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Abstract: This paper describes the case study of statistical data-driven mod-
els implementation to assess groundwater vulnerability to nitrate pol-
lution of alluvial aquifers in Slovenia. The aim of the research was 
spatial prediction of the relative probability for increased groundwater 
nitrate concentration in order to plan the groundwater nitrate reduction 
measures and optimize the programme for monitoring the effects of 
these measures. For the selection of possibly optimal statistical model 
and comparison with the one of point count system methods PCSM, 
receiver operating characteristic method ROC was used. Results of 
the probabilistic classifier from the weights-of-evidence model WofE 
and neuro-fuzzy model NEFCLASS has in the case of groundwater 
nitrate pollution a significant better average performance than the 
widespread used SINTACS parametric point count relative rating as 
groundwater contamination potential.

Izvleček: Članek opisuje študijski primer uporabe statističnih podatkovno 
vodenih modelov za ocenjevanje ranljivosti podzemne vode na nitrat-
no onesnaženje v aluvialnih vodonosnikih Slovenije. Namen raziskave 
je bil prostorsko napovedati relativno verjetnost zvišane vsebnosti ni-
trata v podzemni vodi za potrebe načrtovanja ukrepov za zmanšanje 
nitratnega onesnaženja in optimiranja programov merilnega nadzora 
učinkov teh ukrepov. Za izbor optimalnega statističnega modela in 
primerjavo z rezultati večparametrske metode razvrščanja in tehtanja 
je bil uporabljen pokazatelj karakteristike delovanja klasifikacijskih 
metod ROC. Verjetnostni klasifikatorji modela teže evidenc WofE in 
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nevronske mehke logike NEFCLASS izkazujejo v primeru nitrat-
nega onesnaženja podzemne vode značilno boljše povprečne klasi-
fikacijske lastnosti kot sicer zelo razširjena metoda razvrščanja in 
tehtanja parametrov SINTACS. 

Key words: groundwater vulnerability, nitrate, data-driven modelling, Slo-
venia
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IntroductIon

Groundwater nitrate pollution in Slo-
venian shallow alluvial aquifers has 
been a major concern in recent years, 
and more than a third of the groundwa-
ter in these aquifers has poor chemical 
status according to Water Framework 
Directive (Directive 2000/60/ES) cri-
teria, most frequently due to a high 
concentration of nitrate (uhan et al., 
2010). The operative programme of 
measures requires identification of the 
potentially vulnerable priority areas 
within groundwater bodies for cost-ef-
fective measures planning. Groundwa-
ter vulnerability maps are an important 
tool of the water management decision-
making process. Most of the previous 
groundwater vulnerability assessments 
of shallow alluvial aquifers in Slove-
nia (Janža & PresTor, 2002; Bračič 
želeZnik et al., 2005; Mali & Janža, 
2005; uhan et al., 2008) used a vari-
ety of parametric point count methods 
with a relative rating for the potential 
of groundwater contamination, e.g. the 
SINTACS index, adapted to conditions 

in the Mediterranean region (ciViTa, 
1990). These methods require valida-
tion with field measurements, such as 
a tracer test, groundwater residence 
studies or investigation of pollution 
processes, e.g. denitrification. GoGu & 
DassarGues (2000) identified the inte-
gration of results from process-based 
models in vulnerability mapping tech-
niques as a new research challenge in 
groundwater vulnerability assessment. 
Data-driven modelling offer the pos-
sibility of analysing the relevant data 
about a groundwater system, in fact, 
learning from available data, which 
incorporates the so far unknown de-
pendencies between a system’s inputs 
and outputs (MiTchell, 1997; Price & 
soloMaTine, 2000).

materIals In methods

Modelling of the groundwater vul-
nerability to pollution is generally 
understood as probability modelling 
or a mathematical representation of 
a random phenomenon. Most com-
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monly used methods of the classifica-
tion modelling are neural networks and 
fuzzy logic methods, statistical method 
of logistic regression and closely re-
lated Bayesian approaches to classi-
fication. In the Lower Savinja Valley 
case study, we have used the neuro-
fuzzy approach for the data classifica-
tion NEFCLASS-J (nauck & kruse, 
1995), and weights-of-evidence meth-
od for combining evidence in support 
of a hypothesis Arc-WofE (KeMP et al., 
1999). The results of these two data-
driven methods were compared with 
the results of the SINTACS parametric 
point count relative rating as ground-
water contamination potential (uhan 
et al., 2008), coupling with the results 
of the agricultural nitrate hazard index 
IPNOA (Pehan, 2008).

The SINTACS scheme of aquifer pol-
lution vulnerability mapping incorpo-
rates seven parameters, relevant for 
the contaminant attenuation and verti-
cal flow capacity (Table 1). The grid 
square cell structure of the SINTACS 
input data has been designed in order 
to use several weight strings in order to 
satisfactorily describe the effective hy-
drogeological and impacting situation 
as set up by the sum of data (ciViTa & 
De Maio, 2000). For each grid squares, 
element normalized SINTACS index 
was calculated and coupled with the 
agricultural nitrate hazard index (IP-
NOA). The IPNOA method integrates 
two categories of parameters (Table 1): 

the hazard factors representing farm-
ing activities and the control factors 
which adapt the hazard factors to the 
characteristics of the site (PaDoVani & 
TreVisan, 2002).

Neuro-fuzzy system is an identification 
method that combines the methods of 
neural networks and fuzzy logic. The 
neural networks classify among the 
»black box« methods, where the mod-
el is set solely on the basis of measured 
data without an insight into the dynam-
ics of the process. Fuzzy logic on the 
other hand classifies among the »grey 
box« methods, where the model struc-
ture is given as a parameterized mathe-
matical function that is at least partial-
ly based on the laws of physics. Both 
systems have been developed indepen-
dently, and only later great advantages 
have been recognised in their joint use, 
especially for the classificatory pur-
poses (nauck & kruse, 1995), as well 
as in the area of groundwater vulner-
ability to pollution (Dixon, 2001). 

Bayesian classifier uses attribute in-
dependence assumption and estimates 
the conditional probabilities (coef-
ficients in the model) on the basis of 
counting the cases in a particular class. 
Although the Bayesian classifier prob-
abilistic model is based on the assump-
tion, which the practice does not sup-
port, the empirical evidence shows that 
this has no major impact on its classifi-
catory accuracy (DoMinGos & PaZZani, 



204 uhan, J.

RMZ-M&G 2012, 59

Table 1. List of used evidential themes in groundwater nitrate pollution vulnerability 
assessment case study

SINTACS IPNOA NEFCLASS WofE

Deep to the groundwater Use of fertilizers Hydrogeological 
homogeneous units

Hydrogeological 
homogeneous units

Effective infiltration Application of livestock 
and poultry manure

Irrigation and drainage 
areas

Irrigation and drainage 
areas

Unsaturated zone 
attenuation capacity

Food industry 
wastewater and urban 

sludge

Development of the 
river networks

Development of the 
river networks

Soil/overburden 
attenuation capacity Topographic slope Long-term groundwater 

recharge
Long-term groundwater 

recharge

Hydrogeological 
characteristics of the 

aquifer
Climatic conditions Nitrogen load in seepage 

water
Nitrogen load in seepage 

water

Coefficient of hydraulic 
conductivity Agronomic practices

Groundwater flow 
velocity in saturated 

zone

Groundwater flow 
velocity in saturated 

zone

Topographic slope

Figure 1. Groundwater nitrate measurements in central part of Lower 
Savinja Valley, used as a training dataset
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1997; kononenko, 2001). Advantages 
of this method are in better response 
for problems with a small number of 
training points and missing attribute 
values, and in greater clarity of the 
resulting model. Mainly due to an 
easier interpretation of the results, the 
weights-of-evidence method, which is 
based on the Bayesian theorem, has 
been successfully used also for the as-
sessment of groundwater vulnerability 
to pollution (ArThur et al., 2005; Bak-
er et al., 2006; MaseTTi et al., 2007; 
SoricheTTa et al., 2008).

In both cases of data-driven model-
ling of groundwater vulnerability to 
nitrate pollution, NEFCLASS-J mod-
elling and Arc-WofE modelling, we 
have used the same evidential themes, 
including also process-based model-
ling outputs of groundwater recharge, 
groundwater flow velocity and nitrate 
leached from the soil profile (Table 1). 
In the vulnerability assessment pro-
cedure, the central part of the Lower 
Savinja Valley (30.8 km2) was dis-
cretised with a regular mesh grid of        
100 m × 100 m. Randomly chosen 
173 groundwater nitrate in-situ meas-
urements have been used as a training 
points dataset. Monitoring sites have 
been classified for further analysis into 
two or three groups on the basis of dis-
tribution of groundwater nitrate con-
centration with 20 mg/l as antopogenic 
impact concentration or 50 mg/l as EU 
threshold value.

results and dIscussIon

Groundwater intrinsic vulnerability as-
sessment of Lower Savinja Valley shal-
low aquifer using SINTACS parametric 
method (Uhan et al., 2008) identified 
two classes with different vulnerabil-
ity degrees. The first zone with higher 
vulnerability is characterised mainly by 
the lower terrace with shallow ground-
water, high surface/groundwater inter-
action and a thin protective soil layer. 
The second zone with medium vulner-
ability is characterised mainly by the 
upper terraces with deeper groundwater 
and thick soil layer with increased clay 
component. The most sensitive param-
eters are depth to the groundwater and 
effective infiltration action. The results 
of single-parameter sensitivity analysis 
enable better understanding of the vul-
nerability model results, enable consist-
ent evaluation of the analytical result 
and give a new orientation for further 
methodological contamination research 
by using statistical and numerical model 
results with selected SINTACS ground-
water vulnerability parameters. It is 
pointed out that detailed vulnerability 
mapping, including analysis of hydro-
chemical data, especially nitrate con-
centration in groundwater, linked to the 
assessment of pressures and impacts, is 
a very good basis for establishing de-
tailed monitoring programmes and pro-
grammes of measurement to achieve 
the WFD objectives of good groundwa-
ter status for groundwater bodies at risk.
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The intrinsic nitrate contamination risk 
from agricultural sources, assessed us-
ing the IPNOA methodology, is high 
for the 87 % of the study area, whereas 
the 11 % of the southern parts of the 
area indicate a diffuse and extremely 
high potential risk. The greatest dis-
crepancies between the estimates of the 
potential risk of groundwater contami-
nation by nitrates from agricultural ac-
tivities and the results of groundwater 
nitrate field measurements have been 
identified on the northern part of the 
study area. Here the nitrate levels in 
groundwater are in many places mark-
edly below the expectations, given the 
high level of potential risk for ground-
water contamination by nitrates from 
agricultural activities (Pehan, 2008). 
These findings have highlighted the 
need for further study of spatial vari-
ability in conditions of nitrogen cycle 
processes, which affect the reduction 
processes in groundwater.

In the Lower Savinja Valley ground-
water vulnerability model, we have, in 
light of the results of an extensive sen-
sitivity analysis of the NEFCLASS-J 
model (Dixon, 2004), used the trian-
gular membership function and three 
fuzzy sets structure. The model dis-
covered a total of 36 possible learning 
rules, of which five of the best rules for 
a particular classificatory range were 
used for the grid. Additional optimi-
zation of the network resulted in the 
93.02 % accuracy for the classification 

of the learning data patterns, 75.58 % 
accuracy for the validation, and 84.30 
% accuracy for the classification of 
the entire data series into two classes 
of groundwater nitrate level. When 
modelling the three-class fuzzy grid 
(<20 mg/l, 20–50 mg/l, >50 mg/l), the 
model accuracy was somewhat low-
ered, yet the classificatory accuracy 
improved. The model classified all of 
the 3,079 spatial cells, namely: 978 in 
the first group (31.76 %), 689 in the 
second group (22.38 %), and 1412 in 
the third group (45.86 %) of the spa-
tial cells. The hydrogeological bound-
ary between the middle and the highest 
terrace markedly stood out at this clas-
sification (Figure 2).

WofE modelling technique combines 
known occurrences of phenomenon 
(training points) with available spatial 
data (predictor evidence) in a predic-
tive response (phenomena occurrences 
conditional probability map). Six evi-
dential themes were applied to gener-
ate the response theme with posterior 
probability values ranging from 0 to 
0.312 (Figure 3). The response theme 
values describe the relative probabil-
ity that a 100 m × 100 m spatial unit 
will have a groundwater nitrate con-
centration higher than the training 
points threshold values with regard to 
the prior probability value of 0.057. 
Based on the definition of the train-
ing point, higher posterior probability 
values correspond with more ground-
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Figure 2. Neuro-fuzzy prediction of groundwater nitrate pollution in cen-
tral part of Lower Savinja Valley (threshold values: <20 mg/l, 20–50 mg/l 
and >50 mg/l)

Figure 3. WofE posterior probability prediction of groundwater nitrate 
pollution in central part of Lower Savinja Valley (threshold value: 20 mg/l; 
prior probability = 0.057)
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water vulnerable cells and lower pos-
terior probability values correspond 
to less vulnerable areas. The highest 
probability of groundwater nitrate 
vulnerability zones has been found to 
be generally in the central part of the 
study area. According to the calculat-
ed confidence value, the most impor-
tant contribution to the final response 

theme was assessed for the ground-
water flow velocity evidential theme, 
followed by the groundwater recharge 
evidential theme. Conditional inde-
pendence as an important assumption 
of the WofE model was within the 
range that generally indicates no de-
pendence amongst evidential themes 
(Baker et al., 2007). 

Table 2. Statistics of ROC analysis

Model output Area under the ROC 
curve (%) Standard error 95 % confidence 

interval

SINTACS x IPNOA 75.7 0.041 0.685–0.820

WofE 82.9 0.034 0.756–0.877

NEFCLASS (3 classes) 84.4 0.031 0.779–0.895

Figure 4. Predictive reliability of different classification schemes in ROC 
diagram
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The predictive reliability of the applied 
models has been verified by the receiver 
operating characteristic analysis (MeTZ, 
1978), which through the sensitivity and 
specificity assessment provides the area 
under curve (AUC) in receiver operat-
ing characteristic diagram (ROC). Re-
ceiver operating characteristic curves 
were developed in the field of statistical 
decision theory and assess the value of 
diagnostic/prediction tests by providing 
a standard measure of the ability of a test 
to correctly classify subjects or phenom-
ena. The ROC curve reflects the prob-
ability of correct and incorrect positive 
findings of the phenomenon and can be 
illustrated in space with the coordinates 
for sensitivity and specificity. Sensitiv-
ity is defined as the probability that the 
highly vulnerable spatial aquifer cell is 
correctly classified, whereas specific-
ity is defined as the probability of the 
correct classification of the moderately 
vulnerable spatial cell. The rate of false 
negative value is given by 1-specificity. 
The discrete three-class classification 
of the model of neuro-fuzzy network 
NEFCLASS-J and the linear distribu-
tion of the WofE posterior probability of 
increased groundwater nitrate levels in 
the studied area of Lower Savinja Valley 
has been compared also with the results 
of the SINTACS and IPNOA analysis 
(Figure 4). The area under ROC curve 
(AUC) was the lowest for SINTACS x 
IPNOA prediction model (75.7). Ac-
cording to the ROC analysis, the best re-
sults were achieved by the neuro-fuzzy 

model, within which the highest value of 
the parameter AUC (84.4) was achieved 
(Table 2). When comparing it to the 
weights-of-evidence model through the 
κ statistical comparison of matching be-
tween the measured and the predicted 
categories (Jenness & Wynne, 2007), the 
differences were, however, very small. 

conclusIon

When comparing the results of classifi-
cation schemes, the neuro-fuzzy method 
was proven somewhat more effective 
for predicting the groundwater nitrate 
concentration and thereby predicting 
the groundwater vulnerability in Lower 
Savinja Valley. However, the discrete 
character of this model result has to be 
emphasised, whereas the weights-of-ev-
idence method enables the assessment 
of the probability of groundwater nitrate 
pollution while not sacrificing much 
the quality of the results. The assess-
ment of the probability of groundwater 
nitrate pollution can be of great service 
for mapping the groundwater vulner-
ability to nitrate pollution. Data-driven 
models cover the relationships between 
the relevant input and output variables 
and are very effective if it is difficult or 
not possible to build knowledge-driven 
simulation models. Case study in Lower 
Savinja Valley aquifer indicates the pos-
sibilities and the directions of incorpora-
tion of data-driven models into the deci-
sion support frameworks.
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