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The boundary element method has been seen as a 
very successful method for solving various problems. 
In general, this method has an advantage over other 
numerical methods when the fundamental solution 
to the governing equations exists, thus effectively 
reducing the dimension of the problem [1]. Using 
the description of the governing physics regarding 
the fundamental solution, a stable and highly 
accurate numerical scheme is obtained, even on 
coarse numerical meshes. Unlike most of the other 
discretisation methods, using fundamental solutions 
this method relies on capturing the governing 
physics instead of the brute force. Furthermore, the 
derivatives of the transported variables, normal to 
the boundary of the domain or sub-domain, are a part 
of the solution of the system. This enables accurate 
representation of these values and the corresponding 
integral parameters such as the Nusselt number for 
example. Unfortunately, the governing equations for 
the fluid flow in general are of convective-diffusive 
type with important and non-trivial source terms. 
Even when the convective-diffusive fundamental 
solution is used, discretisation of the whole solution 
domain is needed. In addition, when a fundamental 
solution that includes more of the governing physics 
of the flow is used (with the exception of the Laplace 
fundamental solution), the integrals that arise from 
the discretisation of the governing equations need to 

be re-evaluated every time the corresponding field 
of variables (e.g., velocity) is changed. However, the 
inclusion of the flow physics into the discretisation 
usually leads to coarser numerical meshes.

Whilst there are various approaches for the 
discretisation of domain terms (dual reciprocity 
method [2], the green element method [3], etc.) arising 
regarding the discretisations of the Navier-Stokes 
equations the so-called boundary-domain integral 
method (BDIM) [4] is used in our case. This approach 
gives discretisation of the solution domain similar to 
the finite element method, with each cell representing 
a separate sub-domain. The appropriate compatibility 
and equilibrium conditions have to be applied in order 
to interconnect the sub-domains. This results in an 
over-determined linear system of equations with a 
non-symmetric sparse system matrix that is solved by 
the LSQR solver [5] using diagonal-preconditioning.

In Lupše et al. [6] the method was extended 
for solving the Reynolds averaged Navier-Stokes 
equations (RANS). This article is aimed at testing 
the developed algorithm for the intrinsically unsteady 
flows that can also be described using the unsteady 
RANS (URANS) approach. In regard to this purpose 
the flow over a square cylinder inside a channel was 
chosen as a relevant test case.

The confined flow around the square cylinder 
is a challenging test for numerical methods as a 
multitude of interesting flow phenomena are present 
within relatively simple geometry. This type of flow 
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is important during many engineering applications 
ranging from the cooling of electronics to building 
aerodynamics. Although free-flow around the circular 
cylinders has been the focus of extensive research [7], 
less effort has been put into researching the confined 
flow around bluff bodies, especially around the square 
cylinders. Additional parameters need to be defined 
for the confined flow, namely those inflow velocity 
profiles and blockage ratios of the channel that do not 
appear in free-flow cases. Davis et al. [8] performed 
experiments and numerical simulations of the flows 
for two different blockage ratios (B = 1/4 and B = 1/6) 
and a wide variety of Reynolds numbers ranging from 
100 and up to 1800. Later, [9] performed numerical 
simulations for blockage ratio of 1/8 and Reynolds 
numbers of the flow up to 900. A common argument 
about simulations of [9] is that the meshes used were 
too coarse around the vicinity of the cylindrical 
obstacle, hence the discrepancies of the obtained 
results with other authors. Breuer et al. [10] tested two 
different numerical methods on this type of flow at the 
blockage ratio of 1/8 for Reynolds numbers up to 300. 
Their results are widely considered as the benchmark 
for the laminar part of the flow.

The results of [10] were later confirmed by the so-
called multi-particle collision dynamics method tested 
at Reynolds numbers lower than 130 [11]. Galletti 
et al. [12] performed a test of a proper orthogonal 
decomposition-based model on the confined flow over 
a square cylinder and obtained comparable results to 
[10] having a blockage ratio of 1/8. Later the flow was 
also simulated for various laminar Reynolds numbers 
and extended those simulations to different blockage 
ratios and non-isothermal flows [13] and [14].

The flow chosen for the test case featured many 
interesting phenomena at different flow regimes. 
At the Reynolds number equal to 1 creeping flow is 
observed. The flow separates from the trailing edge 
of the cylinder with any increase in the Reynolds 
number. Although two recirculation bubbles are 
present and increase in length as the Reynolds 
number of the flow increases, the flow is steady up 
to a critical point. Authors in literature have reported 
different values for this critical number but agree 
that it lies somewhere between Re = 54 [15] and Re 
= 70 [16]. After this point the flow becomes unsteady 
but periodic. Separation occurs at the trailing edge 
at first and with increasing Reynolds number of the 
flow moves to the leading edge of the cylinder. Flow 
separation causes a distinct pattern of flow, known as 
the Von Karman vortex street. Spatial effects occur at 
about the Reynolds number 300 [10]. As the Reynolds 
number of the flow is defined by the cylinder diameter 

and not the channel width it is necessary to have in 
mind that with a used blockage ratio of 1/8 at about 
this Reynolds number, transition to turbulence in 
the channel flow is slowly starting to occur. Thus in 
reality, the flow beyond the Reynolds number 300 is 
be-coming increasingly turbulent. Consequentially, 
for the inlet profile the turbulent velocity profile 
would be more appropriate passed these Reynolds 
numbers of the flow. The data available in literature 
for the Reynolds numbers up to 1000 [8] is obtained 
by imposing the standard parabolic velocity profile. 
As such, the parabolic velocity profile in this work, 
used at the inlet boundary condition, was used purely 
for the testing purposes of the developed numerical 
algorithm and code in order to enable easier and more 
accurate comparison with the available data of [9].

1  GOVERNING EQUATIONS

Whilst the more common approach to describing the 
fluid flow is the use of the Navier-Stokes equations 
in their primitive forms, the velocity-vorticity 
formulation is used in our work. In this formulation 
the flow equations are split into kinematic and 
kinetic parts. In general, the approach gives us the 
advantage of eliminating the pressure gradient from 
the governing equations. However, the boundary 
conditions for the vorticity field in Eqs. (1) and (2) 
are generally unknown intuitively, unlike the velocity 
boundary condition in the momentum transport 
equation.

The flow kinetics is described by the vorticity 
transport equation obtained from the momentum 
transport equation by applying the curl operator [17]. 
For the incompressible planar flow the following 
equation is obtained:
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where ω is used for the vorticity, Uj for the components 
of the velocity vector and xj the spatial coordinates; 
ν0 the kinematic viscosity, ρ0 the fluid density and gi 
the components of the gravity acceleration vector. The 
vorticity vector is treated as a scalar within the planar 
flow since only the component of the vorticity normal 
to the plane of the flow has a non-zero value. In the 
RANS form of Eq. (1), an additional source term is 
obtained on the right hand side and the RANS form of 
the vorticity transport equation is then [6]:
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where the additional source term fim is defined by:
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The effective viscosity is now comprised of the 
molecular part ν0 and the modelled part νt . The over-
bar indicating the averaging process is omitted for the 
sake of brevity.

The kinematics part is formed by the Poisson 
equation that links the velocity and vorticity fields. 
It is derived at from the continuity equation and 
the vorticity definition [1]. For the planar flow the 
following form of the kinematics equation is obtained:

 ∂
∂ ∂

+
∂
∂

=
2

0
U
x x

e
x

i

j j
ij

k

ω
.  (4)

There exist very efficient algorithms for solving 
the velocity-vorticity forms of the equations [18] 
but they are only applicable for special cases using 
simplified geometry. Care has to be taken however 
since Eq. (4) admits solutions in which neither 
solenoidality of the velocity field nor vorticity 
definition hold true [19]. In order to obtain a general 
solution, an additional equation has to be included [1]:
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where the normal and tangential derivatives in respect 
to domain boundary are defined as:
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and n and t are the unit normal and unit tangent 
vectors.

Finally, in order to close the system of equations, 
the Spalart-Allmaras model [20] is used as a closure 
model. The main equation of this closure model 
without the trip term is:
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Eq. (7) is the transport equation for the so-called 
modified turbulent viscosity from which modelled 
viscosity νt, as used in Eq. (2) is obtained by simple 
algebraic expression. For the details on the functions 

and constants of the used model see the original 
reference [20].

2  BOUNDARY-DOMAIN INTEGRAL EQUATIONS

Prior to discretisation using the boundary element 
method, the governing equations need to be rewritten 
in integral form. If we use Ω for the solution domain 
and Γ for its boundary, then the integral form of the 
kinematics Eq. (4) can be written as
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where we use ξ for the location of the source point, 
c for the geometric coefficient and u* to denote the 
Laplace fundamental solution.
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In Eq. (9) r is used for the distance between the 
integration and source points. The detailed derivation 
of the integral form of Eq. (8) can be found in [21]. 
Eq. (8) is then used for calculation of the velocity 
field inside the solution domain. In order to calculate 
the boundary conditions for the vorticity transport 
equation in a general case Eq. (4) has to be combined 
with Eq. (5). A new integral form of the kinematics 
Eq. (4) is obtained; 
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with the tangential derivative defined as in Eq. (6).
The vorticity transport equation is a non-stationary 

convective-diffusive equation with nonlinear source 
terms. As such, several fundamental solutions can be 
used as weighting functions. If the parabolic diffusion 
fundamental solution is used the following integral 
form of the vorticity transport equation is obtained [6];
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The index k is used for denoting the current 
time step, thus tk denotes the current time. Instead 
of the parabolic diffusion fundamental solution the 
convection-diffusion fundamental solution can also be 
used. The following form of the equation is obtained 
[6];
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where we use β1 = –2/Δt, β2 = –1/(2Δt) and  
Q* = ∂u*/∂n + (Uj0nj0 /ν0) u*, for the time discretisation. 
As the transport equation of the turbulence model used 
is of the same type as the vorticity transport equation, 
a similar integral equation is derived at: 
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where I is used for the model source terms. For the 
Spalart-Allmaras model it is defined as:
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In the final discrete form of the equation 
the source term I is split into the production and 
destruction terms and linearised to improve the 
numerical stability.

3  THE NUMERICAL ALGORITHM

3.1  Discrete Form

In order to obtain the solutions to the governing 
equations, the solution domain is divided into C 
domain cells also called sub-domains comprised of 9 
nodes (Fig. 1) and E boundary elements;
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==
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e
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c
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 (15)

The classic single domain BEM is used for the 
calculation of boundary vorticity values by Eq. (10). 
However, all other equations are discretised using 
the domain decomposition approach, also called sub-
domain BEM. The basic idea behind this approach is 
to split the solution domain into multiple sub-domains, 
similar to the cells used in the finite element methods. 
The sub-domains are then interconnected by the 
appropriate compatibility and equilibrium conditions 
corresponding to each sub-domain. This approach 
leads to an overdetermined sparse system matrix and 
in comparison with the classical BEM enables large 
savings in CPU time and computer memory.

Fig. 1.  Sub-domain:the dot represents the function node  
and x the double node (node with function and its normal 

derivative as an unknown)
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As both the vorticity transport and the equations 
of the turbulence models are of convective-diffusive 
type, the general discrete form is presented in Eq. (16) 
where φ is used for the corresponding field function 
(vorticity, turbulent kinetic energy, etc.). The number 
of nodes in each element is marked with n and the 
general source term S is introduced that includes the 
sources obtained from time discretisation and various 
body source terms depending on the equation solved 
(fm for the vorticity transport equation, I for the 
turbulence model etc.)
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The integrals introduced in Eq. (16) are defined 
as:
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with the functions χ, Φ and Ψ in our case representing 
the constant, quadratic and biquadratic interpolations. 

3.2  The Solution Procedure

A brief schematic of the algorithm is presented in 
Fig. 2. All equations are solved sequentially within 
a global nonlinear loop – depending whether the 
turbulence model is included the loop terminates after 
the solution of the kinetic equation for the domain 
vorticity values or after solutions of equations of the 
turbulence model. The main convergence criterion is 
the convergence of the vorticity field with additional 
monitoring of the convergence of the turbulence 
model’s values. As the kinetics equations are highly 
nonlinear, an under relaxation procedure is introduced 
to enable convergence of the solution. When the 

convergence of the solution meets the predefined 
accuracy the next time-step is initiated and the 
solution process repeated.

In regard to the velocity-vorticity formulation 
of the Navier-Stokes equations, boundary conditions 
for the vorticity transport Eq. (2) need to be supplied. 
They are obtained from the proper velocity boundary 
conditions and an initial vorticity field by solving Eq. 
(10). Due to the unknown initial value of the vorticity 
field, the solution of Eq. (10) has to be coupled with 
the vorticity transport equation (Eqs. (11) or (12)) in 
an iterative way. The Laplace fundamental solution is 
used in Eq. (10), as the equation is of the Poisson type. 
Unfortunately, in order to preserve the solenoidality of 
the velocity field, the equation needs to be solved in 
a global sense and its discretisation leading to a fully 
populated system matrix. It is possible to reduce the 
memory requirements of the algorithm by introducing 
fast wavelet, or some other similar method for the 
matrix compression [22] with negligible loss of 
accuracy.

Fig. 2.  Flowchart of the numerical algorithm for the solution of 
governing equations in the velocity-vorticity form

With the boundary values of the vorticity field 
known, Eq. (8) is solved for the domain velocity field. 
As Eq. (8) is the Poisson equation for the velocity 
field, the simple Laplace fundamental solution is used. 
The sub-domain integral method is used ([4] and [6]) 
for the discretisation of Eq. (8) and all the following 
Eqs. (11) or (12) and (13). This approach yields a 
rectangular system matrix, solved using the LSQR 
type solver and a diagonal pre-conditioner [5]. In 
general the sub-domains can be comprised of various 
numbers of nodes, depending on the interpolation 
used for the field function values. In our case, the 
sub-domains used contained nine mesh nodes, thus 
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enabling quadratic interpolation of the function 
values. The normal derivative (flux) values that are 
also part of the solution are interpolated with constant 
elements, so the same mesh nodes can be used as for 
the function values (see Fig. 1). Any higher order 
interpolation of the flux values would require either 
the inclusion of additional nodes or evaluation of the 
corner values of fluxes within each sub-domain, which 
is not recommended as the procedure can introduce 
additional errors.

The next step in the algorithm is the solving of 
the vorticity transport equations (Eqs. (11) and (12)) 
that provide the domain vorticity field values and thus 
complete the information needed for describing the 
laminar or (in the case of direct numerical simulation) 
the turbulent isothermal incompressible flow also. 
The algorithm iterates the steps described until 
satisfactory convergence within the vorticity field is 
achieved. Whilst in the first two parts of the algorithm 
(boundary vorticity values and domain velocity field 
calculations), the Laplace fundamental solution 
is used because of the mathematical simplicities 
of the equations in question, thus more advanced 
fundamental solutions can be used for the derivation 
of the integral statements of the vorticity transport 
equation. In our case the parabolic diffusion and the 

convection-diffusion fundamental solutions were 
implemented, as can be seen from Eqs (11) and (12).

In cases of non-isothermal flows or the RANS/
URANS simulations, additional equations for the 
conservation of the energy and/or the turbulence 
models need to be solved. Those equations are of 
the same type as the vorticity transport equation and 
are thus solved in a similar fashion. It also has to be 
noted that when the low-Reynolds turbulence models 
are used, a classical linearisation procedure of the 
dissipation terms in the model’s equations is used. 

4  DESCRIPTION OF THE TEST CASE

The geometry of the test problem consisted of a plane 
channel with a square obstacle placed inside. For the 
unit length, the obstacle diameter D was taken (see 
Fig. 3), thus we defined the Reynolds number of the 
test case as Re = DUc / νo, where Uc was the centreline 
velocity at the inlet section. The blockage ratio of the 
test problem was defined by: B = D / h = 1/8 = 0.125, 
where h was the channel’s height.

At the solid walls and on the surface of the square 
cylinder, no-slip boundary condition was prescribed. 
In order to enable better comparison with other 
authors [8] and [10], the parabolic velocity profile was 

a) 

b)              c) 

Fig. 3.  a) Geometry and boundary conditions of the test case, b) Mesh c: around the cylinder and c) Mesh c: zoom in; for finest numerical 
mesh used for the calculation, comprised of approximately 14700 sub-domains and 56342 mesh nodes (mesh lines connect the function 

nodes of sub-domains as presented in Fig. 1)
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prescribed at the inlet. The convective type boundary 
condition (as described in [23]) was used at the outlet 
for the velocity field whilst for all other variables the 
zero normal derivative was prescribed.

The flow was firstly calculated at the Reynolds 
numbers 100 and 150 on three different meshes, 
with the focus on increasing mesh density within the 
vicinity of the obstacle (see Fig. 3).

The coarsest mesh (mesh a) was comprised 
of around 4700 sub-domains (19132 mesh nodes), 
the mid-sized mesh (mesh b) had about 10700 sub-
domains (43586 mesh nodes) and the finest one (mesh 
c) had about 14700 sub-domains (56342 mesh nodes). 
As the finest mesh had the greatest resolution within 
the vicinity of the cylinder, only this one was used in 
the calculation of flow at the Reynolds number 1000. 
The time-step used for simulations was ∆t = 2.5×10–3 

and ∆t = 2×10–2 for URANS simulations, normalised 
as t* = (tU ) / D.  t* is non-dimensional time, t real time 
and U  average velocity at the inlet of the channel.

4.1  Laminar Flow

Firstly the flow was calculated at the Reynolds 
numbers 100 and 150. For the initial values of the 
higher Reynolds simulation, the values were used as 
obtained by the Re = 100 simulation. Vortex shedding 
was initiated without introducing any artificial 
perturbations. Streamlines for quarters of the time 
period are shown in Fig. 4 for both flow cases. At the 
lower laminar Reynolds number the separation of the 
flow occurred at the cylinder trailing edge (see Fig. 
4a). However, at the Reynolds number 150, the flow 
was also separated from the leading edges, as can be 
seen in Fig. 4b. The separations in both cases then 
caused periodic vortex shedding, also known as the 
Von Karman vortex street.

In Figs 5a and b the time variations of the drag 
and lift coefficients, evaluated from the forces acting 
on the cylinder are presented and the periodical nature 
of the flow can be clearly seen. The vortex shedding 
frequency f was evaluated from the lift coefficient 

      a)                          b)  
Fig. 4.  Streamlines of the flow at a) Re = 100 and b) Re = 150

    a)              b) 
Fig. 5.  Time variation of the lift and drag coefficients for the Reynolds number; a) 100 and b) 150
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time series and used for the calculation of the Strouhal 
number, we defined by:

 St f D
Uc

=
⋅ .  (18)

Table 1 presents the results for both the Strouhal 
number and the drag coefficient, together with 
comparison with available data from literature. 
General increases for both integral parameters were 
observed with the increase in the Reynolds number. 
When taken into account the results from the literature 
are quite widespread, the calculated Strouhal number 
matched the given data quite well, whilst the drag 
coefficient value seems to be systematically lower 
than the values from the literature.

A detailed comparison between the velocity 
profiles at the Reynolds number 100 was made with 
the results of Breuer et al. [10]. In order to make 
this comparison possible, the velocity profiles were 

extracted at approximately the same moment as 
described in the cited authors work; when the cross-
stream velocity Uy at an axial position of 10 cylinder 
diameters downstream the cylinder, changed its sign 
from negative to positive. The comparisons between 
the velocity profiles are shown in Figs. 6a and b, 
where good agreement can be seen for meshes b and 
c used for the calculation of the flow, with minor 
deviations of the profiles towards the outlet section 
of the channel. Those deviations could most likely be 
attributed to the usage of relatively coarse mesh far 
away from the obstacle and a shorter computational 
domain as compared to [10].

Additional error was also produced by the finite 
length of time-step thus enabling only approximate 
determination of the time for the extraction of the 
velocity profiles.

The comparisons between the velocity profiles at 
the Reynolds number 150 are shown in Figs. 6c and 

   
a) vx; Re = 100                                                                                             b) vy; Re = 100

   
c) vx; Re = 150                                                                                             d) vy; Re = 150

Fig. 6.  Instantaneous velocity profiles for Re = 100 and Re = 150 at the middle of the channel  
at a certain moment (see text for explanation), compared with the results of [9]



Strojniški vestnik - Journal of Mechanical Engineering 61(2015)4, 254-264

262 Lupše, J. – Škerget, L. – Ravnik, J.

d. As no data for the profiles could be found in the 
literature, the comparison was only made between 
meshes b and c.

At the higher Reynolds number the velocity 
profile was qualitatively similar to the profiles at the 
Reynolds number 100, with the higher maximum 
values within the velocity field.

Table 1.  Comparison between the Strouhal number and drag 
coefficient for Reynolds 100 and 150

Re Mesh St Cd

100

Breuer [10] 0.139 1.35
Lamura [11] 0.133 1.38
Turki [13] and [14] 0.134 1.40
Galletti [12] 0.138 -
Mesh a 0.129 1.33
Mesh b 0.135 1.31
Mesh c 0.137 1.27

150

Breuer [10] 0.147 1.33
Turki [13] and [14] 0.136 1.38
Galletti [12] 0.144 -
Mesh a 0.133 1.43
Mesh b 0.141 1.39
Mesh c 0.147 1.29

200 Mesh c 0.151 1.37
250 Mesh c 0.155 1.46

4.2  Turbulent Flow

In order to obtain initial values for the flow field, the 
calculations were initiated at the Reynolds number 
500 on the most refined grid for a few hundred time-
steps in order to provide initial values for higher 
Reynolds calculations. The Reynolds number was 
then increased to the final value of Re = 1000. As 
we have defined the Reynolds number in the same 
manner as in the reference literature (with obstacle 
width and maximum inlet velocity), it has to be noted 
that the Reynolds number based on the channel width 
and bulk velocity is around 5300. Although physically 
less appropriate, the parabolic velocity profile was 
used at the inlet in order to enable easier and more 
accurate comparisons between the experimental and 
numerical data of [8]. The flow was calculated for 
direct solutions of the governing equations (dubbed 
the quasi-direct numerical simulation (qDNS) due 
to the mesh being insufficiently refined) and the 
modified governing equations in the URANS mode.

In Figs. 7a and b the time series for the drag and 
lift coefficient are presented for the direct solution 
of the governing equations for both the parabolic-
diffusive and the convective-diffusive fundamental 
solutions. From these series, the loss of periodicity 

    
a) qDNS; Drag

    
b) qDNS; Lift

    
c) URANS; Drag and lift

Fig. 7.  Time series of lift and drag coefficient at Re = 1000 for 
qDNS and URANS simulations
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of the flow can be observed in the qDNS simulation. 
This is also confirmed by the experimental results of 
[8] at blockage ratios of 1/4 and 1/6. As the equations 
were solved in a direct manner, the small structures 
in the flow were limited only by a time-step and 
a mesh resolution. In Fig. 8a the streamlines are 
presented for the qDNS simulation showing a variety 
of different size flow structures. Fig. 7c presents 
the time series of the drag and lift coefficients for 
the URANS simulation. After a transient time, the 
smaller structures in the flow are dampened out 
by the imposed RANS model and the flow again 
becomes periodic. This is further shown in Fig. 8b 
regarding streamlines for the URANS simulation. 
Only large structures of the flow are observed. Having 
only large structures captured by the simulation, the 
simulated flow is qualitatively similar in behaviour to 
the laminar flow. Furthermore the dampening of the 
smaller structures by the increased viscosity of the 
URANS model seemed to lower the average value 
of the drag coefficient in comparison with the direct 
simulation result.

The flow at the Reynolds number 1000 showed 
highly nonlinear behaviour thus the frequency for the 
calculation of Strouhal number was obtained by FFT 
analysis of the lift coefficient signal (Fig. 7b). The 
drag coefficient was obtained by averaging the signal 
(Fig. 7a). 

Table 2.  Comparison between the Strouhal number and the 
average drag coefficient for the flow at the Reynolds number of 
1000

B St Cd
Davis exp. 1/4 0.179 2.37
Davis num. 1/4 0.144 1.88
Davis exp. 1/6 0.153 2.11
Davis num. 1/6 0.131 1.76
qDNS 1/8 0.157 1.94
URANS-SA 1/8 0.114 1.53

A comparison of the data from [8], found in 
the literature, was made between both the Strouhal 
number and the drag coefficient in Table 2. Although 
the ratio of the cylinder diameter to the channel width 
(B) was similar but not equal, no other data at this 
Reynolds number could be found for the geometry 
used in our simulations. The Strouhal number and 
the drag coefficient values in Table 2 given by the 
URANS simulation show values noticeably lower 
than in the reference data, most likely due to the 
imposed model dampening out smaller flow structures 
with the artificially increased eddy viscosity from the 
model.

       a) 

       b) 
Fig. 8.  Streamlines at Re = 1000; a) in qDNS simulation and b) in 

URANS simulation

5  CONCLUSIONS

Whilst many other discretisation methods received 
a lot more attention in the past, the usage of the 
boundary element method for the discretisation 
of the governing equations of the fluid flow is not 
widely known. The uses of fundamental solutions 
and with that the appropriate descriptions of some of 
the governing physics make this method appealing 
for use in fluids and could with more refinement 
come close or even surpass modern discretisation 
methods. Furthermore, as no artificial diffusivity is 
present within the discretisation scheme, as a direct 
consequence of the usage of Green’s functions, the 
use of the DNS type simulations would be possible 
without additional changes of the algorithms.

This paper derived at URANS type turbulence 
models for the velocity-vorticity forms of the 
Navier-Stokes equations. The governing equations 
are discretized by the boundary element method. 
Boundary values of vorticity are determined as 
a part of the algorithm. Vorticity transport and 
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turbulence model equations are solved using a domain 
decomposition approach.

The algorithm is tested on the flow over the 
square obstacle in a channel at laminar and turbulent 
flow regimes. Velocity profiles, the estimated Strouhal 
number and drag coefficient for the laminar flow 
regime were compared with the benchmark results of 
other authors and proved the validity of the algorithm. 

The turbulent flow regime was simulated at 
Reynolds number 1000 using quasi DNS and URANS 
approaches using Spalart-Allmaras turbulence model. 
Time traces of the drag and lift coefficient have been 
presented as well as average values compared with 
experimental data. Good agreement was observed.
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