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Review Article 

Introduction

Pyrethroids are synthetic analogues of the nat-
ural pyrethrins, extracts of the ornamental Chry-
santemum cinerariaefolium and its related species. 
Pyrethrins had been used for decades for control 
of insects. They were selective, safe and had short 
half lives. Although they were acutely toxic to fish, 
very few accidental poisoning occured because 
they were not registered for aquatic use and they 
seldom had enough persistence to reach water 
from normal application (1). 
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The 1st generation of pyrethroids was devel-
oped in the 1960s, the 2nd generation was de-
veloped in 1970s. Many of pyrethroids have been 
produced with improved physical properties (in-
volatility, lipophilicity) and greater insecticidal 
activity (knockdown) since then (2). Pyrethroids 
disrupt the insect nervous system and this deter-
mines them to protect food grains and other ag-
ricultural products against pests. They began to 
be used as ectoparasiticides in veterinary and hu-
man medicine too (3, 4). They have replaced natu-
ral pyrethrins especially due to their better photo-
stability gradually. Pyrethroids use has increased 
rapidly in the past three decades. Pyrethroids are 
thermostable and photostable, slightly soluble in 
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water and highly soluble in fats. The presence of 
halogens in some pyrethroids contributes to the 
greater persistence and provides better residual 
activity against insect together with higher poten-
tial negative effects on the environment (5).

Classification of pyrethroids

Pyrethroids are divided into type I and type 
II, based on their structure, chemical and neu-
rophysiological properties and toxicological ac-
tion. Type I pyrethroids are without a cyano moi-
ety at the α-position (i.e. permethrin, bifenthrin,  
allethrin, tetramethrin, resmethrin, phenothrin, 
bioresmethrin, etofenprox, prallethrin, tefluthrin), 
while type II pyrethroids have an α-cyano moiety 
at the benzylic carbon of the alcohol portion of the 
ester (i.e. cypermethrin, cyfluthrin, deltamethrin, 
cyphenothrin, flumethrin, cycloprothrin, fenva-
lerate, fluvalinate). Type II pyrethroids are more 
effective (6). All pyrethroids affect the sodium 
channels of nerve filaments. They extend time of 
opening and closing of sodium channels and ex-
tend their depolarisation phase. Moreover, type 
II pyrethroids affect the GABA receptors in the 
nerve filaments and affect chloride and calcium 
channels (6-9). Type I pyrethroids cause a type 
I poisoning called “T syndrome”, whereas type II 
pyrethroids induce a type II poisoning, known 
as “CS syndrome” in mammals (2). T- syndrome 
mainly includes symptoms like aggressive sparing 
behaviour, increased sensitivity to external stim-
uli, fine tremors, prostration, coarse body tremor, 
increase of body temperature. Pyrethroids that in-
duce a ‘‘choreoathetosis with salivation” response 
are called CS-syndrome pyrethroids and result 
in a broader range of toxic events due enhanced 
neurotransmitter release. Their main symptoms 
are: chewing, profuse salivation, pawing and bur-
rowing, coarse body tremor, increased startle re-
sponse, abnormal locomotion of posterior limbs, 
sinuous writhing (choreoathetosis) and clonic and 
tonic seizures (7). They cause cardiac contrac-
tions (3). 

Summarized all pyrethroids interfere with 
nerve cell function by interacting with ion chan-
nels. Pyrethroids also modulate the release of ace-
tylcholinesterase in the brain (10) and can inhibit 
ATP-ases (11). They can disrupt hormon-releated 
functions. But their effects on the endocrine sys-
tem are not described uniformly (12). 

Presence in the aquatic environment

Pyrethroids are absent in natural water nor-
mally. They may contaminate aquatic ecosystems 
as pollutants, because they are an important 
group of pesticides. The contamination of surface 
waters by pesticides used in agriculture is a prob-
lem of worldwide importance (10, 13).  Ecological 
catastrophes following application of deltamethrin 
for mosquito control have already been in 1991 
and 1995. Deltamethrin exposure have been one 
of main causes of massive eel (Anguilla Anguilla L.) 
devastation in Lake Balaton, Hungary (14). Pesti-
cides are also very important in veterinary medi-
cine as ectoparasiticides. They are popular due to 
their strong and extended insecticidal and simul-
taneously acaricidal effects. Pyrethroids are also 
used as antiparasitic drugs in human medicine 
and they are used extensively in urban settings to 
control several medically important insects that 
vector diseases. In aquaculture, pyrethroids are 
applied to control some parasitic diseases caused 
by, for example, Lepeophtherius salmonis or other 
sea lice in salmon farming. These products mainly 
based on deltamethrin are used in Scandinavian 
countries or Canada (15, 16). In addition to the 
recent increased interest in introduction of us-
ing deltamethrin in warm waters too, there are 
encouraging therapeutic results against isopoda 
with no side effects on the sea bass (Dicentrarchus 
labrax L.) (17). 

Aquatic organisms can be affected by pes-
ticides during their improper application or im-
proper handling. Pesticides can get into the water 
directly due to the incorrect application. They can 
get into the water during the disposal of unused 
residues or due to accidents during transport. 
Pesticides also can get into the water indirectly 
after running off from surrounding treated prod-
ucts (18). The residues of cypermethrin have been 
widely detected in water and sediment samples 
from streams and rivers draining major agricul-
tural districts (19).

Toxicity in the aquatic environment 

Pyrethroids are fairly rapidly degraded in soil 
and plants in the environment (2). Pyrethroids in-
duce rapid onset of poisoning symptoms but per-
sist only for a short time in the water column due 
to ability of adsorption by organic matter and deg-
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radation (20). The major degradation processes 
are ester hydrolysis and oxidation at various sites 
of the molecule. Pyrethroids have high hydropho-
bicity and they are rapidly and strongly adsorbed 
into particulate material (21). The pyrethroids are 
strongly adsorbed on soil and sediments. Pyre-
throids are widely recognized as being strongly 
lipophilic, and thus highly hydrophobic (21-23), 
adsorbing almost exclusively to organic carbon 
molecules in water sediment slurries within 24 
hours (24). Furthermore, pyrethroids have short-
er chemical half-lives than their organophosphate 
predecessors, ranging from several days (22) to 
around one month in aerobic sediments (25). Sed-
iment organic carbon plays a critical factor in de-
termining the bioavailability of a given pyrethroid 
in a particular aquatic system, and accordingly, 
the pyrethroid’s potential toxic effects (24). Mi-
crobial biodegradation of pyrethroids in aquatic 
system (in the sediment and water column) has 
been acknowledged to play an important role in 
the degradability and the persistence of the resi-
dues (26).

Fish sensitivity

Pyrethroids have been shown to be up to 1000 
times more toxic to fish than to mammals and 
birds at comparable concentrations (5, 27). Fish 
sensitivity to pyrethroids may be explained by 
their relatively slow metabolism and slow elimi-
nation of these compounds (7, 28). It may be ex-
plained as a result of exposure of toxicokinetic 
(i.e. absorption, biotransformation, distribution 
and elimination) and toxicodynamic (i.e. biochem-
ical and physiological effects) factors (7). Unlike 
most animals, in which pyrethroids have a short 
life and are readily metabolized, fish are reported 
to be deficient in enzymes that hydrolyze these in-
secticides (1, 29-31). 

The hypersensitivity of fish to pyrethroid intox-
ication is due partly to species specific differences 
in pyrethroid metabolism, but second important 
factor is higher sensitivity of the piscine nervous 
system to these pesticides. Fish brain seems to 
be more susceptible to pyrethroids than mam-
mal and bird brains are (1, 32). The third factor 
is route of exposure. Pyrethroids are absorbed di-
rectly via the gills into the blood stream (31).

Pyrethroids are inhibitors for fish carbonic an-
hydrase enzymes, and might cause undesirable 
results by disrupting acid–base regulation as well 

as salt transport. The most potent inhibitor is del-
tamethrin. The most affected CA enzymes are in 
muscle tissue and the lowest inhibition of CA en-
zymes is in liver tissue (33).

Types of poisononig

Acute toxicity

Acute toxicity is defined as a significant reduc-
tion in survival of the exposed organisms within a 
relatively short time and is expressed as the spe-
cies specific median lethal concentration (LC50) 
(12). The value 96 h LC50 is under 10μg/L in fish 
generally. Salmonid species are more susceptible 
than carp species (5, 7). The 96 h LC50 of cyper-
methrin is 3.14 μg/L in rainbow trout (Oncorhyn-
chus mykiss) (34) and 4.0 μg/L in Indian carp (La-
beo rohita) (10). But deltamethrin is described to 
be more toxic in common carp (Cyprinus carpio) 
than in rainbow trout on the contrary (35). Acute 
toxicity also influences viability of embryos and 
leads to significant increase of dead larvae even if 
concentarion is orders of magnitude less (31, 36). 

Chronic toxicity

Chronic toxicity effects can occur at exposure 
levels far below the concentration that causes le-
thality. Sublethal biological responses include 
behavior changes, reduced growth, immune sys-
tem effects, endocrine effects including decrease 
of reproductive success, histopathological and 
biochemical changes (12). Disturbance of the 
non-specific immune system is connected with 
decreased production of leucocytes. Changes of 
colours and integrity of body surface develop dur-
ing the weeks of exposure (37). Early life stages 
are more susceptible to chronic toxicity of pyre-
throids than adult fish (5, 12, 38). Fingerlings of 
Indian carp change shape of their bodies in suble-
thal exposure. They become lean towards the ab-
domen position compared to the control fish and 
they seem to be under stress, but this is not fatal 
(10).

Toxicokinetics

Fish in general are exposed to pyrethroids 
through their gills, which are multifunctional 
and complex organs with which fish make inti-
mate contact with their ambient water (39).  Py-
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rethroids are attracted to the non-water soluble 
components of cells due to their lipophilicity and 
permeate through the gills easily, even from wa-
ter containing low levels of pyrethroids. This is a 
contributing factor in the sensitivity of the fish to 
aqueous pyrethroid exposures (40,  41).

When rainbow trout body was studied, the 
greatest amount of radiolabeled fenvalerate resi-
dues were found in the bile, then in the fat depos-
its and followed by the liver, gill, kidney and red 
blood cells. Concentration in the brain was lower 
than in most other tissues (42).

Common way of detoxification is hydrolysis in 
liver and plasma of animals. The acid and alcohol 
components of pyrethroids that result from ester 
hydrolysis are of minimal toxicity to any animals 
(1, 4). Hydrolysis is followed by hydroxylation and 
conjugation to glucuronides and sulphates, which 
are excreted in urine (4). But fish treated by py-
rethroids do not show significant levels of ester 
hydrolysis products in urine or bile. It seems that 
permethrin elimination from fish is quantitative-
ly different from that reported in mammals and 
birds, with oxidative degradation predominating 
and ester hydrolysis constituting a minor reaction 
(7). Oxidation products are most common, pri-
marily due to ring hydroxylation and side chain 
oxidation reactions in fish (1, 7). Because of lack 
of hydrolysis detoxification, products of ester hy-
drolysis are rarely found (1) and only low levels 
could be confirmed (7).

Toxicokinetic experiments indicate that fenvaler-
ate elimination rate in rainbow trout is much slow-
er than in birds and mammals (1). The half-lives for 
elimination of several pyrethroids by trout are all 
greater than 48 h, while half-lives of elimination in 
birds and mammals range from 6 to 12 h (7).

Toxicodynamics

Pyrethroids bind to a receptors at the sodium 
gate of neuron and prevent it from closing fully. 
The resulting steady leakage of sodium ions into 
the neuron creates a less stable resting state and 
the neuron is susceptible to repetitive firing of 
nerve, which leads to hyperactivity, tremors and 
tetany (43,  44).

Effect of pyrethroids in mammals and in-
sects  depends on stereospecificity highly. Some 
isomers demonstrate strong potency and their 
mirror image isomers show almost no toxic-
ity. The available data for fish are not so uni-

form (1, 7). Fish seems to be equally sensitive 
to both cis and trans isomers of permethrin (1). 
In contrast stereospecific influence of fenvaler-
ate toxicity on fish is similar to that of mammals. 
The 2S pair of isomers is 3.3 times more toxic 
to fathead minnow (Pimephales promelas) than 
technical mixture with all four isomers (1, 45).                                                                                                                                             
Recent research indicates stereoselectivity in the 
estrogenic activity of permethrin, which results 
from stereoselective biotransformation of the par-
ent compound to more estrogenic metabolites. 1S-
cis-permethrin has a higher activity than the 1R-
cis enantiomer (46).

Synthetic pyrethroids have deleterious influ-
ence on Ca-ATPases and other ATPases in verte-
brates and invertebrates so additional toxic effect 
must be considered (1). Fish treated by cyper-
methrin show inhibition of gill Na+/K+ -ATPase 
activity which induce osmotic imbalance and in-
fluence maintenance of osmotic and ionic home-
ostasis (11). 

It is difficult to differentiate between type I 
and type II syndromes in fish. Both types of pyre-
throids cause similar neurological symptoms and 
fish generally become inactive before death (7).

Clinical symptoms of poisoning

The following clinical symptoms are observed 
during acute toxicity tests on rainbow trout and 
common carp: accelerated respiration, loss of 
movement coordination, fish lay down at their 
flank and move in this position. Subsequent short 
excitation stage (convulsions, jumps above the 
water surface, movement in circles) changes into 
a resting stage, and another short excitation pe-
riod follows again. In the end fish fall into damp, 
move mainly at their flank. Respiration is slowed 
down, the damp phase and subsequent agony 
are very long (34, 47). Similar neurological symp-
toms could be observed after 2 weeks of exposure 
to subacute concentration of deltamethrin (1.46 
μg/L) on monosex Nile Tilapia (Oreochromis niloti-
cus). It is accompanied by colour darkening of the 
body surface, slight erosions and/or rotting of fins 
and tail, slimness, general loss of fish scales, eye 
cataract and sometimes exophthalmia. Internally, 
there is general congestion of the liver, kidneys, 
gills and blood in the abdominal cavity (37). Loss 
of equilibrium, vertically hanging, gill flailing, er-
ratic swimming, swimming at the water surface, 
air gulping from the water surface or staying mo-
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tionless on the aquarium bottom are observed 
during tests of acute toxicity of deltamethrin on 
the fry rainbow trout. The toxicity and presence 
of symptoms depends on increasing concentra-
tion and exposure time. Colour darkening is ob-
served at concentrations higher than 8 μg/L (48). 
Study of acute cypermethrin toxicity on rainbow 
trout describes the almost identical neurological 
symptoms again (gill flailing, hyperactivity, loss 
of buoyancy and inability to remain upright) (27) 
and on common carp abnormalities of movement 
again and hyperactivity are described especially 
(49). Necropsy after acute toxicity tests on rain-
bow trout and common carp reveales watery mu-
cus on body surface, excess fluids in body cavity 
and congestion of visceral vessels (2). Acute toxic-
ity of cypermethrin in silver catfish (Rhamdia que-
len) causes  loss of equilibrium, vertical hanging 
in water, rapid gill movement, erratic swimming, 
sudden swimming motion in a spiral fashion after 
long periods of inactivity and sudden movement 
after prolonged inactivity in the tank bottom (50). 
Respiration and movement abnormalities are de-
scribed mainly (30, 51). 

Endocrine and reproductive disruption

Cypermethrin reduces the fertilization success 
in atlantic salmon (Salmo salar). It inhibites abil-
ity of male salmon parr to detect and respond to 
the female salmon priming pheromone PGF2α. 
The increase in expressible milt and the levels of 
plasma sex hormones are reduced in the presence 
of the pyrethroid as the result of impaired olfac-
tory detection of the priming pheromone (32).

Biochemical and haematological profiles

Reduction in hepatic glycogen accompanied by 
increased level of plasma glucose is a common re-
action of fish against xenobiotic insult followed by 
metabolic stress (51-54). 

In rainbow trout cypermethrin causes signifi-
cantly decreased concentration of ALP and signifi-
cantly  increased concentration of ammonia, AST, 
LDH, CK and lactate in blood plasma (34). In com-
mon carp bifenthrin causes increased concentra-
tion of ammonia, AST and CK too (54).  In silver 
catfish cypermethrin causes increasing of levels 
Na+, K+, Mg2+, P, urea, glucose, cholesterol, creati-
nine, AST and ALP, whereas total protein, triglyc-
eride and ALT levels are reduced (50). In common 

carp deltamethrin causes decreased concentra-
tion of total protein in blood plasma (47).

An increase of plasma ammonia level is sup-
posed due to an increase of amino acids catabo-
lism and due to an inability to convert the toxic 
ammonia to less harmful substances and failure 
of ammonia excretion. Decrease of the levels of 
free amino acids accompanied by increase of the 
activities of AST, ALT and GDH in the vital organs 
is seen, because the amino acid catabolism is one 
of the main mechanisms, which  ensure immedi-
ate energy demand to the fish (55). An increase of 
AST and CK indicates tissue impairment based on 
the stress (56). The increase of LDH level is con-
nected with  metabolic changes, i.e. the glycogen 
catabolism and glucose shift towards the forma-
tion of lactate in stressed fish, primarily in the 
muscle tissue (52).  Metabolic stress induced by 
pyrethroids is accompanied by changes in levels 
of enzymes of antioxidant defense (57, 58).

Studies of haematological parameters are in-
consistent. In catfish (Heteropneustes fossilis) del-
tamethrin causes a significant increase in RBC, 
but a small decrease in Hb, MCV, MCH and PCV 
(59). In common carp acute intoxication of deltam-
ethrin causes decrease in RBC, Hb and PCV and 
has no effect on MCV, MCH, MCHC, total leuko-
cyte count and relative as well as absolute counts 
of lymphocytes, monocytes, neutrophil granu-
locytes and their developmental forms (47). In 
rainbow trout cypermethrin causes  a significant 
increase  in the levels of RBC and a significant 
decrease in the Hb, MCH, MCHC, thrombocyte 
count and erythrocyte sedimentation rate (60). 
But only significant decrease in count of devel-
opmental forms of myeloid sequence and the seg-
mented neutrophilic granulocytes is described in 
another acute toxicity test with cypermethrin and 
any effect on the haematological indicators such 
as RBC, Hb, PCV, MCV, MCHC, MCH and leuko-
cytes (34). Elevation of the relative and absolute 
monocyte counts is described in common carp 
treated by bifenthrin (54). Deltamethrin causes 
decreased lymphocyte and basophile percentages 
and decrease of total leukocyte and erythrocyte 
counts, Hb and PCV simultaneously with serious 
hypoproteinaemia, hypoalbuminaemia, hypercho-
lesterolaemia, hyperglycaemia in Nile tilapia ex-
posed to subacute concentration  for weeks (37).
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Post-mortem findings

Severe teleangioectasiae are revealed in sec-
ondary lamellae of gills, with the rupture of pil-
lar cells in 50% of fish treated by bifenthrin (54). 
The most common gill changes of fish treated by 
deltamethrin are desquamation and necrosis. It 
is followed by the lifting of the lamellar epitheli-
um, oedema, aneurism, hyperplasia of epithelial 
cells and fusion of the secondary lamellae. These 
changes are results of direct responses of gill to 
the action of deltamethrin and simultaneously de-
fense responses of organism against toxicant to 
make it more difficult to access to blood stream 
(61).

Bifenthrin causes degeneration of hepatocytes, 
especially in periportal zones, in 40% of treated 
fish. Affected hepatocytes show pycnotic nuclei 
and many small or single large vacuoles in the 
cytoplasm. Vacuole shape is typical for fatty de-
generation of liver. It can imply the influence of 
pyrethroids in the digestive tract. (54). 

Deltamethrin destructive effects in fish kidney 
are characterized by degeneration in the epithelial 
cells of renal tubules, pycnotic nuclei in the hae-
matopoetic tissue, dilatation of glomerular capil-
laries, degeneration of glomeruli, intracytoplas-
matic vacuoles in epithelial cells of renal tubules 
with hypertrophied cells and narrowing of the tu-
bular lumen (61).

Factors influencing pyrethroids toxicity

A lot of factors can modulate the toxicity. Many 
synthetic pyrethroids have their 96 h LC50 val-
ues under 1μg/L, while chronic toxicity can be 
recorded at one to two orders of magnitude lower 
than that (5). Fish toxicity studies vary widely in 
their methodology (e.g., static conditions vs. flow-
through exposures, nominal concentrations add-
ed to the water vs. measured concentrations). A 
lot of studies in standardized water demonstrate 
extraordinary toxicity, however field trials show 
the pyrethroids to be less potent than expected 
from laboratory studies. It is determined that py-
rethroids, with their extremely low water solubil-
ity and high affinity for particulate matter in solu-
tion, do not remain bioavailable for uptake by the 
fish in the field ponds. When the pyrethroids mol-
ecules bind to the suspended solids or the sedi-
ment, the resultant toxicity is orders of magnitude 
less than predicted by the clean water assays (1).

Currently available formulations of pyrethroids 
are oil based, emulsifiable concentrates (EC).  The 
emulsifiable formulation keeps the pyrethroids in 
solution longer compared to the technical chemi-
cals and the pyrethroids adsorb to the glass quick-
ly. Pyrethroids tend to bind to the glass and plas-
tic (62). EC formulations  are usually two to nine 
times more toxic than the technical grade forms, 
most likely due to synergistic interactions (63). 

The ionic characteristics of the water can exert 
influence on the toxicity of pyrethroids to fish. Wa-
ter hardness (summary Ca2+ + Mg2+) is shown to be 
a factor in bluegill (Lepomis macrochirus) suscep-
tibility to fenvalerate. The LC50 values are twofold 
higher in very soft water, compared to hard water. 
Increased toxicity on bluegill fry is recorded when 
salinity raises (64). Pyrethroids are more toxic at 
lower temperatures and conversely fish are more 
susceptible at lower temperatures (1, 5, 13, 44). 
There is a possible increase in the toxic impact 
of pyrethroids on reproduction during spawning 
season in the cold water (32).

Pyrethroids appear to be generally more toxic 
to smaller fish than larger ones (5, 13, 51). Fish 
embryos appear to be less sensitive to pyrethroids 
than larvae (12).

Toxicity of pyrethroids is dramatically influ-
enced by the presence of particulate matter in the 
water column, probably through adsorbtion of the 
very lipophilic toxicant molecules to the suspend-
ed matter, sediment and dissolved organic matter 
(40, 65). That is why adsorbtion of pyrethroids is 
more quick in system like farm ponds with organ-
ic matter than in typical streams (12). 

Piperonyl butoxide is commonly added to py-
rethroid products to enhance the toxic effects of 
the active ingredient. Piperonyl butoxide inhibites 
a group of enzymes,  which are involved in pyre-
throid detoxification (12).

Conclusion

Pyrethroids are predominant class of insec-
ticides. Their widespread use represents an in-
creasing threat of water pollution. Investigation of 
their properties in connection with environment, 
acute and chronic effects and potential bioaccu-
mulation must continue thoroughly. Research on 
non target species including fish should be really 
detailed.
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VPLIV PIRETROIDOV NA RIBE

Z. Richterová, Z. Svobodová

Povzetek: Piretroidi spadajo med najbolj pogosto uporabljene pesticide po vsem svetu. Njihova masovna uporaba ogroža nar-
avno okolje, vključno z vodnimi ekosistemi. Čeprav se piretroidi v tleh in rastlinah hitro razgradijo, so za ribe zelo strupeni. Glede na 
svoje značilnosti se piretroidi delijo v dve skupini, tip I in II. Oba povzročata podobne nevrološke simptome. Piretroidi vplivajo na 
delovanje natrijevih kanalčkov v živčnih celicah, piretroidi tipa II poleg tega vplivajo tudi na kloridne in kalcijeve kanalčke. Ključnega 
pomena pri zastrupitvi rib s piretroidi je njihovo počasnejše izločanje kot pri pticah in sesalcih. Piretroidi se hitro absorbirajo preko 
škrg, po krvi pridejo v žolč, jetra, ledvice in rdeče krvne celice, kjer se presnavljajo s hidrolizo, hidroksilacijo in vezavo na glukuro-
nide in sulfate. Akutna zastrupitev rib se kaže z motnjami v gibanju in dihanju ter smrtjo. Kronična izpostavljenost piretroidom pri 
ribah povzroči spremembe v obnašanju, krvni sliki, histopatološke spremembe, zmanjšano rast ter vpliva na imunski in endokrini 
sistem. V obeh primerih pa je tudi prizadeta reprodukcijska sposobnost. Toksičnost piretroidov je odvisna od številnih notranjih in 
zunanjih dejavnikov.

Kljuène besede: piretroidi; nevrotoksičnost; občutljivost; fiziološke motnje


