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Optimal Averaging Procedures in Almost Sure
Central Limit Theory

Siegfried Hhrmann

Abstract

Let X1, X5,... be ii.d. random variables witl/ X; = 0,EX? = 1, S, =
X +...+ X, and let(d;,) be a positive numerical sequence. We investigate the a.s.
convergence of the averages

N
1
— <
D k§1 dpI{S/Vk < @},

whereDy = S dj.. In the case ofl;, = 1/k we have logarithmic means and
by the almost sure central limit theorem the above averagegecge a.s. t@(x),
the standard normal distribution function. It is also knathat the analogous con-
vergence relation fails faf,, = 1 (ordinary averages). In this paper we give a fairly
complete solution of the problem for which weight sequerntbesbove convergence
relation and its refinements hold.

1 Introduction

1.1 Thealmost sure central limit theorem

One of the most frequently investigated topics in clasgicabability theory is the fluc-
tuation of the partial sumS,, of i.i.d. random variablex(;, X5, .... In case ofE.X; = 0
andEX? = 1 the central limit theorem (CLT) yields that

P{k728, < 2} — ®(x) (k — o0).

Hence one might expect that the average time the path of toegg k~'/25},),>, spends
belowz € R is asymptoticallyd(z), i.e.

% Z {725, <z} — ®(z) as. (N — o). (1.1)

1<k<N

Of course, the random variablé$k—'/2S, < x} are not independent and have also no
other structural property which would allow the applicatiaf the law of large numbers
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(LLN). And indeed (1.1) is not true! The easiest way to ses thito observe that by
Lévy’s arc-sine law we have

% S {Si <0} 5T (1.2)

1<k<N
whereT is the arc-sine distribution with density

1 1
%\/x(l —x)

Note thata(x) takes its minimum at = 1/2 and becomes infinite at 0 and 1. Thus for
fixed largeN the least likely value of the fraction of time the pd#r'/2S,)Y | spends
on the positive half axis is 1/2, and it is much more likelytttree path remains most of
the time either below or above theaxis rather than to level off to an equilibrium.

A possible way to overcome the strong dependence of the nandoiables/ {S; <
0} has been shown by Erdds and Hunt (1953). They proved thét ifas a continuous
and symmetric distribution function then

a(z) = 0<z<l.

1 L1
dim e ™ ; SI{S <0} =1/2 as. (1.3)
The difference between (1.2) and (1.3) lies in the summatietnod. In the latter we used
logarithmic means instead of the common Cesaro means.r@$udt is a special case of
the so calleclmost sure central limit theore(ASCLT) proved first by Brosamler (1988)
and Schatte (1988). (Actually, a very similar result hasnbaleeady stated by Lévy in
1937 (cf. Lévy, 2003), but without a proof). In order to fartate this result, let2, 7, P)
be the probability space on which the sequefiXg) is defined.

Theorem A Let Xi, X5, ... be a sequence of i.i.d. random variables wilX; = 0,
EX? =1 and defineS;, = X; + --- + Xj. Then there is a se¥V € F with P(N) = 0
such that for any Borel set C R with A\(0A) =0

N

1 1 2
> IS, € A} — _/ e 2dt onQ\ N. (1.4)
k V2T Ja

k=1

1
log N

Brosamler and Schatte proved Theorem A assuniip, |>*° < oo for somed > 0;
for a proof assuming only finite second moments, see Laceyailgp (1990). In the
past 15 years, a wide literature dealt with various exterssad the ASCLT,; for a survey
we refer to Berkes (1998).

The crucial new feature of the a.s. central limit theorem)(ik its pathwise character:
the limit of the left hand side of (1.4) can be computed for fxgd w € 2 knowing only
the values ofX,,, n = 1,2, ... atw. Hence the ASCLT is often callgghthwise central
limit theorem.

The following lemma will be the basis for a heuristic proofldfeorem A.
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Lemmal Let(W(¢)):>o be a standard Brownian motion process andflidte a continu-
ous function. Then

1og1T/1 %f(tmw(t)) dt — Ef(W(1)) as. (1.5)

Proof. By parameter transformation we get

1

1 Tl logT
Z -1/ —
o | e e = = [ rama,

where Z(t) = e '/2W(e!) is (the stationary)Ornstein-Uhlenbeck processHence the
result follows from the ergodic theorem.

0

Using Lemma 1, Theorem A can be deduced now by an invariagcerent. Assume
that f is uniformly continuous. Replacing

L ETVPW()) by kTLA(RTVRW(R) ift e [k k4 1)

does not harm the limiting behavior in (1.5). Now assuminghgly more than two mo-
ments forX, by an almost sure invariance principle (cf. Csorg6 ardé@?®z, 1981: 108)
we can redefin®V and X, X5, . .. jointly on a new probability space in such a way that

EYPW(k) — kY28, = o(1)  a.s.
Sincef is uniformly continuous, it follows that
FEYV2W (k) — f(k7Y2S,) — 0 as.  (k— o0).
Finally, it is not hard to see that by an approximation argointbe result of Lemma 1

extends to indicator functions= 7, whereA C R is a Borel set with\(0A) = 0.

1.2 Linear summation methods

The argument above shows why logarithmic summation in th€lASs natural from an
ergodic point of view. Note that logarithmic summation isger than Cesaro summa-
tion, i.e. if for a numerical sequen¢ey,);>, we have

lim — Z =z (say)

N—oo N

then

lim

NﬂoologNZk R
That the converse is false can be seen by defining

(00 ke{2¥ .. 221}
TET 10 ke {orrl L 226 _qy
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In some sense, this sequerieg) exhibits a similar behavior g9 {k~'/25,, < x}). Long
periods of0’s are followed by even longer periods v and conversely. Lei = 0.
By the CLT the probability that—1/2S, lies outside the interval—e, ¢) is close tol for
smalle > 0. If we assume thatX,| < 1 for all &, then it will take at least: > vk
steps until/ {k~'/25,, < 0} will change from0 to 1 or the other way round. In order to
compensate this persistence in the same state we have todaigy the random variables
I{k™1/28, < x}. Thus, the explanation that logarithmic means are a pramir this
theory might also result from the point of view of summalitiheory. By this argument,
one should also expect to get stronger results if we userlargghts.

The elegance of the above heuristic argument for Theorems&sdhe question if
there exist other, substantially different averaging radghwhich also work in the ASCLT.
Let us note first that log averaging is not unique: it was oleetby Peligrad and Révész
(1991) that

N

atl (log k) ~1/2
flog N)QH; T H{F28 € A} - 0(4) as, (1.6)

foranya > —1. While the averaging in (1.6) is rather similar to log aversgBerkes and
Csaki (2001) showed that

N
1 _
e > dyI{k'S, € A} — ©(A) as. (1.7)
k=1
for
k
dp = exp((logk)")k™",  Dpy=>» d; (0<a<1/2). (1.8)
j=1

(Also, (1.7) holds for all smaller weight sequenc¢és) as well). To understand the con-
nection between these results and the standard ASCLT (@e43hall review some facts
on linear summation methods.

LetD = (Dy) be a positive non-decreasing sequence ith, .., Dy = co and set
dy = Dy, — Dy_,. We say thatzy,),>1 is D-summable ta: if

1 N
]\}Enoo Dn ; dpr, = x. (2.9)
By a result of Hardy (see e.g. Chandrasekharan and Minaksiiesam, 1952: 35), iD
andD* are summation procedures withy, = O(Dy), then under minor technical as-
sumptions, the summatidd* is stronger tha, i.e. if a sequencér,,) is D-summable to

x, then itis alsdD*-summable ta:. Also, if (d;) grows exponentially or faster, then (1.9)
is equivalent to convergence of the sequefigg, and hence this is the weakest summa-
tion method. By a result of Zygmund (see also Chandrasehlaard Minakshisundaram,
1952: 35) ifD$ < D% < DS (N > N,) for somea > 0, > 0, thenD andD* are
equivalent, and iD%, = O(D5%,) for anye > 0, thenD* is strictly stronger thab. These
results show that the larger the norming sequdngean (1.9) is, the stronger the relation
(1.9) becomes. In view of Zygmund'’s theorem, (1.6) is a¢tyuedjuivalent to Theorem A.
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Note also that the larger weights
de =k, Dp=>»d; (a<]l)

define a summation equivalent to ordinary averaging, andédn not work in the AS-
CLT. On the other hand, the result of Berkes and Csaki pes/&bmmation methods in
the ASCLT which are strictly weaker than logarithmic sumimraand thus yield a sharp-
ening of the ordinary ASCLT. The summation procedures ddfime (1.8) lie strictly
between log and Cesaro averaging and are pairwise noraeuior differenta’s. Note
that fora = 0, resp.a = 1 (1.8) reduces to logarithmic, resp. ordinary averaging and
thus the result of Berkes and Csaki shows that the ASCLT irsnaalid at least until
‘halfway’ from logarithmic to ordinary averaging. In view &lardy’s result the ‘true’
form of the ASCLT is given by relation (1.7) where tli&y is maximal, i.e. Dy is the
weakest summation method. This maxinag| is unknown. In the following section we
will give substantial improvements of the result in Berkes &saki: we will show that
the ASCLT (1.7) holds under a fairly general growth conditim (d, ), similar to the con-
dition in Kolmogorov's LIL. In particular, our results wilmply that the sequence (1.8)
obeys the ASCLT for all < « < 1, and thus the critical summation procedure in a.s.
central limit theory lies much closer, in some sense, toragi averaging. We will then
determine fairly sharply the critical summation metHad

2 Resaults

Our first theorem is formulated in a more general setting. Weassume thatX,, are
independent, but we drop the assumption that they are aigiytidistributed or have
finite second moments.

Theorem 1 Let X7, X5, ... be independent random variables with partial sufiisand
assume that for some numerical sequenges 0 andb, we have

Sn _ b, =5 H (2.1)

Qp

with some (possibly degenerate) distribution functibnAssume that

E % — b, ’ =0(1) (n — 00), (2.2)
and
ar/ay <C (kD)7 (1<k <) (2.3)

for some positive constangs 5, C. Assume finally thatd, > 1 andd,k“ is eventually
non-increasing for someé < « < 1 and that for some > 0

dp =0 (ﬁ) . (2.4)
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Then if f is a bounded Lipschitz 1 function or an indicator functioradorel setAd with
A(0A) = 0, we have

N o
lim D;,l;dkf (j—: - bk) = /OO f(x)dH(z) a.s. (2.5)

Conditions (2.1)-(2.3) are satisfied e.gXif are i.i.d. with finite second moments or if
X arei.i.d. random variables belonging to the domain of etitba of a stable distribution
H. In this cas€(ay) is regularly varying with exponerit/« for some0 < o < 2 and
the validity of relation (2.3) follows easily from the regentation theorem for regularly
varying functions. Conditions (2.1)-(2.2) are also safif X, are independent r.v.'s
with EX;, = 0, EX? < oo satisfying the Lindeberg condition

lim s,° > EXFI(| Xy > es,) =0  foralle >0,

n—00
k=1

wheres? = Y7 EX?. In this case we can choosg = s, b, = 0 and the additional
assumption (2.3) is essential: as an example in Berkes anich€1993) shows, without
(2.3) the theorem fails evendf, = 1/k.

Proposition 1 Assume that relation (2.4) of Theorem 1 is satisfied for somgeience
(Dy). Then it is also satisfied for any other sequerdeg = (Dy) provided :

RT — R* is differentiable,y’(z) = O(¢(z)/x) for z — oo andlog’(z) is uni-

formly continuous oriA, o) for someA > 0. In particular, (2.4) is satisfied foDy =

exp((log N)*), 0 < a < 1.

We assumed here implicitly that(x) — oo since otherwise}, defines of course
no summation method. Typical examples for functignsermitted in the Proposition are
Y(x) = x> ory(z) = (log z)* whena > 0.

As we have mentioned above, replacing the weightby smaller ones (subject to
regularity conditions) leads to a stronger averaging pdaoe and thus it preserves the
validity of the ASCLT (1.7). The second statement of Proposil illustrates the type
of regularity condition required in this context. Propasitl can be deduced from a the-
orem of Hirst in summation theory (see Chandrasekharan andKghisundaram, 1952:
37-38), but can also be deduced directly from the proof ofofée 1. In view of the
possibility of replacing thei, with smaller ones, the assumption that, > 1 is no
real restriction of generality in Theorem 1. While excluglisome irregular weight se-
guences the assumptidpk® is non-increasing for some < o < 1 does also not make
any restriction on the order of magnitude(df,). Indeed, as we have seen, the sequence
d. = k=, a > —1, is already too large to imply the ASCLT.

Until now, on the independent sequericg,) we assumed only that its partial sums
Sn, properly centered and normalized, converge weakly. Uttteassumption thaX’,
are i.i.d. with finite variance, the sequenoge = exp((log N)*) obtained in Proposition 1
can be made essentially larger, and in fact a nearly optiomahsation method can be
obtained. Let us note, as we observed above, that the segjiispe= N*, o > 0, is
too large in relation (1.7), and thus it is no restriction be brder of magnitude ab
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to assume thab is slowly varying. By the theory of regular variatioP,y can then be
represented in the form

DN::cNeXp<]CNe@U/udu), (2.6)

whereA > 0, cy — ¢ € (0,4+00), e(r) — 0 for x — oo. Let W denote the set of
sequences$Dy) that can be represented as in (2.6) such thatmonotone decreasing
and obeys additionally

e(z)/e(2®) = O(1) (2 — o0).

Sincee(r) = (logx)~? is already leading to a boundédy, the last assumption anis
satisfied in all cases of interest.

Theorem 2 Let X, X5, ... be i.i.d. random variables witlt X, = 0, EX? = 1 and let
S,=X;+---+X,. LetD € W. Assume that

Dy, .
dy, = _ th 2.7
#=0 (k(log log k)o‘) witha >3, 27)

and
(kdy,) is eventually non-decreasing.

Then for any bounded functighwhich is either Lipschitz 1 or an indicator function of a
Borel setA C R with A(0A) = 0, we have

N—oo

N 00
lim D' def (l{;’l/QSk) = / f(z)d®(z) as.
k=1 -

Theorem 2 yields a strong law of large numbers for the s@ﬁél di f(k71/28},).
Actually, much more is valid: under conditions similar toebnem 2, the weighted sums
of f(k='/2S,,) satisfy also the central limit theorem and the law of theaited logarithm.

Theorem 3 Assume that the conditions of Theorem 2 are satisfied awith 3 in (2.7)
replaced by > 1. Then we have for every non-constant Lipschitz 1 funcfion

5o (5) () < e

N s,
Ay = Var dif (—)) . (2.8)

Theorem 4 Assume that the conditions of Theorem 2 are satisfied. Themawe for
every non-constant Lipschitz 1 functign

Y S S
th\Iflj;?ﬁ) (2A\n log log )\N)_l/Qde (f (\/—%) —Ef (\/—%)) =1 as.

k=1

where

where)y is defined by (2.8).
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The basic new element in Theorems 2-4 is condition (2.7)ckvig weaker than the
coefficient condition (2.4) in Theorem 1 and is very similarkkolmogorov’s classical
condition for the LIL. Condition (2.7) permits a faster griogy sequencé  (and thus it
yields a stronger result) than the sequefoe = exp((log N)*), 0 < o < 1 in Proposi-
tion 1. In fact, (2.7) is satisfied if

Dy = exp(log N/(loglog N)*) (a > 3). (2.9)

As a matter of fact, condition (2.7) is essentially sharp:fg; as in (2.9) the conclusion
of Theorem 4 fails with) < a < 1. Thus the ‘dividing line’ sequence in a.s. central
limit theory is (2.9) and the change of behaviour happenkenntervall < a < 3. The
critical value ofa remains open.

3 Proofs

In what follows, we will only sketch the proofs of our resuylter the detailed proof we
refer to Hormann (2005a) and (2005b). We use two differppt@aches to get Theorem 1
and Theorems 2-4.

3.1 First approach

To simplify the notation we set

§k=f(%—bk)—Ef(@—bk).
Q. Q.

Without loss of generality we may assur@ < 1 and lettingX, = X; — (azby —
ag_1bg—1) (k = 1,2,...), we can also assuntg = 0, £ > 1. From (2.1) it follows that
the conclusion of Theorem 1 is equivalent to

N
P{ > digy
k=1

The next lemma provides information on the covariancesefamdom variables..

>ecDy i.o.} =0 a.s. for alle > 0.

Lemma?2 Let X, X5, ... be independent random variables with partial sufsand
assume that for some numerical sequenges- 0 andb,, = 0 relations (2.2) and (2.3)
are satisfied. Then there exist constants > 0 such that for every bounded Lipschitz 1
function f we have

|E&E| < c(k/D)* (1 <k<I). (3.1)

Using the last lemma, the Markov inequality and (2.4) we dewsfor anyn < p

|

N

> dig

k=1 €

1
> 5DN} < —(log Dy)™". (3.2)
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(Herea,, < b, meandimsup,, |a,/b,| < c0.) Choose a sequenéé, Ns, ... such that

> (log Dy,)™" < oc. (3.3)
i>1
Then the Borel-Cantelli Lemma implies that (2.5) holds gltre subsequencé,, N, . ..
In order to prove Theorem 1 it remains to estimate the osicitiaof 31| d.&, between
the N;'s. It is clear that if the gaps betweéY) and vV, are too large, the oscillation will
get out of control. On the other hand, we are forced to choaapidly growing sequence
(NV;) in order to get (3.3). At this point the reason for assumireggabnditiona < 1/2
for the weights of Berkes and Csaki (1.8) becomes clearpimnalysis shows that for

thesed, we have
Dy,
dy, = .
=0 (k(logDmavﬂ)

If « < 1/2, then we can choose > 1 in (3.2)-(3.3) and thus for some > 0 we have
n(1 — ) > 1. This assures that for a subexponential sequéhge~ ' the series
in (3.3) converges. The fact that the sequef¥@g,) is subexponential provides that the
oscillation on]kV:1 dip&, between theV;’s is sufficiently small. The crucial tool for an
improvement of the ASCLT is contained in the following morharequality, which is
similar to the well knowrRosenthal inequality(Cf. Petrov, 1995: p. 59).

Lemma3 Let X, X,,... be independent random variables with partial sufjs As-
sume that (2.2) and (2.3) are satisfied for some sequences0 andb,, = 0. Further let
f be a bounded Lipschitz 1 function. Then for eyery N we have

o ((2)- ) <o (3 0e))”

whereC, = C(p, X1, o) (« is the constant in (3.1)) does not depend/on

With Lemma 3 and the Markov inequality we can improve (3.2% $¥t) = p/2 and get

N
P {
k=1

> dig

ChoosingN; such thatDy, ~ exp(y/j) andm > 2/p gives in conjunction with the
Borel-Cantelli lemma

> 6DN} < i(;? (log Dx)™ (m > 1),

lim —defk—o a.s.

J=00 Dy o=

A simple calculation shows thati¥; < N < N,

Z di&k

SinceDy,., /Dy, — 1 the convergence of the subsequence implies that the whele se
guence converges a.s.

< — de& —J-H — a.s.

Jkl NJ’

g
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3.2 Second approach

The approach to Theorems 2-4 is based on a blocking technidite proof and the
corresponding lemmas are very technical and therefore Wgust illustrate the main
idea, which is simple.

Lemma4 Let X, X,,... beii.d. rviswithEX;, = 0 and EX? = 1 and letS, =
X; + -+ + X,. Further letd, = L(k)/k, whereL is slowly varying at infinity and lef
be a bounded Lipschitz 1 function. Then

N N
S ,
ar (;;:1: dy.f (7%)) > ;le led?. (3.4)

Lemma 4 shows that Theorem 2 is a consequence of Theorentéd,(8i7) and (3.4)
imply that
Dy /(An loglog Ay )% — oo.

The idea of the proof of Theorems 3 and 4 is this: We partitianto disjoint blocks:
N:A1U31UA2UBQ...,Where

Bj:{ij+]_,...,2qj} and A]:{2p3+1”2q;}

The exponents;, ¢;, p; andq; are defined such that the number of elements;imnd in
the A; is increasing very fast and thgB;| is much larger than4;|. Next we define the
random variables

Zj=>Y di& and R;:= ) di&  (j>1).

kelij k€44

Then clearly

24n

Sy em-Eal0(3)-5 ()

The idea is to approximate the random procgs8s j > 1} by anindependenprocess
{Z;,j > 1}. We define
Zr=Y di&l (=),

kel%

Sj—f<sk_sl'i) — Ef <Sk_sl") for k € B,
b vk vk ]’

wherel; is the largest integer containedAt)_,. Then clearly by its definition the random
variables” are independent. Note that the faster the number of elenmetfits blocksA;

andB; grow the smaller will be the error which we make by replacindy gg. However,

too large blocks will cause a higher oscillation of tAgls and R;’s, which leads to a
worse reminder term. Therefore an optimal choicéf and|B;| is very important, in
order to get optimal results.

with
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Now we derive in a first step a CLT and an LIL for the sequencés j > 1} via
Lyapunov’s theorem and Kolmogorov's classical LIL (cf. &t 1995: Theorem 4.9 and
Theorem 7.1).

In the second step we estimate the difference betwgeand Z;. It turns out that it
does not disturb the limiting behavior, i.e. the approxionats close enough. Further we
show that the contribution f"_, R; to

(1) -+ ()

is negligible for our purposes. This proves the theoremsgtbe subsequeng¢g? ), .
Finally it remains to show that the fluctuation of the partaims betweef? and2%+!
is small enough.

Acknowledgements

The author would like to thank Prof. Istvan Berkes for hisagrsupport and two anony-
mous referees for carefully reading the paper and impraiadirst version.

References

[1] Berkes, I. (1998): Results and problems related to thiatpgse central limit
theorem. InAsymptotic methods in probability and statistics (Otta®@&, 1997)
(pp. 59-96). Amsterdam: North-Holland.

[2] Berkes, I. and Csaki, E. (2001): A universal result imakt sure central limit
theory. Stochastic Processes and their Applicatid®g 105-134.

[3] Berkes, I. and Dehling, H. (1993): Some limit theorem#oig density.The Annals
of Probability, 21, 1640-1670.

[4] Brosamler, G. A. (1988): An almost everywhere centnalititheorem Math. Proc.
Cambridge Philos. Socl104, 561-574.

[5] Chandrasekharan, K. and Minakshisundaram, S. (193gpical Means.Oxford
University Press.

[6] Cso0rgd, M. and Révész, P. (1981)Strong Approximations in Probability and
Statistics.Budapest: Academic Press.

[7] Erdés, P. and Hunt, G. (1953): Changes of signs of sumsammdom variables.
Pacific J. Math, 3, 673-687.

[8] Hormann, S. (2005a): Summation methods and the almwsteentral limit theo-
rem. Preprint

[9] Hormann, S. (2005b): An extension of almost sure cétitrat theory. Accepted
for publication in Statist. Probab. Lett.

[10] Lacey, M. T. and Philipp, W. (1990): A note on the almostescentral limit
theorem.Statist. Probab. Lett9, 201-205.

[11] Lévy, P. (2003): Théeorie de l'addition des variables @foires(12 ed.). Jacques
Gabay.



282 Siegfried Hormann

[12] Peligrad, M. and Révész, P. (1991): On the almost sargral limit theorem. In
Almost everywhere convergence, Il (Evanston, IL, 148p) 209-225). Boston,
MA: Academic Press.

[13] Petrov, V. (1995):Limit Theorems of Probability Theorpxford: Oxford Science
Publications.

[14] Schatte, P. (1988): On strong versions of the centnat iheorem.Math. Nachr,
137, 249-256.

[15] Weber, M. (2000): Un théoréme central limite presgliea moments généralisés
pour les rotations irrationnelledanuscripta Math.101, 175-190.



