
Elektrotehniški vestnik 75(5): 285-292, 2008
Electrotechnical Review: Ljubljana, Slovenija

Classification of the language group characteristics into a multi-
layered architecture of the interlingua interpreter in
multilingual translation

Grega Jakus, Sanida Omerović, Tatjana Filimonova, Sašo Tomažič

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana, Slovenija
E-pošta: grega.jakus@fe.uni-lj.si, sanida.omerovic@lkn1.fe.uni-lj.si, tatjana.filimonova@fe.uni-lj.si,
 saso.tomazic@fe.uni-lj.si

Abstract. The paper addresses the issue of complexity of development of the interlingua interpreters in
multilingual translation when developing the interpreters of related languages. The development cost using the
interlingua approach is proportional to the number of languages needed to be interpreted in. The paper presents a
design of a modular interpreter architecture whose characteristic is the ability of being layered into several levels of
abstraction. A level of abstraction refers to the degree of abstractness of language structures that enter a certain
module as data and on which transformations are performed. We try to place characteristics of groups of natural
languages in the dislayered architecture of interpreters. The use of this concept reduces the cost of development for
enabling some of the modules to be reused when developing the interpreters of related languages. The idea of
abstract dislayering is demonstrated with an example of interpretation of e-speranto in English and Slovene.
E-speranto is a computer language intended for recording multilingual documents on the Web and also serving as
an intermediate language in multilingual translation.

Key words: interlingua, multi-level abstraction, interpreter, e-speranto, multilingual translation

Umestitev lastnosti jezikovnih skupin v večslojno arhitekturo tolmača
vmesnega jezika pri večjezičnem prevajanju

Povzetek. Članek obravnava problem zahtevnosti (cene)
izdelave tolmačev vmesnega jezika pri večjezičnem
prevajanju. Pri prevajanju z uporabo vmesnega jezika je cena
izdelave tolmačev sorazmerna številu jezikov, v katerih
želimo tolmačiti. Predstavljena je zasnova modularne
arhitekture tolmačev, za katero je značilna razslojenost na več
nivojev abstrakcije. Nivo abstrakcije se nanaša na stopnjo
abstraktnosti jezikovnih struktur, ki v nek modul vstopajo kot
podatki in nad katerimi se izvajajo transformacije. V
razslojeno arhitekturo tolmačev skušamo umestiti lastnosti
skupine naravnih jezikov. Uporaba predstavljenega koncepta
zmanjša ceno izdelave tolmačev, saj lahko pri izdelavi
tolmačev sorodnih jezikov ponovno uporabimo nekatere
module. Ideja abstraktne razslojenosti je prikazana na primeru
tolmačenja e-speranta v angleščini in slovenščini. E-speranto
je računalniški jezik, ki služi za zapis večjezičnih besedil na
svetovnem spletu in kot vmesni jezik pri večjezičnem
prevajanju.

Klju čne besede: vmesni jezik, večslojna abstrakcija, tolmač,
e-speranto, večjezično prevajanje

1 Introduction

About 6900 languages that are spoken in the world [1]
are divided into language groups and subgroups. The
division is based on a common predecessor (the so-

called proto-language), from which individual
languages have developed in different ways due to
various geographical and political factors. With the
increasing use of Internet, the interaction among the
members of different language communities is
becoming more and more intense. However, this
interaction is limited due to the so-called language
divide. The majority of the world population namely
speaks only their mother language, and only a minority
speaks an additional or two foreign ones. That is why
most of the Web contents are presented only in the big
world languages, whereby English is still the prevailing
choice.
 Several commercial translators of natural languages
are already available on the market, for example [2], [3],
[4], [5], but again only the big world languages are
supported. In order to develop translators for all the
language pairs, about 47,610,000 of such units should
be made. A much more appropriate approach than direct
translation is the use of an intermediate language, thus
making the number of translators proportional to the
number of languages in which a selected content is to be
accessed.
 In this paper we propose an architecture designed for
interlingua interpreters that further reduces the cost of
developing a multilingual system. The approach is

Received 6 October 2008
Accepted 12 December 2008

286 Jakus, Omerović, Filimonova, Tomažič

based upon a modular architecture of the interpreters
and arrangement of modules in layers. The modules in
different layers differentiate by how “near” to the
natural language are the data structures that enter the
modules as data and upon which the operations are
performed. Some languages are related. Their grammar
and syntax are analogous. These languages usually have
a common ancestor, from which some characteristics
are preserved in spite of the evolution. If the
characteristics of a group of languages are separated
from those specific to an individual language, such
“stratification” of the language characteristics can be
linked with a dislayered architecture of interpreters.
Treatment of common characteristics can be
incorporated in a module common to all the languages
mentioned. By doing so the cost of the development of
interpreters for a certain group of languages is reduced.

2 Interlingua and its interpretation

An intermediate language or interlingua is an abstract
presentation of the content that is independent from any
natural language [6]. The record in interlingua must
contain the whole information required for generating
text in a natural language. Thus, the entire meaning we
want to express in a natural language must be captured
in interlingua.
 The advantage of using the interlingua is a two-
phase course of translation between two natural
languages. During the process, the modules that perform
the conversion from a natural language to the
interlingua (translators) are independent of those that
perform the opposite conversion (interpreters).
Moreover, the interpreters and translators of different
languages are also mutually independent. The effect of
this independence is the reduction of the number of
units that would be needed in case of direct mapping
among the individual languages. The cost of the latter
approach is as high as n(n-1), where n denotes the
number of languages among which we want to translate.
By using the interlingua approach, the cost of the
interpreter development reduces to 2n, since only a
translator and an interpreter for each language must be
made.
 In the past, numerous attempts of creating an
interlingua that would be truly universal and
independent of natural languages were conducted. In
most cases it was established that it is difficult to
determine and present the meaning in a text. The
majority of interlinguas has a language-independent
structure and a vocabulary (a set of contained concepts)
that is not entirely independent of natural languages.
Some more notable implementations of interlinguas are
presented in the next paragraphs.
 DLT (Distributed Language Translation) [7] was a
project of the development of a multilingual system in
the 1980s that used an adapted version of Esperanto as

an interlingua. The document written in Esperanto
would be carried over the network and inerpreted in a
chosen language by the target computer. Although DLT
presented a novel and
interesting approach to machine translation, the results
were not promising in practice.
 The interlingua KANT [8] is based upon controlled
English (a language with a limited scope of vocabulary)
and was created with the intention of translating
technical documentation. Its interpretation produces
very accurate sentences, but due to the limited field of
use it is not directly applicable for general multilingual
translation.
 UNL (Universal Networking Language) is a
computer language for recording and exchanging
information [9] and it is basically intended for
communication on the Web. It supports 15 languages,
which makes it currently the largest multilingual system
intended for use on the Web. Its main deficiency is the
limited power of expressiveness [10] and poor
intelligibility of texts written in this language, which
already proved as a disadvantage during the
development of Internet standards in the past.

Figure 1: Translation by using the interlingua approach takes
place in two phases. In the first phase, the translators perform
the conversion from a natural language to the interlingua. In
the second phase, the interpreters perform the opposite
conversion. By using the interlingua, the cost of the
development reduces to 2n, since only a translator and an
interpreter for each language must be made.

Generation of a text from an interlingua can be carried
out in different manners [6]. Most often it is based on
language rules (rule-based) that define the conversion
from a source presentation to the target one. Another
widely used approach is based upon the semantic and
pragmatic knowledge of a certain field (knowledge-
based). The Statistical and example-based approach are
not used widely in generation of texts from an
interlingua because they both require a bilingual corpus
which is, however, hard to create when one of the
languages is an interlingua.
 The majority of the approaches of the rule-based
natural language generation from the intermediate
abstract presentation has a modular design with two

Classification of the language group characteristics into a multi-layered architecture of the interlingua … 287

basic steps of conversion. They represent the lexical
transformation (conversion of the interlingua concepts
into language units of a natural language) and structural
transformation between the language structures in both
languages [6]. An example of a well-established
framework that uses such design is ARIANE [11].
ARIANE is a flexible framework for the development
of machine translation systems between language pairs
which can also be an interlingua and a natural language.
The system separates the algorithms from the linguistic
content as the parameterization of algorithms. Several
interpreters of the interlingua are based on ARIANE, for
example [12], [13]. The multi-layered architecture
introduced in the continuation is in fact an upgrade of
the approach used in the ARIANE system.

3 E-speranto

E-speranto, also named HTDL (Hyper Text Description
Language) [14], [15], is a design of a formal computer
language for recording multilingual texts, which can
also act as an intermediate language for multilingual
translation. The field of use of
e-speranto is Web communications. Its advantage over
similar approaches (e.g. UNL) is especially the
intelligibility of documents both to computers as well as
to people. The latter already proved as an advantage
many times in the past in the development of various
Internet protocols. The basic syntax of
e-speranto is based on the extendable markup language
(XML), while the grammatical rules are based on
Esperanto [16].
 Unlike Esperanto (and some other multilingual
systems, e.g. DLT), the grammatical characteristics in e-
speranto are expressed explicitly by means of metadata,
as this is more suitable for computer handling. XML is
compatible with HTML (Hyper Text Markup
Language), which enables the inclusion of e-speranto
into webpages. E-speranto1 is a computer language
whose functionality can be classed within the
presentation layer of the ISO-OSI (International
Standards Organization - Open System Interconnect)
model.

4 Multi-level abstraction of procedures
and language representation structures
in the interpreter

Since interlingua is an abstract representation of the
content, the whole specificity of the language must be
contained in the process of interpretation in a target, i. e.
natural language. The most frequent approach to natural
language generation is the use of language-independent
(generic) algorithms and language-specific rules that act

1 The e-speranto project is in the development stage, that is why its
specifications are subject to change. The current specifications are
available on the Web page http://www.e-speranto.org.

as the parameters of these algorithms. The advantage of
such an approach is obvious. By using general
algorithms and language-specific rules, we can
theoretically make interpreters for different natural
languages by parameterizing the same algorithms with a
linguistic content of the language we want to interpret
in.
 On the other hand, the efficiency of such an
approach is questionable. We find the following
deficiencies:

• It is very hard to determine the algorithms that
would be so general to translate language structures
from the abstract intermediate form to any target
language. Such mappings would have to consider all
particularities of all target languages;

• Even if we could define such mappings, the
interpretation would contain many redundant steps,
because the majority of procedures would not have any
impact on certain languages (e.g. determining the case
specifying extensions in English is meaningless, since
English does not use parts of speech inflection for this
purpose);

• The interpreter with all implemented procedures
would be very extensive and difficult to maintain;

• With real-time interpretation, such as interpretations
of Web pages, the redundant procedures would cause a
longer response time and as a consequence worse user
experiences.

Figure 2: Record of a sentence in e-speranto. The basic
building element in e-speranto is a clause. A clause is a
semantic unit that corresponds to a sentence in a natural
language. Clauses are composed of sentence elements
introduced by XML tags. The grammatical characteristics are
expressed explicitly by means of XML attributes. The
concepts representing the essence of e-speranto are marked in
English for the sake of better intelligibility.

 To avoid the deficiencies mentioned, we suggest
dislayering of interpreters in several layers (Figure 3).
The individual layers contain modules with procedures
that are applied on the language structures which are on

288 Jakus, Omerović, Filimonova, Tomažič

the same level of abstraction according to the target
natural language. In every phase of interpretation,
execution is carried between modules on different
layers, whereby a module on a higher level is
compatible with several modules on a lower level. In
general, a module on a higher level can contain the
content (algorithms and language rules) that would
otherwise be common to several distinct modules (e.g.
for different languages of interpretation) on a lower
level.
 Some typical procedures on individual layers can be
identified. The first phase of abstraction contains the
procedures that are in general characteristic of machine
translation. The procedures are language-independent
and in general dictate the course in which the
interpretation is executed. An example of the modules
on this level are the two modules that separate the
interpretation on the transformation of concepts from an
interlingua to language units in a natural language
(lexical transformation) and the structural
transformation of the intermediate representation
structure to its target form.
 Actual realizations of the specified transformations
take place in the next layers of abstraction. By passing
through the layers, the transformations become more
and more language-specific. The last layer consists of
modules that perform the processing on the level of
individual languages. These modules can also access
dictionaries and are parameterized with the language
rules of the target natural language.
 The features of the described approach are:

• High modularity of the system;

• Every module has its specific place in a certain layer
of abstraction and phase of interpretation;

• The modules combine procedures that perform
specific content-related transformation of the language
structures (e.g. the rearrangement of the tree edges in
accordance with the word order in a natural language
determined by sentence inclination);

• As the modules need to be interconnectable, this
approach requires a uniform definition of the interfaces
through which the modules are connected.

 The described approach actually implies
segmentation of algorithms over the abstract layers in
dependence on “how close” the language structure that
is the subject of processing is to a target language. In
this process, every algorithm in principle remains
language-independent; however, a set of algorithms that
is used for interpretation in an individual language
becomes language-dependent. For this purpose, a set of
modules needed for the interpretation of interlingua in a
natural language must be specified before the beginning
of the interpretation process.
 By using this approach to organization of the
building blocks of the interpreter, the paradigm of the

language-specific rules as the parameters of generic
algorithms is preserved. The use of the paradigm is not
obligatory, since a module on a certain abstraction level
can be completely specific for a particular intention of
use. For instance, if the properties of a certain language
distinguish it completely from other languages for
which the modules already exist, we can make a
completely specific module if it is more convenient
from the developmental point of view or the point of
view of efficiency.
 The advantages of dislayering the interpreter can be
exploited provided the content that can be placed in
individual layers is identified. In the next chapter,
separation (abstraction) of the characteristics of a group
of languages from the actual characteristics of
individual languages in the group is suggested as one of
the possible ways of classification.

Figure 3: Dislayering of the interpreter based on abstractness
of data structures on which the procedures in individual
modules are applied. The procedures perform specific content-
related transformation of the language structures and are
parameterized with language rules. Interpretation takes place
in several phases. A module on a higher level of abstraction
passes the execution to lower levels which process a more and
more language-specific content. The algorithms on individual
levels use rules that become more specific with the descending
degree of abstraction.

5 Placement of natural languages into the
layers of the interpreter

Despite the common misconception that there exists
only a handful of language groups, languages can be
roughly divided in some ten language families that are
further divided in subgroups. The Roman, Slavic and
Germanic subgroups that include the majority of
European languages are subgroups of Indo-European
languages. Some features of the Slavic subgroup, for
which the e-speranto is intended in the first place, are:

Classification of the language group characteristics into a multi-layered architecture of the interlingua … 289

• Fusional morphology (Slavic languages have the
tendency to form new words by adding one or several
different morphemes to the already existing words);

• Preservation of cases from the proto-Indo-European
language (most Slavic languages have seven cases);

• Difference between the perfect and imperfect verb
aspect;

• Inflection of parts of speech (agreeing in tense,
inclination, person, number, gender, case, etc.).

 The dominant language in the world of electronic
communications is English, which belongs to the
Germanic subgroup of the Indo-European languages. If
we compare the features of English with the already
presented features of the Slavic languages, we can state
that:

• English has minimal inflection of parts of speech
(inflection is mostly replaced with changes in the word
order or with the use of other parts of speech, e.g.
prepositions);

• Unlike the so-called synthetic languages (e.g. the
Slavic languages) which use morpheme inflection to
express different notions, English is an analytic
language, in which individual language units are usually
made up of a single morpheme.

 It is not our intention to present the similarities and
differences between individual languages in detail, but
to emphasize that we can make use of the resemblances
in the development of interpreters. The characteristics
that are common to a certain group of languages can be
introduced on an abstractly higher level than the actual
characteristics of individual languages in this group.
The abstraction made by separating the common
characteristics from the specific ones can be connected
with the dislayered architecture of interpreters.

6 INES –Implementation of the dislayered
interpreter

We relied on this architectural approach when making
an e-speranto interpreter INES (INterpreter of E-
Speranto). For this purpose we used two programming
languages with different programming paradigms. The
programming language Java, in
which the connection with the Internet2 was made,
employs the object-oriented paradigm. The core of the
interpreter was written in the symbolic programming
language Mathematica, which is well known for the
rule-based programming and symbolic pattern
matching. To simplify the initial development, we
focused on the interpretation of simple sentences (i. e.
sentences with only one verb). Despite this limitation,

2 The interpretation of simple sentences can be tried out on
e-speranto's Web page.

the interpreted languages are not deprived of their
expressiveness, since it is possible to express almost
anything with simple sentences.
 Because e-speranto is a computer language, we can
draw some parallels with the interpreters and translators
of computer programming languages regarding the
interpretation. Namely, the process of interpretation is
similarly divided into several stages. We distinguish:

• lexical and syntactical analysis of the source code,

• generation of the intermediate code,

• code optimization, and

• compilation phase.

 The lexical and syntactic analyses are performed
every time during the composition of a document in e-
speranto and are provided by the development
environment. For this purpose the development
environment based on the Eclipse platform was
developed. The built-in XML editor performs the
verification of the document conformity with the
e-speranto grammar, syntax and vocabulary.
 The other phases of development are realized in the
INES interpreter. The conversion of the
e-speranto document into the expressions of the
Mathematica language is analogous to the generation of
the intermediate code. The phase of code optimization
in the classical translators corresponds to the adaptation
of the intermediate representation structure to the form
that is used in the process of interpretation in INES
(compare Figures 2 and 5). The phase of optimization is
important since it enables, to a certain degree, the
independence of the tree structures in INES from the
changing grammar and syntax of e-speranto, as the
latter is still being developed.
 The compilation phase is the main step of the
interpretation in a selected natural language. As is the
case with the majority of the interpreters of the
interlingua, in INES this phase is also realized in two
steps. In the first step, the replacement of e-speranto
concepts and their attributes with the words in a target
language (the so-called lexical transformation) takes
place, while the structural transformation is performed
in the second step. The interpretation in both steps is
carried out with the modules that are arranged into three
layers of abstraction. The dislayered architecture of
INES with some distinctive procedures on individual
layers is shown in Figure 4.
 The first layer comprises modules that dictate the
course of interpretation and are independent of the
target language. The layer is only aware of the fact that
a sentence in a natural language contains the elements
that express an action or activity (i. e. the predicate) and
the holder of this action or activity
(i. e. the subject). This layer also contains the algorithms
for movements in the tree structure. Among the various
possible methods the top-bottom, left-right approach is

290 Jakus, Omerović, Filimonova, Tomažič

implemented in INES. The individual subtrees are
identified according to their type; their transformation is
then performed by the lower layers.

Figure 4: Scheme presenting operation of INES. INES is an
implementation of a dislayered interpreter with the
architecture presented in the Figure 3. In INES, every phase of
interpretation is divided into three layers. The procedures in
the modules in the first layer perform language-independent
operations that are common to rule-based machine translation.
The procedures in the second layer are typical of a group of
languages, while the ones in the third layer are language-
specific.

 The modules in the second layer are closer to the
language families. These modules in general perform
transformations of particular subtrees in accordance
with their type. The type of a subtree is determined by
the syntactic and/or semantic role the root element is
performing according to the parent element in the tree
representation. In general, a subtree of a certain type
corresponds to a particular clause or its part in a
sentence of a natural language. Figure 5 shows a subtree
that corresponds to a predicate noun in a natural
language.
 The procedures with language-specific rules can be
found in the third layer. These procedures map the parts
of a tree structure to the elements of a natural language
in a way that is specific to the language of
interpretation. An example of such a transformation is
the replacement of the e-speranto concepts and their
attributes with the words of the target language or the
rearrangement of the tree edges in accordance with the
word order in which particular clauses appear in the
target language. The access to word and phrase
dictionaries is also implemented in this layer.

7 An example of interpretation in English
and Slovene

Although e-speranto is primarily designed for the Slavic
languages, it is not limited to this language group. It can
also be used for interpreting in other languages with
somewhat limited accuracy. Let us have a look at an
example: the interpretation of an
e-speranto record of the sentence “E-speranto is a
design of a computer language.” (Figure 2) in English,
which can be classified in the Germanic language
family, and the interpretation of the same sentence in
Slovene, a representative of the Slavic family. As
already stated, the two language groups differ, among
other things, in the part of speech agreement. While the
Slavic languages use inflections for denoting cases, the
latter are indicated with word order or prepositions and
only rarely with suffixes in Germanic languages.

Ei – a set of all nodes that are subordinate to the i-th node
NTi – a set of non-terminal nodes that are subordinate to the i-th node
Ti – a set of terminal nodes that are subordinate to the i-th node
Li – a set of terminal nodes that represent concepts and are
subordinate to the i-th node
Ai – a set of terminal nodes that represent the attributes of concepts
and are subordinate to the i-th node

Li ∩ Ai = Ti , Ti ∩ NTi = Ei

1.) For the current node create a new root node Ni.
2.) For the current node find sets Li and Ai.
3.) For every l ∈ Li pass the execution to a module on a lower layer
with set Ai as the parameter.
4.) Add a subtree which is a result of the transformation under 3.) to
the node Ni.
5.) For the current node find the set NTi.
6.) For every root element m ∈ NTi find the type of the subordinate
subtree with m as the root element and pass the execution to a
procedure that performs the transformation of such a subtree with Ai
functioning as the parameter.
7.) Add the results returned under 6.) to the node Ni.
8.) As a result of the transformation return a subtree with the root Ni.

Table 1: Example of the algorithm for the subtree
transformation with a change of the layer of execution.

 Figure 5 shows a subtree in the form of a tree
structure of the Mathematica programming language.
The subtree corresponds to the noun phrase within the
predicate of the analysed sentence. The mapping of the
subtree to a structure which is closer to the language of
interpretation is carried out in the middle layer (Figure
4) on the basis of the algorithm presented in Table 1.
The transformation depends on the type of the subtree.
The interpretation of the concepts within the tree
structure, together with their attributes (e.g. number,
deep case, etc), is performed by a module on the lowest
level (“the layer of languages” in the Figure 4).
 Figure 6 shows the result of the transformation
performed by a module designed specifically for
English. The deep case, marked with ofGenitive in the
original representation tree, is expressed with the adding
of a branch with the preposition of to a node where the

Classification of the language group characteristics into a multi-layered architecture of the interlingua … 291

source tree contained a branch with the attribute of the
deep case.

Figure 5: Noun phrase “design of a computer language” prior
to the transformation in the form of the tree structure of the
symbolic programming language Mathematica.

 Interpretation of this structure in Slovene is
performed in a completely different manner, since the
deep cases in e-speranto are linked with the selection of
suffixes that are added to the word roots (Figure 7).
Selection of the suffix depends on the grammatical case
that corresponds to the deep case in e-speranto (in
Slovenian in this case to the genitive). Moreover,
selection of the suffix also depends on the grammatical
gender of the Slovene equivalent of the e-speranto
concept language (in Slovenian jezik) and its number.
The suffix –a is thus added to the root word language
(jezik) and the suffix –ega is added to the root word
računalnišk (računalniški = computer). The case must
be assigned to all e-speranto attributes that are derived
from the level where the deep case is specified. If, for
instance, the attribute formal were also subordinate to
the attribute computer, the interpretation of the deep
case ofGenitive would be necessary also on this level
(zasnova formaln-ega računalnišk-ega jezik-a, design of
a formal computer language).
 A module that supports the aforementioned
mechanism of composing language units can also be
used for other Slavic languages by changing only the
content of the layer of languages.
 In the presented example, interpretation in Slovene
(and other Slavic languages) differs significantly from
that in English. The difference lies both in the language
rules and also in the procedures on the basis of which
the rules are applied. Of course, we could create a
generalized procedure that would perform the same
tasks on the basis of different rules for both Slovene and
English. The usability of such a method for languages
that do not belong to the Indo-European language group
(e.g. Japanese or Chinese) is questionable. The
development of general algorithms for processing the
language structures is a demanding task which requires
cooperation of a large group of people from different
fields. The process is much easier if the developmental
group uses the already developed modules on higher
levels of abstraction and merely adds the content that is
specific to their language of interpretation.

Figure 6: Tree after transformation with a module specific to
English. The deep case in e-speranto is expressed with a
preposition in English.

Figure 7: Tree after transformation with a module for the
Slavic languages, specifically with the Slovenian grammar
rules. The deep case in e-speranto is expressed with suffixes
that are added to the root words.

8 Conclusion

In this paper we introduced the idea of a modular design
of interpreters of the interlingua with a layered
architecture on different layers of abstraction. The levels
of abstraction refer to the degree of abstractness of the
language structures that enter modules on a certain level
and are processed by the procedures that are
implemented in the modules. The potential advantage of
the proposed approach is especially reduction of the
development cost of the interpreters in related
languages, since the development of modules that cover
the common characteristics of languages is required
only once.
 The idea of the abstractly layered interpreter was
practically implemented on the interpretation of
e-speranto in the Slovenian and English language. These
two interpreters comprise a part of the modules that is
common and a part specific to an individual language.
Although the languages belong to different language
subgroups, we were able to reuse about half of the
modules or the programming code.
 The INES framework is currently in the process of
being extended and upgraded. As at the time being, its
functionality enables merely processing of simple
language structures, it is not to be expected that with a
further upgrading of its functionality the factor of reuse
in interpretation in two languages that do not share
many similarities will remain on this level. We expect
better results with interpretation of languages that are
similar both in syntax and grammar.

292 Jakus, Omerović, Filimonova, Tomažič

 Our future work will be towards two fields. First, we
want to perform a more thorough research in the
optimal number of layers in the layered architecture of
the interpreters and determine the content that needs to
be placed into individual layers so that the factor of
reuse is optimally high. Secondly, we intend to test the
idea on a large number of Slavic languages and to assess
its advantages in terms of the cost of the interpreter
development and the quality of interpretation. The
reference language will still be English. The issue of
interfaces will be given some attention, too. An effort
will be taken to assure conformity of data structures that
are passed among the layers, particularly with more
complex interpreters that combine a large number of
modules.

9 References

[1] R. G. Gordon Jr., (ed.), Ethnologue: Languages of
the World, 15th edition, Dallas, Tex: SIL
International, 2005

[2] Presis, Amebis, http://presis.amebis.si
[3] Systran, http://www.systransoft.com
[4] Promt, http://www.promt.ru/ru/index.php
[5] Google Translate, http://translate.google.com
[6] W. Hutchins, H. Somers, An Introduction to

Machine Translation, Academic Press, New York,
1992

[7] K. Schubert, The Architecture of DLT –
interlingual or double-dialect, New Directions in
Machine Translation, Floris Publications, Holland,
1988

[8] E. Nyberg, T. Mitamura, The KANT system: Fast,
accurate, high-quality translation in practical
domains, COLING, 1992

[9] H. Uchida, et al., Universal Networking Language:
A gift for a millenium. The United Nations
University, Tokyo, Japan, 1999

[10] I. Bugoslavsky, Some controversial Issues of UNL:
Linguistic Aspects, Universal Network Language:

Advances in Theory and Applications, Research on
Computer Science, 2005

[11] C. Boitet, GETA's methodology and its current
developments, PACLING'97, Meisei University,
Ohme, Japan, Proc. 23-57, September 1997

[12] G. Sérasset, C. Boitet, On UNL as the future "html
of the linguistic content" & reuse of existing NLP
components in UNL-related applications with the
example of a UNL-French deconverter, COLING,
August 2000

[13] E. Blanc, From the UNL hypergraph to GETA's
multilevel tree, MT2000: machine translation and
multilingual applications in the new millennium,
University of Exeter, British Computer Society,
November 2000

[14] S. Omerović, G. Jakus, T. Filimonova, S. Tomažič,
Zapis večjezičnih besedil v e-sperantu,
Elektrotehniški vestnik, Vol. 74, No. 3, 2007

[15] S. Tomažič, Multilingual Web with E-speranto,
The IPSI BgD Transactions on Internet Research,
IPSI Bgd Internet Research Society, July 2007 Vol.
3 No. 2

[16] F. Amerio, G. Bonvecchiato, G. C. Fighiera,
Esperanto: Data and Facts, 2nd edition, FEI -
Milan, 2002

Grega Jakus graduated from the Faculty of Electrical
Engineering of the University of Ljubljana, Slovenia, in 2007.
He is currently employed as a junior researcher in the
Laboratory of Communication Devices at the same faculty.
His research focuses on machine translation algorithms.

Sanida Omerović graduated from the Faculty of Electrical
Engineering of the University of Belgrade, Serbia, in 2005.
Currently she is a postgraduate student at the Faculty of
Electrical Engineering of the University of Ljubljana. Her
research focuses on knowledge presentation systems.

Tatjana Filimonova received her Ph.D. in 2004 from the
Philological Faculty, MGU, Russia. She works as a researcher
in the Laboratory of Communication Devices at the Faculty of
Electrical Engineering. Her research includes computer
linguistics, lexicology and lexicography.

Sašo Tomažič is a Full Professor at the Faculty of Electrical
Engineering of the University of Ljubljana. He is the Head of
the Laboratory of Communication Devices and of the Chair of
Telecommunications. His work includes research in the field
of signal processing, security in telecommunications,
electronic commerce and information systems.

