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We present an evolutionary algorithm approach to schedule optimization for a group of production lines in
a car factory. Schedules are evaluated with respect to the energy consumption over peak demand periods,
while the task is to minimize the energy costs by appropriately scheduling the interruptions of processes on
the lines. Tests on real problem instances show this approach gives near-optimal schedules in acceptable
time.

Povzetek: v članku opisujemo učinkovito sestavljanje urnikov obratovanja z evolucijskim algoritmom in
optimiranje porabe energije na proizvodnih linijah v avtomobilski tovarni.

1 Introduction

Scheduling deals with allocating activities to resources
over time in such a way that given objectives are opti-
mized, while temporal constraints and resource limitations
are satisfied. Problems of this kind appear in manufactur-
ing, timetabling, vehicle routing, design of computer oper-
ating systems and other domains. Because of its great prac-
tical importance, scheduling has permanently attracted re-
search interests. Following the attempts in the fields of Op-
erations Research and Artificial Intelligence with limited
success in practice, Evolutionary Computation [1] has re-
cently offered means of producing near-optimal schedules
for complex problems at reasonable computational costs
[3]. A number of applications of evolutionary algorithms
in scheduling have been reported [2, 6, 11]. Nevertheless,
there are still open issues to be addressed in the develop-
ment of evolutionary scheduling systems. Above all, real-
world problems and realistic criteria for schedule optimiza-
tion should be considered [5].

Using evolutionary computation techniques, we deal
with a class of real-world problems with schedule cost re-
lated to resource management. Our previous application
oriented studies include scheduling of operations in a pro-
duction unit of a textile factory, where the objective was to
ensure optimal energy consumption [7], and scheduling ac-
tivities in ship repair in order to balance the work load for
workers of various trades [8].

In this paper we describe production scheduling on a
group of production lines of an automobile factory. The
problem is non-typical in two respects. First, it requires
process interruptions to be scheduled rather than processes
themselves. Second, the optimality criterion is not based on

a traditional schedule performance measure, such as over-
all processing time, but related to energy consumption. The
objective is to schedule interruptions of the running pro-
cesses in such a manner that energy consumption over the
peak demand periods is minimized. In addition, the sched-
ules are subject to time and resource constraints that have
to be strictly satisfied.

Design of an evolutionary scheduling system for this
problem and the initial practical results were presented in
[9, 10], while here the focus is on an improved version
of the system and its evaluation. The paper explains the
scheduling problem and the schedule cost that is related
to energy consumption, describes the employed schedul-
ing system, provides the results of its evaluation on real
problem instances, and discusses them in view of regular
exploitation at the plant.

2 Production Scheduling Based on
Energy Costs

Production systems relying on intense energy consump-
tion, such as steel plants and other heavy industries, are
faced with peak demand periods. These are the time peri-
ods over which their power demand exceeds a given limita-
tion and the excess has to be paid at a higher rate. This mea-
sure is imposed by the energy supplier to minimize the total
energy consumption over critical periods. There are sev-
eral ways of reducing the peak power demand: activation
of internal energy sources, interruption of energy-intensive
processes, and appropriate production scheduling.
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2.1 The Scheduling Task

The focus of energy consumption management in the con-
sidered factory is in the car-body production unit. The unit
consists of six lines of hydraulic presses that perform cut-
ting and shaping. A line in operation is regarded as an in-
dividual work process. Power demands of the processes
vary from 20kW to 370kW. The unit operates according to
a daily production plan that specifies which of the lines are
in operation and what is their work time. Power demand of
the unit equals to the sum of power demands of the running
processes. Other energy consumers at the plant contribute
to the so called background power demand, Pb. The total
power demand of the plant, P , consists of the demand of
the pressing unit and the background demand. To asses the
energy costs, the total demand is related to the prescribed
limitation Pmax, also called the target load. Figure 1 shows
an example of daily profiles for background demand, total
power demand and target load.
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Figure 1: Background demand Pb, total power demand P ,
and target load Pmax on the production lines

The efforts to reduce the target load excess are con-
centrated on line production in the pressing unit, since it
is an intense energy consumer and also more suitable for
scheduling than background processes. Two approaches
are combined in the unit: process interrupting and schedul-
ing. Process interruptions are either intended as breaks for
the staff or can be spent to change machine tools and per-
form maintenance on the lines. The idea is to schedule
these activities in such a way that the daily production plan
is realized, while the contribution of the unit to the target
load excess is minimized.

To balance between the conflicting requirements of plan
fulfilment and reduction of the target load excess, the fol-
lowing constraints have been imposed on schedules:

– duration of process interruptions, T0,

– minimum period of time between two interruptions of
a process, T ,

– maximum number of processes that can be interrupted
simultaneously, M .

Taking into account these constraints, process interrup-
tions have to be scheduled so as to minimize the target load
excess contributed by the production lines.

2.2 Schedule Cost

The schedule cost to be minimized is formally defined as
follows. Let Pi(t), i = 1, . . . , N , denote the power de-
mands of the operating production lines in the pressing
unit. The total power demand of the plant is

P (t) =
N∑

i=1

Pi(t) + Pb(t) (1)

where Pb(t) represents the background demand. Then the
contribution of the considered processes to the target load
excess at time t is

Pexc(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑N
i=1 Pi(t); Pb(t) ≥ Pmax(t)

P (t)− Pmax(t); Pb(t) < Pmax(t) &
P (t) > Pmax(t)

0; otherwise
(2)

and the energy consumption resulting from the target load
excess equals to

Wexc =
∫

t

Pexc(t) dt. (3)

Wexc represents the cost of interruption schedules which
is to be minimized. It is to be noted, however, that power
demands are in practice sampled using certain time interval
∆t and integral (3) is approximated by

∑
t

Pexc(t)∆t. (4)

3 The Scheduling System

The scheduling system generates daily schedules of pro-
cess interruptions and calculates the expected reduction of
the target load excess. It accepts the following input infor-
mation:

– estimates of power demand profiles for the processes
to be executed,

– an estimate of the background demand profile,

– the target load profile, and

– constraints to be considered in schedule construction.

The power demand estimates are based on data recorded
over previous days and on production plan for the current
day. As the production does not change rapidly, the esti-
mates are rather accurate and make it possible to generate
realistic production schedules.
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The scheduling algorithm is designed to solve problem
instances with arbitrary power demand profiles and can op-
erate at various time discretizations. The core of the al-
gorithm is a (µ + λ) evolution strategy [14]. It iteratively
improves the schedules through the following sequence of
steps:

Step 0: Generate an initial population of µ schedules by
randomly assigning starting times to process in-
terruptions.

Step 1: Generate λ descendants from µ parents by apply-
ing local transformations to schedules.

Step 2: Select µ best solutions out of µ + λ available, and
make them parents for the next generation.

Step 3: If maximum number of generations is reached,
exit, otherwise go to Step 1.

The best schedule found during this search process is
returned as a suboptimal solution to the problem. Both,
inserting the interruptions into a schedule at the initializa-
tion step and local schedule transformations are performed
in such a way that constraints imposed on schedules remain
satisfied. This is achieved by maintaining a direct represen-
tation of schedules within the algorithm and checking the
constraints. Schedules are represented as two-dimensional
arrays with the number of rows equal to the number of run-
ning processes, and columns to time intervals considered
during scheduling. Each element of the array holds a value
denoting the process status at the corresponding time in-
terval. The status can be: interrupted, which means the
process is interrupted, interruption possible, which means
the process is running and it is possible to interrupt it, or in-
terruption not possible, which means the process is running
but cannot be interrupted due to the constraints.

Schedule transformations are carried out on random ba-
sis and include:

– inserting an interruption into a schedule,

– deleting an interruption from a schedule,

– shifting an interruption within a schedule.

Insertion of an interruption consists of finding a random
time slot in the schedule with interruption possible, chang-
ing its status to interrupted and updating the status of the
slots affected through constraint values T and M to inter-
ruption not possible. Deletion of an interruption includes
random selection of an interrupted slot, changing its status
to interrupt possible, and updating the status of the slots
that are no more effected through constraint values T and
M to interruption possible. Shifting of an interruption con-
sists of its deletion at the current time slot and insertion at
another time slot.

4 Evaluation and Results

4.1 Tests on Real Scheduling Problems

The scheduling system was initially tested on a set of prob-
lem instances based on real data recorded at the plant. The
data were used as input to optimize daily schedules for the
production lines. The constraints for schedule construction
were set as follows. Duration of process interruptions, T0,
was 30 minutes. Each process had to run continuously for
at least four hours between two interruptions (T = 240
min), and at most three process interruptions were permit-
ted to take place simultaneously (M = 3). Time step used
during search for assigning starting times to interruptions
was 5 minutes.

The scheduling algorithm was run for 200 generations.
The population size and the number of offspring generated
in each generation were µ = λ = 20. For each prob-
lem instance, the algorithm was executed 10 times, and
both the best and average results were recorded. The op-
timized schedules of process interruptions were produced
in the form shown in Table 1.

Table 1: An optimized interruption schedule for the pro-
duction lines

Line number Interruption times
1 8:00–8:30 12:15–12:45
2 7:25–7:55 11:55–12:25
3 7:00–7:30 12:20–12:50
4 7:15–7:45 11:45–12:15
5 11:00–11:30
6 11:30–12:00

The evaluation confirmed that schedule optimization can
substantially contribute to the decrease of energy costs in
the production unit. Energy consumption resulting from
the target load excess on the lines was reduced by at least
25% on workdays, but in most cases by about 30%. Table 2
shows the achieved reduction averaged over 10 runs of the
optimization algorithm for each day in a two-week period.
The reproducibility of the reduction in kWh obtained in 10
runs for each problem instance was within 2%.

4.2 On the Optimality of Schedules

Additional numerical experiments were carried out to
check how close the optimized schedules are to the true
optimal ones. For this purpose a selected scheduling prob-
lem representing a typical situation at the plant was used.
All six production lines were required to operate and esti-
mates of power demand profiles shown in Fig. 1 were used.
If case of no process interruptions, the target load excess
would amount to 3218.3 kWh. For this power demand sit-
uation, test problem instances of various complexity were
defined. Their complexity was varied through constraint
values T0, T , and M .
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Table 2: Average reduction of the target load excess ob-
tained by the scheduling system

Target
Day load excess Reduction

[kWh] [kWh] [%]
Mon 2616.5 1000.4 38.2
Tue 2569.6 970.5 37.8
Wed 3218.3 1012.6 31.5
Thu 2892.2 926.2 32.0
Fri 3055.1 931.6 30.5
Sat 655.0 413.0 63.0
Sun 0.0 0.0 0.0
Mon 2461.2 810.1 32.9
Tue 2117.7 636.6 30.1
Wed 2910.3 836.8 28.7
Thu 2752.8 803.3 29.2
Fri 2523.5 869.8 34.5
Sat 0.0 0.0 0.0
Sun 0.0 0.0 0.0

To denote a problem instance with particular constraint
values, will use the notation (T0, T,M), where times T0

and T are given in minutes, and M ∈ [1..N ]. The test set
of problem instances consisted of (30, 240, 3), (30, 240, 1),
(30, 120, 3), (30, 120, 1). Note that (30, 240, 3) is the de-
fault setting of constraint values used at the plant, while
additional settings resulting in more demanding problems
were chosen to further check the performance of the devel-
oped scheduling system.

For the evaluation purposes, optimal schedules for the
selected problem instances were produced by the Con-
straint Logic Programming approach. Constraint Logic
Programming (CLP, [4, 12]) is a generalization of logic
programming [13] where unification is replaced by a more
general mechanism of constraint satisfaction over a spe-
cific computation domain, such as Boolean, finite or real.
It is capable of finding optimal solutions to the problems of
manageable size. We used the ECLiPSe CLP environment
and its finite domain solver CLP(F). Unfortunately, the
scheduling task introduced in Subsection 2.1 is too com-
plex to be treated generally. However, particular problem
instances can be handled individually by considering their
specificities during problem solving.

Schedule costs found by this tool and by the evolutionary
scheduling system are compared in Table 3. More clear
picture of the evolutionary algorithm performance can be
obtained from Table 4 which shows the deviation of the
schedule improvement from the optimum gained with CLP.

These results are very informative for practical assess-
ment of the evolutionary scheduling algorithm. While the
initial tests on real problems showed that potential decrease
of energy costs is at the expected level, we now have an ab-
solute measure of the scheduling algorithm performance.
It is particularly encouraging, that under constraint setting
(30, 240, 3), which is usually used at the plant, the result is

Table 3: Optimal schedule costs in kWh found with CLP
and suboptimal costs obtained with the evolutionary algo-
rithm (EA)

Problem instance EA
(T0, T,M) CLP best average
(30, 240, 3) 2209.1 2211.5 2213.1
(30, 240, 1) 2374.3 2385.1 2419.7
(30, 120, 3) 2185.8 2187.1 2187.4
(30, 120, 1) 2345.8 2365.8 2390.4

Table 4: Deviation of schedule cost improvement by the
EA from the optimal improvement obtained with CLP

Problem instance EA
(T0, T,M) best average
(30, 240, 3) 0.2% 0.4%
(30, 240, 1) 1.3% 5.4%
(30, 120, 3) 0.1% 0.2%
(30, 120, 1) 2.3% 5.1%

very close to the optimum. For hypothetical problems with
more complex spaces the gap to the optimum increases, but
we believe that initial results given in this paper can still be
improved.

Certainly, one may ask whether it is possible to apply the
CLP system for regular scheduling at the plant. It turns out
that its advantage of guaranteed optimal solutions comes
at some other costs. Solving problems of this type with
CLP is only efficient on individual basis, where additional
constraints for schedules are derived from input data (e.g.
feasible time intervals for process interruptions) and imple-
mented to prune the search space. Further increase of prob-
lem complexity would sooner or later exceed the capabili-
ties of the system. The CPU time spent to obtain optimal
solutions with the CLP system depends very much on the
problem instance, and ranges from a few minutes to several
hours on a Pentium computer. On the other hand, the exe-
cution of the evolutionary algorithm on the same computer
requires about half a minute for each problem instance, and
only slightly increases with problem complexity.

5 Conclusion

An evolutionary algorithm was developed to schedule pro-
cess interruptions on car-body production lines in an au-
tomobile factory where the objective is to decrease power
demand over critical periods. In a comparative study the
results of the evolutionary algorithm were assessed with
regards to optimal results found by a CLP system. The
comparison was beneficial in that it confirmed the evolu-
tionary algorithm is capable of finding near-optimal results
for a typical scheduling task appearing on the lines.

The approach was implemented as a process scheduling
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module within a system for energy consumption manage-
ment at the plant. It facilitates monitoring and control of
energy consumption, while its primary role is to assist the
process supervisor in preparing daily production schedules
for the pressing unit.

In practical exploitation it has turned out the system is
beneficial under certain amount of work load for the pro-
duction lines. When the amount of orders is low, the lines
are not heavily loaded and the resulting power demand does
not exceed the target load. Hence there is no need for inter-
ruption scheduling and energy consumption optimization.
On the other hand, the plant may get numerous orders and
tight deadlines to accomplish them, and therefore deliber-
ately decides not to interrupt the line processes as the addi-
tional energy costs are less than the penalties for not fulfill-
ing the orders in time. Between these two extremes, there
are however modes of operation where the system is reg-
ularly used and contributes to the decrease of production
costs.
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