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ABSTRACT

The method presented in our paper suggests the use of FuascbBata Analysis (FDA) techniques in an
attempt to characterise the nuclei of two types of cells:d@aand non-cancer, based on their 2 dimensional
profiles. The characteristics of the profile itself, asctd by itsX andY coordinates, their first and second
derivatives, their variability and use in characterizatare the main focus of this approach which is not
constrained to star shaped nuclei. Findings: Principalpmments created from the coordinates relate to
shape with significant differences between nuclei typear@bterisations for each type of profile were found.

Keywords: 2-dimensional profile, cancer detection, fiowal data analysis, principal differential analysis,
star shape.

INTRODUCTION based classification approach are also discussed. The
last section takes advantage of the functional form of

Mitosis, the cell generating process in humansthe data and its basis function approximation for an
runs at the nuclei level and, as such, there is an interet-depth model-based analysis of the variability in the
in studying the nuclei of cells with the purpose of curves via Principal Differential Analysis.
detecting cancerous cells. Millet al. (1994); Hobolth When observing nuclei profiles, it is difficult
and Vedel Jensen (2000) indicate that the morphology gistinguish specific features or landmarks in the
of the cell nucleus will tend to be different in a healthyshape. In this sense, Millet al. (1994) described a
cell from what it is in an unhealthy cell. It is expected model for representing spatial profiles with no obvious
there would be morphological characteristics proper ofandmarks. Recently Hobolth and Vedel Jensen (2000)
cancer cells. have described cell nuclei as a deformable template

The study of shapes involves the imaging proces odel, their work dealt with the challenge of modeling

step to get a “drawing” or graph, and the quantitativé '€ ProcessX(t). This process was modeled as a
study of descriptors that serve the purpose oistochastlc process where, given the natural sequence

characterising such shapes. It is in the characterisati connections between points in the nucl_eus profile,
step that this paper focuses its interest. e points can not be considered to be independent.

Markov second order properties were imposed on

Functional Data Analysis (FDA) (Ramsay andthe stationary cyclic stochastic process. The process
Silverman, 1997), a young yet growing field of was considered to be Gaussian with mean zero. The
statistics, offers itself as a tool in shape analysislass of Gaussian process was then defined by the
of nuclei of cells. This tool enables the comparisorparameterisation of the covariance function for the
of shapes without the need of strict distributionalprocess.

assumptions on the behaviours of the contours of The geformable template model was revisited by
nuclei. It enables the extension of known multivariategpoithet al. (2002) and then the shape was modeled
techniques such as Principal Components in th@iith a radius-vector function and once agd(t)}

evaluation of the shapes. played the role of a Gaussian residual process or

In the present section, preliminaries on thedeformation process.

statistical and biological motivation for the research,  Their findings were that on average the estimates
and an overview of some previous approaches aref the global shape parameter were significantly lower
presented. The “Data and methods” section describgsr the malignant sample, the estimates of local
data preprocessing for the proposed analyses to follovghape parameter were also significantly lower in the
FDA using linear interpolation discussion, wheremalignant sample, and the variance of the natural log
Principal Components Analysis on the profiles isof local shape parameter was significantly larger in the
performed; FDA via basis functions and a curvaturanalignant sample.
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The procesgX(t)} has been presented and usedn our paper, the profiles were to be analysed using
to represent the continuous nucleus membrane th&DA; and in such analysis a “reference” point or time
creates the shape or profile of such nucleus. In thig was wanted, such that it was not only meaningful
sense it seems reasonable to consider the nucleumsbeing the first point of the nucleus profile looked
profile as a functional data source. The analyseat, but that would be, although arbitrary, determined
Hobolth et al. (2002) perform are constrained to star-by the same consistent criteria for each profile. Hence,
shaped planar objects. each nucleus was fitted with an ellipse via least squares

. . to obtain information on the rotation, if any, of such

The approach presented in our paper is to measugg,rresponding ellipse. The ellipse fitting was done via

the nucleus profile as the bivariate proc&s$) =  he method of Fitzgibboat al. (1999), which is based

(X(t),Y(t)) where X(t) and Y(t) are functional o, golving a generalised eigenvector problem.
processes corresponding to the cartesian coordinates

X andY. Hence the aim is to inspect the behaviour of ~ For the analysis, where interest focuses on overall
such processes for malignant and benign nuclei. Thishape, the profiles are “aligned” to avoid fictitious
form of representing the prof”e has the advantage o‘farlablllw The alignment and standardisation of the
not being constrained to star shaped nucleus profile§rofiles is obtained by rotating the profiles so that
and that the derivatives of the functional data can béhe best fitting ellipse will be resting horizontally on
computed from these, now continuous, data. Analysie semimajor axis. After being rotated, the profiles
on the behaviour of the derivatives sheds light orfire centered and scaled so that their caliper diameter,

possible discriminant features that may be hidden t§€asured parallel to the semimajor axis, ranges from
the naked eye. —1 to 1. This standardises the range of tie

coordinates to be ifi-1,1]. TheY ranges are scaled
by their correspondiny factor to preserve perspective
and ratio betweerX andY in each of the profiles.
MATERIALS AND METHODS This normalisation is performed in the same spirit
as Ramsay and Silverman (2002) do for the bone
The data comprise 50 profiles of tumor cellsshapes and the intercondylar notch in their case study
from a benign melanocytic nevus of the human skirpublication.
and 50 of malignant melanoma of the human skin. _
These have been studied previously in (Hobolth and _Somg controversy surrounds the a!lgnment or
Vedel Jensen, 2000), (Vedel Jensen and Sorenserﬁglstrgtlon procedures._There are two main tendencies
1991), and (Gardnegt al, 2005). These nuclei profiles regarding shape analysis, the landmark based approach

- : Lele and Richtsmeier, 1991; 1992; Dryden and
\t/)vsrsilglr?:jr:yF%rO\lllded by Hobolth and Jensen and Calﬁ\/lardia, 1998) and the outline based approach

(Grenander and Manbeck, 1993). Our paper follows
an outline based approach. Macleod (1999) states

“hard distinctions between landmark and outline
O Q Q @ Q QO O OO morphometric data/analysis are illusory and damaging

OCOOO0OOCO0OOC0O0O to the entire enterprise of morphometrics”. The paper

argues that although biological correspondence for

OO0 measurements is legitimate, it does not address or

avoids in itself the potential source of error. In

O Q O Q D Q » O @ O his article it is stated that any comparison that is
O O ® O O Q O Qe O meaningful happens at the landmark to landmark

comparison which is as good as the curve to curve

NOOSOOHDODG o OQ comparison in comparing outlines.
PO OO0 It is worth mentioning that the aim of our paper

is nhot to search for the biological reason that makes

Qg0 OO0 OO0 the shapes of the profiles to be the way they are. No

biological homology is being assumed. Shape itself

Q) % Q O O O OOIOD is measured as Fersen al. (1985) do and therefore,
(P O D O O D CO OO Q guoting them “it is valuable to quantify shape variation

sensu stricto”.

Fig. 1.Proflles of 50 malignant cell nuclei (last5rows) ~ The point that will be deemed a(tp),Y (o))
and 50 benign cell nuclei (first 5 rows). is chosen as the leftmost point that lies on the
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semimajor axis. For the linear interpolation in the The purpose of performing PCA on the data is

profiles, measurement of the arc length starts fronto try to detect differences in the two groups while

to andt increases counterclockwise. Each profile isreducing the data dimensionality. Differences in the
represented by 150 arc-length equidistant points.  components’ scores for the two different types of

profiles are expected. Interpretability is gained from

the principal components in a graphical sense by
investigating the possible effect that each component
has on the geometry of the mean profile.

Fig. 2 shows this representation of th¢t),Y(t)
coordinates of the first benign nucleus.

The effect of the principal components on the
shape of the profiles is captured graphically by adding
* Yvaes and subtracting a fixed amou@ttimes the standard

g% m deviation of the component to the mean profile

1.0

) s } . (obtained by averaging out the valuesxdt), Y (t) for
S Fil \%% each fixed).
Ed % % The effect of the first 6 principal components
o # &+ % i . . -
S71% H * (accounting for 91% of variability) on the shape of the
W7 profiles is shown in Fig. 3.
? -"%f f ’;‘% PCA number 1 PCA number 2
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Fig. 2. X(t),Y(t) for first benign nucleus based on
equidistant points.

PCA number 5 PCA number 6

At further stages, where derivative information
is needed and analysed, the data are approximated
by basis functions. Approximation for each of the
coordinates in theX(t),Y(t) process is based on
Fourier expansions for the underlying cyclic structure
and on the B-spline fit for extraction of residuals
information. The profiles of the nuclei are formed Fig. 3. Effect of first6 principal components on the
by the X,Y pairs at each time, and in this manner mean profile; thick line is the mean profile, dotted line
each of the pairs contributes to the variability of theshows mean minus PCA effect and solid thin line shows
profile at specific positions in the profile. Based onmean plus pca effect.
this, the profile can be seen as having the 150 points _ ,
as variables and then Principal Components Analysigor example, Fig. 3 shows the effect of having a
can be performed to discover the type of variation thafomponent being negative or positive for profiles. The

of the convexity or concavity of the bottom part of

In order to perform PCA, each bivariaXgt),Y(t)  the profile. A positive first principal component tends
datum is considered separately in each of it§o make the bottom of the profile cut into the profile
coordinates. The data from the 100 profiles ar@naking it concave, whereas a negative first component
arranged in 100 rows with 300 columns, (150 fortends to create a convex bump in the lower part of the

each of X and Y coordinates) and multivariate profile as well as having the profile exceed the borders
PCA is performed on these (Ramsay and Silvermaryf the mean profile in most directions.

2002). The resulting matrix of loadings is rearranged . . . .
as a three-dimensional array for easier access and I.t IS exp_ecteq for benign profiles and malignant

interpretation. This array has in its first two dimensionsOrOfIIes to differ in the mean values on some of these
150x 2 matrices of loadings for the 2-vectdrY pairs, components.

and its third dimension accounts for the 100 ‘pages’ Profiles of benign cell nuclei tend to have a

corresponding to the 100 profiles. negative value for the first principal component and

\
O
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those of malignant cell nuclei tend to have a positivehave not been created to address local differences
value in this component. For the second componengpecifically.

benign profiles tend to have negative values while 14 huclei are, by nature, closed curves and hence

malignant ones tend to have a positive value. FOgyjic: this would suggest the use of Fourier series
components 3 to 6 the benign nuclei tend to have 8xpansion for the profiles.

positive value and the malignant a negative value. It is

of interest to know if these differences are significant., 1ransforming the discrete data, sa&, into

functional form (t)) involves representing the
Performing Welch's T test, which is in practice function by a linear combination of a fixed numbér

fairly robust to departures form normality, on the of known basis functions, usually denoteddy

means of each type of profile, it is seen that K

the mean value of the first component for benign X(t) = z ck(t) - 1)

profiles is significantly smaller than the mean K=1

value for first component of malignant profileg-( . . o o o

value < 0.002) with a 95% confidence interval S_ln_ce interest lies in the' variability o'f derlvatlve§,

of (—1.3637,—0.2808. Wilcoxon's rank sum test, and it is assumed that benign and malignant profiles

which does not need suffice the T test's normalitydiffér on their borders locally, the fit of the basis

assumption, also yields a significant differenqe ( functions was not penalised, hence the variability in

value < 0.02). So the first principal component is (N€ curvature was preserved rather than smoothing
useful in separating benign and malignant profiles. it out. Functional data was created based on all the

observed points for each profile, but with a fixed
Means for components 2 through 5 do not shownumber of basis functions to be consistent in the
to be significantly different. However, benign profiles approximation.

have a significantly higher mean for component 6 A Fourier expansion with 17 basis functions
than that of the malignant profiles (Welch'p:value a5 ysed. The choice of 17 basis functions was
< 0.04, Wilcoxon's: p-value < 0.03) based on trying to capture the local variability and

Variability at different scales is of interest, so far, @PProximate the observed data closely. Also, when

the analysis has been concerned with overall shapl@0king at boxplots of the means of coefficients of
The variability of the profiles at the level of their O"der higher than 17, these looked narrow and close

derivatives, that is, the speed at which the border o Z€r0, therefore decided to use only 17. The Fourier

the profiles changes and comparing measures of thefPProximation would be:

curvature is the next step in more detailed examination  X(t) = o+ €1 Sinwt 4 c2 Coswt + c3 Sin 2wt

of the profiles. It is assumed that a benign cell will 1 C4COS 20t + ... 2)
tend to have a smoother and convex nucleus which will .
have smaller total curvature measurements than that 619:
a malignant one which is assumed that will tend to bé’rOf'IeS'
a “squiggly”, non-convex nucleus; this curvature will

be measured locally. S

g. 4 shows the approximation applied to two benign

For example, taking the first profile from Fig. 1 3
(benign) and the profile in row 6 and column 7 in Fig. 1
(malignant), it is clear that the nucleus that does not
“cut” into itself will have a total sum of local curvature £
smaller than the malignant one that is shaped like a U R SRR
croissant.

X(1),Y(1)

Time

There is emphasis on trying methods that will
measure local variability, given that, as Peura and
livarinen (1997) discuss, some known descriptors,
such as convexity ratio, prove not to be useful in
distinguishing a planar object with a smooth boundary
from another with irregular boundary if both happen to
be non-convex. Other shape descriptors such as those 10 s oo os 10 00 02 04 05 08 10
explained by Gunderseast al. (1988) have been usedin Time
shape analysis as a way to condense information into
simpler low-dimensional quantities, however, thesd-ig. 4. Two profiles (gray) and approximations (red).

XY

-1.0 -05 0.0
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It was observed that the means of the coefficients of
order higher than 3 are not all zero which is indicative
of greater deformations from elliptical templates and
indicative of greater local variability existing in the
profiles.

00 01 02 03 04

00 01 02 03 04

The construction of the functional form of the e -
data guarantees that the obtained planar curve (profile) s s 10 12 14 6 8 10 12 14
is closed and twice differentiable (Ramsay and
Silverman, 1997); hence known calculus results can be
used to express the profiles’ shape and curvature.

Curvature Curvature

o _ Fig. 5. Density estimates for the curvatures of benign
The curvatures(t) at some point in the curve is:  (left) and malignant (right) profiles.

_ XYt - X"(O)Y'()

K(t) = (X’(t)2+Y’(t)2)3/2 ) ©) Hobolth et al. (2002); Hobolth and Vedel Jensen
(2000) assume in their modeling, and conclude in their

and the total CUI’V&th@UI’V(Z) of the planar profile results, that malignant and benign profiles differ in the

takes the form: amount and type of variability or deformation from the
templates. They also show that local variability plays
Curv(Z) = / Kk (t)|dt a significant role in the shape of the profiles (Hobolth

z et al, 2003).

LIX')Y”(t) = X"()Y'(t
:/ | ()X’ t(l Y’i)z ()|dt. (4) When creating the functional data via Fourier
0 O +Y'(t) series, the data showed high variability at local levels.

For the calculation of curvature there is no need™©r perfectly smooth ellipses, coefficients of order
for registration or alignment of the data since thehigher than three would be exactly zero, because of

integration is over the entii€? curve. the parameterisation in polar coordinates) = acost
o _ andy(t) = bsint for t in [0, 277]. The first 3 coefficients
The hypothesis of interest is: would necessarily beg = 0, ¢c; = 0, andc, = a for
) X(t); andco = 0,c1 = b, andc, =0 forY(t). There is
Ho - Hourvz),b = Heurvz,m VS more structure than just that of periodical or sinusoidal
Hq: Hcurv(z),b < Hcurv(z),m nature in theX,Y coordinates, there is also what may

be considered a residual process.
where ; stands for the mean parameter of the N .
distribution of the curvatures for group € { The variability structure of the coordinates can be

Malignant, Benign. assessed by the behaviour of their derivatives and the
) , ) relationship between different orders of derivatives.
Performing Welch's T test it was concluded gorrowing concepts from the differential equations
that the mean curvature of the benign profiles ISyorld, a Linear Differential Operator (LDO) that

significantly smaller th_an the}t of the malignafi = jetermines the relationships between the derivatives of
0.00029, and performing Wilcoxon’s rank sum test different orders is defined.

yields the same conclusiofp = 0.00067). Fig. 5

shows the density estimates for the curvatures of Use the following notation:

profiles, the curvature axis starts close to 6 as the

curvature of a closed cun@in %" is greater or equal D™x(t) = ﬂ( (5)
to 2m, with equality if and only ifC is the boundary of otm’

a two-dimensional compact convex set, as mentioned o _ _
in Proposition 21 of Gardneset al. (2005). for them-th derivative of the functiom(t), whereD is

] ] the derivative operator, and wham= 0 then the result

So far, the aim has been to find a process thagk he jdentity,D% = x.
will help to classify the profiles into malignant or
benign types. Moreover, it is desirable to be able to In this way, define a Linear Differential Operator
provide some uncertainty measurement or assessmént
of this classification. Such a procedure should not L— Al B.D ©)
only characterise the existing profiles, but be able to - ; =
shed some light on classifying or characterising new =

profiles. in the functional caseg; is a functionf;(t).
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Instead of assuming a homogeneous differential
model, a more realistic model is assumed: a non-
homogeneous system where there exists a forcing
function, saya (t), and some error structure :

LXi(t) = a;(t) + &(t), whereg;(t) ~ N(0, g?(t)) . (7)

lllll

If the LDO captures most of the structure, the error
terms are expected to oscillate very closely aroundfig. 6.Registered curves-gray, mean black. Left panel
zero. Given a specified LDO, it is expected for theX(t), right panel Y(t).
benign profiles to have weight functiofgt) different
from those of the malignant ones. Moreover, it isThe registration procedure was done based on overall
expected that the weight functions will characterise th&hape rather than on landmarks, otherwise, given the
type of profile. possible non-convexity of the profiles, the profiles

would have been forced to change shape.

Applying the LDO for the benign profiles (as .
determined by its weight functions) to a benign profile T_he gllobal structure observed_m tI)e(_t),Y(t)
functions is of a sinusoidal nature, given this structure,

will result in a residual process as described in d the i : locity oK(t)Y he I
(7). Applying the LDO for the benign profiles to a and the interest in velocity o .(t)’ (t) the ihear

.I' t orofile will ai i iduals. Simil operator to be used, such that it would annihilate the
malignant profile will give erratic residuals. Similar i\t re of such velocity is:
results will be seen if the LDO for the malignant
profiles is applied to the benign and malignant types Lx = D3x+ B,D?x + B;Dx, (8)
of profiles.

, _ _ which can be seen as a second order operator on the
In order to estimate the weight functions for theyerivative ofx.

operators, the data need to be registered to avoid any ) o ]
phase shifts that would introduce exogenous variability. 1 1iS operator annihilates the structure in an exact

to the derivatives and therefore to the estimategnusoidal structure for a homogeneous differential
structure system, that is to say thak = 0, if no forcing function

is assumed to be driving the variability andxifvas,

The alignment or registration of the data is base@ay sirt. In this way :Dx = cogt, D?x = —sint, and
on the creation of a “time warping” function that D”x= —cost and hence
has the effect of stretching and/or shrinking the time _; 2
axis so that the values oki(t), X(t) for t¢ # t DX+0x DX +1xDx=0(B=0,p=1). (9)
align according to some criterion, see Ramsay and

Silverman (1997) for more details. TheX(t),Y(t) functions are not exactlsint or cost
functions as they have added variability and so should

The mean of the benign profiles was calculatechssume that there is a forcing functioyit) that yields
using the normalised data, that is, the 150 linearlthe non-homogeneous differential modeLas= a;(t).
interpolated values of th¥&(t),Y(t) functions, based Let weightspj(t) for the LDO be the functions that
on the equidistant time points for the rotated andwill characterise each type of profile.

centred profiles and this was used as a target curve for The name of Principal Differential Analysis was

the registration. coined by Ramsay as the process is, in its motivation
At least, comparable to that of principal component

The original rotated and centred data was the nalvsis. The motivation or tion is: “Can w
registered to this target, based on the first derivative ofhaysis. Jhe motivation or question IS. “.an we use
o . a set ofN functional observationg; to create a very
the data because the derivatives usually exhibit morg

variability and they oscillate around zero. Then the mall set o functions on which we can approximate

. . . : . _efficiently the observed functions?” (Ramsay and
data were registered using the time warping funCt'o%ilverman 1997)

(sayW(t)) calculated for the derivatives.
In the case of the LDO, it is desired to have the

The panels in Fig. 6, show the registedd),Y(t) LDO (defined by its weights) that comes as close
data and the target function to which they wereas possible in satisfying the homogeneous equation
registered. Lx=0.
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Once a decision on the operatois taken, define X
linearly independent functions, say, that will span
its null space. Any functior, satisfyingLx =0 can be
expressed as a linear combination of such

2000 —

=
o
=}
s}
|

Weight value
o
|

-1000 —

Then minimise:

N
SSBoA(L) = 3 [ix@Pae, o)

-2000 —

to find the weights.

The calculation of such weights is outlined in 2000
Ramsay and Silverman (1997) as these are their
results.

.
o
=]
(=]
|

Weight value
IS}
|

-1000

The model for the change X(t) being: ]

LX (t) = a(t) + g(t) ? (11) 0.0 0.2 0.4 0.6 0.8 1.0

where time

LX(t) = By(t)DX(t) + Bo(t)D3X(t) +D3X(t), (12) Fig. 7. Forcing and weight functions for benign
profiles. Solid black line is the forcing function, grey
line is B; and dashed line i§;.

and so can be expressed as

DX (t) = B(t)DX(t) + Ba(t) DX (1)
+a(t)+et). (13) Residual functions obtained from applying the LDO
. . with weights calculated from all 50 benign profiles to
Here, rewritef; instead of —f as thef3i are o be 5 henign profiles were estimated. Since the aim is
estimated. to classify new profiles, such a process is mimicked by
In the calculations, estimate the forcing functioncalculating the residuals for each of the benign profiles
a(t), the weight functiong (t), Bz(t) simultaneously by leave one out crossvalidation.
and from these estimate the residual proces$s B-
splines are useful in approximating functions with
local variability, more so than Fourier series. Henceg
47 B-spline basis functions of order 8 were used fo
creating the functional forms of the data. The orde
might seem high, but the reader is reminded that th

Residual functions calculated for malignant
rofiles using the weight functions from the benign
rofiles should be significantly greater than the ones
obtained for the benign profiles using the same
(Neight functions. The forcing and weight functions
. X o . AL INGy malignant profiles are presented together in Fig. 8.
aim is to calculate th'Fd derivatives \.N'th penallsedlt can be seen that the forcing function is the largest
;?ﬁ;}?gg% Ilor;ze d‘;fﬁ't?;doifnth(éEzgﬁt'gﬂgl gﬁ\t/ae'r;gesource of variation and how the first and second
1994; Ramsay and Silverman, 1997) will be dea”ngierlvatlves have smaller impact.
with 5th order derivatives and hence the fitis done with ~ The residual functions obtained from applying the
2 degrees more; this results in degree 7 and therefotddO with weights calculated from all 50 malignant
the order (degree of local polynomiall) has to be 8. profiles to the malignant profiles were estimated via
The choice of 47 basis functions yields 41 knots whicltrossvalidation as done for applying benign profiles’
gives, in the case of the smallest number of points inveights on benign profiles.

a profile (189 points), about 5 internal points between  pagiqyal functions calculated for benign profiles
knots, and in the case of the greatest number of poin{§sing the weight functions from the malignant profiles
in a profile (343 points), some 8 internal points. significantly deviate from 0, more so than the ones
Six functions for the benign profiles and six for the obtained for the malignant profiles using the same
malignant are estimated: Two forcing functiomg(t) ~ malignant weight functions.
anday (t), and the four weight functionSix, fox, By, As expected, the residuals obtained from applying
Pay for each type. benign weight functions to benign profiles (benign on
The forcing and weight functions for benign benign) and malignant weight functions to malignant
profiles are presented together in Fig. 7. It can berofiles (malignant on malignant) were distributed
seen that the forcing function is the largest source ofloser to zero than those obtained from applying
variation and how the first and second derivatives havbenign weight functions to malignant profiles and vice
smaller impact in such variability. versa.
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X Figs. 10 and 11 show thevalues for the Wilcoxon
2000 test for the location parameter of zero. These figures
show that thep-value-curves for benign on benign
e — - are not less than.B3 for X(t) residuals and not less
oo than 033 for Y(t) for anyt € [0,1]; the p-values for
oo malignant on malignant are not less tha@for X (t)
[ ‘ ‘ ‘ ‘ * and not less than.R9 for Y (t) for anyt € [0,1] and

hence it can be concluded that the residuals are centred
ime at zero at all times € [0, 1].
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Fig. 8. Forcing and weight functions for malignant |
profiles. Solid black line is the forcing function, grey s
line is 3, and dashed line igs.
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02 —

Fig. 9 shows the functional 95% confidence
intervals for theX(t) andY (t) mean residual curves of S
benign on benign and of malignant on malignant and it S w w w w \
is clear that zero is always inside the intervals. 00 02 o4 06 08 10

time

X(t)

Fig. 10.Pointwise (fine grid of 1000 timeg tP-values

o _ of testing mean of residualu) equals O for (X) .
I T Black line: benign on benign, gray line: malignant on
| malignant, dashed line: P-value = 0.05.
0 T T T T T
0.0 0.2 0.4 0.6 08 1.0 Y(t)

: “JJ\“J/::\V/ : M\P / f\’M\/W

-100 —
-150 —

Pvalue

time

Fig. 9.95% Confidence-like interval for the mean of
residuals. Black line: benign on benign, gray line: ---ororeeiim i
malignant on malignant. [ w w w w \

These intervals are calculated in an analogous way time
as confidence intervals for point estimates, the only
difference is that the mean and standard deviatioRig. 11.Pointwise (fine grid of 1000 timeg PP-values
of the curves are curves themselves. The standanf testing mean of residualgu] equals 0 for (Y).
deviation is a function of the parameterit varies at Black line: benign on benign, gray line: malignant on
different timeg. malignant. Dashed line: P-value=0.05.
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Fig. 12 shows the functional 95% confidence
intervals for theX(t) and Y(t) mean residuals of
benign on malignant and for malignant on benign and 10 4
it is clear that zero is not always inside the intervals.
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LI RS /ﬁ\\/‘;—;/—\J Fig. 14.Pointwise (fine grid of 1000 timeg P-values
of testing mean of residualg) equals O for (Y). Black

w w w w w line: benign on malignant, gray line: malignant on

o o o o " benign. Dashed line: P-value=0.05.
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Fig. 12.95% Confidence-like interval for the mean of
residuals. Black line: benign on malignant, gray line:
malignant on benign.

The analysis has shown that the residual processes
obtained by applying weight functions of the same
type as the profile type (benign on benign or malignant
) i on malignant) are “well behaved” in both of the

Figs. 13 and 14 show thievalues for the Wilcoxon  cqordinates(,Y and their confidence intervals always
test for the location parameter of zero. _Thls figurecover zero. On the other hand, when applying weight
shows that thep-values are less than@b in some ¢nctions of different type than that of the profiles
intervals, and in those time periods it can be concludeé:)enign on malignant, malignant on benign) the
that the residuals are centred at a value significantlyjqal processes are “ill behaved” in at least one of
different from zero. the coordinateX,Y, having the confidence intervals
not covering zero over non-negligible proportions of
time spanning from 21% to 525%.

X(t)

1.0 —

\ Based on this analysis and given the fact that
i J profiles are obtained in batches, say from a biopsy,
” / \ a new batch of profiles can be digitised, converted

’ into functional data, registered to the benign profiles’
mean function and then have the weight functions
\ applied to each of the profiles to obtain the residual
processes. Once these are obtained, the confidence
intervals and/or the Wilcoxon tests can be performed

02 | L K\ j to obtain a diagnostic of benign or malignant.

06 —

0.4 —

Pvalue

0.0 —

0.0 0.2 0.4 0.6 0.8 1.0 CONCLUSION

The purpose of this paper is to combine techniques
Fig. 13.Pointwise (fine grid of 1000 timeg P-values from the methods presented in a new approach that
of testing mean of residualg) equals 0 for (X). Black surpasses constraints faced when applying the methods
line: benign on malignant, gray line: malignant on individually. The approach used is of an exploratory
benign. Dashed line: P-value=0.05. nature in search for a possible aid in the diagnosis.



NETTEL-AGUIRRE A: Nuclei shape analysis

The alignment and registration of the profiles is,Gardner R, Hobolth A, Jensen E, Srensen F (2005). Shape
from a biological point of view, arbitrary and has discrimination by total curvature, with a view to cancer
no physiological meaning. It is, however, a protocol diagnostics. J Microsc 217:49-59.
followed to analyse all profiles in a consistent way.Green P, Silverman B (1994). Nonparametric Regression
The ‘reference’ point is reached in each profile by  and Generalized Linear Models (A roughness penalty
following a fixed criterion. approach). London: Chapman & Hall, 1st ed.

The ways in which the methods were app”edGrenander U, Manbeck K (1993). A stochastic model for

in this paper allowed dealing with the profiles defect detection in potatoes. J Comput Graph Stat
as continuous functions which better represent the 2:131-51.

continuous form and nature of the nuclei profiles, and>undersen HJG, Bendtsen TF, Korbo L, Marcussen N,
without the restriction to objects that are star shaped M1ler A, Nielsen K, Nyengaard JR, Pakkenberg B,

with respect to their centre of mass as in (Hobolth ~ Srensen FB, Vesterby A, West MJ (1988). Some new,
etal, 2002). simple and efficient stereological methods and their use

in pathological research and diagnosis. Acta Path Micro
Excluding the non-star shaped profiles from the  1m 96:379-94.
present data could have affected the discovery Ofionoith A, Pedersen J, Vedel Jensen E (2002). A

the characteristics pointed out by the first principal  geformable template model, with special reference to
component, as in that analysis it is seen that one of the  gjjiptical templates. J Math Imaging Vis 17 (2):131-7.

graphical characteristics where the scores of prindp&f—hobolthA Pedersen J, Vedel Jensen E (2003). A continuous
components differ significantly relates to the non- param’etric shape r’nodel Ann | Stat Math ,'55_227_42

convexity of the shape and the non-star shaped profiles ' o )
in this data set also happened to be non-convex. Hobolth A, Vedel Jensen E (2000). Modelling stochastic

changes in curve shape, with an application to cancer
This paper shows in a tangible graphical way, the diagnostics. Adv Appl Probab 32:344-62.

shape differences between the two types of profiles. Aele S, Richtsmeier J (1991). Euclidean distance matrix

useful tool in the principal differential analysis gave  analysis: A coordinate free approach for comparing

the criterion for classification based on the behaviour  biological shapes using landmark data. Am J Phys

of 95% intervals for the residuals. When it comes  Anthropol 86:415-27.

to having some measure of uncertainty, the readglgle s Richtsmeier J (1992). On comparing biological

could relate to the confidence intervals and healue shapes: Detection of influential landmarks. Am J Phys

function. Itis important that the reader remembers that  anthropol 87:49-65.

tbhel ;;roftlles, aI:hofli]ghlthethrE presentfed deVIdtl.Ja”yMacIeod N (1999). Generalizing and extending the
clongtoaseto l.JC €l whic 'comes romone ISSU? eigenshape method of shape space visualization and

sample such as a biopsy. In this sense, an analyst will analysis. Paleobiology 25:10-138

not be facing the problem of having only one profile to ) )
er M, Joshi S, Maffitt D, McNally J, Grenander U

) . h . ill
diagnose or to classify, as there will be a set of proflleévl' : .
and hence the sample means and standard deviations (1994). Membranes, mitochondria and ameoba: shape

of the residuals obtained by applying the weight models. Adv Appl Stat 11:141-63.

functions, and so, the construction of the confidenc&eura M, livarinen J (1997).  Efficiency of simple
intervals is possible. shape descriptors. In: Proceedings from the Third

International Workshop on Visual Form.
Ramsay J, Dalzell C (1991). Some tools for functional data
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