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Abstract— We provide several examples showing that local search, the most basic metaheuristics, may be a 

very competitive choice for solving computationally hard optimization problems. In addition, generation of 

starting solutions by greedy heuristics should be at least considered as one of very natural possibilities. In this 

critical survey, selected examples discussed include the traveling salesman, the resource-constrained project 

scheduling, the channel assignment, and computation of bounds for the Shannon capacity. 
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I. INTRODUCTION 

Transportation and location problems are among the most studied problems in combinatorial 
optimization and operational research. Even the most simply stated problems such as the traveling 
salesman problem are known to be NP-hard, which roughly speaking means that there is no 
practical optimization algorithm provided the famous P≠NP conjecture is correct. The question is 
among the most challenging theoretical problems and was included into a list of seven millennium 
problems [31]. Practical problems are usually more complex as we have to take into account 
various additional constraints and goals when designing a model. Knowing the problem is 
computationally intractable implies that we may use heuristic approaches and that we also should 
aim to find nearly optimal solutions for which sometimes even approximation guaranties cannot be 
given.  The present author shares the opinion that best results are obtained when a special heuristics 
is designed and tuned for each particular problem. This means that the heuristics should be based 
on considerations of the particular problem and perhaps also on the properties of the most likely 
instances. On the other hand, it is useful to work within a framework of some (one or more) 
metaheuristics which can be seen as general strategies to attack an optimization problem. 
Hundreds of research papers were published on general and even on particular heuristics, for 
example evolutionary algorithms, ants algorithms, and even neural networks, to name just a few. In 
the last decades, thousands of research papers on theory and applications of heuristics have been 
published. Some of the popular metaheuristics, including some new or reinvented ones, are 
seemingly interesting because they are based on analogies to natural or social phenomena. The 
motivating story, and the theory behind, may sometimes be quite involved. Recall for example the 
simulated annealing algorithm, the evolutionary algorithms, and ants algorithms, as some of the 
popular examples from the past that are extensively used for optimization in current research. A fresh 
inexperienced reader might sometimes get the impression that a metaheuristics is more efficient 
when it is more complicated. This is of course not true. However, the fact that in optimization, the 
primary task is to find good, and possibly better, feasible solutions is indeed sometimes nearly 
forgotten. On the other hand, as the title of this paper says, perhaps the best heuristics are the 
simplest ones! In this paper, it is argued that local search, the most basic metaheuristics, is a very 
competitive choice. Furthermore, for generation of starting solutions, properly selected greedy 
heuristics should be at least considered as one of the possibilities. Examples include the traveling 
salesman, resource-constrained project scheduling, channel assignment, and bounds for the 
Shannon capacity. The paper is a revised and extended version of the author’s presentation at the 
conference “The international Conference on Logistics and Sustainable Transport” that was held in 
Celje at the Faculty of Logistics in June 2014. 

 

The rest of the paper is organized as follows. As the readers may not be specialists for metaheuristics, 
we start with some basic notions. First we introduce the problems in combinatorial optimization and 
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in Section III, the heuristics and metaheuristics. In Section IV we give two examples of greedy 
constructions followed by local search improvement, and in Section V, we briefly discuss another 
simple heuristics – constant temperature simulated annealing that is again just a relaxed local 
search or more precisely, iterative improvement. In the last section, we summarize the discussion.   

 

II. THE PROBLEMS 

 

In applied mathematics and theoretical computer science, combinatorial optimization is a topic 
that consists of finding an optimal object from a finite set of objects [8]. In many such problems, 
exhaustive search is not feasible. It operates on the domain of those optimization problems, in which 
the set of feasible solutions is discrete or can be reduced to discrete, and in which the goal is to find 
the best solution. Combinatorial optimization is closely related to operations research, algorithm 
theory, and computational complexity theory. In [30] the list of applications for combinatorial 
optimization includes: developing the best airline network of spokes and destinations, deciding 
which taxis in a fleet to route to pick up fares, determining the optimal way to deliver packages, 
determining the right attributes of concept elements prior to concept testing, etc. Hence there is no 
need for more arguments to conclude that logistics is a natural source of applications for 
combinatorial optimization. 

 

In order to illustrate our main idea we will mention the traveling salesman problem (TSP), which is 
perhaps the most studied problem in combinatorial optimization. In lecture notes for students, we 
sometimes relate TSP to a similar problem called the Chinese postman problem which allows a 
polynomial time solution. However, a slight modification of the model leads to an NP-hard problem 
again [9,10]. Another very basic and extensively studied problem is the graph colouring problem 
that is of great theoretical interest in mathematics, but also has interesting applications. In some 
sense, a graph colouring problem has to be solved in any scheduling problem. Furthermore, most 
channel assignment problems can be regarded as a generalization of the basic graph colouring 
problem [34]. 

 

In computational complexity theory, the complexity class NP-complete (NPC) is a class of decision 
problems. The corresponding optimization problems are NP-hard. Although any given solution to an 
NP-complete or NP-hard problem can be verified quickly (in polynomial time), there is no known 
efficient way to find a solution. As a consequence, determining whether or not it is possible to solve 
these problems quickly, called the P versus NP problem, is one of the principal unsolved problems in 
theoretical computer science today. It is included in the list of seven millennium problems, and a 
million dollars prize is offered for a solution [31]. NP-hard problems are often addressed by using 
heuristic methods and approximation algorithms. Combinatorial optimization problems can be 
viewed as searching for the best element of some set of discrete items; therefore, in principle, any 
sort of search algorithm or metaheuristic can be used to solve them. However, generic search 
algorithms are not guaranteed to find an optimal solution, nor are they guaranteed to run quickly (in 
polynomial time). Assuming that the conjecture P≠NP is true, there is no efficient (i.e. polynomial 
time) algorithm for any NP-hard problem. Either the algorithm has superpolynomial time complexity 
or its results are not expected to be exact. In other words, we cannot expect that the result of the 
optimization algorithm will always be the exact optimum. Such algorithms are called heuristic 
algorithms.  

III. HEURISTICS AND METAHEURISTICS 

 

A metaheuristic is a higher-level procedure or heuristic that may provide a sufficiently good solution 
to an optimization problem, especially with incomplete or imperfect information or limited 
computation capacity. Metaheuristics in contrast to heuristics often make few assumptions about 
the optimization problem being solved, and so they may be usable for a variety of problems, while 
heuristics are usually designed for particular problem or even particular type of problem instances. 
Compared to optimization algorithms, metaheuristics do not guarantee that a globally optimal 
solution can be found on some class of problems. We say that the heuristics search for so called 
near optimal solutions. This means that for some reasons we strongly hope that the solution will be of 
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good quality, but in general we have no approximation guarantee. Many books and survey papers 
have been published on the subject, for example [21].   

 

Most studies on metaheuristics are experimental, describing empirical results based on computer 
experiments with the algorithms. But some formal theoretical results are also available, often on 
convergence and the possibility of finding the global optimum. Here we will mention some examples 
of both experimental work and a theoretical result based on author’s experience. The selection of 
examples is therefore biased, and many relevant papers are not mentioned as we have no intention 
to provide a comprehensive survey.  

 

Metaheuristics are used for combinatorial optimization in which an optimal solution is sought over a 
discrete search-space. An example is the travelling salesman problem where the search-space of 
candidate solutions grows faster than exponentially as the size of the problem increases, which 
makes an exhaustive search for the optimal solution infeasible. In the search space of feasible 
solutions the solutions with extremal values of the goal functions are to be found.  

 

Perhaps the most natural and conceptually simple metaheuristics is the local search. In order to 
speak about local search, a topology in the search space is introduced, usually via definition of 
neighbourhood structure. It defines which feasible solutions can be obtained in “one step” from a 
given feasible solution. It is essential that the operation is computationally cheap and that the new 
value of the goal function is provided. There are two basic variants of the local search, best 
neighbour (or steepest descent) and iterative improvement. When a maximal solution is searched, 
iterative improvement is sometimes called Hill Climbing. As the names indicate, starting from initial 
feasible solution, iterative improvement generates a random neighbour, and moves to the new 
solution only if it improves the value of the goal function. The procedure stops when there has been 
no improvement for sufficiently long time. On the other hand, the best neighbour heuristics considers 
all neighbours and moves to the new solution with the best value of the goal function among the 
neighbours. If there is no better neighbour, the current solution is clearly local optima. Note that 
given a particular optimization problem, different neighbourhood structures can be defined giving 
rise to different local search heuristics. An elegant idea is switch among various neighbourhoods; see 
for example [15]. 

 

In fact, many metaheuristics can be seen as variations or improvement of the local search [1]. 
Popular examples that can be seen as variations of local search include simulated annealing, taboo 
search, iterated local search, variable neighbourhood search, and GRASP (Greedy Randomized 
Adaptive Search Procedure). A seemingly obvious drawback of the local search is its complete lack 
of memory. Namely, in the basic version and some of the variants, only the best solution is 
remembered, and all other information that may have been obtained during the computation is 
lost. An exception is the taboo search that successfully introduces a short time memory.  Therefore, it 
is natural to develop metaheuristics using search strategies that have a learning component added 
to the search. Metaheuristics motivated by the idea of learning from the past searches include ant 
colony optimization, evolutionary computation, and genetic algorithms, to name just a few. It is 
however a good question in each particular case whether learning does indeed mean an 
improvement.  Namely, a successful heuristic search must have both enough intensification and 
diversification. Indeed, too intensive learning may result in poor diversification with negative effects 
to performance of the heuristics [23]. 

 

The second important issue that may have essential impact on the success of the multistart local 
search based optimization is the selection of initial solution. Sometimes a solution is given, for 
example when we have an already known practical solution. Quite often, it is possible to generate 
many initial solutions easily. In such cases, a construction that is both greedy and to some extent 
random, may be the winning idea. Note that the quality of the initial solution is often not essential. 
Usually, more important is to have reasonably good starting solutions that in the same time are 
randomly generated thus assisting the multistart algorithm diversification. 
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IV. SOLUTIONS BY GREEDY CONSTRUCTIONS 

 

Intuitive explanation of an NP-hard problem may be to roughly say that the problem is likely to be 
intractable when the greedy construction does not work. Indeed for many problems we have 
theorems saying that some greedy algorithms will provide nonoptimal solutions. A well known 
example is the nearest neighbour heuristics for TSP for which we know that can provide arbitrary bad 
solutions on some artificially created instances. On the other hand, a randomized greedy 
construction heuristics can be rather useful [2,16,25,26]. We will discuss a couple of examples in more 
detail below. 

 

Example. TSP HEURISTICS BASED ON GREEDY CONSTRUCTIONS. The traveling salesman problem (TSP) 

is one of the most studied problems in combinatorial optimization [12]. The TSP is simply stated, has 

practical applications and is a representative of a large class of important scientific and 

engineering problems. An instance of TSP is given by a distance matrix D = (dij) of dimension n x n; 

where dij represents the weight of the arc from city i to city j in n = 1,...,n. If dij = dji for every pair i and 

j then the TSP is symmetric, otherwise it is asymmetric, (ATSP). TSP is an example of a NP-hard 

problem. It is therefore reasonable to design algorithms which find near-optimal solutions. Several 

hundreds of papers were published on TSP and probably every approach for attacking NP-hard 

optimization problems has also been tested or has even been originally formulated for TSP. Here we 

consider the heuristics which is based on the well-known arbitrary insertion procedure. It is called 

Randomized Arbitrary Insertion (RAI), see the pseudocode below. This procedure was not payed 

too much attention, maybe because of the known worst case performance. However, in the 

experiment reported in [2] we got surprisingly good results within acceptable computation times. 

The algorithm was tested on all ATSP instances of the TSPLIB library [32], which were available at the 

time of the experiment. The main idea of the heuristic is based on the arbitrary insertion algorithm, a 

relaxation of the cheapest insertion algorithm. The solutions are further improved by a local 

optimization phase. 

 

 

Algorithm RAI (Randomized Arbitrary Insertion): 

 

A. TOUR CONSTRUCTION 

1. Start with a tour consisting of a given vertex and a self-loop. 

2. While there are vertices not on the tour do repeat  

2.1. Randomly choose a vertex not on the tour. 

2.2. Insert this vertex between two consecutive vertices on the tour in the cheapest way.   

 

B. TOUR IMPROVEMENT 

3. Remember the tour solution, say S. 

4. Repeat N times   

4.1. Randomly choose i and j (1 ≤ i  <  j  ≤  n). 

4.2. Remove vertices i, i+1,…, j, and connect vertex i with vertex j + 1. 

4.3. While there are vertices not on the tour do repeat  

4.3.1. Randomly choose a vertex  v not on the tour. 

4.3.2. Insert v between two consecutive vertices on the tour in the cheapest way.   

4.4. Compare current solution with the solution S. Keep the better one. 

 

First two steps construct an initial solution. In the second part, in steps 3 and 4, the current solution is 

improved. This can be seen as a fixed number of moves of iterative improvement, where the 

neighbourhood is defined in a slightly nonstandard way. However, observe that the neighbourhood 

is consistent with the construction phase. 

 

As TSP is extensively studied problem, it is easy to compare a new heuristics with good competitors. 

Instances from TSPLIB, the library of TSP instances are natural dataset for testing. In the experiment 

[2] the algorithm was run on all 27 asymmetric instances in TSPLIB available at the time. All solutions 
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were within 3% from the optimal value, and in average over 50 runs, all instances were solved within 

0.5% from optimum! 

 

In addition, and quite surprisingly, comparison of the heuristic with Farthest Insertion (far), and 

Farthest Insertion followed by OR-opt [12], which is widely recognized as a very good heuristics of 

this type, made it possible to conclude that the fast and simple heuristics RAI performs remarkably 

well and is competitive both in terms of solution quality and execution times with the best heuristics 

proposed in the literature. In the table below, farthest insertion was repeated n times, each time 

another vertex was used as initial tour. For the algorithm RAI, the average results of 50 runs are 

given. Within comparable execution times the solutions obtained by RAI algorithm were better with 

only one exception, the instance ftv33. For more details see [2]. 

 

Table 1: Comparison our algorithm with farthest insertion 

 

 
  

 

Figure below shows how the quality of the solutions (minimum, maximum and average) is improving 

with time on a typical instance. 

 
 

Figure 1. Solution vs. time on ftv64 instance   

 

 

The experiment on TSP (and ATSP) was inspired  by  promising results that we got with insertion and 

optimization approach on PTSP [26], a probabilistic generalization of TSP.   
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Example. RCPSP HEURISTICS BASED ON GREEDY CONSTRUCTIONS. The resource-constrained project 
scheduling problem (RCPSP) can be stated as follows [16]. Given are n activities a1,…,an and K 
renewable resources. A constant amount Rk of units of resource k is available at any time. Activity ai 
must be processed for pi time units; preemption is not allowed. During this time period a constant 
amount of rik units of resource k is occupied. All the values Rk, pi, and rik are non-negative integers. 
Furthermore, there are precedence relations defined between activities. That is, we are given an 
undirected graph G = (V,E) with V = {1,…,n} such that if (i,j) ∈ E then activity j cannot start before the 
end of activity i. The objective is to determine starting times si for the activities ai, i = 1,…,n in such a 
way that:  at each time t the total resource demand is less than or equal to the resource availability 
for each resource,  the precedence constraints are fulfilled and, the makespan Cmax = max {ci | i = 
1,…,n}, where ci = si + pi, is minimized. As a generalization of the job-shop scheduling problem the 
RCPSP is NP-hard. 

 

Figure 2. A RCPSP instance. One resource (K=1) with 4 units available (R1=4). 
 

Let us illustrate the above definitions with the example on Figure 2. There are eleven activities that 
are partially ordered. The numbers give the length of each activity and the units of resource to be 
occupied. A feasible schedule can be represented in different ways. Besides the assignment of 
starting times, one can also give an ordered list of activities. This list has to be precedence feasible, 
i.e. each activity has all its network predecessors as list predecessors. Given the activities can be 
scheduled in the order of the list at the earlier precedence and resource-feasible start time. Clearly, 
there always exists a list that will generate an optimal schedule. Given the network depicted above, 
some of the (feasible) activity lists are:  λ = (1; 2; 3; 5; 7; 9; 8; 4; 6; 10; 11)  μ = (1; 2; 3; 7; 10; 4; 8; 5; 9; 6; 
11) and δ = (1; 2; 3; 7; 4; 10; 8; 5; 6; 9; 11). For example, the makespan of μ is 18. The activity list gives 
rise to a schedule depicted below. 

 

 

Figure 3.  The schedule from activity list μ, makespan is 18. 
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In [16], a constructive heuristics followed by local search using the same type neighbourhood was 
successfully applied. Again, the initial solution is constructed from scratch in a stepwise extension of 
the partial schedule. In each step, an activity is randomly selected from the set of unscheduled 
activities taking into account the precedence relationships of the activities and the availability of 
the resources. This approach is thoroughly investigated in [6]. The main idea of the neighbourhood 
that is called HC(RaR) (Hill Climbing, Remove and Reinsert) is to remove a fixed number m of 
activities from the schedule and insert them back into the schedule, where m is a parameter of the 
method. For details, see [16]. It has been shown that the heuristics is competitive with the best know 
heuristics for the problem. In the table below, the best ten algorithms reported at the time are 
compared (some further algorithms are reported in [7]. The instances are taken from library PSPLIB 
[33]. The first column gives the method used, the second provides names of the authors of the 
method and the last column gives the average deviation from the critical path lower bound. 

 

Table 2: Comparison algorithms for RCPSP 
 

 
 

V.  LOCAL SEARCH VERSUS SIMULATED ANNEALING 

 

Simulated annealing (SA) [11] can be understood as a random relaxation of the iterative 
improvement algorithm [1]. It was a very popular heuristics in the 90’s and it is still among the 
frequently used relaxations of iterative improvement. Roughly speaking, given any iterative 
improvement with a given neighbourhood structure, the simulated annealing heuristics can be 
defined by the following relaxation of the acceptance rule. If the neighbour is not better, then 
accept the move with certain probability. The acceptance probability depends on the parameter 
usually called the temperature. Sometimes very good solutions are found by SA, but it is also well 
known that SA can be extremely time consuming. Furthermore, the best known convergence results 
hold only if the so-called cooling schedule is very slow [5,14]. On the other hand, it is known for some 
time that at least asymptotically and with a usual implementation, where rejected moves are 
explicitly counted, the probability of success of simulated annealing is worse than the probability of 
success of as simple a procedure as multistarts of the iterative improvement algorithm [4]. Detailed 
analysis of various temperature schedules are given for example in [3,19,28]. Interesting enough, 
among various temperature schedules, the constant temperature schedule for simulated annealing 
was found competitive or at least worth consideration. Can a schedule be more simple than the 
constant one?! We also have some very positive experience with a SA-like algorithm for graph 
colouring [17,27], namely very fast convergence of the algorithm on an interval of good 
temperatures [20]. It should be noted that this graph colouring algorithm is quite robust and can be 
applied to several generalizations including channel assignment problems [22].  

 

Another example is a successful search for independent sets in certain graph products using 
simulated annealing at constant temperature [24] that has lead to the best upper bound for the 
Shannon capacity of C7 which was not improved until today. The Shannon capacity of the 7-cycle is 
one of the long lasting unsolved problems and until now only lower and upper bounds were found 
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and are gradually improved. It may be interesting to note that the capacity of C5 was studied 
already by Shannon [18] in 1956, and was determined only in 1979 by Lovász [13]. In other words, 
simple variant of multistart local search is so far the winner in this example. More precisely, the local 
search is a simulated annealing at fixed temperature, where the temperature used was established 
by a very fast and simple preprocessing. For further discussion and references on fixed temperature 
schedules see [29]. 

 

Similarly to some other metaheuristics, simulated annealing was very popular due to motivation from 
natural phenomena. There was a substantial effort to prove convergence results, and there are 
hundreds of reported applications. An important issue in designing a successful implementation of 
SA is to choose a lucky temperature schedule. Is it worth effort to design a complicated heuristics 
with parameters difficult to understand ? On the other hand, we can understand SA as a relaxation 
of local search, and using a multistart version gives the convergence trivially. Furthermore, constant 
temperature schedule (the simplest schedule possible!) may be a promising choice. In our view, SA is 
an interesting randomized relaxation of iterative improvement. In many examples, already the basic 
iterative improvement (with multistart) provides a successful method when the neighbourhood is 
chosen with some care and some luck. 

 

VI.  CONCLUSIONS 

 

We have recalled two results showing that a natural greedy construction followed by iterative 
improvement can be a very competitive heuristics. The examples shared the property that the 
greedy construction can naturally be randomized, thus enabling sufficient diversification of the initial 
solutions.  This approach is only slightly different from another successful heuristics, GRASP [35].  

 

We have also briefly discussed the simulated annealing metaheuristics, its relation to iterative 
improvement and the importance of the temperature schedule. Both theory and practical 
examples indicate that simple temperature schedules may be among the competitive ones. 

 

We have thus provided some arguments for the hypothesis that when solving hard optimization 
problems, simpler is often also better. More precisely, better here means that solutions competitive in 
quality can be found in reasonable time, but also that implementation and tuning of the algorithms 
can be done more easily. Last but not least, we should take into account that the complicated 
metaheuristics usually have a number of parameters that have to be tuned to obtain the best 
results. The task of tuning the parameters however may itself be a very hard one, and can also be 
very time consuming! 

 

Finally, we wish to add that there are more recent examples supporting the ideas given above. An 
algorithm based on RaR has recently been applied to job shop scheduling with success [36], and 
several local search heuristics to a problem related to design of optical systems based on LED 
technology [37,38]. In both applications, the heuristics used have been very competitive in 
comparison with genetic algorithms. 

 

In conclusion, it is clear that the question and the suggested answer provided in the title are very 
general. Such a general question is difficult to be stated in a formal way, and thus very difficult to 
provide an answer that can be proved formally. However, we do not claim that the answer 
suggested is valid for all cases.  
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