.0 – 0.1 × cloudinessi) in the following
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relation.

i = 1…24 (6)

If cloudinessi is zero, the insolation factor Isfi fol-
lows the Gaussian shape exactly. If on the other hand the
cloudinessi is different from zero the Isfi is shielded ac-
cordingly. Isfi could be adapted to the geographical alti-
tude of Buenos Aires and to the appropriate months of
recording (early spring, August and September).28

In present work the SIMPLEX method was used to
optimize the parameters employed in the counter-propa-
gation artifical neural network training.

3. 1. 1. Procedure

At first, the data set of all 980 samples was divided in-
to train and test sets using the Kennard and Stone (KS) algo-
rithms.31, 35, 36 In this way both train and test sets consist of
490 samples. For training artificial neural network train pro-
gram (ANN-train)31 and for testing artificial neural network
test program (ANN-test)31 were used. As the evaluation
function the correlation coefficient between experimental
and test predicted ozone concentrations was applied.

In order to show how the actual optimization proce-
dure runs one movement of a five point SIMPLEX is giv-
en below.

1. First, four variables were took into consideration:
n

epoch
(number of epoch), α

max
(maximal correc-

tion factor), α
min

(minimal correction factor), and
NxN (network dimension) are initially chosen at
random. Using these four parameters the counter-
propagation neural network was built and the cor-
relation factor between the predicted and experi-
mental O3 was calculated.

2. For 4 variables at least 5 starting points are needed.

The SIMPLEX consists of five points (S1, S2, S3, S4,
S5) each representing a specific neural network (NN1,
NN2, NN3, NN4, NN5), which are fully trained by using
selected sets of the four parameters. After the training of
the neural networks with the training set of data the test-
ing set is applied in all five cases and five correlation coef-
ficients r1, r2, r3, r4 and r5 between ozone concentrations
are obtained:

S
1

= (x
11

, x
12

, x
13, x

14
) = (α

max
, α

min
, n

epoch,NxN) =
= (0.5, 0.01, 600, 20x20) ⇒ r

1
= 0.759

S
2

= (x
21

, x
22

, x
23, x24

) = (0.5, 0.01, 400, 10x10) ⇒
r

2
= 0.694

S
3

= (x
31

, x
32

, x
33, x34

) = (0.6, 0.2, 500, 30x30) ⇒
r

3
= 0.791

S
4

= (x
41

, x
42

, x
43, x44

) = (0.5, 0.01, 2000, 30x30) ⇒
r

4
= 0.786

S
5

= (x
51

, x
52

, x
53, x54

) = (0.7, 0.3, 3500, 20x20) ⇒
r

5
= 0.767

r
2

< r
1

< r
5

< r
4

< r
3

⇒ r
2

= T (worst point) ⇒ G
(gravity point) is calculated from S

1
, S

3, S4 and S
5.

(7)

G = {(0.5, 0.01, 600, 20 × 20) + (0.6, 0.2, 500, 30 × 30) +
+ (0.5, 0.01, 2000, 30 × 30) + 
+ (0.7, 0.3, 3500, 20 × 20)}/4 = 
= (0.575, 0.125, 1150, 25 × 25)

New training parameters are calculated by the equa-
tion (2):

B = 2G – T = 
= 2(0.575, 0.125, 1150, 25 × 25) – 
– (0.5, 0.01, 400, 10 × 10) = 
= (0.65, 0.24, 1900, 40 × 40)

After B is evaluated the neural network is trained
with the new set of parameters and the new correlation co-
efficient (r

6
) is obtained. The procedure is continued by

excluding the point X2 (having the worst r) and including
the point B.

The highest evaluation function was obtained after the
fourth step (r = 0.83) with the optimal training parameters:
αmax = 0.65, αmin = 0.24, nepoch = 1900, N × N = 40 × 40.

Further, these optimized parameters (αmax = 0.65,
αmin = 0.24, nepoch = 1900, N × N = 40 × 40) were used for
mapping achieved with Kohonen network. Based on the
14-variable input and 1 variable output (ozone) data, the
clustering of all 980 data records was made. The top map
clustering showing ozone concentration was related to the
maps of all 14 variables. To make the analysis of the mod-
el more evident and understandable the model is ex-
plained by using the MATLAB visualization tools (ANN-
visual program).31 Each map is composed of 1600 weights
colored according to their relative value revealed in the
scale at the bottom of Figure 2. The maps show the rela-
tion between the concentrations of ozone, NO2, and Isf,
which is negative between ozone and NO2 and positive
between ozone and Isf.

A 40 x 40 Kohonen network, using the correspon-
ding data sets, obtained the maps. All maps exposed in
Figure 2 were produced using the optimal parameters
(αmax = 0.65, αmin = 0.24, nepoch = 1900, N × N = 40 × 40),
chosen by the SIMPLEX.

On the left side of Figure 2 the top map of the ozone
and on the right side the weight maps of NO2 and Isfi are
shown. Each map is composed of 1600 weights colored
according to their relative value revealed in the scale at the
bottom of Figure 2.



3. 2. Comparison of the Acquisited Data
With the Chemistry of These Pollutants
in the Air
The results presented above clearly show negative

relationship between NO2, and O3, and are not completely
in accordance with the chemistry of these pollutants in the
air, where the concentrations of NO2 and ozone are gener-
ally positively correlated. Most often higher NO2 concen-

trations means more ozone and the actual correlations de-
pends not only on nitrogen oxides but also upon volatile
organic compounds (VOCs) concentrations.37, 38 Never-
theless the decrease of the amount of ozone with increas-
ing NO

2
concentration in the atmosphere can be explained

by the following reactions:38, 39

NO2(g) + hν → NO(g) + O(g) (8)

Namely, the nitrogen dioxide, NO2, dissociates to
NO and oxygen when exposed to a bright light (UV, λ =
328–286 nm) (photoinitiated reaction). The oxygen atom
is extremely reactive and readily attaches to a molecule of
O

2
forming ozone O

3
. This reaction is written as:

38

O(g) + O
2
(g)    → O

3
(g) (9)

The found negative correlation shows that for any
form of mathematical modeling of ozone formation, be-
sides all the relevant variables, the correct time delay be-
tween some of them should be taken into the considera-
tion.

In accordance with these findings our next step was
to analyze the partition between NO, O3 and NO2 forma-
tion. To analyze this in details, average minute concentra-
tions data of NO2, O3 and NO were calculated from the
raw database. In the calculation of averages all five
Tuesdays in the period from 11.08.03 to 24.09.03 were
considered (Figure 3).

In Figure 3, the delay of peak concentrations be-
tween NO (green curve) and NO2 (red curve) can be ob-
served. For easier representation, we marked the peaks,
which consecutively correspond to each other with equal
letters. Thus, the peak at 7:35 (which belongs to the NO2)
arises as a consequence of the peak belonging to NO at
6:53. Both peaks are marked with letter A. Equally, the
NO2 peaks at 9:23, 11:07, and 19:28 are the consequences
of the NO peaks at 8:07, 9:11, 18:57, marked with B, C,
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O3

NO2

Isf

Figure 2: Kohonen self-organizing maps of three variables. The
color bar represents particular concentrations for O3 and NO2 and
relative values for Isfi

Figure 3: Average minute concentrations of NO, NO2 and O3 as a
function of time.
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and D, respectively. These observations can be explained
with the chemical reactions of the formation of NO2 (and
O3) from NO.

In the first place, the reaction (10) starts inside the
internal combustion engines, where consequently several
spontaneous reactions of NO2 formation occur (11–13).

N2(g) + O2(g)    → 2NO(g) (10)

First possible reaction is direct oxidation of NO to
NO2 (11a). The reaction is rather slow at typical ambient
NO concentrations, but it may occur at very concentrated
conditions (Torr conditions) for a brief period of time in
plumes where the NO concentrations are higher as they
exit a stack or tailpipe before significant dilution with the
surrounding air has occured:38, 40

2NO(g) + O2(g)    → 2NO2(g) (11a)

However as long as there is any ozone presented in
the air the reaction (11a) could be neglected and time de-
lay in NO2 concentrations compared to NO arises as a
consequence of the reaction (11b), which is much faster
than the previous one:39, 41

NO + O3 → NO2 + O2 (11b)

Second possible reactions, are the conversions of
NO to NO2 in ambient air that involve the chain oxidation
of organics initiated primarily by the free radical OH.41

These reactions are written as:

RO2 + NO    → RO + NO2 (12a)

→ RONO2 (12b)

As it is described in the reference,40, 41 the reaction
(12a) predominates over (12b), with (12b) becoming sig-
nificant for the larger (≥C4) alkoxy radicals. The alkoxy
radical (RO) formed in (12a) undergoes a hydrogen ab-
straction by O2 to form HO2 and an aldehyde;40 the OH2
then can oxidise a second NO to NO2, reforming OH in
the process (13):

HO2 + NO    → OH + NO2 (13)

Thus, in this cycle, two molecules of NO have been
oxidized to NO2 and OH has been regenerated to carry on
further oxidations.

Other species that react with NO in ambient air in
addition to HO2, RO2, and O3 include OH, alkoxy radicals
(RO) and nitrate radicals (NO3).

41 In accordance with the
chemical reactions, therefore it is normal to observe the
peak concentrations delay between NO and NO2 curve
(Figure 3).

Additionally, at the late hours of the day (upon

16:00) an interesting change is observed. In Figure 3 and
Figure 4 it is shown that after 16.00 the average of NO2
concentrations start increasing again. It is clear that in the
late hours of the day (after 16.00), the insolation factor is
lower than during the day and thus the molecules of NO2
dissociate in lesser amount (Figure 4), moreover repeated
increase of the nitrogen pollutans in the air can be again
ascribed to the enlarged afternoon traffic.

To resume, Figure 3 and 4 clearly show morning and
afternoon increase of NO and consequently NO2 concen-
trations, which are connected to the enlarged automobile
traffic caused by migration of people to and from work.
The increase in ozone concentration during the day is ini-
tiated by photochemical reactions enabled by sun light. As
long as the level of NO in the air is signifficant and the re-
action (11b) can take place the ozone concentrations can
not increase. After the decomposition of the NO2 affected
by the sunrise (at about 7 am) (8) and after the concentra-
tions of NO has fallen to a low value, the time delay of the
O3 formation (9) (at about 10 am) is revealed (Figure 4).
However in general the correlations between ozone and
nitrogen gases are positive with noticable time delay in
ozone formation. Such observations are common and can
be seen in all urban environment.

4. Conclusions

The general purpose was to analyze the data meas-
ured during a surveillance campaign undertaken by the
electricity sector with the intention of showing the role of
the traffic and power plants to the air quality deterioration
in Buenos Aires city.

This study illustrates the usefulness of the SIM-
PLEX optimization method for rapid determination of the
optimal parameters for proper architecture of Kohonen or
counter-propagation artificial neural networks and conse-
quently to obtain the best correlation between the pollu-
tants in the air. The most attractive feature of the SIM-

Figure 4: Hourly averages of [O3], [NO2] and Isfi as a function of
time.



PLEX is to shorten the time needed to get a good result for
a desirous complex system. The use of the two-dimen-
sional maps is a good example of how the visualization
with the help of Kohonen self-organizing maps improves
the analysis of complex data.
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Povzetek
Namen optimizacije je dolo~itev optimalnih parametrov kompleksnih sistemov kot so sinteze spojin, kemijske reakcije,
analitske metode, lastnosti izdelkov ali kemijski procesi. Parametri, ki jih `elimo z optimizacijo dolo~iti so vrednosti, ki
opisujejo sistem. SIMPLEX je ena izmed najenostavnej{ih in splo{nih optimizacijskih metod. Najpogosteje se uporabl-
ja za napovedovanje eksperimentov, ki po najhitrej{i poti vodijo k optimumu.
V tem delu opisujemo uporabo optimizacijske metode SIMPLEX za dolo~itev parametrov v protito~nih umetnih
nevronskih mre`ah (counter-propagation artificial neuron networks, CP-ANN). Optimalni model smo uporabili za
napovedovanje ozona, ki velja za enega izmed najbolj izrazitih parametrov onesna`enja ozra~ja na obmo~ju Buenos
Airesa.
Rezultati, ki jih predstavljamo so pridobljeni iz podatkovnega seta sestavljenega iz 980 vzorcev. Vsak vzorec je opisan
s koncentracijami 7 onesna`evalcev zraka: CO, SO2, O3, NOx, NO, NO2, in PM10, ter 8 vremenskimi podatki (obla~nost,
padavine, faktor oson~enja, temperatura, tlak izmerjen na dveh lokacijah in intenziteta vetra).
Za cenilno funkcijo, kot optimizacijski kriterij modela, smo uporabili korelacijski koeficient med eksperimentalnimi in
napovednimi koncentracijami ozona.


