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Abstract

Basic property determination of novel nanomaterials is one of the main fields in nano-
technology. The research includes along with the goal experiment also the material prepa-
ration, design and manufacture of measurement circuits, the integration of nanoparticles
in the chips and the analysis of results. In this doctoral dissertation we report on the
electron transport properties of Mo6SxI9−x nanowires. The synthesized material was dis-
persed in acetone using ultrasound and was later replaced with isopropanol due to di-
electrophoretical integration of single bundles in measurement chips, that were annealed
before the measurement at 700◦C in vacuum, improving electrical connection between the
bundle and the contacts. The circuit that was produced with electron beam lithography
included a several 100 nm narrow gap, that was bridged by bundles integrating them
into the circuit. The measured variables were the current versus voltage characteristics at
different temperatures from room temperature till 18 K. The result analysis of four thin
bundles was based on three main theoretical transport predictions: the Luttinger liquid,
environmental Coulomb blockade and variable range hopping. Two bundles showed Lut-
tinger liquid and variable range hopping, whereas the other two combined the hopping
mechanism with the effects of environmental Coulomb blockade. We confirmed that the
bundles are composed of single nanowires strands but included also high disorder and
even insulated islands that act as quantum dots. For thicker bundles we observed the
effect of cycling two times, where the conductivity changed for each temperature scan.
We suggest an explanation of the phenomenon through Fermi glass theory by assuming
the transformation of localized states to non-localized ones in such a way that the mobility
edge passes the Fermi energy and thus fundamentally alters the transport mechanisms in
the system.

PACS: 73.63.Nm, 73.40.Cg

Keywords: inorganic nanowires, electron transport properties, disordered nanowires, tem-
perature annealing, variable range hopping, environmental Coulomb blockade, Luttinger
liquid, nanowire dispersion





Povzetek

Določevanje osnovnih lastnosti nanomaterialov je eno temeljnih področij nanotehnologije.
Raziskave poleg ciljnih eksperimentov vključujejo pripravo razpršin materiala, oblikovanje
in izdelavo merlinih vezij, integracijo nanodelcev v čipe in analizo rezultatov. V tej dok-
torski disertaciji poročamo o meritvah elektronskih lastnosti nanosvežnjev Mo6SxI9−x.
Sintetiziran material smo z ultrazvokom razpršili v acetonu in ga kasneje nadomestili z
izopropanolom zaradi dielektroforetične integracije posameznih svežnjev v merilne čipe, ki
smo jih pred meritvijo popuščali v vakuumu na temperaturi 700◦C, s čimer smo izbolǰsali
električno povezavo med kontakti in svežnjem. Vezje, ki smo ga izdelali s pomočjo elek-
tronske nanolitografije, je v osnovi vsebovalo ozko režo širine nekaj 100 nm, ki so jo
svežnji premostili ter se tako integrirali v vezje. Merilne opazljivke so bile karakteris-
tike toka skozi merilni čip v odvisnosti od napetosti, merjene pri različnih temperaturah
od sobne do 18 K. Analiza rezultatov meritev štirih tankih svežnjev je temeljila na teo-
retičnih napovedih glavnih transportnih mehanizmov: Luttingerjeve tekočine, impedančne
Coulombove blokade in preskakovanja spremenljivega dosega. Pri dveh svežnjih smo
pokazili na soobstoj Luttingerjeve tekočine in preskakovanja, pri preostalih dveh pa smo
poleg preskakovanja sklepali še na impedančno Coulombovo blokado. Tako smo potrdili,
da so svežnji sestavljeni iz posameznih nanožic, vendar pa so prepredeni z nehomogenostmi
in celo električno izoliranimi strukturnimi otočki, ki delujejo kot kvantne pike. Pri debele-
ǰsih svežnjih smo v dveh primerih opazili še efekt cikliranja, kjer se prevodnost spreminja
ob vsakem temperaturnem ciklu. Pojav razložimo s teorijo Fermijevega stekla, kjer pred-
videvamo prehajanje lokaliziranih v nelokaliziranana stanja ob spreminjanju strukture
med meritvijo tako, da rob mobilnosti prečka Fermijevo energijo, s čimer se fundamen-
talno spremenijo transportni mehanizmi v sistemu.

Stvarni vrstilec (PACS): 73.63.Nm, 73.40.Cg

Ključne besede: anorganske nanožice, elektronski transport, nehomogene nanožice, tem-
peraturno popuščanje, preskakovanje spremenljivega dosega, impedančna Coulombova
blokada, Luttingerjeva tekočina, razpršina nanožic
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Chapter 1

Introduction

Nanotechnology appears to be a novel promising route in many fields of scientific research,
in medicine, electronics, physics, biochemistry,. . . and is expected to find new applications
in the areas of information industry, diagnostics, even cancer treatment. What makes this
new approach exciting and demanding are the scales and dimensions of objects involved
in order to explore new possibilities and phenomena that arise when the macroworld col-
lides with the micro- even nanoworld. These systems are often called mesoscopic and
are considered to be one of the unexplored areas of science that utilizes highly developed
technology and precise instruments, since the minute objects, that behave in practically
the same way as molecules, need to be handled with the same precision as macro ob-
jects. This is the core of the nanotechnology: the structures are precisely designed on
the atomic level and are intended to be controlled perfectly in terms of position and
function. Such high expectations make nanotechnology a multidisciplinary science that
includes particularly (bio)chemistry, physics, electronics that have to be combined in order
to reach the set goals. The field already has a huge success in designing and controllably
manufacturing different compounds and novel materials such as nanoparticles, nanowires,
nanorods, nanohorns, . . . , that are characterized under modern microscopy (transmis-
sion and scanning electron microscopy (TEM, SEM), atomic force microscopy (AFM),
scanning tunneling microscopy (STM) and spectroscopic techniques (X-ray diffraction
(XRD), X-ray absorption fine structure (XSAFS), Raman spectroscopy, UV-VIS spec-
troscopy,. . . ). The integration of the compounds into the circuits was also demonstrated
and many basic properties were explored, but the transition into high scale production
hasn’t yet been established. Mostly the materials are used as additives and coatings, but
functional mechanical or electronic devices are still in the phase of research. Promising
materials for such devices are the nanowires and nanotubes that exhibit novel physical
properties on the basis of quantum mechanics and can be at the same time handled with
sufficient accuracy to integrate them into measurement chips that are produced using the
e-beam lithography [1] with sufficiently high resolution in the nanometer range. Exem-
plary work on carbon nanotubes [2, 3, 4] confirms the onedimensional behavior of narrow
wires through the presence of Luttinger liquid [5, 6]. Other low dimensional phenomena
such as environmental Coulomb blockade have also been observed, confirming theoretical
predictions for such systems [7, 8, 9]. In inorganic nanowires (niobium and molybdenum
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selenide) similar Luttinger liquid behavior was measured along with charge density wave
formation and variable range hopping transport [10, 11]. Such behavior is predicted in
the theory of Fermi glasses developed by Mott and Anderson [12] and is closely related
to the disorder in the systems. Research involving the inorganic compound based on
molybdenum, sulfur and iodine with a general formula Mo6SxI9−x under the signature
MoSIx [13, 14] was mainly concentrated on bulk samples in form of pressed pellets and
included optical properties [15, 16, 17, 18], sound propagation studies [19] and electrical
transport properties of nanowire sheets [20] or networks [21, 22], where also variable range
hopping has been observed. Other studies involved sample preparation techniques and
solubility properties in various solvents [23, 24] proving an intrinsic compatibility with a
variety of chemicals, including water. The transport of individual, thick bundles (above
50 nm in diameter) has also been explored and again variable range hopping was observed
[1, 25] whereas thinner bundle were studied on their self-assembling properties with dif-
ferent (bio)materials, setting the route to biochemistry [26]. In our work we attempted to
measure basic electronic properties of single and thin MoSIx bundles, which proved to be
quite a challenge. Our research included, apart form the material synthesis, all techno-
logical steps that lead to the final experiment. We were confronted with the majority of
problems that also other researchers face: sample preparation, circuit production, single
bundle integration and finally the transport measurement.

In this thesis we begin with physical phenomena in one dimension and introduce the
theories from the experimental point of view. After the basic description of our nanowires
and dispersion preparation we turn our attention to the circuit production, discussing the
process and challenges of the e-beam lithography, followed by dielectrophoretical bundle
integration into a circuit, forming the measurement chip. Before describing the measure-
ments, we report on the thermal annealing procedure and in the end we conclude with
the analysis of results and general discussion.



Chapter 2

Theoretical overview of
one-dimensional electron transport

One-dimensional systems are especially interesting for theoretical considerations since
strong particle confinement lies in the area of the quantum mechanics thus having new
physical properties which are often quite unexpected compared to the well explored bulk
material properties. Our field of interest is electron current transport through such sys-
tems from theoretical and from experimental point of view by the exploration of single
nanobundle measurement chips.

In this chapter we first discuss the general properties of strong electron confinement
in quantum mechanical terms, followed by some main transport theories that could be
applied to a real measured system. We consider some 1D systems in terms of impurity and
non-homogeneity content that have profound impact on electron travel along the system,
especially if the confinement isn’t as strong and allows transport along other dimensions.
We tried to present the issues so that the underlying physics comes upfront, sometimes
even with basic mathematical treatments that lead to commonly familiar result.

2.1 Basic consequences of strong 1D confinement

Before we begin with the overview of some theoretical models let us depict the fundamental
consequences in 1D structures that arise solely due to the strong spatial confinement of
fermions. They are driven by quantum mechanical effects that become significant at low
temperatures and in confined dimensions.

2.1.1 Quantum wells - quantum dots

Let us consider an independent and isolated system, where the electrons are trapped. We
describe it as a quantum well with harmonic, step-like or other potential barrier shape. In
every case, the calculated energy states become less dense due to the shrinkage of space.
Let us take a look into basic properties on the example of 1D quantum harmonic oscillator
[27] [28](Fig. 2.1), that describes a deep quantum well with a harmonic (quadratic)
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potential:

V =
1

2
mω2x2, (2.1)

where ω denotes an equivalent to classical angular frequency in terms of (K/m)1/2 with
K being the elastic constant of classical analogy with a mass on a spring, m mass and x
the position of the particle inside the well.

Figure 2.1: The energy levels of a 1D harmonic oscillator (left) and eigenstate probabilities
of the first four energy levels (right); the colors denote the same n in both diagrams.

To determine the wave functions and hence the probability for a particle to be found
at the specific point in the oscillator, we need to solve the Schrödinger equation that
includes also the energy levels for each wave function:

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = E ψ, (2.2)

where ψ denotes wave function and E its energy level. The solution of the problem
is a family of eigenfunctions with proper boundary conditions (ψ(x → −∞) = 0 and
ψ(x→∞) = 0), each with its eigenenergy. Here we only write the result:

ψn =
(mω
π~

) 1
4
e−

mω
2~ x2

(2nn!)−
1
2 Hn

[(mω
~

) 1
2
x

]
, (2.3)

where n denotes the index of each wave function and Hn the Hermite polynomials of order
n. The eigenenergies are equally spaced and follow the expression:

En = ~ω(n+
1

2
). (2.4)
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If we are interested in three dimensional confinement, as is often the case in nanotech-
nology, the described 1D solutions can be easily expanded to include new dimensions, if
the quantum states in each dimension remain uncoupled and the potential is isotropic,
by adding new quantum numbers for each new dimension. For the harmonic oscillator in
3D we have three quantum numbers: nx, ny and nz. The solutions in this case have the
same basic form as for the 1D:

Enx,ny ,nz = ~ω(nx + ny + nz +
3

2
). (2.5)

Even though the spacing between the levels remains constant, the number of states
with same energy grows quadratically with the energy, since more degenerate eigenstates
are possible. The eigenstates are a product of 1D states for each dimension:

ψnx,ny ,nz =
(mω
π~

) 3
4
e−

mω
2~ (x2+y2+z2) (2nx+ny+nznx!ny!nz!)

− 1
2 ·

·Hnx

[(mω
~

) 1
2
x

]
Hny

[(mω
~

) 1
2
y

]
Hnz

[(mω
~

) 1
2
z

]
. (2.6)

For the infinitely deep 1D square well [27] between 0 and x0 we similarly get a family
of eigenfunctions with eigenenergies but with the difference that now the energy levels are
not equally spaced any more, but grow quadratically with the index of the wave function
Fig. 2.2 [27][28]:

ψn =

(
2

x0

) 1
2

sin(
nπx

x0

),

En =
n2π2~2

2mx2
0

. (2.7)

As with the harmonic oscillator we generalize by introducing a quantum number for
each new (additional) dimension. The total energy is a sum over all dimensions and
the corresponding wave functions become the product of the wave functions for each
dimension:

ψnx,ny ,nz =

(
2

x0

) 1
2
(

2

y0

) 1
2
(

2

z0

) 1
2

sin(
nxπx

x0

) sin(
nyπy

y0

) sin(
nzπz

z0

),

Enx,ny ,nz =
π2~2

2m
(
n2

x

x2
0

+
n2

y

y2
0

+
n2

z

z2
0

). (2.8)

As we will see later, this quantization and energy steps between states above typical
thermal energy kT lead to interesting transport phenomena in a very unexpected way.
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Figure 2.2: The energy levels in infinitely deep 1D square well (left) and eigenstate prob-
abilities for the first four energy levels (right); the colors match in both diagrams.

2.1.2 Long range (dis)order in 1D structures

The mechanisms of electron scattering in an arbitrary electron guide are diverse. Along
with the common scattering on the lattice disorder, stoichiometric discrepancies and on
impurities, more exotic phonon and magnon interactions with the electrons are present.
For low temperatures the phonon scattering is negligible, however, as we briefly show in
this subsection, the magnon population remains present even at absolute zero tempera-
ture. The last claim follows from the more fundamental Mermin-Wagner theorem 1. If
we cite the abstract of their publication [29]:

“It is rigorously proven that at any nonzero temperature, a one- or twodimen-
sional isotropic spin-S Heisenberg model with finite range exchange interaction
can be neither ferromagnetic nor antiferromagnetic. The method of proof is
capable of excluding a variety of types of ordering in one and two dimensions.”

That report deals rigorously with the theorem, while here we just illustrate the physical
base for this phenomenon [30]. We will show that at a given non-zero temperature the
magnon excitations destroy the magnetic order in one (or two) dimension.

We start with writing the magnetization at some temperature as the difference be-
tween the magnetization at absolute zero (M(T = 0)) and the thermally excited magnon
magnetization ∆M(T ):

M(T ) = M(T = 0)−∆M(T ). (2.9)

The reduction in magnetization is proportional to the number of excited states, ob-
tained by the integration of the product between the density of states g(E) and the

1Also known as Mermin-Wagner-Hohenberg theorem or Coleman theorem.
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probability for the state occupation according to the Bose-Einstein statistics:

∆M(T ) ∼
∫ ∞

0

g(E)

[
1

e
E

kBT − 1

]
dE. (2.10)

The density of states is obtained by calculating the volume element for each state in k
space. Naturally the result depends strongly on the dimensionality of the system. Let us
consider the general case for a d dimensional system and the energy dispersion E ∝ |k|n.
For the limiting case of infinite system size the number of states on an interval (k,k+dk)
or (E,E + dE) is quotient of the volume of the shell in d -dimensional k space and the
volume for one single state :

N = g(k)dk = g(E)dE =
Vshell

Vsingle state

. (2.11)

We are interested only in exponent dependencies of k or E so we write the result only
qualitatively:

g(E)dE ∝ |k|d−1dk. (2.12)

From the dispersion relation we get the differentials:

E ∝ |k|n =⇒ dk

dE
∝ |k|(1−n) (2.13)

which enable us to write the expression for g(E) from (2.12):

g(E) ∝ |k|d−1 dk

dE
= |k|

d−n
n . (2.14)

Let us now explore the case of ferromagnetic coupling with quadratic dispersion rela-
tion (n = 2). For better illustration we gather the expressions for different dimensions in
the table 2.1.

dimension g(E)

1 ∝ E−
1
2

2 const

3 ∝ E
1
2

d ∝ E
d−2
2

Table 2.1: The density of states g(E) for different system dimensions.

Taking a closer look at the target integral 2.10 we notice that for finite dimensions the
upper value (E → ∞) limits the integral till zero, leaving us to explore the behavior at
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E = 0. Now we expand the Bose-Einstein function around zero2 and rewrite the integral
to:

∆M(T ) ∼ kT

∫ ∞

0

g(E)

[
1

e
E
kT − 1

]
.
= (kT )2

∫ ∞

0

g(E)
1

E
. (2.15)

Due to the power law connection between the density of states g(E) and the energy E
the value of the last integral at E = 0 depends strongly on dimensionality of the system.
Placing the expressions from the table 2.1 into (2.15) we find divergent behavior for d = 1
and d = 2 at vanishing E. Let us write the whole magnetization once more:

M(T ) = M(T = 0)− const T

∫ ∞

0

g(E)
1

E
. (2.16)

The consequence of the divergence is the destruction of the magnetization order in the
system M(T = 0) for even the slightest non-zero temperatures thus prohibiting long
range order in one- and twodimensional spin arrays. Practically that would mean that
an electron traveling in strongly confined 1D system would encounter (at least) many
magnons on its way resulting in scattering and thus preventing undisturbed transport.
This result already gives the taste of unexpected phenomena in a system, especially a
realistic one since even in perfect structures and strong confinement the traveling electron
encounters scattering.

2.2 Ballistic transport in 1D - Landauer formula

One of the basic models for transport through a 1D system is a direct, unscattered travel
of an electron from one side of the system to the other. This transport is called ballistic
since the electron passes the whole length of a 1D structure without being obstructed by
any kind of mechanism, hence like a bullet. This model applies for the most ideal system
of perfectly uniform and impurity free nanowires.

Let us describe the system as a 1D wire of length L between two bulk electrodes (Fig.
2.3). We can also say that we have confinement in two dimensions, y an z whereas x
remains unconstricted.

As presented in the previous section the states in the system get separated in both
confined dimensions y and z according to the given potential and the geometry of the wire,
whereas in the x direction the electron states suffer no restrictions, thus being described
as plane waves with the continuum of energy levels. If we deal with the problem similarly
as presented for the case of the harmonic oscillator or the potential well, we solve the
Schrödinger equation for the y and z direction and separately for the x direction. Since
we have in mind only basic consequences for the transport we treat the confinement
potential as a general function V (y, z). Writing the equation:

− ~2

2m

(
d2ϕn(y, z)

dy2
+
d2ϕn(y, z)

dz2

)
+ V (y, z) ϕn(y, z)(n) = εn ϕn(y, z) , (2.17)

2ex − 1 ≈ x + . . . + σ(x2)
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Figure 2.3: The transport channel with the transmission τ [E] between two reservoirs with
chemical potentials µL and µR a) and an artistic rendering of a nanowire/nanotube sus-
pended between two major gold reservoirs. The inside of the tube shows schematically the
positional probability of an electron for the case of cylindric potential well; the solutions
for this quantum system are the sombrero-shaped Bessel functions - here we show the first
three states (I, II and III on the image).

where index n denotes some excitation state, ϕn(y, z) the adequate eigen function for the
confinement in y and z and εn the energy of the state. Combining this result with the
plane waves in x direction we can write the whole wave function ψkx,n as:

ψkx,n =
eikxx

√
L
ϕn(y, z). (2.18)

The total energy En,kx is the sum of the energies of the plane wave and the solution for
the confined dimensions y and z:

En,kx = εn +
~2k2

x

2m
. (2.19)

As we learned from dealing with harmonic potential and the 1D potential well the
energy levels in transversal, confined direction become separated. Together with the
continuum of plane wave energies the system consists of subbands of continuous states
that begin with the discrete values of εn and overlap in steps as the energy rises; naturally
also the subbands carry the adequate index n. A scheme of subband structure is depicted
in Fig. 2.4a).

Having introduced the electronic levels into our system we deal now also with the elec-
tric current. As schematically depicted on figure 2.3a we consider two contact reservoirs
with chemical potentials µL and µR connected to our finite 1D system of length L.
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Starting with the definition of the current density j inside a subband n for an interval
dk around a specific k and having in mind also discrete energy distribution due to the
finite length L we can write for zero temperature and the transmission set to 1:

jn,k = e ρ v(k) =
2e

L
v(k), (2.20)

where the linear density of states ρ includes also the two possibilities for the spin of the
electrons. For finite number of electrons and a finite temperature we need to add the
probability factor for the electron to occupy the level with the energy E(k) in the form of
the Fermi function f(E − µ). We get:

jn,k =
2e

L
vn(k)f(E − µL). (2.21)

To get full current for one subband we make a sum over k and since we are interested in
the right direction of the current we take only k > 0. Since for 1D systems the current
density j and the current I are interchangeable we write:

I→n =
2e

L

∑
k>0

vn(k)f(E − µL), (2.22)

where the arrow over In points in the direction of current from left to right. In the
continuous limit (the length if the channel is large compared to its width) we can write
an integral instead of the summation:

I→n =
2e

L

∫ ∞

0

vn(k)f(E − µL)dñ, (2.23)

and by including the general expression for the k:

k =
2π

L
ñ =⇒ dñ =

L

2π
dk (2.24)

we can rewrite the (2.23) into:

I→n =
e

π

∫ ∞

0

vn(k)f(E − µL)dk, (2.25)

which is then rewritten again via:

E =
~2k2

2m
, vn(k) =

~k
m

=⇒ dk =
dE

~vn(k)
(2.26)

in the integral over the energy for the entire subband, starting at the beginning of the
subband εn:

I→n =
2e

h

∫ ∞

εn

f(E − µL)dE. (2.27)
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Figure 2.4: a) A scheme of subbands for a system with equally spaced subbands (~ω)
and b) a diagram of χ(E) function for a system with equally spaced energy levels - red
curve (e.g. harmonic oscillator Eq. (2.4)) and for nonconstant spacing - blue curve (e.g.
potential well Eq. (2.7)).

Before we add all the contributions from each subband let us define a function χ(E)
that denotes the sum of Heaviside step functions H(E − εn):

χ(E) =
∑

n

H(E − εn). (2.28)

The step-like nature of χ(E) is depicted on 2.4b).

Now we summarize the (2.27) over all subbands and get the overall current from left
to right electrode:

I→ =
∑

n

I→n =
∑

n

2e

h

∫ ∞

εn

f(E − µL)dE, (2.29)

which is simplified by summarizing over the subbands inside of the integral and stretch-
ing the integral from −∞ to ∞ by limiting the subbands with the Heaviside function
H(E − εn). The result now reads as:

I→ =
2e

h

∫ ∞

−∞

∑
n

H(E − εn)f(E − µL)dE =
2e

h

∫ ∞

−∞
f(E − µL)χ(E)dE. (2.30)

Naturally we write the same expression for the current from right to left but this time
with chemical potential µR:

I← =
2e

h

∫ ∞

−∞
f(E − µR)χ(E)dE, (2.31)

which gives the total current through the constriction as the difference between the
left and right current:
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I = I→ − I← =
2e

h

∫ ∞

−∞
[f(E − µL)− f(E − µR)]χ(E)dE. (2.32)

To get the basic idea, let us, along with the transmission set to unity, pin also the
temperature to 0. In this case the Fermi function is a step function and the function χ(E)
is an integer χ on the interval [µR, µL]. Now the Eq. (2.32) simplifies to:

I =
2e

h
χ(µL − µR) =

2e2

h
χ
µL − µR

e
=

2e2

h
χV, (2.33)

from where we read the conductivity G as:

G =
2e2

h
χ, (2.34)

since V denotes the voltage µL−µR

e
. This is the fundamental result of this system. We

learned that in the best case scenario, when the electron on its path doesn’t encounter
any kind of scattering, the conductance is limited by the quantum of conductance:

G0 =
2e2

h
= 7.75 · 10−5 S or R0 = 12.897 kΩ (2.35)

and takes the values of the multiples of G0.
If the transmission isn’t perfect, set to unity, then we introduce a multiplying param-

eter τ ∈ (0, 1) that lowers the current in Eq. (2.32), transforming the conductance in Eq.
(2.33) to

G =
2e2

h
χτ. (2.36)

This result carries the name the Landauer formula3.
Adding the transmission τ(E), that can be in general dependent on the energy of

electrons, to the total current expression (2.32) we get the most general description of the
electron transport through the system:

I =
2e

h

∫ ∞

−∞
[f(E − µL)− f(E − µR)]χ(E)τ(E)dE. (2.37)

This expression can be simplified if we are interested in zero voltage limit conductance
so that the difference between the chemical potentials of both electrodes remains small
and we can write Taylor expansion of both Fermi functions. Let us set the values to:

µL = µ+ δµ and µR = µ. (2.38)

The expansion follows:

f(E − µL)− f(E − µR) = f(E − (µ+ δµ))− f(E − µ) ≈ −δµ∂f(E, µ)

∂E
, (2.39)

3Rolf Landauer; (1927 - 1999), an IBM physicist of German origin.
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which transforms the Eq. (2.37) to:

I =
2e2

h

[∫ ∞

−∞
−∂f(E, µ)

∂E
χ(E)τ(E)dE

]
δµ

e
, (2.40)

directly giving us the final result for conductance:

G(µ) =
2e2

h

∫ ∞

−∞
−∂f(E, µ)

∂E
χ(E)τ(E)dE. (2.41)

If we describe in words: the conductance for low voltage δµ/e is the contribution of the

subbands that overlap with the derivative of the Fermi function −∂f(E,µ)
∂E

. As the energy
increases, the derivative travels towards higher subbands following the χ(E) dependance
as depicted on Fig. 2.4b. The derivative of the Fermi function is known also as the
broadening function.

For a concrete example let us take the harmonic oscillator in 2D with equally spaced
energy levels (Eq. (2.5)) and with the χ(E) function. For ballistic transport the trans-
mission is set to unity and the oscillator parameter ~ω is set to 0.1 eV .

To clarify the numeric calculation we consider the definition of χ(E) from the Eq.
(2.28). By putting it into the Eq. 2.41 and placing the sum over all subbands before the
integral we lift the lower integration limit to εn:

G(µ) =
2e2

h

∑
n

∫ ∞

−∞
−∂f(E, µ)

∂E
H(E − εn)dE =

2e2

h

∑
n

∫ ∞

εn

−∂f(E, µ)

∂E
dE. (2.42)

Now we can easily integrate and by evaluating the values at the limits we get:

G(µ) =
2e2

h

∑
n

−f(E − µ)

∣∣∣∣∞
εn

=
2e2

h

∑
n

f(εn − µ). (2.43)

We can say that the Fermi function travels from one band to the next one with the
contribution to the sum of all passed subbands and those that cross the function. If we
draw the conductance we get the very well known staircase (Fig. 2.6a)) with the step size
2e2

h
. For higher temperatures the edges are smeared out but the distances between the

levels remain the same as for low temperatures. Considering the expression Eq. (2.43),
this result is the direct consequence of the subband energy level structure and the step
shape of the Fermi function. With the increasing voltage (µ) the step crosses more and
more subbands thus enabling them to contribute to the conductance (Fig. 2.5a). Due to
the spacing between the subbands in comparison to the the width of Fermi function edge
the conductance for the energies inside of the subband remains constant and only changes
on the transition between the subbands.

As mentioned before, the expression (2.42) gives the same staircase only that in this

case the broadening function −∂f(E,µ)
∂E

picks only narrow portions of the χ(E) function to
contribute significantly to the integral (Fig. 2.5b). In fact only those steps are integrated,
around which the broadening function is centered thus making the steps smooth if the
broadening function stands close to the edges, so that both neighboring steps get included
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Figure 2.5: A graphical depiction of the numerical summarization/integration of the ex-
pressions (2.41) - b) and (2.43) - a) (in both cases transmission τ was set to unity). It can
be seen, that the broadening function (centered at µ = 0.32 eV ) for higher temperatures
(300K) on the diagram b) overlaps significantly with the neighboring subbands whereas
for the lower ones (100K) the whole hump remains confined inside of one subband, except
at the edges. The alternative summarization of Fermi function a) shows the intersection
of the step with different subbands; the colored vertical lines represent the contribution
to the overall sum (violet for 300K and green for 100K). Here the contribution to the
overall sum consists of the subbands deep inside of the Fermi function, thus before the
step, and of minor cross sections of the function’s hump. Again for high temperatures
the frontal subbands participation rises whereas for the lower ones the whole step drops
practically inside of one subband.

Figure 2.6: The temperature diagrams of conductance staircase a) for equidistant electron
levels (~ω = 0.1eV ) calculated according to Eq. (2.43) and of the broadening function b)
with µ = 0, thus centered at zero. For low temperatures the function gets close to Dirac
delta function. The legend in the upper right corner holds for both graphs.



2.3 Fabry-Perot segmentation 27

in the integral. The broadening functions for some temperatures are presented in Fig.
2.6b); note that for low temperatures the function gets close to the Dirac delta function.

Our brief demonstration of the 1D conductance gave an unfamiliar result. The con-
ductance is limited! In bulk material theory and practical applications not only allow
huge conductances like in superconductive materials. That is truly a remarkable twist
in the story of transport measurements for small, confined but otherwise perfect current
guides.

2.3 Fabry-Perot segmentation

Perhaps that first phenomenon that comes in mind when thinking about non-uniform
systems is segmented structure with barriers separating portions consecutively. This situ-
ation is equivalent to light passing through a series of semi-mirrors with finite reflectivity
and transmitivity also known as the Fabry-Perot transmitter. Using the same terminology
we can adopt the idea and predict a series of tunneling barriers with tunneling probability4

T standing for the light transmitivity. The situation is schematically shown in Fig. 2.7
where the incident electron stream encounters a sequence of barriers before reaching the
other end. This model completely ignores quantum mechanical effects (except for allowing
the electrons to tunnel through a barrier) in term of spin, wavefunctions, Pauli principle,
interference, . . . and focuses on the total transmitivity Tall through such a system. Even
though we are fully aware of the model’s inadequacy we demonstrate that also relatively
modest inhomogeneity can cause even in this model the transmitivity to drop fast at a
small number of barriers despite considerable barrier transmitivity.

Figure 2.7: The particle stream from left encounters a sequence of n barriers with trans-
mitivity T and reflectivity R. The fraction of the incident beam that passes through is
denoted as Tall and depends on the number of barriers and the transmitivity of a single
barrier.

We discuss the situation with an incident current of particles from left
−→
I encounters

n barriers with transmitivity T and reflectivity R = 1 − T . The goal is to obtain the

4The notations for T and R in this section shouldn’t be mistaken for temperature and resistance.
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overall fraction Tall of the incident beam that passes through, formally written as:

−→
I R = Tall

−→
I L. (2.44)

For introduction we solve the the problem for one and two barriers followed by a general
solution for n number of barriers.

2.3.1 One and two scattering places

In the case of one scattering place the result is trivial since the electrons don’t return
back. The transmitivity T is simply its nominal value.

For two barriers we need to take into account also the possibility of scattering many
times before finally penetrating the second barrier. The contribution to the overall trans-
mitivity can be divided into orders of scattering where we count the number of backscat-
tering before leaving the system. First scattering order would then be just passing through
without backscattering; TT = T 2. In the second order an electron scatters back at the
second barrier and in order to reach again the end of the system it must scatter back-
wards again at the first barrier. We write this as TRRT = T 2R2. If we itemize first four
scattering orders:

1. T 2

2. T 2R2

3. T 2R4

4. T 2R6

...

We recognize the pattern, enabling us to summarize over all orders:

Tall = T 2 + T 2R2 + T 2R4 + T 2R6 + . . . (2.45)

= T 2(1 +R2 +R4 +R6 + . . .) (2.46)

= T 2

∞∑
i=0

R2i =
T 2

1−R2
(2.47)

=
T

2− T
. (2.48)

2.3.2 Three and n scattering places

The counting of different scattering orders gets more complicated for three barrier system.
In order to determine the contribution of each order we use the notation which will help
us to count properly all possibilities. We follow the electron as it passes the barriers and
write the product for each event. Of course now the electron can travel also backwards
from the right segment to the left one which enriches the possibilities considerably. Not
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to loose the clarity we count the passing of the middle barrier that results as hopping
between the segments and thus introduce the hopping order. For each scattering order we
get similarly then for two barriers a table of possibilities. The hopping of order 1 gives
the direct traveling from one segment to the other and prohibits the hopping between
them but allows scattering inside of each segment: We can write the sum for this hopping

1. order - T 3 2. order - T 3R2 3. order - T 3R4 4. order - T 3R6

TTT TRRTT TTRRRRT TTRRRRRRT

TTRRT TRRTRRT TRRTRRRRT

TRRRRTT TRRRRTRRT

TRRRRRRTT

Table 2.2: The first four scattering orders for hopping order 1 in two segment (3 barrier)
system.

order:

Thop1 = T 3(1 + 2R2 + 3R4 + 4R6 + . . .) (2.49)

= T 3R−2

∞∑
i=1

iR2i (2.50)

We summarize using a standard trick of summation and rename R2 = x:

S =
∞∑
i=1

ixi (2.51)

Sx+ x+ x2 + x3 + x4 + . . . = S (2.52)

Sx+
1

1− x
− 1 = S (2.53)

S =
x

(1− x)2
. (2.54)

The summation then reads:

Thop1 =
T 3

(1−R2)2
. (2.55)

Similarly we write the possibilities for the second hopping order where we allow one
transition between the segments; strictly speaking there are additional two passes of
middle barrier of the electron since it has to return in order to leave the system in the
correct direction.
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Let us write the contributions for first several orders:

1. order - T 5R2 2. order - T 5R4 3. order - T 5R6 4. order - T 5R8

TTRTRTT TTRTRTRRT TTRTRTRRRRT TTRTRTRRRRRRT

TTRTRRRTT TTRTRRRTRRT TTRTRRRTRRRRT

TTRRRTRTT TTRRRTRTRRT TTRRRTRTRRRRT

TRRTRTRTT TRRTRTRTRRT TRRTRTRTRRRRT

TTRTRRRRRTT TTRTRRRRRTRRT

TTRRRTRRRTT TTRRRTRRRTRRT

TRRTRTRRRTT TRRTRTRRRTRRT

TTRRRRRTRTT TTRTRRRRRRRTT

TRRTRRRTRTT TTRRRTRRRRRTT

TRRRRTRTRTT TRRTRTRRRRRTT

TTRTRRRRRRRTT

TTRRRTRRRRRTT

TRRTRTRRRRRTT

TTRRRRRTRRRTT

TRRTRRRTRRRTT

TRRRRTRTRRRTT

TTRRRRRRRTRTT

TRRTRRRRRTRTT

TRRRRTRRRTRTT

TRRRRRRTRTRTT

Table 2.3: The first four scattering orders for hopping order 2 in two segment (3 barrier)
system.

Before we can write the sum over all scattering orders:

Thop2 = T 5R2(1 + 4R2 + 10R4 + 20R6 . . .) (2.56)

we need to determine the coefficients for each scattering order. We notice that they follow
a general rule:

1, 4, 10, 20 . . . =

(
3

3

)
,

(
4

3

)
,

(
5

3

)
,

(
6

3

)
. . . . (2.57)

We can even test this rule. If we examine the sequences of T s and Rs we observe
that each possibility starts and ends with a T (not surprisingly since the electron enters
and leaves the system with tunneling through the barrier) and that they can be divided
into strings of two characters that follow combinations and have some restrictions. What
shuffles in each sequence is: n =(scattering order - 1) number of RR, one T and two sets
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of RT . There is one constriction: T and both RT s can only be in sequence5 TRTRT
with possibility of the RRs in between. To get the number of sequences we take non
repetitional permutations of the number of all shuffling strings (number of RRs plus one
T plus two RT s −→ n− 1 + 1 + 2 = n+ 2), divide it with the factors for non repetitional
permutation for those strings that are repeating and finally divide also by three due to
the sequence condition for T and both RT s. The general coefficient reads as assumed in
(2.57):

(n+ 2)!

3 2! (n+ 2− 3)!
=

(
n+ 2

3

)
. (2.58)

The sum over all orders can be now written in a compact form:

Thop2 = T 5

∞∑
n=1

(
n+ 2

3

)
R2n. (2.59)

We deal with the summation similarly as before (R2 = x) (2.51):

S =
∞∑
i=1

(
i+ 2

3

)
xi (2.60)

S = x+ 4x2 + 10x3 + 20x4 + 35x5 + . . . (2.61)

Sx+ x+ 3x2 + 6x3 + 10x4 + . . . = S. (2.62)

We get the new series which we summarize separately:

M = x+ 3x2 + 6x3 + 10x4 + . . . (2.63)

Mx+ x+ 2x2 + 3x3 + 4x4 + . . . = M (2.64)

Mx+
x

(1− x)2
= M (2.65)

M =
x

(1− x)3
. (2.66)

The sum S (2.60) is then:

S =
x

(1− x)4
, (2.67)

and thus the Thop2 from (2.59) and (2.67):

Thop2 = T 5 R2

(1−R2)4
. (2.68)

We can estimate also other hopping order contributions and write the full sum over
all hopping orders:

TAll = T 3 1

(1−R2)2
+ T 5 R2

(1−R2)4
+ T 7 R4

(1−R2)6
+ . . . . (2.69)

TAll =
T 3

(1−R2)2

∞∑
n=0

(
R

1 +R

)2n

. (2.70)

5Any other possibility allows the electron to leave the system prematurely.
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The expression is geometrical series and can be summarized to:

TAll =
T

3− 2T
. (2.71)

For the general case of n scattering barriers we have to look one last time at the series
of transmissions for calculated systems:

T1 = T =
T

1− 0T
(2.72)

T2 =
T

2− 1T
(2.73)

T3 =
T

3− 2T
(2.74)

... (2.75)

Tn =
T

n− (n− 1)T
. (2.76)

This derivation used a brute force approach giving us the possibility to perform the
summation over possible scattering and even hopping order. Another much simpler ap-
proach uses the derivation with the help of transformational matrices that describe the
transition of the current over barriers.

Similarly than before we start with one barrier with the transmittance T and reflectiv-
ity R = 1− T , but this time we take the general case of currents incoming and reflecting
on both sides of the barrier:

−→
IR = T

−→
IL +R

←−
IR (2.77)

←−
IL = R

−→
IL + T

←−
IR. (2.78)

To get the transformational matrix we write the current on each side as vectors with
components denoting the left and right direction:[ −→

IR←−
IR

]
=

1

T

[
T −R R
−R 1

][ −→
IL←−
IL

]
. (2.79)

Since in our case the electrons come only from left
−→
IL , we set the current from right←−

IR to zero. In order to get the total transmittance we write the transformation (2.79)
inversely. The determinant of the transformational matrix is 1 and the inverse is written
simply by switching the elements on the diagonal and changing the sign of the off diagonal
elements: [ −→

IL←−
IL

]
=

1

T

[
1 −R
R T −R

] [ −→
IR
0

]
. (2.80)

Now we write the reverse transformation of
−→
IR to

−→
IL and extract the incoming current:
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−→
IR = T

−→
IL , (2.81)

which is of course obvious solution.
For two barriers we simply multiply their transformational matrices. After simplifying

using the connection between R and T we get new transformational matrix:

1

T

[
T −R R
−R 1

]
1

T

[
T −R R
−R 1

]
=

1

T

[
T − 2R 2R
−2R 1 +R

]
(2.82)

and writing it in the inverse form as in (2.80):[ −→
IL←−
IL

]
=

1

T

[
1 +R −2R
2R T − 2R

] [ −→
IR
0

]
. (2.83)

Now the overall transmittance gets the form:

−→
IR =

T

1 +R

−→
IL =

T

2− T
−→
IL, (2.84)

which we already know from previous derivation (2.48).
We can already see the multiplying pattern in the new transformational matrix. We

notice that simply R is subtracted or added to each matrix element. For the case of n
barriers the matrix takes form:[ −→

IR←−
IR

]
=

1

T

[
T − nR nR
−nR 1 + (n− 1)R

][ −→
IL←−
IL

]
. (2.85)

and from its inverse we finally get the familiar total transmitivity (2.76):

−→
IR =

T

n− (n− 1)T

−→
IL ⇒ Tall =

T

n− (n− 1)T
. (2.86)

To obtain the quantitative nature of such system we tested the total transmitivity on
the single barrier transmitivity at some fixed n (for long wires the n can easily be 10)
revealing rather strong decrease (for T = 0.91 Tall is 0.5 from Fig. 2.8a) suggesting
that in such sequence of segments the electrons will need to struggle to pass, even if
the tunneling through individual barriers isn’t strongly suppressed. Moreover also the
number of segments reduces the total transmitivity for some fixed T . It turns out that
for T = 0.95 the total fraction of electrons that travel through falls to ∼ 60% (Fig. 2.8b).
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Figure 2.8: a) The transmitivity Tall decreases rapidly with decreasing T (n = 10). b)
The transmitivity Tall decreases also for increasing n; the T was set to 0.95.

Since this model ignores the basic quantum mechanical nature of electrons it becomes
potentially useful if the measured systems are big enough to treat electrons as free pro-
jectiles without any interaction between each other. This demonstration shows that even
though the ballistic transport governs the segments the barriers could decrease the con-
ductance of a systems profoundly. Thus at this point we can already expect that the
transport depends strongly on the system’s structure or actually on the inhomogeneities
throughout the system even at low non-uniformities. In the following subsections we dis-
cuss several possibilities of non-uniform structures with the emphasis on the transport
properties through it.

2.4 Electron transport in quantum dots

Another interesting possibility for transport through confined structures is the case of a
small island (quantum dot) weakly bound to the surrounding reservoirs. We introduced
the basic description of such a dot in terms of quantum eigenstates in one of the previous
sections 2.1.1 and here we deal with the transport through such a system coupled to
external source, drain and the gate electrode. In general the island can be viewed locally
or globally when connected to an external power source. In the first case the system
is treated without the interaction to the rest of the world whereas in the latter one the
charging energy rebalance is provided by external power supply widening the transport
rules. In the first part of this section we discuss the basic Coulomb blockade phenomenon,
followed by the environmental influence on the system’s transport behavior.

2.4.1 Coulomb blockade oscillations

Now we discuss basic transport properties through a quantum dot, separated by a thin
layer of insulator from the bulk reservoirs, weakly coupled via tunneling and unspoiled in
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terms of the state separation on the dot itself. This model can be applied in the case of
thin nanowires, weakly connected to the guides (Fig. 2.9a) or in the case of special wire
segmentation (2.9b), where an insulated region is formed during the synthesis growth, due
to random constrictions and structural inhomogeneities in the middle of the compound.

a) b)

Figure 2.9: a) A nanowire is weakly coupled to the reservoirs so that the electrons can
hop on and off the wire-island only via tunneling. b) An insulated island can be formed
in the middle of the wire due to physical constrictions (the bottom scheme) or due to
structural inhomogeneities (the top scheme) creating a quantum dot.

Theoretically we describe the system as a series of source reservoir, an island with
discrete ladder states (quantum dot with the typical energy gaps ∆E between the states)
and drain reservoir ([8] chapter 5). To investigate this assembly a gate electrode is intro-
duced in order to influence the states on the dot (Fig. 2.11). For basic exploration we
confine ourselves to the low temperature regime, where the thermic energy doesn’t excite
the electrons on the quantum dots to higher levels, thus ∆E � kBT , where ∆E denotes
level spacing of the dot state ladder. Our interest lies in the transport properties, more
specifically in the different conducting and non-conducting regimes. A simplified view,

Figure 2.10: A quantum dot is connected to source and drain reservoirs. A gate electrode
is placed in the vicinity to influence the position of the states in the dot.

that ignores the charging effects6, suggests that the transport through the system exhibits
resonant behavior - the transport is possible only when a level in the dot’s ladder aligns
with the Fermi level of the source reservoir, controlled by source voltage. This simplified
view depicted in Fig. 2.11 introduces the basic idea since real experiments become hard
to illustrate as we show later. Continuously lifting the source voltage (gate voltage re-

6Also spin and electron interactions are disregarded.
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Figure 2.11: The source voltage is altered with constant gate voltage. a) The EFS of
the source lies between quantum dot states with the level spacing ∆ - the transport is
prohibited. b) The EFS is aligned to an empty state in the dot allowing an electron to
tunnel on the dot and finally of it to the drain reservoir - transport is enabled. c) The
current increases in steps as the voltage increases, enabling higher levels to conduct.
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Figure 2.12: Zero bias conductance is monitored as gate voltage is altered. a) The EFS

of the source lies between quantum dot states - the transport is prohibited. b) The EFS

is aligned to an empty state in the dot, allowing an electron to tunnel on the dot and of
it to the drain reservoir - transport is enabled. c) The current vs. voltage conductance
peaks. Transport is allowed when empty dot states align with the Fermi energy.

mains constant), while disregarding the charging, the current would follow a step-like curve
(known also as the Coulomb staircase) increasing according to the single level conductance
with Landauer quantum (see section 2.2) disregarding the spin G0 = e2

h
= 3.875 · 10−5 S,

when higher unoccupied levels start to conduct (Fig. 2.11c). Another way to observe such
a system is to monitor zero bias conductance G as the gate voltage changes (Fig. 2.12).
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Here the states in the ladder pass the Fermi level of the reservoir only conducting at dis-
crete points when they perfectly align. Current vs. gate voltage plot shows conductance
peaks when a dot level aligns to Fermi energy (Fig. 2.12c). This simplified model should
be understood as the underlying idea for the transport conditions under different investi-
gation approaches. In this spirit we first introduce charging energy, which is actually the
driving force of quantum dot conductivity phenomena, and in the end we conclude with
the treatment of realistic measurement conditions that reveal the more complex nature of
quantum dot transport.

One way to determine the positions of the peaks, when charging energy is included,
is through the equilibrium properties of electrons on the quantum dot in respect to the
reservoirs. The grand canonical distribution gives us the probability to find N electrons
on the quantum dot in equilibrium with the reservoirs:

P (N) ∝ exp(− 1

kBT
[F (N)−NEF ]), (2.87)

where F (N) denotes free energy, T the temperature and N the number of electrons on the
dot. The transport will be governed by theN that maximizes the probability. In fact, since
our interest lies in the close-to-zero temperature regime, only one N gives non-zero P (N),
namely the one that minimizes the thermodynamic potential Ω(N) = F (N)−NEF . When
speaking about the transport it can be shown [7] that G → 0 when T → 0. Moreover
the transport is possible only when P (N) and P (N + 1) are non-zero for the same N .
With other words, the dot is found in the thermodynamic equilibrium with respect to
the reservoirs for N and N + 1 at the same time, thus allowing an electron to tunnel on
(N +1) and again off the dot (N) creating current through the system via dot occupancy
N → N + 1 → N → N + 1 → N → · · · . Formally speaking we have coexistence of two
global minima7 in the thermodynamic potential Ω(N) for N and N + 1 from where we
get the condition relation for both free energies at N and N + 1:

Ω(N + 1) = Ω(N) → F (N + 1)− F (N) = EF . (2.88)

This convenient relation for conductance peaks demands the determination of the free
energy for the system. We can write it as a sum of charging energy U(N) and single
electron levels Ep:

F (N) = U(N) +
N∑

p=1

Ep, (2.89)

where the charge imbalance between the reservoirs and the dot is taken into account
macroscopically through the potential difference between the dot and the reservoir in-
cluding the contribution of nearby charges and particularly of the gate electrode. The
dot is capacitively coupled to the reservoirs and the gate electrodes with the macroscopic
capacitance8 C. The potential difference for charge Q reads classically as a sum of charge

7In general there could be also more minima, but we confine ourselves to the most probable case of
two minima.

8We assume that the capacitance remains constant in respect to N .
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difference potential and the external field (gate electrode):

φ(Q) =
Q

C
+ φext. (2.90)

U(N) is now the integral of the potential (2.90) over the charge9:

U(N) =

∫ −Ne

0

φ(Q′)dQ′ =
(Ne)2

2C
−Neφext. (2.91)

Inserting (2.89) in (2.88) and relabeling N by N − 1 we get:

EN + U(N)− U(N − 1) = EF , (2.92)

that gives with (2.91) the final condition for conductance peaks:

EN +

(
N − 1

2

)
e2

C
= EF + eφext. (2.93)

One way of analyzing this condition is to take the bare ladder with N − 1 electrons and
count the charging energy of one electron tunneling onto the dot with the lowest free state
at EN . We write this as:

EN +
e2

2C
= EF + eφext(N − 1), (2.94)

again with N referring to the lowest unoccupied level. In other words: the lowest unoc-
cupied state has to be positioned one half of the charging energy below the EF level (Fig.
2.13a). As the electron jumps onto the dot, the equality now includes the newly occupied
state at EN . The number of electron is now of course N − 1→ N yielding:

EN −
e2

2C
= EF + eφext(N), (2.95)

now with N referring to the highest occupied state. In words: the highest occupied level
has to be placed one half of the charging energy above the EF level (Fig. 2.13b). After-
wards the electron tunnels from the dot and the situation resets to initial configuration
(Fig. 2.13c). Let us summarize the tunneling of an electron through the dot in a compact
form: an electron tunnels onto the unoccupied state of the dot that is positioned e2/2C
below the EF , adds the charging energy (e2/C) to the dot and thus lifts the newly occu-
pied level to e2/2C above the EF before finally tunneling to the other side resetting the
potentials to initial situation.

9 In literature a continuous“externally induced charge”Qext ≡ Cφext is often defined next to quantized
Q as a purely theoretical description. Now the potential reads: U(N) = (Ne−Qext)

2

2C + constant.
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Figure 2.13: a) In order for an electron to tunnel onto the dot the lowest unoccupied state
has to be e2/2C below the EF surface. b) Electron adds the charging energy e2/C and the
newly occupied level is now e2/2C above the EF surface. c) The final electron tunneling
into the drain resets the system into initial situation.

The left side of (2.93) can be understood also as renormalized energy levels E∗N with
lifted spin degeneracy by the charging energy e2/C that is added to level spacing ∆∗ =
∆E + e2/C; the redefined levels are depicted on Fig. 2.14. In this sense we can also
implement the charging into the simplified picture from Fig. 2.11 or Fig. 2.12, setting
the period ∆/e to e/C.

Figure 2.14: a) Bare quantum dot ladder is b) renormalized when charging energy is
included. The scheme depicts the case where e2/C ≈ 2〈∆E〉, where 〈〉 denotes the average.

In experiments the dot is capacitively coupled in form of junctions to source, drain
and gate electrode and requires additional treatment [9]. Fig. 2.15 depicts such a system
with V1 being the voltage across the source junction (C1), V2 across the drain junction
and Vg (C2) the voltage on the gate, measured from drain electrode potential. For the
moment we observe the case without the gate electrode and treat the system classically,
comparing the Helmholtz free energy (the difference between the total energy and the
work done by power sources) for electron tunneling through the junctions with rate n1

and n2 trough the first and second junction respectively. Basic electronics gives us the
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Figure 2.15: Double junction circuit with gate. The electrons are allowed to tunnel
through capacitors from source and towards drain, whereas the gate voltage induces con-
tinuous additional charge on the island.

charge on the junctions10:

q1 = C1V1, q2 = C2V2, q = q2 − q1 + q0 = −ne+ q0, (2.96)

where the n = n1−n2 denotes the net number of electrons and q0 the background charge11

on the island. Using the voltage drop equality:

VS = V1 + V2, (2.97)

together with (2.96) we get:

V1 =
C2VS + ne− q0

CΣ

, V2 =
C1VS − ne+ q0

CΣ

, where CΣ = C1 + C2. (2.98)

If we now consider n1 electrons to tunnel through the first junction on the island we
observe according to (2.98) the voltage V1 increase by n1e/CΣ consequently resulting as a
voltage drop on V2 for −n1e/CΣ due to (2.97) that has to be provided from the external
power. Similar result is obtained for n2 electron tunneling through the second junction
on the island and the external work W1,2 for both cases reads as:

W1 =
n1eVSC2

CΣ

and W2 =
n2eVSC1

CΣ

. (2.99)

Total energy is of course the sum of the capacitor energies in both junctions:

EC =
1

2
C1V

2
1 +

1

2
C2V

2
2 =

C1C2V
2
S + (ne− q0)2

2CΣ

. (2.100)

10The electron charge becomes e→ −e0 and e > 0.
11The background charge is induced by stray capacitances and always present impurities on the island.
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The free energy is a difference between (2.100) and (2.99):

F (n1, n2) = EC −W =
1

CΣ

(
1

2

(
C1C2V

2
S + (ne− q0)2)− eVS(C1n2 + C2n1)

)
. (2.101)

To get the conditions for an electron to tunnel onto the island and off it, we write the
difference in free energies:

∆F± = F (n1 ± 1, n2)− F (n1, n2) =
e

CΣ

(e
2
∓ (C2VS + ne− q0)

)
, (2.102)

∆F± = F (n1, n2 ± 1)− F (n1, n2) =
e

CΣ

(e
2
∓ (C1VS − ne+ q0)

)
. (2.103)

The transport n1 + 1 and n2 − 1 from source to drain is possible if the difference in free
energy falls below zero. For the case of n = 0 and q0 = 0 we get:

VS >
e

2C2

from (2.102) and VS < −
e

2C1

from (2.103). (2.104)

For symmetric junctions C1 = C2 the condition reads in the compact form |VS| > e/CΣ.
If we want to include the gate, the (background) charge on the island has to be modified

since the gate electrode additionally polarizes the dot:

q = −ne+ q0 + Cg(Vg − V2) or q0 → q0 + Cg(Vg − V2). (2.105)

This addition transforms the voltages over the junctions from (2.98) into:

V1 =
(C2 + Cg)VS − CgVg + ne− q0

CΣ

, V2 =
C1VS + CgVg − ne+ q0

CΣ

, (2.106)

where CΣ = C1 + C2 + Cg. The energy differences from (2.102) and (2.103) become also
gate voltage dependant and take the form:

∆F± =
e

CΣ

(e
2
∓ ((C2 + Cg)VS − CgVg + ne− q0)

)
, (2.107)

∆F± =
e

CΣ

(e
2
∓ (C1VS + CgVg − ne+ q0)

)
. (2.108)

The conductance conditions are the same as before and include lowering of the free energy
and thus negative values of (2.107) and (2.108) to enable transport. We get a functional
dependance for VS and Vg in form of boundary lines with different slopes for tunneling
through the first junction onto and through the second junction off the island. It reads:

VS >
Cg

C2 + Cg

Vg +
e

2(C2 + Cg)
− ne

C2 + Cg

, (2.109)

VS < −Cg

C1

Vg −
e

2(C1)
+
ne

C1

. (2.110)

This family of curves is usually depicted on VS − Vg plot also known as the Coulomb
diamonds. A scheme is shown on Fig. 2.16 for the case where C1 = 30% CΣ. The white
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Figure 2.16: A VS vs. V g plot for the family of the conduction conditions from (2.109) and
(2.110). The white parallelograms denote the non-conducting regimes with correspond-
ing number of electrons on the dot n, whereas their shaded complement stands for the
conducting conditions. Two slopes k1 and k2 describe the linear boundaries of each n for
tunneling onto the island through the first and off it through the second junction respec-
tively, with coincidental zeros for same family with given n positioned at −e/2Cg +ne/Cg.

parallelograms are the regions where the transport gets suppressed, each off them carrying
n electrons onto the dot ascending in integers from left to right. The shaded areas stand for
the conductance regime according to (2.109) and (2.110). Also the zero-bias oscillations
are present with the period e/Cg along with the other characteristic points (intersections
A, B, T) and both slopes k1 and k2 from (2.109) and (2.110) respectively.

This rich result gives first clues that the transport in minute and disordered systems
may yield a rich palette of possibilities, resulting as voltage regions of suppressed con-
duction. An isolated island can thus produce regions in parametric space that prohibits
electrons to pass, which has to be taken into account when experiments for familiar sys-
tems are attempted. Unfortunately the story doesn’t end here when real measurements
are performed since one has to take into account also the realistic measurement equipment
that places the measured system into an environment that affects the transport as well.
In the following subsection we discuss this problem in detail.
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2.4.2 Environmental Coulomb blockade theory

In the previous subsection we discussed the transport properties from the transport block-
ade point of view. Even though obtaining the rich Coulomb diamond behavior demanded
taking into account the environmental influence more closely, the dynamics of charge
equilibrium reestablishment through the capacitive junctions still remained hidden. The
treatment of the ultrasmall junction dynamics coupled to an external power circuit with
finite impedance is know under the name Environmental Coulomb blockade theory. The
theory’s formalism is rather tedious and in most cases the final results aren’t analytically
solvable, often leaving the field for further theoretical exploration. For this reason only
the basic steps are introduced, omitting the detailed derivations and giving only the core
results.

An ultrasmall junction under investigation is composed of metal-insulator-metal series

with finite tunneling rates
−→
Γ and

←−
Γ across it as depicted on Fig. 2.17a ([8] chapter 2).

Such an element is embedded into an electric circuit with the impedance Zω and a power
source V (Fig. 2.17b).

Figure 2.17: a) Schematic drawing of a metal tunnel junction. The arrows indicate forward
and backward tunneling through the barrier. b) An ultrasmall tunnel junction with
capacitance C and tunneling resistance RT coupled to a voltage source V via the external
impedance Zω.

The current vs. voltage characteristic is obtained as a difference between the charge
tunnel rates in the opposite directions:

I(V ) = e(
−→
Γ (V )−

←−
Γ (V )). (2.111)

The Hamiltonian for the whole system includes the quasi particles in electrodes, the
environmental part and the tunneling Hamiltonian:

H = H̃qp +Henv + H̃T . (2.112)
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The H̃qp and the H̃T include more convenient variables for phase difference ϕ and charge
Q in the treatment:

ϕ̃(t) = ϕ(t)− e

~
V t (2.113)

and
Q̃ = Q− CV. (2.114)

We can write them in form:

H̃qp =
∑
kσ

(εk + eV )c†kσckσ +
∑
qσ

εqc
†
qσcqσ (2.115)

H̃T =
∑
kqσ

Tkqc
†
qσckσe

−ıeϕ +H.c., (2.116)

where k and q denote the wave vectors with spin σ on the left and right electrode. In the
(2.115) the sums correspond to the electrons over the energies εk and εq for the left and
right one, respectively. In the (2.116) the term describes the annihilation of the electron
with the wave vector k and spin σ in left and the creation of the electron with wave
vector q and same spin on the right one. The Tkqσ denotes the matrix element for such
left-to-right tunneling event.

If the tunneling resistance RT is large compared to the natural resistance scale in terms
of resistance quanta RQ = h/e2 then the states in the electrodes mix weakly and the term

H̃T can be taken as a perturbation. Moreover if we assume that the charge equilibrium
is established before tunneling (the time between two tunneling processes in larger than
the charge relaxation) the tunneling rate from (2.111) can be obtained through the Fermi
golden rule:

Γi→f =
2π

~

∣∣∣〈f |H̃T |i〉
∣∣∣2 δ(Ei − Ef ) (2.117)

for tunneling from the initial state |i〉 to final state |f〉. To obtain the matrix element they
are written as a product of quasiparticle state and a charge state that becomes coupled
to the environment (they are called the reservoir states): |i〉 = |E〉|R〉 and |f〉 = |E ′〉|R′〉.
Now the factors in tunneling Hamiltonian act separately on quasiparticle space and on
defined reservoir states and the matrix element reads:

〈f |H̃T |i〉 = 〈E ′|Hqp
T |E〉〈R

′|e−ıeϕ|R〉+ 〈E ′|Hqp†
T |E〉〈R

′|eıeϕ|R〉, (2.118)

with:
H̃qp†

T =
∑
kqσ

Tkqc
†
qσckσ. (2.119)

The total tunneling rate is a sum over all initial states weighted with the probability to
find this states and over all final states. The expression to be evaluated now reads:

−→
Γ (V ) =

2π

~

∫ ∞

−∞
dEdE ′

∑
R,R′

|〈E ′|Hqp
T |E〉|

2|〈R′|e−ıeϕ|R〉|2

× Pβ(E)Pβ(R)δ(E + eV + ER − E ′ − E ′R). (2.120)
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Further derivation analyzes this expression in detail, finally presenting it in the form:

−→
Γ (V ) =

1

e2RT

∫ ∞

−∞
dE

E

1− e−βE
P (eV − E), (2.121)

where RT gathers all the constants and denotes the tunneling resistance. The P (E) may
be interpreted as the probability to exchange the energy between the tunneling electron
and the environmental modes that can become excited in the resonances. Basically the
tunneling electron excites environmental modes, that form according to the impedance
and this is the core mechanism of environmental influence on the transport. Formally the
P (E) is the Fourier transform of the phase-phase correlation function J(t):

P (E) =
1

2π~

∫ ∞

−∞
dteJ(t)+ ı

~ Et, (2.122)

that is formally defined as:

J(t) = 〈[ϕ̃(t)− ϕ̃(0)]ϕ̃(0)〉 (2.123)

and depends on the environmental impedance according to:

J(t) = 2

∫ 0

∞

dω

ω

ReZt(ω)

RQ

{
coth

(
1

2
β~ω

)
[cos(ωt)− 1]− ı sin(ωt)

}
, (2.124)

with the total impedance Zt(ω) calculated for the general case from the scheme 2.17b:

Zt(ω) =
1

ıωC + Z−1(ω)
. (2.125)

Now the current vs. voltage from (2.111) reforms into the key expression to determine
the environmental impact on the transport properties:

I(V ) =
1

eRT

(
1− e−βeV

) ∫ ∞

−∞
dE

E

1− e−βeV
P (eV − E). (2.126)

Several relations and functional properties help to utilize the results from (2.126) for
different environmental cases:

←−
Γ (V ) =

−→
Γ (−V ), (2.127)

P (−E) = e−βEP (E), (2.128)

EP (E) = 2

∫ E

0

dE ′
Re

[
Zt

(
E−E′

~

)]
RQ

P (E ′) for zero temperature. (2.129)

As mentioned in the introduction to this subsection the results often come in a non-
analytical form making it heavy to implement for realistic data comparison. Some special
and limiting cases are soluble and we present some of them here, whereas for the others
we present only qualitative description of numerically obtained hypothetical behavior for
some sets of parameters.
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Low impedance environment In this case of vanishing impedance, where the impedance
is effectively set to Z(ω) = 0 (the impedance is much lower than the conductance quan-
tum RQ), formally speaking J(t) also vanishes yielding P (E) = δ(E). There is no mode
excitement and the tunneling process remains elastic. The external voltage source keeps
the voltage across the junction fixed at any time, immediately transferring the electron
through the circuit after tunneling to restore the charge in the junction capacitor. There-
fore the only work done is the eV that solely appears in the rate expression (2.121):

−→
Γ (V ) =

1

e2RT

eV

1− e−βeV
, (2.130)

giving the current vs. voltage characteristic through (2.127) in Ohmic law form of voltage-
biased tunnel junction:

I(V ) =
V

RT

. (2.131)

In consequence the Coulomb gap can not be reached even at highest voltages.

High impedance environment In contrast to low impedance, high impedance envi-
ronment allows the electron to easily excite the modes. It turns out that the spectral
density is peaked at ω = 0, making Ohmic damping, i.e. Z(ω) = R, most suitable to
consider this limit. The total impedance is given by R/(1 + (ωRC)2), but takes the form
(π/C)δ(ω) for the limit ω → 0. The correlation function J(t) gets the form:

J(t) = − π

CRQ

(
ıt+

1

~β
t2

)
, (2.132)

that gives P (E) from (2.122):

P (E) =
1√

4πECkT
e
− (E−EC )2

4ECkT , (2.133)

where EC denotes the transfer energy to the environment. In the low temperature limit
kT � EC the (2.133) simplifies to:

P (E) = δ(E − EC) (2.134)

and the current vs. voltage characteristic can be obtained:

I(V ) =
eV − EC

eRT

χ(eV − EC), (2.135)

where χ(E) is the step unit function. Since according to (2.134) a tunneling electron
always transfers the energy EC to the environment, tunneling becomes possible only if
the energy eV at disposal exceeds EC . Here we observe the Coulomb gap that corresponds
to the charging energy similarly as in the isolated island case only that here the charging
energy of the junction coupled to the environment causes the suppression of the transport.
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Ohmic impedance The case of finite and frequency-independent impedance Zω = R is
often understood under the term of environmental Coulomb blockade theory, since their
results, even though in general analytically non-solvable, become in limiting terms most
applicable when compared to measured data. We restrict ourselves to the case of zero
temperature and consider the limits of low and high energies in P (E). For that we utilize
the relation from (2.129) that is valid for zero temperature. To evaluate the integral the
ratio between the real part of total impedance and the resistance quantum RQ has to be
obtained:

ReZt

RQ

=
1

RQ

Re

[
1

ıωC + 1/R

]
=

1

g

1

1 + (ω/ωR)2
, (2.136)

where the dimensionless parameter g and the frequency ωR stand for:

g =
RQ

R
(2.137)

ωR =
1

RC
=
g

π

EC

~
. (2.138)

The P (E) is obtained using the differential equation that arises after the derivation of
(2.129):

dP (E)

dE
=

(
2

g
− 1

)
P (E)

E
, (2.139)

with the solution:
P (E) ∝ E

2
g
−1 (2.140)

for small positive energies. For negative energies P (E) vanishes since we consider the case
of zero temperature. With a more detailed analysis of J(t) and P (E) one may determine
also the normalization constant, completing the (2.140):

P (E) =
e−2γ/g

Γ(2/g)

1

E

[
π

g

E

EC

] 2
g

, (2.141)

where γ denotes Euler constant12. To finally calculate the I(V ) dependance the expression
(2.126) gets simplified for zero temperature and assuming V > 0 into:

I(V ) =
1

eRT

∫ eV

0

dE(eV − E)P (E), (2.142)

before inserting the (2.141) that yields:

I(V ) =
e−2γ/g

Γ(2 + 2/g)

V

RT

[
π

g

e|V |
EC

] 2
g

at T = 0 K and V → 0. (2.143)

Now also the experimentally obtainable zero-bias anomaly of the conductance at low
temperatures can be expressed:

σ(low T, low V) =

(
2

g
+ 1

)
e−2γ/g

Γ(2 + 2/g)

1

RT

[
π

g

e|V|
EC

] 2
g

. (2.144)

12γ = 0.577 . . .
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This is one of the main results of environmental Coulomb blockade theory and importantly
remains valid in terms of power law behavior (the prefactor depends on the high-frequency
behavior of the impedance) even for general environments as long as the zero-frequency
impedance Z(0) stays finite (e.g. Z =

√
L/C). The power exponent changes accordingly

into:
2

g
=

2Z(0)

RQ

. (2.145)

For high energies the P (E) in general behaves according to:

P (E) =
2

E

ReZt(E/~)

RQ

, (2.146)

that gives with (2.136):

P (E) =
2g

π2

E2
C

E3
for E →∞. (2.147)

Inserting it into (2.142) gives the current vs. voltage:

I(V ) =
1

RT

[
V − e

2C
+

g

π2

e2

4C2

1

V

]
for V →∞. (2.148)

As expected for higher voltages the behavior approaches Ohm’s law, with the shift in

Figure 2.18: Zero-temperature a) current-voltage characteristics for the Ohmic model
and b) the derivative dI/dV that approaches the constant value 1/RT for high voltages
at g =∞, 20, 2, 0.2 and 0 from top to bottom.

charging energy. The numerical investigation from Fig. 2.18 depicts the situations for
different values of parameter g (or resistance R). The curves show the transition from
low- to high impedance environment demonstrating that quantum fluctuations destroy
the Coulomb blockade. As a criterion for the occurrence of the Coulomb blockade one
may require that for vanishing voltages the curvature for the current-voltage characteristic
goes to zero or current derivative as a function of voltage that starts at some initial value
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(close to zero for low g values) and approaches a constant value for high voltages (Fig.
2.18b). One can see the parameter g as a function of temperature since the environmental
resistance could be connected to the coupling between the system and the current leads.
In this case the Fig. 2.18 could indicate behavior for different temperatures, but with
addition, that the high voltage slopes (and the asymptotic values for the derivative) could
also change with temperature since the RT gets affected as well.

2.5 Variable range hopping

Until now systems with rather specific scattering sites have been introduced that resulted
in specific transport characteristics based on the nature of electron interaction with the
scattering entity (barriers from 2.3, quantum dot from 2.4). A more general approach [12]
on the other hand deals with a non-crystalline system as a whole, treating imperfections as
possible electron traps acting as localization places overlooking its local nature (whether
its an impurity, local defect, and alien island, a lattice deformation). If we take a look at
the possibilities regarding scattering we get three scenarios observing the uncertainty ∆k
compared to k:

1. ∆k/k � 1 - scattering is weak and surfaces of constant energy are spherical (e.g.
liquid metals).

2. ∆k/k ∼ 1 - scattering is strong and k is not a good quantum number for describing
eigenstates and the concept of Fermi surface (for metals) is no longer valid.

3. Yet stronger interaction yields a localized wavefunction ψE at some given energy E.

We are particularly interested in the last case where strong scattering suppresses the
electron transport. Here the wavefunction ψE with quantized energy is confined to a small
region of space, falling off exponentially with distance13 as exp(−αR). What is surprising
is that even though one can have a finite and continuous density of states N(E), all
states are localized, although there can be strong overlap between the wavefunctions of
neighboring states. Moreover if the states are filled up to a limiting Fermi energy in the
range where states are localized, the conductivity (σ(E)) vanishes as the temperature
tends to zero. This is very different from the crystals where the insulating behavior
occurs when the Fermi energy lies in the region with vanishing N(E). In other words
the non-crystalline materials can become insulators even with the finite value of N(EF ).
The materials that exhibit such a property are called Fermi glasses. The statement of
complete suppression conductivity at zero temperature can be manifested in vanishing of
the total wavefunction contribution to conductivity at given E obtained as configurational
average:

〈σE〉. (2.149)

In fact this criterium is used as satisfactory condition of localization for wavefunctions of
energy E. To get σE, commonly an electromagnetic wave F cosωt is used to get σE(ω) and

13This localization is known as the Anderson localization. For consistency with the literature we use
the symbol R for the distance.
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then by limiting the ω towards zero the σE(0) can be deduced. The approach is convenient
because we can grab the problem with Fermi golden rule and write for some ψE(x, y, z)
in a volume Ω the probability per unit of time that an electron makes a transition for a
state with energy E to any of the states with energy E + ~ω:

1

4
e2F 2 2π

~
|χE+~,E|2avgΩN(E + ~ω). (2.150)

The matrix elements are averaged over all states with the energy near E ′ = E + ~ω and
are obtained by:

χE+~ω,E =

∫
ψ∗E′x(ψE)d3x. (2.151)

By redefining the matrix element from (2.151) to

χE+~ω,E =
~
mω

∫
ψ∗E+~ω

∂

∂x
(ψE)d3x =

~
mω

DE+~,E (2.152)

and by defining the conductivity σE(ω) so that σE(ω)1
2
F 2 is the mean rate loss of energy

per unit volume we integrate the conductivity over all energies multiplied by the number
of occupied states per unit volume in the energy range dE and taking into account the
probability of (un)occupied states for up- and downward jumps along with the spin factor
2, we get the expression:

σE(ω) =
2πe2~2Ω

m2ω

∫
[f(E){1− f(E + ~ω)} −

−f(E + ~ω){1− f(E)}]|D|2avgN(E)N(E + ~ω)dE. (2.153)

After limiting the expression at zero temperature for ω → 0 the final result known also
as Kubo-Greenwood formula arises:

σE(0) =
2πe2~3Ω

m2
|DE|2avg{N(E)}2, (2.154)

with

DE =

∫
ψ∗E′

∂

∂x
(ψE)d3x (E = E ′). (2.155)

Again the avg represents an average over all states E and all states E ′ such that E = E ′,
so that at T = 0 the conductivity σ(0) is given by:

σ(0) = {σ(0)}E=EF
. (2.156)

This fundamental result is the base for other theories but it will not be the core of our
discussion. Nevertheless the formula yields zero conductivity for the localized states since
all the functions DE vanish because

∫
ψ∗E′

∂
∂x

(ψE)d3x is zero and the overlap between two
localized functions ψ1, ψ2 with the same energy is impossible. The reason for that is
immediate separation of hypothetical overlapping states in the two linear combinations of
the form A1ψ1 + A2ψ2 and B1ψ1 +B2ψ2.
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Figure 2.19: a) Potential wells for a crystalline lattice with corresponding energy band of
width B. b) Crystalline lattice is randomly altered within V0 to create a non-crystalline
lattice - Anderson lattice.

The localized states are usually described in the Anderson model where crystalline
potential wells separated by a with band-width B (Fig. 2.19a) are randomly modified
within the spread of energies V0 to create a non-uniform potential (Fig. 2.19b).

Using the tight-binding approximation, many studies have been made to observe the
transition between crystalline and non-crystalline structure in terms of functions becoming
localized. The Anderson criterion uses the ratio V0/B as the limit that makes the states
localized together with the coordination number z that is connected to14 B. We can say
that this parameter describes the non-crystallinity of the system transforming a crystal
into a random lattice. First calculations proposed the value 5.5 for the coordination 6
but further calculations tend to lower this value. What is important from our point of
view is the result for one-dimensional systems that predicts all states to be localized. The
more general case deals with situations in which the states are non-localized in one range
of energies and localized in another. We also believe that this is most likely the case for
a realistic system such as our own, quasi-onedimensional objects. Also the theoreticians
explored the phenomenon first proving that the localized and non-localized states (when
the Anderson criterion is not satisfied) cannot coexist for a given configuration, in fact they
proved the existence of the critical energy EC that separates non-localized and localized
states (Fig. 2.20a). They discovered that localized states are gathered near the extremities
of the energy band without any discontinuity in N(E) nor in any of its derivations. EC is
also known as the mobility edge. The position of this edge regarding the Anderson ratio
was of great interest since the band structure and the basic properties depend on it. A
schematic depiction in Fig. 2.20b shows that EC lies (measured from the middle of the
band) on the limit of the band for V0 = 0 - perfect crystalline structure, then the band
broadens and the edge moves outwards, reaches its peak and finally falls in the middle of
the band after overpassing the Anderson criterion (in this case V0/B = 2) entering fully

14In tight binding approximation B = 2zI where I denotes the transfer integral.
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localized case of non-crystalline lattice.

Figure 2.20: a) Density of states in the Anderson model where the non-localized states
are in the center of the band, separated by EC and E ′C from the localized ones near the
band extremities. b) The plot of EC against V0/B measured from the middle of band.

If the Fermi energy EF lies within localized states the system resembles a semicon-
ductor or better, a doped semiconductor where a gap is formed between the filled states
(valence band for pure semiconductor or states of impurities) and the conductive contin-
uum band. The conductivity can now be written in the same form as for the semiconductor
by replacing the Eg with the EC − EF :

σ(0) = σmine
EC−EF

kT , (2.157)

with σmin denoting the the conductivity of continuum band. This form of conduction
is predominant at higher temperatures or when EF lies close to EC . Moreover if in the
system of Fermi glass type the Fermi energy at zero temperature can move from below to
above EC (e.g. the change in composition/disorder of the system) there should be a sharp
change in the DC conductivity from zero to a finite value as schematically depicted on Fig.
2.21a. Such a change is called an Anderson transition. Another theoretical investigation
involves the temperature dependance of resistivity as a function of Anderson ratio V0/B.
Not surprisingly when the EF upon the V0/B change passes the EC into the localized
states the gap opens and conductivity follows the law from (2.157)15 as schematically
depicted on Fig. 2.21b.

The second conductivity mechanism is called thermally activated hopping conduction
and includes electrons close to the EF . As illustrated on Fig. 2.22 the conduction rate is
determined by the hopping of an electron from the state A below the EF to one above B.
The probability p per unit of time that this occurs is determined by three factors:

a) the Boltzman factor e−W/kT , where W denotes the difference between the two states,

15Here the pre-factor is taken to be constant towards temperature.
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Figure 2.21: a)The D.C. conductivity σE as a function of E. b) The plot of resistivity ρ
aginst T for values of V0/B increasing from curves 1 to 4, evoking the conduction of the
Fermi glass by energy excitations above EC . Curve 2 shows the value of ρ for EF at EC

so that 1/ρ = σmin.

b) a factor νph depending on the phonon spectrum,

c) a factor e−2αR containing the overlap of wavefunctions16,

giving the expression:

p = νphe
−2αR−W

kT . (2.158)

In the external field F and at finite temperature T the current j can be obtained by mul-
tiplying the hopping probability with the number of electrons at Fermi energy 2N(EF )kT
followed by charge e, hopping distance R and finally taking into account the possibility
of hopping in two directions regarding the field:

j = 2eRkTN(EF )νphe
−2αRe−

W±eRF
kT = 2eRkTN(EF )νphe

−2αR−W
kT sinh

(
−eRF
kT

)
.

(2.159)
This is the most general result that is valid also for higher fields and temperatures. In
weaker fields, eRF � kT the expression can be approximated and the conductivity gets
the form:

σ =
j

F
= 2e2R2N(EF )νphe

−2αR−W
kT . (2.160)

For low temperatures the hopping distance R increases and the conductivity expression
reforms. We need to calculate the maximum hopping probability knowing the activation
energy W for the states in the range R (for 3D):

W =
3

4πR3N(EF )
, (2.161)

16This is called “nearest neighbor” or “Miller - Abrahams” hopping.
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E
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C

Figure 2.22: The mechanism of hopping conduction. Two hops are shown from an occu-
pied state A to B and from B to C.

and taking into account the average hopping distance R:

R =

∫ R
r3dr∫ R
r2dr

=
3R

4
. (2.162)

The hopping probability (2.158) using R instead of R has maximum when17:

3

2
α =

9

4πR4N(EF )kT
, (2.163)

giving the optimum value for R:

R =
31/4

{2παN(EF )kT}1/4
. (2.164)

Now the probability (2.158) reads as:

p = νphe
− B

T1/4 , (2.165)

where B equals:

B = B0

{
α3

kN(EF )

}1/4

and B0 = 2

(
3

2π

)1/4

. (2.166)

The conductivity (2.160) is therefore:

σ = 2e2R̄2N(EF )νphe
− B

T1/4 =
9

8
e2R2N(EF )νphe

− B

T1/4 . (2.167)

Other treatments give similar results with the difference of numerical pre-factor B0 that
can vary upon the method used.

17Assuming that νph varies little with R and T .
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The same derivation can be performed also for two and one dimension, revealing the
same behavior as (2.167) thus following general law, in theory often written in form:

σ = Ae−
B

Tλ , (2.168)

with adequate constants A, B and exponent λ for each dimension. We gather the results
in table 2.4. Perhaps a more convenient form of (2.168) from an experimental point of

dimension A[e2R2N(EF )νph] B B0 T0 λ

1 1
2

B0

{
α

kN(EF )

}1/2 √
2 2α

kN(EF )
1
2

2 8
3

B0

{
α2

kN(EF )

}1/3 (
3
π

)1/3 3α2

πkN(EF )
1
3

3 9
8

B0

{
α3

kN(EF )

}1/4

2
(

3
2π

)1/4 24α3

πkN(EF )
1
4

Table 2.4: The constants of (2.168) and (2.169) for 1D, 2D and 3D.

view would be:

σ = Ae−(
T0
T )

λ

, (2.169)

with T0 also in the table 2.4.
More recent work observing closely [31] the impurity distances and the effects of

strongly anisotropic screening of the Coulomb potential yields yet richer possibilities for
conductivity. The same general conductivity temperature dependance has been proposed
but with additional possibilities taking into account also different cases of the density of
states that arise due to 3D Coulomb interactions. The main result has the same form as
(2.169):

σ = σ0e
−(TVRH

T )
λ

and λ =
µ+ 1

µ+ d + 1
, (2.170)

where µ denotes the power-law exponent in the density of states N(E) ∝ Eµ and d the
hopping dimension. The values are gathered in table 2.5.

dimension N(E)=constant N(E) ∝ |E| N(E) ∝ E2

1 1
2

2
3

3
4

2 1
3

1
2

3
5

3 1
4

2
5

1
2

Table 2.5: The exponents λ from (2.170).

Variable range hopping appears to be applicable for systems with randomly distributed
scattering places, covering all dimensions making the theory useful even in the nanoworld
where the control over structural homogeneity is very limited. If this issue doesn’t play
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a major role for more regular structures (such as carbon nanotubes) the wide palette of
familiar structures may cause the production of very disordered compounds that are more
related to non-crystalline materials than to crystalline structures in terms of long range
symmetry.

2.6 Luttinger liquid

Strongly one-dimensional systems often exhibit different physics compared to three-dimensional,
bulk material. We pointed out in the subsection 2.1.2 the spontaneous vanishing of long
range order in 1D only due to space dimensionality. Similar peculiarities are observed
when electronic states and excitations are explored implying very different behavior com-
pared to the well known Fermi liquid that governs the macro world [6, 5]. Here the
combination of the Pauli principle with low excitation energy (e.g. kT � EF ) and the
large phase space available in 3D, produces a very dilute gas of excitations where interac-
tions are sufficiently harmless to preserve the 1:1 correspondence between the low-energy
excitations of the free Fermi gas and those of an interacting electron liquid which are
termed “quasi-particles”. Roughly three basic elements can be stressed:

1. the elementary excitations are quasi-particles,

2. The transport is described by the Boltzmann equation,

3. The low-energy physics can be parameterized by a set of Landau parameters F
s(a)
l ,

which contain residual interaction effects in the angular momentum of charge and
spin channels.

Basic properties arise from weak correlations in the electron system even though the in-
teractions can be very strong.

For 1D metal confinement this description breaks down. Due to Peierls effect some
vertices, finite in Fermi liquid theory, diverge. Another argument states that when degen-
erate perturbation theory is applied to the coupling of the electron states at the Fermi
points ±kF , it will split them and therefore remove the entire Fermi surface. Consequently
free-electron-like metal will not be stable in 1D. We can say that the coupling of quasi-
particles into collective excitations is large for 1D, no matter how small the interaction!
The statement for 3D thus reads reversely for 1D: the correlations remain strong, even
for weak interactions!. In other words, in 3D adding an electron or modestly exciting the
liquid, doesn’t affect the population and the electronic states whereas in 1D each distur-
bance causes the reformation of the system globally - a collective response governs basic
properties.

1D metals are described as Luttinger liquids. A Luttinger liquid is a parametric one-
dimensional metal without quasi-particle excitations. This definition is based on the neces-
sary condition for Luttinger liquid formation that the spin and charge excitations remain
gapless, with dispersions ων ≈ vν |q| (ν denotes ρ for charge and σ for spin). Moreover
the charge and spin modes (holons and spinons) possess different excitation energies with
vρ 6= vσ that leads to the separation of charge and spin of an electron added to the Fermi
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sea, in space-time, or q - ω space, prohibiting quasi-particle excitations. Such system
is now governed by power-law correlations with scaling relations between the exponents
parameterized by coupling constants Kν , an equivalent to Landau parameters in Fermi
liquids. Similarly as before basic elements describing the nature of Luttinger liquid can
be summarized:

1. the excitations are not quasi-particles but collective excitations

2. charge and spin excitations (holons and spinons) remain gapless,

3. electron-electron interactions make vρ 6= vσ leading to charge-spin separation thus
prohibiting quasi-particle excitations,

4. two parameters Kν (the equivalent for Landau parameters in Fermi liquid theory)
and vν completely describe the physics of Luttinger liquid.

Due to bosonic nature of spinons and holons the standard approach for describing Lut-
tinger liquid includes bosonization. The bosons are obtained as a linear combination of
stable particle-hole excitations in the q → 0 regime, where the range of allowed excita-
tions shrinks to a one-parameter spectrum ωnu ≈ vν |q| (Fig. 2.23). In addition low-energy
particle-hole pairs with momenta between 0 and 2kF are not allowed. The route leads

k

E(k)

a)
F

2k

b)

ω

q

ω(q)

F
-2k

Figure 2.23: a) Particle-hole excitations in 1D. b) The spectrum of allowed states has no
low-energy states with 0 ≤ |q| ≤ 2kF .

through the Hilbert space of states and includes utilization of bilinear forms in bosons for
free fermions, describing the excitations. We just write the general form of the Hamilto-
nian but we don’t follow the derivations any further:

H =
∑

ν=ρ,σ

∑
q

vν |q|
(
bν,qb

†
ν,q +

1

2

)
, (2.171)
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where vν = vF . Theoreticians were dealing also with the calculations of basic charge
transport properties and via the mentioned bosonization they obtained the result [3]18:

I = I0T
1+α sinh

(
eV

2kT

) ∣∣∣∣Γ (
1 +

α

2
+ i

eV

2πkT

)∣∣∣∣2 , (2.172)

where α depended on the Luttinger parameter g = vF/vρ. Since experiments inevitably
included macroscopic leads, the results include also the charge transfer from Fermi liquid
to Luttinger liquid (FL-LL) and also realistic cases of impurities inside of wires with
adequate Luttinger liquid - Luttinger liquid connections (LL-LL). Both cases give different
α(g) dependence:

αLL-LL = (g−1 − 1)/4,

αFL-LL = (g + g−1 − 2)/8. (2.173)

In realistic cases g proves to be small and the exponents appear to be connected via
αLL-LL = 2αFL-LL. From the experimental point of view a closer inspection of the curve
(2.172) is needed to successfully extract the parameters. The basic characteristics emerge:

1. all IV curves for different temperatures collapse to a single curve with typical knee
when I/Tα+1 is plotted against eV/kT (Fig. 2.24),
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Figure 2.24: The collapsed curve with typical knee emerges when I/Tα+1 is plotted against
eV/kT .

2. at low temperatures the LL-LL junctions become most resistive governing the con-
duction power-law in the low-voltage regime as G ∝ TαLL-LL ,

3. at high voltages the FL-LL junctions dominate and I ∝ V αFL-FL+1.

18In literature one may find different manifestations of the expression, sometimes even mistyped. The
correct formulation includes in the imaginary part of the Gamma function π also in the fraction, otherwise
the curve exhibits very different behavior.
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Often [10, 11] the exponents are renamed, αLL-LL to simply α and αFL-LL to β. Since the
dominant junction prevails, the voltage V in the expression (2.172) denotes the actual
voltage drop over such a junction and not the high bias pressed over a system. For this
reason their ratio in form of parameter γ is introduced to the characteristic so that the
final formula reads:

I = I0T
1+α sinh

(
γeV

2kT

) ∣∣∣∣Γ (
1 +

β

2
+ i

γeV

2πkT

)∣∣∣∣2 . (2.174)

This is also the core result for Luttinger liquid applications in terms of charge transport
along 1D confined systems.

With this rather exotic theory we conclude our journey through the theories that
apply to confined and nonuniform systems. In the following chapters we focus on the
experimental part i.e. the manufacture of the measurement chips, sample preparation,
post-production treatment and the measurement itself. Finally the results are discussed in
the spirit of the theories presented here, thus deducing the nature of the electron transport
along our nanowires.



Chapter 3

Sample preparation and
measurements

Before we describe the experimental work in detail let us first present the aim of our
research in terms of practical realization. As mentioned in the introduction of this report
our goal was to determine/measure the electrical conductivity properties of thin MoSIx
nanowire bundle as schematically depicted on (Fig. 3.1a). This basically means that we
have to plug ends of the device under test to an electrometer and measure the current vs.
voltage (IV) characteristics of the system. In the macro word this presents a rather trivial
task since the standard measurement equipment can be used along with the macroscopic
connections to the measured sample in form of different pins, crocodile clamps or we can
even solder the electrodes to the sample.

sample

I
V
T

a)

Figure 3.1: a) A simplified sketch of IV measurement as a function of temperature for
some arbitrary sample and b) the artistic expression of electrodes introduced over a thin,
single nanowire bundle and c) a bundle (dielectrophoretically) attached over a narrow
prefabricated gap between two electrodes.

The situation changes severely as the sample size decreases to nanoscale especially
when the objects can be observed only with modern microscopy techniques such as elec-
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tron microscopy or atomic force microscopy. In the nanoworld the question of contact
introduction to the measured structure becomes a technological issue accompanied with
a myriad of peripheral factors that affect the whole process. We have two possibilities
of wiring minute structures: the selected object is located under a microscope, followed
by a targeted placement of metal contacts over it (Fig. 3.1b) or reversely, the object is
guided and pinned over prefabricated electrodes with a narrow gap between them (Fig.
3.1c). Also the handling of the sample demands an epopee of efforts since such minute
objects need special attention even to be observed, seen and defined as chemical com-
pounds not to mention the manipulation and targeted pinning of structures needed in
order to connect them to the macroelectrodes. In this chapter we focus on the issues of
minute electrode/device manufacture, processing of the sample and the procedures for
bundle attachment to the circuit electrodes that lead to a successful measurement. Let
us first summarize all the steps needed to reach the goal of measuring current - voltage
characteristic of a thin, single nanowire bundle:

• nanolithographic manufacture of microchip devices,

• sample preparation,

• attachment of the bundle to the electrodes,

• temperature annealing,

• measurement.

3.1 E-beam lithography

The manufacture of simple microchip devices that served as the contact electrodes of
nanowire bundles is step one of our experimental procedure since without the skill to
produce electrodes the measurements aren’t possible. We addressed this problem with
standard e-lithographic procedure widely used across the world in other research facilities.
Depending on the budget the whole technique, along with the accompanying equipment
and the know-how, can be commercially acquired. This high performance instruments
are specially developed for the task of minute structure production with high accuracy,
stability and quality. In many cases such systems are modified for the purpose of simi-
lar electronic measurements and even nanoparticle manipulation [32, 33]. Moreover such
tasks demand special research laboratories and facilities in order to reach the highest
nanoscale performance along with the quality and reproducibility. Custom built vibra-
tionally isolated rooms and clean rooms with controlled air flow that require strict working
policies for the researches are required for such quality. Due to limited funds we started
with a modest 40 000 EUR second hand electronic microscope (Fig. 3.2) that operated
fully analogically without the built-in lithography electronics. Moreover the whole litho-
graphic procedure needed to be introduced and developed from scratch: the resists and
accompanying chemicals, e-beam writing, chemical treatment, metal introduction and the
finalization of the process. Also the laboratories weren’t optimal since we had only a very
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general chemical laboratory as the center for lithographic techniques. All these factors
predetermined our best resolution but for structures of several hundreds of nanometers in
size (length) it was sufficient and we carried on with the development. Even though our
pre-graduate work [1] made first steps and roughly introduced the technique, the goal of
measuring one single and thin bundle by far exceeded the performance and skills of the
acquired procedures. We spent most of the research time tinkering, modifying and refining
the whole lithographic procedure in order to reach the desired performance level. Let us
stress that according to before-mentioned lithographic and system limitations we didn’t
pursue developing the approach of contacts over a bundle but we concentrated solely on
the attachment of a bundle over a gap between the electrodes. We mentioned both cases
since the first one is dominantly used.

Figure 3.2: The electron microscope JEOL JXA-840a modified to perform e-beam writ-
ing. We used software that guides the electron beam through an interface whereas other
settings are adjusted manually over the control panel.

What lithography actually is? The word comes from German “die Lithographie” that
is coined from Greek “lithos” stone + “graphein” write and can be thus translated as “to
write or draw on stone”. The technique was used in 19th century for fast printing and
the reproduction of images and is practiced even today by many artists [34] to imprint
the features into a stone using hydrophobic ink followed by a special chemical treatment.
When the ink is applied afterwards with a roller it attaches only to the pre-drawn areas
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whereas unspoiled areas remain pure1. If a paper is pressed against the surface the ink
leaves a trace of the image on the paper (the mirror image, of course). You can think
of it as a very sophisticated and heavy stamp. This differentiation between written and
unwritten areas is the basic concept also in electron- or photolithography.

Figure 3.3: a) A layer of an e-beam resist is spun on a substrate and a predesigned pattern
is written with an e-beam over it. b) In the process of development the electron treated
areas are dissolved leaving trenches of exposed substrate c) so that the sputtered metal
attaches directly to it in the desired and pre-written shape d) that remains after the
lift-off.

The process namely starts with the writing of desired circuit patterns over an elec-
tron or photon sensitive resist layer on top of a nonconductive substrate (Fig. 3.3a).
Afterwards the chemically changed written areas are dissolved in appropriate solvents
producing trenches in the shape of the desired circuit in the resist (Fig. 3.3b). In those
trenches the substrate is totally exposed whereas elsewhere it remains covered with the
resist. The following process of metal deposition covers the entire substrate with a thin
layer of desired metal thus depositing metal inside the trenches as well as on top of the
resist (Fig. 3.3c). During the lift-off the entire remaining resist is dissolved along with the
metal deposited on top and washed away, leaving only the metal in the trenches which
remained unaffected by the lift-off process. The end result are the metal electrodes shaped
in the form of the pre-written pattern (Fig. 3.3d). The smallest feature limit using such

1Children utilize similar but reverse technique for fast painting of background with water based colors
on pre-painted wax crayon picture.
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a procedure is determined by the resolution of the trench production, which is directly
related to the method used. In the case of photolithography the lower limits are at several
hundreds of nanometers (related of course to the wavelength of the light), whereas in the
electron beam writer the smallest feature can reach even several decades of nanometers
with the best equipment.

Let us itemize the e-lithographic steps we needed to acquire:

1. e-resist handling and spinning,

2. e-beam writing,

3. developing,

4. metal sputtering,

5. the lift-off.

Since we used this wide spread and standard procedure as a tool to serve the prime
goal of single bundle measurement we discuss only the relevant points that affected the
shape and quality of the circuits and consequently the measurements.

3.1.1 Substrate and e-resist spinning

Successful circuits must be fabricated on a nonconductive substrate in order to prevent
the obvious short circuit between the features via the substrate. On the other hand e-
beam writing is most successful on better conducting substrates so we have to make a
compromise. A good balance can be achieved by using a silicon wafer with a thicker oxide
layer to make the surface non-conductive, but with the sufficiently conductive core to
prevent high charging that disables accurate e-beam writing. The plates can be bought
with arbitrarily thick oxide layer2. We selected 600 nm of oxide on top of 300 µm thick
wafer, extra polished to reduce the surface roughness to minimum so that small bundles
would be clearly spotted on the surface.

For controllable and even reproducible production of circuits a uniform layer of well
defined thickness must be deposited on the substrate. One of the best ways to achieve
this is spin casting. A droplet of resist dissolved in an appropriate solvent is put on a
substrate and spun for several minutes. The surplus liquid is then (centrifugally) ejected
from the surface leaving a trail of thin layer over the whole substrate area. The thickness
can be controlled and is proportional the spinning frequency and inversely proportional
to the concentration of the e-resist.

When we mastered the basics of the lithography we preliminarily modified a general
centrifuge into a spinner, which worked satisfactorily for early tests and also for bigger
circuits/bundles later on. As we approached the scales relevant for our nanoscale objects
it became clear that a professional spin coater was required3 (Fig. 3.4). We acquired an
adequate unit that not only simplified the resist deposition but also enabled full control
and perfect reproducibility.

2The web page of the distributor: www.universitywafer.com.
3The unit was bought from Laurell Technologies corporation: www.laurell.com.
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Figure 3.4: WS-400B-6 NPP/LITE spin coater was used in order to reproducibly deposit
a thin and uniform layer of e-resist over the silicon wafer.

The e-beam resists were picked according to the suggestions of our e-beam lithography
chemicals provider4. Commonly researchers use two different layers of e-resist on top of
each other, the upper one slightly less sensitive then the lower one. For the bottom
layer we used a 2% solution of poly(methyl methacrylate) (PMMA) MAA/33% in ethyl
acetate spun at 4000 rpm for two minutes (the resulting thickness was ∼190 nm) followed
by 10 minutes of baking on a hot plate at 200◦C and 1% solution of PMMA 950k in
chlorobenzene spun at 6000 rpm for two minutes (the resulting thickness was ∼90 nm)
followed by 10 minutes of baking on a hot plate at 160◦C. As we discuss in the section 3.1.3
this choice was necessary and even inevitable since the deposition of metal via sputtering
isn’t as successful as one might hope or expect.

3.1.2 E-beam writing and developing

In the e-beam illumination step the stage is set for the production of the final circuit. As
described above the electrons bombard the substrate/e-resist in the predesigned pattern
in the form of the desired circuit (Fig. 3.3a). We used a scanning electron microscope
modified with the help of the company LPKF5, and succeeded to directly implement

4The web page of the e-resist and the accompanying chemicals provider: www.allresist.de.
5LPKF Laser & Elektronika d.o.o., Polica 33, SI-4202, Naklo, Slovenia
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their laser guidance software (Fig. 3.5) used in laser cutters through the development
of an adequate computer-microscope control panel interface that converts signals from
the software output into analog signals that directly control the position of the e-beam
in the microscope. We also needed to learn how to use our system and to determine
basic operational parameters along with the basic procedures. Even though we spent a
considerable amount of time acquiring the new technology we will not discuss the details
further since they are rather technical and specific.

Figure 3.5: A CAD program (SCAPS) enables to draw arbitrary patterns and to transfer
them directly to the e-beam guidance of the electron microscope. Additional features
such as beam speed and hatching greatly simplified the design and the writing steps, thus
lowering the production time of circuits.

In the process of writing the backscattered electrons play a decisive role in trench
production since the resist gets illuminated also from beneath (Fig. 3.6a). This effect
actually dominates the final width of the channel making it roughly proportional to the
e-beam current; the phenomenon is known as the proximity effect [35, 36] and must be
carefully taken into account when we deal with the chemical development step. The
chemically altered illuminated areas are more soluble in developer (in our case a mixture
of methyl isobutyl ketone and isopropanol in ratio 1 : 3) and dissolve faster leaving behind
the voids that form the trenches. Since also the unspoiled areas dissolve slowly a treatment
in stopper (in our case pure isopropanol) is needed. This fact along with the poorly defined
limits between the illuminated and unspoiled areas due to the proximity effect makes the
time of development crucial for the successful production of channels; in our case 50± 2
s. Let us stress at this point that the step exhibits extraordinary sensibility, narrowing
the parameter margins of previous processes (spinning, writing, developing, stopping).
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Since our machine along with the rest of the procedures shows some intrinsic instability
accompanied with a residual uncertainty, the overall yield of successful trench production
gets reduced. If everything goes well the resulting channel has the edges of the form of a
roof edge that sticks outwards from a supporting wall Fig. 3.6b.

e-beam
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silicon wafer
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a) b)

Figure 3.6: a) The electrons scatter backwards illuminating the e-resist also from beneath.
b) A successful development gives a channel with roof-like edges.

The proximity effect doesn’t have an important role in the production of big struc-
tures, whereas for the smaller ones the relative discrepancy between designed and actual
structure grows with the size reduction of the features. The effect especially starts to
become a problem when we would like to create two trenches close together. In this case
the proximity effect stretches also to the nearby feature illuminating the wall between
them two times as much. This often results as the overexposure of the separation e-resist
wall in many cases also as its collapse sometimes even fusing together both channels. This
issue affects our circuit production directly since the electrode design includes a narrow
channel between the metal contacts and consequently writing of two wide trenches close
together. The production yield is reduced even more in this case since the optimal time
of development for normal edges differs from the one for nearby trenches. Practically this
means that the separation walls collapse before the other edges get adequately developed.
On Fig. 3.7 the AFM amplitude images of successful trench production along with typical
failed attempts are presented. In most cases the top e-resist layer of the wall structure
gets dissolved partially or completely (Fig. 3.7b and 3.7c), or the sharp edges get rounded
raising the probability of electrodes getting fused in the process of metal deposition (Fig.
3.7d). This combined with poor stability of the electron microscope writer makes the pro-
duction of circuits extremely demanding and pain staking already at this point stretching
our research time more then expected.
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Figure 3.7: The AFM images of typical trenches carved in the e-resists: a) successful, b)
collapsed top e-resist layer of the wall in the middle, c) e-resist collapse throughout the
entire length leaving only a narrow stripe of bottom layer and d) rounded edges of the
top layer that can result as contact fusion after metal deposition.

3.1.3 Sputtering and lift-off

In previous steps we were able to optimize the procedures in order to manufacture ade-
quate trenches in the layers of e-resist. Since we didn’t possess our own metal deposition
unit we were forced to seek collaborations in the group for thin metal coatings at our
institute6. The group has an accurate, reliable and diverse metal sputtering system that
enabled us to perform uniform and reproducible metal deposition over our carved e-resist
layers. Unfortunately their procedure is optimized so that the metal gets deposited at ev-
ery possible angle so that even holes, indentations or complex shaped objects get uniform
coating without any shades or missed spots. This however was a serious obstacle for our

6Department for thin films and surfaces. Their webpage: http://www.ijs.si/ctp/ijs-dept-f3A.html-l2.
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deposition since we were hoping for a perpendicular introduction of the metal in order
to create confined depositions in the middle of the trenches with metal attached to the
edges. As depicted in Fig. 3.8a the metal nicely forms a narrow and well defined stripe if
the metal falls perpendicular to the surface (as in the case of metal evaporation), whereas
in the case of omnidirectional sputtering the metal attaches even to the edges, widening
the features to larger size defined by the proximity effect (Fig. 3.8b).
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Figure 3.8: a) The perpendicularly deposited metal falls in the middle of the trenches
without touching the edges whereas b) for omnidirectional sputtering the metal is thrown
also in the cavities beneath the wall’s roof-like top reducing the gap between two electrodes
from the c) nominal width of the upper e-resist wall to d) the actual width determined
by the base size of the e-resist wall.

Alternatively one could propose to reduce the cavities created by this effect but this
would backfire immediately since the metal deposition would create steep, almost vertical
edges at the contact ends endangering the successful circuit production or in the case
of narrow channel production it would result as fused contacts. In truth not even the
last process of lift-off, when the rest of the e-resist is dissolved in remover (in our case
N-Methyl-2-pyrrolidone for 12 hours) and disposed together with the overlying metal,
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influences much the end result so we were forced to use this inadequate but uniform
and accurate sputtering technique. Fortunately we had more freedom in the choice of
the sputtering metal. Due to limited lithography performance we were forced to sputter
only thin, up to 50 nm thick layers of preferably softer metal to ensure successful lift-off.
The metal adhesion to the surface also needed to be strong enough to withstand all the
processes during the later bundle integration procedures and measurements. Titanium has
good adhesion and can be sputtered in a thin layer but it is rather hard thus obstructing
the lift-off. Moreover it shows high chemical reactivity especially with oxygen resulting
in non-conductive oxides lowering the conductivity of contacts in the circuit itself. One
alternative is gold that appears soft and inert, but unfortunately it sticks extremely poorly
to the silicon oxide wafer making it necessary to use a sticky layer of nickel, titanium or
chrome to act as a form of glue for better adhesion of gold. In this way the overall
thickness increases and the contacts show only limited durability since the gold layer
wears down when mechanically stressed. Best results were achieved by using nickel or
palladium. Both exhibit high chemical inertia, high adhesion to the substrate surface
and also show great resilience towards mechanical stress. The difference between them is
that the palladium contacts appear to have a higher low-limit of contact thickness than
nickel. We observed that palladium shows a strong tendency to wear off when sputtered in
layers thinner than 50 nm whereas nickel preserves its integrity to the limits of sputtering
procedures; the thinnest layers were 15-20 nm thick. For this reason we chose nickel to
produce measurement circuits7.

Despite the described drawbacks we continued with the production of the circuits
with relatively low yield of 10 - 20% and the production time of roughly one week. The
minority of the produced contacts had a well defined gap between both electrodes and
were considered successful (Fig. 3.9a) whereas the majority carried the legacy of poorly
created trenches that resulted as extremely narrow gaps with possibility of connection
between the electrodes (Fig. 3.9b) or even more unexpected features when metal was
pushed beneath the upper layer creating a soft transition from one electrode to another
with some well defined areas in between (Fig. 3.9c). Often the electrodes were surrounded
by a metallic crown (Fig. 3.9d) that could be washed away with a cotton stick, making
the circuit workable but only if the contacts weren’t fused at any point.

3.2 MoSIx Nanowires

Armed with adequate circuits we focused our attention to the sample preparation. We
were hoping to get a monodispersed solution of the thinnest nanowire bundles or perhaps
even only single nanowires. In this section we introduce the chemical structure of our
MoSIx nanowires along with a brief introduction to their synthesis and a recipe for the
successful preparation of the nanowire dispersion in acetone and isopropanol.

7Some aspects of metal choices are presented also in the sections of dielectrophoresis and the annealing
procedure.
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Figure 3.9: The AFM images of typical final circuits: a) successful, b) extremely narrow
gaps with possible fused points, c) soft transitions of metal from one contact to another
and d) typical metal crown surrounding the metal contacts.

3.2.1 The synthesis and the chemical structure of
MoSIx nanowires

MoSIx is actually a trademark name for this type of nanowires produced and distributed
by the company Mo6 d.o.o.8. These wires form a structural family of inorganic nanowires
composed of three different elements: molybdenum, sulfur and iodine under the formula:
Mo6SxI9−x. The structure is closely related to Chevrel phases with the general formula
MxMo6X8 where M stands for a metal and X for a chalcogen. In fact at the discovery
there was a debate whether these wires weren’t just simply a new species in this rich
family of structures. It turned out [14, 13] that indeed there was a close resemblance
between the atomic arrangement in the nanowires and in most related crystal structures

8Mo6 d.o.o., Tehnološki park Ljubljana, Teslova 30, SI-1000 Ljubljana, Email: info@mo6.com
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such as Mo6S6I8, Mo6S2I8 and Mo6S8. The basic structural cells are closely related but
with a major difference that in the case of MoSIx nanowires the lateral cross link bonds
between the molybdenum octahedra via sulfur or iodine are missing (Fig. 3.11). Thus an
interesting compound of many chemically separated wires is formed, held together only
by weak van der Waals forces making them easily dispersable in various solvents. The
individual wires on the other hand have a stable but soft structure since the molybdenum
octahedra get longitudinally connected via sulfur planes surrounded by iodine ions. With
other words: the MoSIx nanowires have the molybdenum backbone, that consists of
molybdenum octahedra clusters connected via 3 sulfurs in the linkage plane altogether
surrounded by iodine or sulfur ions (Fig. 3.10). Their close resemblance to Chevrel phases
makes them come in greater packs of nanowires, in thicker bundles of various sizes.

Figure 3.10: The MoSIx nanowire structure consists of molybdenum backbone formed by
the octahedra clusters with 3 sulfurs in linkage plane, surrounded by iodine. a) The side
view reveals the linkage planes and b) the cross section depicts the iodine arrangement
around the molybdenum octahedra.

Figure 3.11: a) The basic structural cell of separated MoSIx nanowires in a bundle and
b), c), d) of most similar Chevrel phases with pointed cross links.

Basic properties have also been studied using density function theory [37]. The calcula-
tions reveal finite density os states at EF for longitudinal direction (3.12a) thus predicting
the material to be conductive. For the Drude peak damping of Γ = 0.1eV the conductivity
at room temperature is estimated to be around 5 × 1000 S/cm, which is two orders of
magnitude lower than for carbon nanotubes. Soft bonds between the Molybdenum atoms
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and the linkage planes suggest possible distance modulation that can be denoted as the
accordion effect. The calculations confirmed that assumption and determined two stable
minima even in a flawless nanowire (3.12b).

Figure 3.12: a) The density of states calculated using density function theory. b) The
free energy calculation predicts two stable positions for the linkage sulfur towards the
molybdenum octahedron.

The described resemblance between various structures induced considerable uncer-
tainty and sensitivity to the synthesis and dispersion preparation. Even though the syn-
thesis follows a rather simple procedure, defining, controlling or even pinning the relevant
parameters appear to be rather slippery tasks. Basically all the elementary ingredients
in targeted stoichiometry mass ratio9 are put in a quartz ampoule, vacuumized (pressure
2 · 10−5mbar), sealed and put in an oven with homogeneous temperature10 of 720◦C for
3 days. The resulting material has a puffy, wool-like appearance that contains residual
iodine that evaporates spontaneously in 24 hours after the extraction from the ampoule.
As pointed out the similarities of different stoichiometries and even to Chevrel phases
make it rather hard to determine the proper structure of the resulting material. We can
speculate that the thermodynamic growth conditions allow multiple structures (Mo6S6I8,
Mo6S2I8 and Mo6S8) to be formed making the end material a multi-phase mixture. Unfor-
tunately also the X-ray analysis cannot distinguish sharply between them so the material
type is never completely certain. Also the growth mechanism and the environmental con-
ditions aren’t well understood, thus reducing the reproducibility of synthesis. We were
not directly part of material production research and had very little influence on the syn-
thesis outcome so we focused intensely on sample dispersion in different solvents. Other
groups dealt also with material post processing trying to determine the basic solubility
properties of our material [24, 23]. Despite their elaborate work we couldn’t reproduce

9This sets the x in the Mo9−xSxI9−x formula.
10An oven without temperature gradients.
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the dispersions according to their recipes at least not in the desired terms of small mean
bundle diameter and of proper concentration. In addition to that the dispersions showed
vivid agglomeration dynamics that expelled the wires from the solution to the bottom of
the reservoir.

After many failed attempts and the synthesis crisis we came up with a procedure that
appears to have overcome all indicated problems. We have to keep in mind that our
final goal of single bundle/nanowire integration demanded high quality dispersion, much
higher than needed for average solutions suitable for population studies (UV-vis spectra,
Röntgen analysis, sedimentation studies). Let us itemize the basic dispersion properties
we needed to achieve in order to use it for single bundle integration:

• a monodisperse solution,

• low mean diameter of bundles,

• few impurities,

• high concentration,

• low agglomeration and high stability of solution,

• a dispersion in a solvent suitable for single bundle trapping over prefabricated cir-
cuits11.

The final recipe, that overcomes the itemized terms may sound rather simple, but it
is based on many dead-end procedures. We discovered that we have to use the whole
amount of material from the ampoule without any washing, dispersing, homogenizing
or any kind of pre- preparation. Our initial attempts namely included all facts about
the poor reproducibility of syntheses so we tried to use small amounts of given sample
generation, learn the material handling for some specific synthesis and then to use it to
prepare final solution for the experiment. As we discovered later using small amounts (<
5 mg) inhibited our sample preparation from the start since the population of targeted
small bundles appears in the solution in rather small quantities. Using larger amounts
(or as stated above, all of it) pays off since the results truly fulfill the demands by a large
margin.

The best solvent for initial dispersion of the bundles turned out to be acetone with
a special emphasis on its purity. We believe that commonly used chemical reservoirs
contain many impurities that influence the agglomeration and stability of the solution
so we suggest to use fresh, perhaps even filtered or distilled chemicals if possible. For
the dispersion we used an ultrasonic tip (small tip at a maximum allowed power for 10
minutes) to thoroughly disintegrate the initial material in a plastic reservoir with 50 ml
of acetone to smaller meshes and single bundles (Fig. 3.13a). Afterwards the dispersion
almost immediately separated into two phases: soluble and stable dispersion and the
completely non soluble sediment that formed again a puffy phase on the bottom of the

11We discuss this later in the section of dielectrophoresis.
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reservoir (Fig. 3.13b). The upper dispersion had a yellow-orange appearance and was left
for several days (7 days) to separate from the remaining non soluble phase. Afterwards
the upper dispersion was carefully poured (10 ml) into a fresh glass reservoir and tightly
sealed. We used glass beaker because we observe that the material tends not to stick
heavily to the glass walls as in the case of the plastic (polypropylene) ones.

Figure 3.13: a) The ultrasonic tip (Cole Parmer CP750 750W) was used to disperse as-
synthesized material in acetone. b) The resulting solution clearly shows the soluble and
non-soluble phases sharply separated.

As we explain in 3.3 the proper solvent for the bundle incorporation into the circuit
wasn’t acetone but isopropanol. To change the solvent we dried the nicely sedimented
dispersion on a hot plate and immediately poured the isopropanol (10 ml) into the cooled
reservoir. To redissolve the dried material stuck on the walls we used an ultrasonic bath
at 100 % power for 2 minutes (Fig. 3.14a). The result was again a yellow-orange solution
without sediments that appeared stable for months. We emphasize the color of the solution
since we believe that it’s a strong indicator of dispersed bundles in the solution. The
resulting yellowish tan (Fig. 3.14b) indicates thin and long bundles whereas more greyish,
dark blue color (Fig. 3.14c) marks solutions with small amounts of single bundles, filled
with crystalline objects that sediment extremely fast leaving the solution almost empty
in terms of desired single bundles. Naturally we allow the possibility that the thinnest
bundles exist even in this solutions but unfortunately they are useless for our circuit
integration due to extremely small bundle concentrations.

Along with the sample preparation we derived a more accurate test to determine the
consistence of the dispersions. We simply measured the UV-vis spectrum of a solution and
analyzed the peaks. We observed that at least one of the peaks appears to be connected
to the small bundle population. As presented on the graph from (Fig. 3.15) the position
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Figure 3.14: a) The ultrasonic bath (Transsonic digitalS ELMA T490HD, 2x40W, 40 kHz)
was used to redisperse dried material in isopropanol. b) The successful final solution has
yellow-orange color whereas c) dispersion with lower concentration of single thin bundles
appears grey or dark blue.

of the peak around 700 nm gives the information about the sample consistence. If the
peak appears at lower wavelengths (between 690 nm and 700 nm) then thin bundles
are present in strong concentration in the solution. The alternative cases of the peak
appearing at higher wavelengths (greater then 700 nm) give smaller concentrations of the
thinnest bundles. We have to admit that we constructed this test on the experience basis
of also other researchers and we didn’t look more into it since we still had a long way to
go till the successful measurement.
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Figure 3.15: Successfully prepared samples (black curve) appear to have the most left
peak of UV-vis spectrum pushed above 1.77 eV (700 nm) and don’t shift in time, whereas
the failed ones (red curve) show the peak at 1.69 eV (732 nm) or lower. Also the upper
peak follows same shift - 2.73 eV vs. 2.56 eV.
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Let us summarize the whole recipe once more:

1. the whole content of the synthesis ampoule is sonicated in 50 ml of acetone in an
elongated plastic reservoir with a thin ultrasonic tip for 10 minutes (Fig. 3.13),

2. the dispersion is let to sediment for seven days,

3. the upper stable dispersion is carefully poured into a glass reservoir (10 ml),

4. to replace the acetone with target solvent the dispersion is dried on a hot plate
(60◦C) immediately followed by the introduction of the final solvent,

5. the material stuck to the glass walls of the reservoir is redissolved in an ultrasonic
bath at 100% power for 2 minutes (Fig. 3.14).

3.3 Dielectrophoretical attachment of single bundles

over a narrow gap

The integration of a single, thin bundle into a circuit became the core of our research
since the final measurements could have been performed by using standard measurement
techniques. We were interested in electronic properties, particularly in the direct transport
measurements that are perhaps the most demanding to perform since individual bundles
have to be connected to the macro-electrodes. With this approach the preparation of the
measurement chip is the hardest part since the technological skills to manufacture such
circuit hybrids are pushed to a new level. The interpretation of the measurements on the
other hand is quite straight forward and requires very little data post-processing in order
to get the raw results for further analysis. In contrast to this individual approach there are
population, statistical techniques that count on homogeneity of a sample since a collective
response is measured. In the past we tried to determine the conductivity properties of a
bulk pellet [22, 21], other researches tried to measure the transport through a thin foil of
compressed sample [20]. Bulk sample approach is widely used also in other basic property
measurements such as SQUID magnetic susceptibility scans of a sample capsule, laser
absorption of a sample foil for the determination of electronic states [15, 16, 18, 19, 17].
The sample preparation for these experiments is rather simple but the measurement results
demand careful analysis since the properties are tested on a group, burying the individual
response. This problem widens even more if the sample contains a palette of different
phases as in our case, since the overall response becomes a sum of all different structures
making it impossible to distinguish directly between them. This was actually the main
reason for our ambitious goal to manufacture a single, thin bundle connected to macro-
electrodes so that the conductivity measurements bring us as close as possible to the true
transport properties of our material.

As discussed at the beginning of this chapter the two basic strategies involve the
introduction of the contacts a over prelocated bundle (Fig. 3.1b) on a substrate or the at-
tachment of a bundle from a dispersion over a prefabricated electrodes with appropriately
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narrow gap (Fig. 3.1c). Our lithographic techniques together with poor repositioning ca-
pabilities enabled us to use the underlying-bundle technique only for the thickest bundles
[1] whereas for the thinnest ones the most promising alternative was the overlying-bundle
approach. In this section we discuss the technique of dielectrophoretical attachment of an
individual bundle from a dispersion over two electrodes.

3.3.1 Theoretical considerations

Perhaps more natural approach of particle attraction in a solution would be the elec-
trophoresis where constant potential is pressed over the contacts gathering the charged
particles form the solution (Fig. 3.17a)[38]. Our initial attempts showed that the re-
sulting depositions resulted as huge amounts of non-bundle material that totally covered
both electrodes without a trace of separated single bundles. This together with the un-
derlying work of our colleges [26] pushed us to utilize the alternating potential or the
dielectrophoresis (Fig. 3.17b) as the source of the attraction force. In contrast to the
electrophoresis the force is governed by the electric field gradient rather than by the field
itself and for that it naturally requires a non-uniform electric field, generated around the
contacts as simulated on the Fig. 3.16.

Figure 3.16: a) The 3D simulation of the non-homogenous electric field around two op-
positely charged stripes b) the top view of and c) the cross section in the middle of the
stripes, perpendicular to the gap.

A dipolar moment ~p(ω) is induced in neutral objects when inserted in an alternating

electric field ~E(ω) resulting as a dipolar force ~F (ω) in the present field gradient (Fig.
3.17b). We can write the force as:

~F (ω) = (~p(ω) · 5) ~E(ω). (3.1)

The dipolar moment depends on the material polarizability per unit of volume α(ω):

~p(ω) = V α(ω) · ~E(ω), (3.2)
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Figure 3.17: a) In electrophoresis the charged particles are strongly pulled in constant
electric field towards the opposite charged electrodes whereas neutral particles remain
ignored. b) In an alternating, non-homogeneous field of dielectrophoresis the charged
particles oscillate around a fixed point, hardly moving in the solution, allowing only
neutral particles to feel the dielectrophoretical force.

that further depends on the complex permittivities (ε∗ = ε + iσ
ω
) of media ε∗m, on the

particle ε∗p and on the shape of the particle manifested in the factor f(ε∗m, ε
∗
p):

α(ω) = εmf(ε∗m, ε
∗
p). (3.3)

Now we modify the expression (3.1) to:

~F (ω) = V εmRe{f(ε∗m, ε
∗
p)( ~E(ω) · ∇) ~E(ω)}, (3.4)

which can be rewritten to the final expression:

~F (ω) =
1

2
V εm Re{f(ε∗m, ε

∗
p)∇ ~E(ω)2}. (3.5)

Theoreticians calculated the factor f(ε∗m, ε
∗
p) for some general shapes including rods and

elongated, cylindrical objects that adequately describe our bundles with lengths l, radii r
and the volume V = πr2l:

f(ε∗m, ε
∗
p) =

ε∗p − ε∗m
ε∗m

. (3.6)

This gives the result for our bundles in form:

~F (ω) =
π

2
r3l εm Re

{
ε∗p − ε∗m
ε∗m

∇ ~E(ω)2

}
. (3.7)

The described phenomenon conveniently annuls the dominant electric force by utilizing
an alternating signal instead of a constant potential leaving the smaller charged particles
to oscillate around a fixed position, hardly traveling in the solution (Fig. 3.17b). The
bigger and elongated objects carrying small charge such as our nanowires are being pulled
by the field gradient toward the electrodes eventually ending up bridging them. This
scenario was the core of our dielectrophoretical attachment approach.
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3.3.2 The attachment procedure

Gathering all the ingredients and setting the strategy we reached the point of actual bundle
attachment to the circuit - bridging a pre-manufactured gap between two electrodes (Fig.
3.1c). Let us stress that dielectrophoretical attachment was optimistically attempted at
every intermediate research results (different circuits, different syntheses and dispersion
strategies) but with only limited success. We concluded that well defined and narrow
gaps (200∼300 nm in width) along with stable dispersion containing sufficient amount of
thin single bundles accompanied by few impurities are the imperative before realistically
expecting successful single bundle attachment. As introduced in the brief theoretical
consideration all we had to do was to press an external alternating electric field to the gap
electrodes, pour a droplet of solution for couple of seconds over it, blow dry the surplus
solvent and check the circuit under the AFM (Fig. 3.18).

Figure 3.18: An artistic rendering of a dispersion droplet over the two electrodes with
signal pins pressed onto the circuit pads.

Other researches have been studying this phenomenon more thoroughly from the the-
oretical point of view, revealing the complex nature of such attachment attempts [39].
Many effects are present that we will not discuss here since we used the technique as a
tool to produce the circuit, not studying the process itself. The core dielectrophoresis is
accompanied by the mechanisms such as gravity, electrothermal and light-electrothermal
heating, buoyancy effects, Brownian displacement, electrolysis and AC-osmosis.

Even though this rather simple technique hides a variety of processes we boldly pro-
ceeded with bundle attachments, having in mind only successful single bundle attachment.
As depicted on Fig. 3.19 we constructed a simple mechanical press contacts that were
controlled with micro-manipulator (Fig. 3.20b). The contact pins were made out of a 100
µm thin wire that can be found in some fine electronic cables. Thicker or more robust
contact pins turned out to scratch the circuit, destroying it during the attachment process.
The whole assembly from Fig. 3.20b) was placed under the magnifying glass mount (Fig.
3.20a) so that the circuit pads and the contact pins could be precisely aligned and the
approaching monitored until the contact was established. Due to the statistical nature of
the procedure we were expecting numerous attachment attempts before succeeding and
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Figure 3.19: The pins are pressed on the circuit pads manufactured on a silicon wafer.

due to the shortage of circuits we were forced to repeatedly use the same ones. That is
why we needed to design a fast, accurate and simple method to perform many depositions
and to check them under the AFM. Such press contacts from Fig. 3.20b) proved to be the
right way. The alternative of permanently attaching contacts onto the circuit pads wasn’t
practical since the silver paste, that was used to stick the wire to the circuit, turned out
to slowly dissolve in the nanowire solvent leaving a messy trail over the circuit making it
useless. Moreover the minute objects that we were targeting could have been observed
only under the AFM and a macro-circuit with attached macro-wires became very difficult
to be mounted into the microscope.

The first attempts quickly showed that even though all the necessary ingredients were
present, along with a promising single bundle strategy, the integration was still far from
reaching the goal and actually producing a working circuit. First we encountered the
issue of selecting a suitable solvent for dielectrophoresis. Being totally dependent on of
statistics and laws of probability for a successful utilization of dielectrophoresis the dis-
persions had to contain a sufficient amount of target material (the thinnest bundles), low
amount of impurities that would be naturally deposited as well and low agglomeration
tendencies that would result as big deposition clumps and would destabilize the solution
over longer periods of time. Moreover it turned out that a quickly drying droplet disables
any kind of deposition control since the material becomes denser as the liquid volume
decreases with evaporation enabling only extremely dense depositions. From this point
of view the acetone even though being most suitable solvent for sample dispersions as
mentioned in section 3.2 isn’t the right way to go. Since we were familiar with the work
of other researches [24, 23, 26] we tried to dissolve the material in water as an opposite
to the acetone regarding droplet formation on the wafer and regarding the evaporation
rate. Unfortunately the necessary high density, low impurity content and stability were
not achieved, thus failing all dielectrophoretical attempts. The most suitable candidate
turned out to be isopropanol that appeared to possess both qualities of acetone and water:



82 3.3 Dielectrophoretical attachment of single bundles over a narrow gap

Figure 3.20: a) The dielectrophoretic setup consisted of a magnifying glass mount
with an in-built illumination and b) the press-electrodes controlled by a vertical micro-
manipulator.

the dispersion could be produced with same quality as for acetone but with slower evapo-
ration rate. Thus with proper procedures the adequate dispersion could be prepared (see
section 3.2) and the favorable physical properties enabled dielectrophoresis in a relatively
controllable way.

The next step was to determine the proper frequencies and amplitudes of the AC signal
along with the appropriate timing. At the beginning we plugged in a sinus signal generator
with the aim to control the depositions. Unfortunately it turned out that regardless of the
signal settings the depositions appeared to be very dense. Remarkably the density didn’t
decrease even when the generator was totally unplugged. After closer look we noticed
that all our setup appeared to have been catching the background electro-magnetic (EM)
signals from different electric instruments and even the electric wiring. By a simple process
of elimination we succeeded to isolate the magnifying lamp illumination, or better, its
power supply transformer as the major cause for the EM-signals. Amazingly even after
total disconnection of all possible EM-sources the signal on the contact pins of the press
contact still had enough power to attract single bundles form the dispersion at the most
optimal rate. The final step was of course to ground the mount and the manipulator
which killed the EM signals and no attachments were observed. In the process we tried
also the chance deposition meaning that a droplet was poured over the circuit without
the press contact in floating mode12 and no depositions were observed. Intrigued by
the situation we tested the background EM-signals and determined the expected quasi-
sinus signal of 50 Hz and the amplitude of 100 mV for the plugged and 10 mV for the
unplugged illumination to be present; the signal vanished after the grounding. We also
tried to simulate this favorable signal via signal generator with grounded mount but with
no success. We concluded that the grounding of the whole mount influences the signal

12The mount was not grounded.
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from the signal generator and no depositions are observed. Since we had been under
huge time pressure with the core of our research still ahead of us and since the successful
attachment conditions were achieved we consciously abandoned further modifications of
the dielectrophoresis setup.

Let us stress that the seemingly trivial grounding actually becomes a nightmare es-
pecially when the background influences the experiments in such a profound matter. We
believe that special measures would be required in order to fully separate the background
EM radiation and the external signals from the signal generator and since we found the
proper parameters we devoted our research to the production of the circuits for the final
measurement.

As mentioned, many attempts were needed to obtain one successful single bundle
attachment. In order to use the same circuit several times we cleaned it carefully after
each attempt with cotton, dipped in isopropanol followed by flash drying with compressed
nitrogen gas. Such a circuit was then placed under the magnifying glass, aligned with the
contact pins followed by careful descent of the pins via a micro-manipulator until the
contact was confirmed. As described, the illumination was turned off afterwards and a 5
µl droplet was poured with a micro-pipette extremely cautiously over the circuit avoiding
the delicate wire pins. After 10 seconds the liquid was flash dried with compressed nitrogen
gas and the circuit was ready for the AFM examination. To summarize once more the
procedure in the compact form:

1. a circuit is gently cleaned with isopropanol dipped cotton and flash dried using
compressed nitrogen gas; this step is repeated after each failed deposition,

2. the circuit is aligned under the magnifying glass, followed by monitored pins’ descent
until the contact with the circuit is confirmed,

3. the illumination is disconnected from the power socket,

4. a 5 µl droplet of a dispersion is carefully poured over the circuit,

5. a 50 Hz signal of 10 mV amplitude is generated in the circuit,

6. after 10 seconds the solution is flash dried with compressed nitrogen gas,

7. after raising the contact pins the circuit is ready for AFM examination.

Before we discuss the outcome of the procedure let us briefly comment on the metal
used to manufacture the circuits. As described in the section 3.1.3 the choice of metal
facilitated successful circuit production along with reliable measurements. It is clear that
the mechanical stress resilience turns out to be more of a necessity than a virtue. Having
in mind the several nanometer thick bundles also the upper thickness limit of the metal
becomes an issue. Thinner layers are preferable on one hand due to the AFM imaging
since the minute nanowire strands get lost quickly in the high and vivid topography
of the circuit gorge and on the other hand due to the tendency to keep the bundle as
straight as possible. Naturally, soft bundles tend to accurately follow the underlying
surface topography thus not literally bridging the gap between the metals but bending
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over both edges, touching the bottom of the gorge. These bends, also known as kinks,
are believed to affect the electron transport through similar systems [40] so we wanted to
keep these bends as flat as possible by keeping the metal thickness to a minimum. We
came to the conclusion that that 20-25 nm thick nickel contacts would optimally satisfy
all the mechanical stress resilience here and in the lithography section.

Regarding the performance of our single bundle attachment procedure we realized that
even under the best possible conditions the attachments still resulted in a wide palette
of possible outcomes. Most often (∼50 %) we observed multiple bundle depositions (Fig.
3.21a) that varied in density, mean diameter and the position of the bundles; sometimes
not even a single one bridged the gap (Fig. 3.21b). Also agglomerates (Fig. 3.21c)
and extremely thick bundles (Fig. 3.21d) found the way to our electrodes (∼25 %) only
proving that probability and statistics dominate the process. Luckily for us in quite some
cases (∼20 %) only several bundles bridged the gap (Fig. 3.21e) enabling tedious post-
processing using the AFM to cut specific wires leaving only one wire intact as described
below. Our preferred outcome was present only in the minority of cases (up to 5 %) (Fig.
3.21f) and the rest were cases of impurities bridging the gaps (Fig. 3.21g and 3.21h or
random junk attachment (Fig.3.21 i). The impurity bridges often lead to the destructions
of the circuits since they couldn’t be cleaned and recycled again; this was also the end of
many circuits. As pointed out before, images like Fig. 3.21e caused a great deal of
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Figure 3.21: The AFM images of typical depositions: a) most common dense deposition
of many wires b) sometimes without bridging. c) Also frequently present deposition of
agglomerates and d) extremely thick bundles, e) only few thin single bundles bridging the
gap, f) the desired single bundle attachment, g) and h) the intriguing impurity bridges,
i) the mixed deposition of all possible junk.

frustration, since by finding a way to cut the surplus wires we would considerably
widen the amount of favorable outcomes. The opportunity lies of course in the utilization
of the AFM tip as the precise cutting tool. From the experiences with scanning the
surfaces with the AFM tip we knew that our wires showed high adhesion to the surface
and appeared to be rather soft, so we needed to scan the samples in tapping mode. In
contact mode we were namely cutting or destroying the integrity of the bundles. Even
the attempts of other colleagues to manipulate them on the surface ended the same way.
So it was only natural to use the contact mode as the possible bundle cutting procedure
or a route to destroy the particle bridges such as on the Fig. 3.21g, 3.21h and especially
3.21e where on the upper left corner a bridge distorts otherwise perfect deposition. More
different outcomes were present here as well.
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Figure 3.22: The AFM images of typical AFM tip cleaning: a1) → a2) a successful
disconnection of three features, b1) → b2) a frequently observed gathered material after
cleaning and c1) → c2) a undesired deformation of the selected bundle along with the
slight material gathering.

The most valuable and desired scenario contained a clean and precise cut of a bun-
dle/feature in a specific location without interfering with other entities. A successful cut
is presented on the Fig. 3.22a1 and 3.22a2, before and after the operation. The bun-
dle on the right of the images was picked and the features marked with black arrows on
Fig. 3.22a1 were recognized to have possible unwanted bridging between the contacts and
were disconnected as presented on Fig. 3.22a2. In many cases the material after cleaning
appeared to have gathered at the end of scanning lines making the situation even worse,
especially when the features formed close to the picked bundle as on Fig. 3.22b1 and
3.22b2 or 3.22c1 and 3.22c2. Interestingly the amount of material appeared to have sur-
passed the material quantity in the features suggesting that some parts could have come
from the AFM tip while roughly scratching the area. As also noticed in the macroscopi-
cal cotton cleaning of the circuit some bridges exhibited extraordinary resilience towards
mechanical scratching and AFM cleaning procedure only confirmed that, as depicted on
the image sequence of Fig. 3.23 where the nasty bridge from Fig. 3.21e was attempted to
be cleaned.

We can conclude that even though the AFM cleaning process was shown to be a
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Figure 3.23: The AFM images sequence of unsuccessful bridge cleaning: a1) the initial
situation with the target bridge on the left side of the gap, a2) the first attempt and a3)
the widened cleaning area with bridge still intact.

promising way to improve the single bundle attachment yield, the overall success turns
out to be rather modest. Upon reflecting the outcomes we could establish a correlation
between the AFM tips used but systematic study on this subject hasn’t been done. We
noticed that the common silicon nitride (the product name OTESPA13) tips tend to get
worn out easier producing additional deposits on the surface whereas platinum/iridium
(the product name OSCM-PIT) covered tips not only didn’t leave any traces, the residual
material of the cleaned features disappeared. We believe that an intrinsic potential is
applied on the tip through the AFM apparatus attracting and cleaning particles from the
surface. Such a case is depicted on Fig.3.21 a) where after cleaning the material simply
vanishes. Perhaps the best demonstration of the procedure is presented on Fig. 3.24
where we succeeded to cut two out of three bundles.

Figure 3.24: The sequence of AFM images of exemplary bundle cutting: a) the initial
situation, b) the blowup from the previous image clearly showing the initial three bundles
and c) the selected bundle on the right after cleaning is completely intact whereas the
other two are disconnected.

13http://www.veeco.com
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Dielectrophoresis turned out to be the best way to attach a single bundle over a
gap thus integrating it into a measurement circuit. The technique combines a number
of phenomena that can be tempered in the desired manner only if all important parts
exhibit adequate properties. We have to emphasize especially the dispersion’s quality
and the choice of the solvent. To fully understand and utilize the technique, also the
pin design, signal introduction and especially grounding must be taken into account. We
saw the dielectrophoretical attachment only as a route to achieve our goal of measuring
electronic properties a single bundle and we were not going into a deeper investigation of
the concept itself.

3.4 Measurements

After laying a pathway for manufacturing single bundle circuits we were ready to perform
conductivity measurements. As announced in the beginning of this chapter our interest
lies in the current vs. voltage characteristics as a function of temperature. In this section
we describe the measurement setup followed by the unforseen temperature pre-treatment
of the circuits, which was not planned initially.

3.4.1 Measurement setup

Current vs. voltage is perhaps the most basic measurement in the determination of
electronic properties and gives a profound view into the mechanisms that govern the
transport of electrons. As widely debated in the theoretical sections many effects might
affect the electrons traveling along the wire and our goal was to experimentally measure
our system and compare the results to the theoretical possibilities.

All we needed in order to perform such a measurement was a voltage source and a
current measurement unit. Since the temperature plays an important role in the electron
dynamics a thermostat was included; a schematics of the setup is depicted on Fig. 3.25.

We also needed to construct a custom measurement setup, but this time we had a very
good standard measurement equipment at our hands. The core conductivity measurement
was performed by Keithey 238 electrometer, a source-measure unit. For temperature
setting and control we used a cryostat (Oxford Instruments) connected to a cryodrive
(Edwards cryodrive 1.5) and driven by ITC 503 temperature controller. All components
were controlled by the computer program that was specifically designed for the task of
temperature controlled current vs. voltage characteristic measurements. The setup is
presented on the photograph Fig. 3.26.

The program had full control of the measurement scan and at the same time enabled
custom data patterns designed for a specific system measurement (Fig. 3.27).

Let us add a full description of the measurement procedure along with measurement
conditions even though the whole technique hardly needs a deeper description. The silicon
plate carrying the sample circuit was glued onto a copper cryostat holder to ensure high
temperature conductance and proper control of the temperature in the sample. The circuit
pads and the external socket pins were connected with a 25 µm thick gold wire that was
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Figure 3.25: A voltage is pressed over the sample circuit and the resulting current is
measured. The sample is closed in a cryostat under high vacuum with controllable tem-
perature.

glued onto the pads using silver paste and carefully soldered to the connector plug (Fig.
3.28a).

Before mounting it in the cryostat (Fig. 3.28b) the holder was left for at least 12 hours
to dry otherwise the glue gets swollen resulting in an unreliable temperature control. After
plugging the external wires to the holder plug the cryostat was covered with a radiation
shield and finally sealed with the external cover. A two stage vacuum system composed of
rotational and turbo-molecular pump was engaged to depressurize the cryostat chamber
below 10−3 mbar. Finally the program had been set and the measurement could begin.
The temperature range was swept step-by-step while stabilizing below the tolerance of
0.1 K at each temperature point before measuring the current vs. voltage curve. During
the conductance scan the prescribed source voltage was pressed over the sample for 5
seconds before reading a sequence of the current values with 20 ms integration time and
exporting the average value along with standard deviation error into a digital data file.
The temperature scan interval stretched form the room temperature of 295 K till 18 K
and backwards to get a comparison between cooling and heating data14.

Surprisingly the setup was able to measure with the accuracy down to several pA,
reliably measuring resistances up to 50 GΩ with the leakage resistance of about 100 GΩ.
As presented in the results in the following subsections the stability and accuracy of the
measurement also surpassed our expectations thus making the data gathered with the
system credible and accurate.

3.4.2 The process of temperature annealing

The story so far was presented as a sequence of research stages that were encountered
before finally reaching the point of the measurement. That is entirely true for the de-
sired thinnest samples but for the thicker ones several studies have been made revealing

14The duration of a cycle was roughly 14 hours.
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Figure 3.26: The measurement setup, controlled by the custom made computer pro-
gram, consisted of Keithley 238 measurement unit, Oxford Instruments cryostat, driven
by the Edwards cryodrive 1.5 and two step vacuum system (rotational and turbo-molecular
pump).

the full perspective of the goal assignment. As mentioned earlier the measurements were
performed at some intermediate level mainly with the purpose to test the manufacture
techniques (circuits, contact metals) and to become acquainted with the measured ma-
terial. Let us stress that we could abandon the idea of a thin bundle measurement and
obtain some results using the thicker bundles of several 100 nm, but we continued in
the direction of thinnest ones since we believe that the basic nanowire nature could be
revealed much better with only a few nanowires in a bundle. Nevertheless the experiences
gathered by dealing with bigger, even macroscopical bundles were priceless since many as-
pects of the final measurement procedure have been revealed, while unfortunately opening
yet another research battlefield.

Looking at similar systems like carbon nanotubes and molybdenum selenide nanowires
[10, 11, 2, 4] we were expecting relatively low resistances in the range of resistance quan-
tum for some arbitrary bundle, even more so since many nanowires in the bundle would
conduct in parallel reducing the common conductance roughly by a factor of nanowire
number in the bundle compared to a single nanowire conductance. The first results were
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Figure 3.27: The program sets the measuring sequence on the individual level for the
voltage as well as for the temperature.

Figure 3.28: a) The silicon plate carrying the circuit was glued onto the copper cryostat
holder and connected to the in-built connector socket via gold wires. b) The holder was
screwed onto the cryomount and plugged to the measurement wires.

shocking since the values of resistance proved to be in the order of several GΩ, far from
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the most optimistically expected fraction of 1.3 kΩ in ballistic transport through one
nanowire. Repeated experiments only confirmed this behavior even more dramatically
for the thinnest bundles. Comparing the measurement procedures we discovered that the
post-productional treatment is needed in order to evoke current through the sample. The
process is called annealing and is usually performed simply by baking the circuit in the
oven. We wanted to go a step further since the process is not well understood and we
can only speculate about what is happening. One can look at the phenomenon from two
different points of view: the contact between the bundle and the metal from the circuit
guides changes (improves) or the bundle itself undergoes a structural change. From the
basic chemical properties we knew that the material appears stable in the atmospheric
conditions up to 300◦C (the material tends to get disintegrated due to oxygen) and in vac-
uum up to 900◦C [13, 21]. Relying on that, we performed an annealing effect survey on the
circuit resistance for different circuit production techniques, different contact metals and
for different MoSIx stoichiometries[25]. The circuits were produced and measured accord-
ingly in several different ways: a macro bundle suspended on a glass plate (1 µm diameter
and 2 mm in length) directly connected with silver paste (Fig. 3.29a), four probe measure-
ment for the contacts over a 220 nm thick, 2 µm long bundle and two probe measurement
of dielectrophoretically attached bundles (DEP) of different stoichiometries. Desperately
trying to reach thinnest bundles we even designed a measurement using special conductive
atomic force microscopy (CAFM) techniques provided by our AFM microscope. As de-
picted on the artistic expression on Fig. 3.29b a deposition of bundles over a silicon oxide
wafer was lithographically covered with a stripe contact hoping to partially imbed single
bundles beneath. The metal contact acted as one measurement pole and the conductive
(platinum/iriduim covered) AFM tip as the other. This experiment turned out to be
quite demanding and in the end destructive. The most challenging was as expected the
positioning of the tip over the bundle, obstructed by the intrinsic tip drift, and the con-
tact formation. Initial mechanical and voltage treatment was necessary in order to evoke
current through the bundle, often resulting in a total destruction of the bundle. This was
the main reason why we couldn’t compare the effect of annealing on the same circuit and
used two for each condition. Since the structural integrity needed to be preserved the
annealing temperature was set to 700◦C for an hour in vacuum. The circuits got annealed
after the raw material was integrated into a circuit except for the macro-bundle where the
raw material got thermally treated and afterwards connected directly with silver paste to
the measurement contacts (Fig. 3.29b).

The results gathered in the table 3.1 clearly show that for the dielectrophoretically
deposited bundles the annealing improved the conductance by roughly three orders of
magnitude for three different stoichiometries; the comparison of data before and after
annealing is presented on Fig. 3.30b. This huge conductance improvement implies that
indeed the connection between the bundle and the metal plays an important role in the
electron transport. Also the four probe measurement supports this assumption since the
measurement by design pushes out the contact resistances revealing the bare conductivity
of the sample; the comparison of data before and after annealing is presented on Fig.
3.30a, where only modest modification of the conductance improvement was noticed. We
can draw the same conclusion from the CAFM measurements since the conductivity for
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Figure 3.29: a) A suspended macro-bundle is glued directly to the measurement wires
with silver paste. b) Partially covered thin bundle is tested for conductance at several
points using a conductive AFM tip as one pole and the metal stripe contact as the other.

both cases ranged in the same magnitude even though the conductivity on the titanium
changed dramatically (point B on Fig. 3.31b and point 4 on Fig. 3.31c).

Before annealing [Sm−1] After annealing [Sm−1]

Material (measurement method) (contact metal) (contact metal)
Mo6S3I6 (2-probe freestanding) / 9.5 (Ag)
Mo6S3I6 (4-probe lithography) 0.07 (Ti) - 0.3 (Pd) 2.5 (Pd)
Mo6S3I6 (CAFM) 0.37 (Ti) - sample 1 0.52 (Ti) - sample 2
Mo6S3I6 (DEP) 1.3 x 10−4 (Ti) 0.135 (Ti)
Mo6S4.5I4.5(DEP) 3.7 x 10−5 (Ti) 0.057 (Ti)
Mo6S2I8 (DEP) 2.3 x 10−5 (Ti) 0.048 (Ti)

Table 3.1: Single bundle conductance at 295 K.

As briefly pointed out earlier this survey addressed also the issue of metal choice for the
production of circuits. A thin metal layer can exhibit special and unforeseen properties
when introduced to high temperatures. Under such conditions material migration can
be expected especially for softer metals or metals with poor adhesion. Also chemical
properties can play an important role since many substances otherwise inert at room
temperatures become vividly reactive when heated. We totally abandoned the idea of
using gold in combination with some adhesive layer (nickel, chromium, titanium) mainly
due to poor lithographic properties (see section 3.1.3). The alternative was pure titanium
or more inert palladium. We knew that titanium oxidizes fast at high temperatures but we
were hoping that our vacuum (low amount of oxygen) was good enough to reduce this effect
so that the measurements wouldn’t be affected. If titanium worked after annealing for the
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Figure 3.30: a) A current vs. voltage characteristics for the four probe measurement
of a bundle before and after annealing; the conductivity raises by roughly one order of
magnitude b) whereas for the DEP circuits three orders of magnitude improvement was
observed. The insets are the AFM images of the circuits with the scale bar of 2 µm length
for the left and of 250 nm for the right image.

DEP circuits it proved to be totally inadequate for the sensitive CAFM measurements.
As depicted on the resistance vs. length (the distance between the contact point between
the AFM tip and the bundle) diagram in Fig. 3.32b the linear curve includes contribution
from the bundle and from the metal. The extreme value of R0 = 4.2TΩ gives the raw
contribution of the titanium contact the alarming range of TΩ. Even direct measurement
on the titanium (point 4 in Fig. 3.31c) confirmed that value. We believe, that the metal
oxidized at high annealing temperatures covering otherwise good conducting electrode
with a non-conductive oxide film.

One might argue that to the total resistance also the narrow AFM tip contributes
along with its touching point but as seen from the conductance curve of pure titanium
before annealing (point B on Fig. 3.31b) the resistance is estimated at around 20MΩ thus
negligible compared to overall resistance of the whole circuit (GΩ for the point A on Fig.
3.31b or TΩ for annealed sample from Fig. 3.31c).
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Figure 3.31: a) The conductance AFM cross section scheme of the experiment. b) The
measurement of the non-annealed (70 nm diameter) and c) of the annealed circuit (6.5
nm diameter).

Figure 3.32: a) Resistance as a function of distance form the titanium contact for the
annealed circuit from Fig. 3.31b). b) Current vs. voltage characteristic of the titanium
contact and the bundle for the non-annealed sample from Fig. 3.31c.

We concluded that the titanium contacts oxidize severely transforming otherwise
metallic and conductive material into poor conductor even into an insulator; the oxide
can even be identified with the ball-shaped structures on the surface of the metal see on
the AFM images from Fig. 3.31c. Let us add that for thin bundles the CAFM technique
proved not to be an adequate method for conductance measurements partially due to
hard positioning and mechanical destruction hazard but mainly due to extremely difficult
current awakening in the bundle with or without annealing. In fact the activation stress
turned out to be too violent and the bundles got often destroyed even before performing
any measurements. These results convinced us to return to the path of dielectrophoretical
attachment as the only strategy with good prospects for the measurement of the thin bun-
dles. Once more we changed the metal for the production of the contacts from titanium
to nickel since thin contacts required for thin bundles cannot be produced with favorable
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palladium (see section 3.1.3).
While performing first measurements on thin bundles we were confronted with similar

problems as for the CAFM since the current through the circuits wasn’t detectable with
our setup (upper resistance limit was several hundreds of GΩ) and the process of annealing
became a necessity. As presented in Fig. 3.33 ideally after the treatment the bundle
survives and the metal contact doesn’t show severe feature formation. Moreover we can
even observe bundles submerging into the metal (Fig. 3.33c) establishing a better electric
connection. This unique and exciting effect is present only on nanoscales since thin metal
films possess new and unfamiliar properties compared to the bulk material. Most relevant
in our case is of course the lowering of the melting point of thin films [41], that most
probably in combination with surface tension and atmospheric conditions mediates the
reformation of topographic structure of the layer.

Figure 3.33: The sequence of AFM images of ideal annealing outcome: a) the initial
situation, b) the blowup from the previous image and c) the circuit after temperature
treatment shows slight buckling of the metal surface with the unspoiled bundle submerging
under the metal.

Unfortunately this favorable annealing property had also the downside since the per-
ilous nature of high temperature treatment caused the destruction of many circuits and
even bundles (Fig. 3.34a1 → 3.34a2). Mostly we observed vivid buckling of the metal-
lic surface manifested extremely high topographic features sometimes causing even the
contacts to fuse and create short connections (Fig. 3.34b1→ 3.34b2). Even strange crys-
talline formations (Fig. 3.34c1 → 3.34c2) were observed only proving yet again another
poorly controllable and understood circuit preparation. This final bottleneck pushed the
whole experiment to a new level. Many times we got excited over finally being able to
produce a bundle integrated into a circuit but faced a cold shower such as in the case of
bundle exemplary cutting, where perfect circuit had been produced but got completely
destroyed; the sad ending of that circuit is depicted on Fig. 3.35.
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Figure 3.34: The AFM images of typical annealing downsides: a1) → a2) the bundle
disintegrated , b1)→ b2) contacts were fused together creating short connection and (c1)
→ (c2) crystalline formations on top of metal layer.

Figure 3.35: The sequence of AFM images of a circuit destruction: a) the initial situation,
b) the destruction of the bundle and c) a view of the whole buckled contacts with extreme
topography.
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3.4.3 Measured samples

The necessary annealing process comes in package with great circuit losses but we were
still pushing towards a successful measurement knowing that we couldn’t expect many
repetitions. Let us itemize the finale recipe of required steps to produce and post-treat
the circuits in order to make successful measurements:

1. the whole amount of sample from the synthesis ampoule is sonicated for 5 minutes in
acetone using an ultrasonic tip, left to sediment for seven days, dried and redispersed
in isopropanol in glass reservoir using ultrasonic bath,

2. with e-beam lithography 25 nm thick nickel electrodes with 200 - 500 nm wide gaps
are produced on a silicon wafer with 600 nm of silicon oxide on top,

3. a thin bundle is deposited from a droplet over the gap using 50 Hz signal with the
amplitude 10 mV for 10 seconds before flash drying it with nitrogen gas,

4. the circuit is annealed in vacuum (in a sealed ampoule vacuumized till 2 · 10−5)
mbar at 700◦C for an hour,

5. finally the circuit is glued with heat conductive resin to a cryostat and the pads
are connected using silver paste to 25 µm thick gold wires that are soldered to the
electronic socket.

Countless attempts finally paid off and we produced and successfully measured four
samples. On the Fig. 3.36 are presented the AFM images of the samples with their diam-
eter and length gathered in table 3.2. The nomenclature was left original and is composed
of the prefix“na” that denotes the abbreviation for “nanos” ( in English “deposition”), and
the identification number.

sample signature diameter[nm] length[nm]
na12 5 530
na23 4.2 265
na27 4 200
na28 12.5 190

Table 3.2: The diameter and the length of the measured samples.



3.4 Measurements 99

Figure 3.36: The gallery of all successfully measured samples: a) na12, b) na23, c) na27
and d) na28.

These four samples represent the core of our work and the results of their current-
voltage measurement are presented and discussed in the next chapter. All other mea-
surements on thicker bundle chips were manufactured and prepared by the procedures
described in this chapter.



Chapter 4

Results and discussion

In the previous section we described in detail the experimental background that lead to the
successful current vs. voltage measurements of four nanobundle integrated chips at various
temperatures. Despite reaching our predetermined goal of testing the thinnest wires,
the obtained results don’t promise reliable statistics. On the other hand in the case of
homogeneous sample with stable and uniform structures of single nanowires one can expect
reproducible results with slight discrepancies among them, making only few measurements
sufficient to explore the properties of target structures. Unfortunately when dealing with
real systems this is hardly the case. As already debated in the chemical structure section
3.2 our material shows multi-phase stabilities in terms of stoichiometries, allowing also a
great number of structural defects in an individual wire. Each nanowire is thus a unique
system with unique transport properties that can vary widely as debated in theoretical
section 2. This awareness was our main motivation to continue with painstaking sample
production in order to get as many repetitions as possible, since in the worse case scenario
the measured chips would exhibit unrelated characteristics, which would be exciting from
a theoretical point of view.

As presented further in this section our palette of the thinnest four samples makes
a statistical compromise by separating them roughly into two groups according to the
basic shape of the IV curves at low voltages also exhibiting different underlying transport
laws. Later on we add results of thick bundle measurements that again appear to form a
separate group. We conclude the chapter with the discussion of the annealing effect and
the overall comparison of measurements, justifying the term“integrated chip” over simply
a “nanowire circuit”.

4.1 The thin bundles

We consider nanowires thin if their diameter falls below 15 nm. Since these minute objects
cannot be directly examined in terms of their composition and fine chemical structure,
the data about their shape comes only from their AFM images. Our nanobundles were
individually introduced in Fig. 3.36 of the previous section, with their sizes gathered in
table 3.2. The raw IV characteristics for each sample are presented in Fig.4.1. The close-
to-linear curves at higher temperatures tend to bend as the temperature drops. Plotting



4.1 The thin bundles 101

the normalized curves (Fig. 4.2), we observe two distinct shapes:

1. the “S” shape - the VI curves remind of the letter “S” - the samples na12 and na27,

2. the “J” shape - the high voltage regime appears linear with smooth step leading
towards zero voltage slope - the samples na23 and na28.
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Figure 4.1: The current vs. voltage characteristics from the room temperature till 18 K
(from top till bottom): a) na12; the error bars depict high accuracy (0.5 % - 1 % ) of the
measurements and are omitted in all other graphs, b) na23, c) na27 and d) na28.

We introduced many transport mechanisms in the theoretical section but here we
confine ourselves to the most likely ones also suggested and discussed in literature [10, 11,
4]: variable range hopping (section 2.5), environmental Coulomb blockade (sections 2.4
and 2.4.2) and the Luttinger liquid behavior (section 2.6). Mathematical expressions for
each law can be tested on measurement data: the Luttinger liquid behavior law (2.174)
allows all curves over all voltage ranges to collapse onto a single curve. Unfortunately
the equivalently general result for the variable range hopping 2.159 has to be tested in
low voltage limit that gives the known hopping behavior 2.170. The most tedious is the
environmental Coulomb blockade theory that cannot be solved analytically for the general
case, but demands temperature and voltage limitations in order to utilize quantitative
analysis 2.144. Qualitatively the properties emerge only through numerical treatment,
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Figure 4.2: The normalized current vs. voltage characteristics from the room temperature
till 18 K (from top till bottom). The curves’ development with dropping temperature are
clearly seen. a) na12, b) na23, c) na27 and d) na28.

revealing linear dependencies for high voltages and smooth transition of the slope from
zero voltage to high voltage regime (numerical depiction on Fig. 2.18). Let us describe
the numerical treatment we follow in the analysis:

Luttinger liquid The collapsing diagram of underlying law 2.174 is obtained by plotting
I/Tα+1 against eV/kT (2.24). The α is the slope of zero voltage conductivity against
temperature in the loglog plot. The β is the exponent for the high voltage (eV �
kT ) limit since the general law exhibits power law behavior I ∝ V β+1. The γ stands
for the fitting parameter and adjusts the voltage drop over the circuit.

Variable range hopping The plot ln(G) (for low voltage) against T−λ yields curves
that become linear for the correct hopping exponent (table 2.5). To extract the
most adequate mechanism the fits are tested for Pearson’s correlation (values close
to unity prove the best fits).

Environmental Coulomb blockade Qualitatively the IV curves should exhibit linear
dependence for high voltages with a smooth transition to zero voltage slope and the
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derivative dI/dV approaches an asymptotic value. For low voltages and tempera-
tures the dependance follows a power law behavior I ∝ V 2/g (2.144).

4.1.1 The “S” curves

The curves remind strongly of the Luttinger liquid sinh dependency. The loglog plot G
vs. T for the na12 reveals only remote resemblance to a straight line. We still fit a
linear curve extracting the α for three instances: low temperatures, high temperatures
and over all points (Fig. 4.3a). The curves for the overall slope with α = 2 collapse
relatively well, especially since we plot throughout the entire temperature range (Fig.
4.3b). We tested the collapse resilience of the other values of parameter α for low and
high temperatures (1.3 and 2.7), but the curves diverge severely for both cases (Fig. 4.3c
and d). To obtain the Luttinger law fit the parameter β was extracted from the curve
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Figure 4.3: a) The zero voltage conductance G vs. T gives three values of α: 1.3 for the
low temperatures, 2.7 for the high temperatures and 2 for the overall fit. b) The collapse
diagram of all IV characteristics shows relatively good overlapping of the curves for α = 2,
especially if compared to very diverged plots of c) and d) for α = 1.3 and 2.7 respectively.
The fit in the diagram b) was obtained using: I0 = 1.1 ·10−14, α = 2, β = 1 and γ = 23−1.

steepness of the IV curves, plotted in loglog scale (Fig. 4.4a). As mentioned, the power
law should prevail at high voltage limit (eV � kT ) that can be reached much easier at
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lower temperatures. From the diagram β + 1 (Fig. 4.4b) as a function of temperature we
select the highest value at the lowest temperature (β+1 = 2→ β = 1), since it should be
the closest approximation to the correct value. It can also be seen that the zero voltage
slopes remain constant and close to 1, thus in agreement with Ohm’s law. The plot Fig.

0.01 0.1 1

0.01

0.1

1

10

100

 I
 [
n
A
]

V [V]a)

na12

0 50 100 150 200 250 300
0.75

1.00

1.25

1.50

1.75

2.00

2.25
na12

β
+

1

 T [K]b)

Figure 4.4: a) The current vs. voltage characteristics are gathered on a LogLog plot,
suggesting values for β + 1 in the form of slopes at high voltages. b) The slopes β + 1 are
increasing with decreasing temperature as a result of departing from high voltage limit
(eV � kT ), where the power law I ∝ V β+1 holds. The arrow points the value of β+1 = 2
that was selected for further analysis.

4.3b with relatively good fit suggests that Luttinger liquid behavior probably contributes
to the electron transport. Remarkably even the α = 2β (Eq. (2.173)) prediction holds,
reinforcing the suspicion that Luttinger liquid could be the most likely candidate for the
electron transport through the system. Of the remaining possibilities only variable range
hopping stands out, since the linear behavior for high voltages in the IV curves isn’t
observed, dismissing the environmental Coulomb blockade as the governing transport
phenomena.

In Fig. 4.5a the conductance G is plotted against T−λ for various exponents (from the
table 2.5), together with the linear function fits in order to test the behavior. The values
at low temperatures were not taken into account since noise-to-signal ratio increases for
the lowest voltages and lowest temperatures yielding uncertain conductance values. Since
different λ lie close together, a correlation1 value between the fits and the data is compared
in the histogram Fig.4.5b for each exponent, suggesting onedimensional hopping with the
exponent 1/2, if the density of states is taken to be constant. Since this mechanism is also
in a reliable agreement with the theoretical prediction, a definite answer cannot emerge.

Following the described analysis also the na27 can be tested in a similar way. In this
case the graph in Fig. 4.6a, yielding the Luttinger liquid parameter α = 2.3, follows a
straight line much closer to that in the previous na12. Moreover, the IV curves overlap
even closer (Fig. 4.6b) suggesting that the Luttinger liquid could be the dominant trans-
port mechanism. More disperse plots for other testing values of α = 1.8 and α = 2.8 (Fig.

1High correlation yields the value closer to 1.
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Figure 4.5: a) The G against T−λ plots in a logarithmic scales shows tests of is different λ
by comparing the linear fits for each curve. b) For quantitative comparison the Pearson’s
correlation between the fits and the data is compared. The values closest to 1 reveal the
closest fits, in this case 1/2, suggesting 1D transport.

4.6c and d respectively) similarly prove the sensibility of curve collapsing, supporting the
theory since the fitted α = 2.3 gives the best results. The loglog plots of the IV curves
also show the Ohmic behavior at zero voltage and the increase of slopes for high voltages.
In this case the value β+ 1 is taken to be 2.6 and thus β = 1.6. Here the equality α = 2β
isn’t followed any more. When comparing the data to the variable range hopping the
characteristic plots in Fig. 4.8a exhibit different behavior, since in this case the closest
fit exponent is 1/4 according to Fig. 4.8b, suggesting 3D hopping as in opposite to 1D
hopping found in the case of the na12.

Similar results were reported also by other researchers when measuring the transport
properties of the molybdenum selenide nanowire bundles [10]. Their analysis of several
samples comparable in size and structure2 to ours shows two types of transport when com-
pared to Luttinger liquid: α ≈ 2β and α ≈ β. The cases are related to the presence of the
defects in the bundle; for a uniform structure the second equality holds, whereas breaking
of the conducting channels may result closer to the first case. Our na12 appears to be
closer to the disrupted channel structures, whereas the na27 contains fewer irregularities.

Also variable range hopping could be a part of transport mechanism since the charac-
teristic plots follow theory’s predictions. The dimensionality that is the main issue here
appears to be different for both samples: na12 follows 1D and na27 3D hopping. This
coexistence of both theories doesn’t appear to be intrinsic for other nanowire samples. A
report [11] on transport measurements of NbSe3 nanowires dismisses the variable range
hopping as a satisfactory possibility and focuses on the Luttinger liquid approach. Their
samples on the other hand exhibit also the Peierls transitions with charge density wave
properties, that yield falling conductance as a function of temperature; this was also the
main reason for omitting the Wigner crystal theories in this report. We can speculate that
in the mesoscopic systems the transport is governed by many effects resulting as a mixture
of different mechanisms. Moreover the underlying phenomena exhibit qualitatively very

2Both have molybdenum octahedra forming the backbone.
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Figure 4.6: a) The zero voltage conductance G vs. T approximately follows a straight
line with the slope α = 2.3. b) The collapse diagram of all IV characteristics shows better
overlap of the curves than for the sample na12. The diverging plots of c) and d) for the
testing α = 1.3 and 2.7 make the results even more consistent since the ideal value turns
out to come from the slope on the graph a). The fit in the diagram b) was plotted using:
I0 = 7.7 · 10−16, α = 2.3, β = 1.6 and γ = 18−1.

similar behavior and follow strongly the level of impurities and disorder. These assump-
tions are supported by the data gathered for the na23 and na28, that show environmental
Coulomb blockade behavior together with variable range hopping mechanism.
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Figure 4.7: a) The IV curves in loglog plot suggest Ohmic law for zero voltage regime and
power law for the high voltage regime. b) Also here the arrow points to the highest value
of β + 1 = 2.6 that is the closest to the real value.
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Figure 4.8: a) The G against T−λ plot in logarithmic scale shows a test of different λ by
comparing the linear fits for each curve. b) λ = 1/4 produces the closest fit, suggesting
3D hopping.

4.1.2 The “J” curves

In this group the IV curves from Fig. 4.1b and 4.1d and even especially the scaled
data from Fig. 4.2b and 4.2d strongly resemble the numerical solutions of environmental
Coulomb blockade (Fig. 2.18a). The diagram shows curves for different parameters g that
are inversely proportional to the environmental resistance (Eq. (2.137)). For low resis-
tances (or general impedances) the curves come close to straight lines or Ohmic behavior,
whereas for the highest impedances a smooth transition between zero voltage slope and
high voltage linear law is predicted3. Even though the theoretical results demand low tem-
peratures, we can assume that the temperature dependence is hidden in the parameter g,
consequently bending the curves with changing temperature. With this we actually allow
the environmental resistance to change with temperature, which is quite plausible if not

3With a bit of imagination the curves form the letter “J”.
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even predictable since our system resembles only remotely the quantum dot coupled to a
Fermi reservoir as debated in the Coulomb blockade theory. The quantum dot (perhaps
even more of them) would be in our case embedded within the nanobundle (Fig. 2.9b),
thus profoundly changing the nature of the electron reservoirs. From the S-shape curves
we learned that even Luttinger liquid and variable range hopping govern the resistance
in the nanobundle leads, thus modifying the g and the shape of the curves. To test the
theory the curves are normalized with the conductance prefactor that scales the curves
according to the governing transport phenomena and thus the temperature.

Since the introduction plots from Fig. 4.2b and 4.2d are hard to read, we plot once
more the curves (Fig. 4.9a and 4.9b for the samples na23 and na28), only that this time
we pick fewer representative curves at proper temperatures and, following the numeric
result, confine the data to the first quadrant with positive voltage and current. Despite
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Figure 4.9: Normalized representative IV curves for the samples a) na23 and b) na28.
Both diagram closely resemble the numerical predictions for the environmental Coulomb
blockade theory shown on Fig. 2.18a.

the resemblance we are aware that the temperature drop wasn’t severe enough and that
the charging effect would be observed even more profoundly at lower temperatures. Nev-
ertheless the shapes are reasonably convincing to confirm the environmental Coulomb
blockade as an important transport mechanism. Even more convincing are the derivative
plots from Fig. 4.10 since the transition from low to high voltage becomes more visible.
From these graphs also the charging energy EC = e/2C could be estimated, because at
that voltage the transition of the slopes stands roughly in the middle between the low
and high voltage value. Since the derivative graphs come with high errors, a completely
numerical fit is used to extract the trends of the curves. We took the sum of the expo-
nential approaching and the linear function: a + bx + c exp[−x]. The plots are shown in
Fig. 4.11 with the charging voltages 0.15 V and 0.13 V for na23 and na28 respectively
that set the capacitance to ∼ 5 · 10−19F. Just for the taste we plot also all curves’ fits
in the Fig. 4.12. If we take a step forward and totally omit the charging energy, the
energy needed to enable transport equals only to the gap of the energy states on the dot
(see section 2.4) instead of their sum. Now we can calculate the lowest limit of the dot
size, since the omitted charging increases the size of the dot due to smaller quantum state
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Figure 4.10: The derivatives of normalized curves from Fig. 4.9 for a) na23 and b) na28
show resemblance with the trends from numerical prediction of 2.18b.
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Figure 4.11: Numerical fits of Fig. 4.10 reveal the core curve trends for a) na23 and b)
na28.

gap. Assuming the dot is a potential well cube with edge length x0 and by taking the
lowest occupied quantum number energy gap from Eq. (2.8), we get roughly x0 ≈ 1.7 nm.
The value is consistent with the diameters of both bundles (4.2 nm and 12.5 nm) since it
physically allows a dot of that size to get formed inside of the nanobundle.

To test the power law of IV curves (I ∝ V 2/g) for low voltages we plot, same as in
the case of the “S” curves, loglog plot of the characteristics (Fig. 4.13a for na23 and Fig.
4.14a for na28), only that this time we focus on the slopes around zero. The inner and
outer slopes plotted on Fig. 4.13b for na23 and Fig. 4.14b for na28 expectedly gather
around unity for high temperatures, since the curves become almost linear. The highest
exponents are thus for the lowest temperatures with 2/g ≈ 2.1 for na23 and 1.1 for na28.
The discrepancy of the outer slopes towards linear unity, even exceeding the inner slopes,
may again indicate other transport mechanism to be present.

Next we test the Luttinger liquid law. The central slope plots from Fig. 4.15a and
Fig. 4.16a give hope due to linearity, but the actual collapse plots on Fig. 4.15b and Fig.
4.16b aren’t as convincing. At least for the na23 the Luttinger liquid can be dismissed,



110 4.1 The thin bundles

0.00 0.25 0.50 0.75 1.00

0.0

0.4

0.8

1.2

1.6 na23

d
I s
ca
le
d
/d
V

V [V]a)
0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2 na28

d
I s
ca
le
d
/d
V

V [V]b)

Figure 4.12: To complete the picture we plot the derivative fits for all measured curves
of a) na23 and b) na28. Interestingly the asymptotic curves are not constant values,
as expected form the core of the theory, but linear curves that imply other transport
mechanism to be present.
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Figure 4.13: Predicted power law for na23 at low voltages has the exponent around 2 and
falls close to unity for the temperatures, when the curves become close-to-linear. The
power law growth for higher voltages again suggest other transport mechanisms.

whereas the curves for the na28 do overlap reasonably with a successful fit using β ≈ 0.27,
which is close to values from Fig. 4.14b (the maximum value is 0.22). Compared to the
general Luttinger liquid law, the typical knee in the collapse plot is smeared out, mainly
as a consequence of low β. The variable range hopping testing plots for na28 from Fig.
4.18a reveal good agreements with the theoretical predictions, with the 3D hopping for
constant density of states sticking out (Fig. 4.18b). The treatment for the na23 on the
other hand isn’t as convincing, since the data gets more scattered around the linear fit
(Fig. 4.17a). The correlations from Fig. 4.17b promotes 1/3 or even 2/5 to be the correct
exponent λ, implying 2D hopping with a constant density of states or 3D hopping with
linear density of states to be present.

By observing all measured samples we can conclude that in nanobundle integrated
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Figure 4.14: The predicted power law for the na28 at low voltages has the exponent
around 1.1 for the lowest temperature that we have reached. The high voltage slopes,
similarly than for the na23, imply another transport mechanism but less vivid, since the
slopes never exceed the value of 1.2.
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Figure 4.15: a) The zero voltage conductance G vs. T approximately follows a straight
line with the slope α = 3.5, but b) the collapse diagram of all IV characteristics shows no
overlap of the curves.

chips a variety of physical phenomena govern the electron transport through the system.
Impurities, stoichiometric disorder, growth and structural defects are the main factors
that set the transport properties of the material not only globally but also locally since
each individual object exhibits unique behavior. Very surprising is the observation of
multiple mechanisms acting in the system simultaneously, almost never individually. Most
commonly observed is the physics of the Luttinger liquid, since fundamentally the system
is strongly onedimensional or composed of strongly onedimensional objects. This comes
as a surprise, since the theory we used to test this behavior uses a different model as a
basis for the calculation. There a onedimensional strand, with few or none broken spots,
is connected to Fermi liquid reservoirs, whereas in our cases, the strands are gathered in
a thick and disordered bundle. The equally powerful mechanisms evoke through the size
and density of disorder, usually in the form of variable range hopping and environmental
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Figure 4.16: a) The zero voltage conductance G vs. T again follows a straight line with
the slope α = 2.3 and b) The collapse diagram of all IV characteristics shows better
overlap of the curves than for the sample na23. The typical knee in the fit is smeared out
compared to na12 and na27. The fitting parameter are: I0 = 1.9 ·10−15, α = 2.3, β = 0.27
and γ = 17−1.

0.0 0.1 0.2 0.3 0.4 0.5
0.01

0.1

1

10

100

1000
na23  λ=1/4

 λ=1/3
 λ=2/5
 λ=1/2
 λ=3/5
 λ=2/3
 λ=3/4
 λ=1

G
 [
n
S
]

T -λa)
1/4 1/3 2/5 1/2 3/5 2/3 3/4 1

0.978

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

na23

C
or
re
la
ti
on

λb)

Figure 4.17: a) The tested variable range hopping plot suggests this mechanism to present
even though the relatively scattered points make the b) correlation histrogram less reliable.
The best fit appears to be 1/3 or perhaps even 2/5.

Coulomb blockade. The first one could be the consequence of random onedimensional
channel discontinuities forcing the electrons to hop according to the disorder topography
(thus setting the hopping exponent and the dimensionality) between the strands, whereas
bigger and bulkier islands or topological kinks could split the bundle entirely, thus forming
a quantum dot that allows the electrons to pass only by paying the charging energy which
results as the environmental Coulomb blockade. The environment plays an important
role, since in the raw theory the dot gets connected to rigid Fermi reservoirs as opposed
to our case, where the island separates two Luttinger liquid (also disordered) leads. In the
end we could say that the systems behave as disrupted Luttinger liquid coupled to Fermi
liquid and sometimes to a quantum dot. As mentioned, theoretically only the coupling
Fermi liquid - Luttinger liquid has been studied and was also used for our analysis. Based
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Figure 4.18: a) Once more the variable range hopping appears to be present with more
reliable b) correlation histogram, that predicts the exponent to be 1/4.

on the described models, the nanobundles from samples na12 and na27 are composed of
disordered Luttinger liquid Fig. 4.19a, whereas the second set of na23 and na28 includes
a huge isolated island with disordered Luttinger liquid reservoirs Fig. 4.19b. Now it is
not hard to accept the observed result that variable range hopping and Luttinger liquid
behavior govern the“S”group and the“J”group includes environmental Coulomb blockade
and variable range hopping. The vanishing or at least diminishing of Luttinger liquid
transport mechanism in the “J” group could be a consequence of the high disorder that
might chop the onedimensional nanowires to short strands, obstructing Luttinger liquid
formation. Similarly we can say that for the na12 the disorder already severely disrupts
the nanowires in the bundle, whereas in the case of na27 the strands remain mostly intact,
facilitating better agreement with the Luttinger liquid law.

Figure 4.19: a) The proposed model predicts disrupted onedimensional strands connected
to Fermi liquid reservoirs for the “S” curve group and for the group “J” a radical disorder
(on the scheme an isolated island forms a quantum dot) splits the entire bundle causing
charging effects for the electron transport.

In general the conductance properties are presented by the conductivity σ at room
temperature and by the maximum current density value. The table 4.1 contains the data
and calculated values.
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sample D[nm] l[nm] I[nA] (295 K,1 V) σ = I
V

l
S
[S/m] jmax = I

S
[GA/m2]

na12 5 530 300 8100 1.5
na23 4.2 265 622 11900 4.5
na27 4 200 233 3710 1.6
na28 12.5 190 469 730 0.4

Table 4.1: The basic conductive properties of measured samples.

4.2 The thick bundles

The preliminary measurements were performed on thick bundles above 500 nm in diam-
eter [25]. In contrast to the thin bundles they show totally straight IV characteristic,
thus following Ohm’s law. This was one of the reasons why obtaining thin bundle data
became our primary goal since we expected that if onedimensional properties are to be
observed, thin bundles would reveal them. The temperature dependence on the other
hand still shows variable range hopping behavior which again supports the thesis of dis-
order in the bundles affecting if not dominating the transport. Also the issue of low
conductivities before annealing was addressed. The temperature treatment at 700◦C for
an hour improved the conductivity by three orders of magnitude, from 0.1 nS (10 GΩ)
to ∼100 nS (10 MΩ). We also compared the measurements of samples before and af-
ter annealing to get the insight into transport mechanisms. Two different samples were
tested on variable range hopping in the same way as for the thin bundles. Fig. 4.20a
and Fig. 4.21a before and after annealing prove the hopping to be present in both cases,
but with different dimensionality. Correlation histograms from Fig. 4.20b and Fig. 4.21b
suggest 3D hopping before (λ = 1/4) and 1D (λ = 2/3) after annealing, with different
density of states dependence (constant before and linear after annealing, according to the
table 2.5) If change in conductivity is indisputability observed, the variable range hopping
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Figure 4.20: a) Before annealing the variable range hopping plots are in relatively good
agreement with the theory. b) The correlation histogram predicts the exponent to be 1/4
thus 3D hopping with a constant density of states.
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Figure 4.21: a) Also after annealing variable range hopping is present, but the hopping
dimension changes according to b) correlation histogram to 1D with the exponent 2/3
and linear density of states.

dimensionality transition isn’t definite. We have to keep in mind that these were two dif-
ferent samples (650 nm and 500 nm in diameter) and based on the individual properties
of different bundles observed in thin samples, this transition could be simply an intrinsic
property of each bundle, not being induced by annealing. To get better insight into this
effect same circuit was measured before and after annealing. In order to do that the
technological issues, that arose from relatively high annealing temperature, needed to be
solved. Namely the silver paste and the thermally conductive varnish used to attach and
glue the chip onto the cryoholder and to connect the chip pads to gold wires (see section
3.4) were unstable at high temperature and would evaporate during the annealing, thus
destroying the chip. We were forced to compromise and to totally omit the use of any
heat conductive media and to connect the chip pads through press contacts similar to the
ones used in dielectrophoresis from Fig. 3.19. Of course the whole mechanical connector
assembly needed to fit into the cryomount from Fig. 3.28b so we constructed it in the
form of round plastic disc with contact pins4 placed on three springs that enabled the
positioning of the pins’ height through three screw bolts; the photograph of the connec-
tor is shown in Fig. 4.22a and 4.22b. We are aware that omitting the heat conductive
varnish would result as progressive temperature discrepancy from the nominal value set
by the measurement temperature controller and the actual value, thus obstructing full
quantitative analysis used in other measurements. On the other hand due to the same
experimental conditions the data could be compared for qualitative change. In Fig. 4.23
an improvement in conductivity by a factor of 300 is observed which is consistent with
other measurements. When compared to variable range hopping laws, the curves depart
from a straight line for low temperatures as expected, especially true for the curves after
annealing (Fig. 4.24a before and Fig. 4.25a after annealing). The correlation histograms
from Fig. 4.24b and Fig. 4.25b show in both cases convincingly 1D hopping law with
the exponent 1/4. The graphs after annealing were fitted until 110 K, to get complete
comparability with the data before annealing, and also throughout all points, to check for

4The pins were taken from a mobile phone.
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Figure 4.22: a) The press pin connector assembly enabled the measurements without the
use of varnish or the silver paste and b) most importantly, it fits in the cryostat making
the temperature scans possible.
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Figure 4.23: The IV curve slopes before and after annealing show an improvement in
conductivity by almost three orders of magnitude. The scan before annealing ends at 110
K since we didn’t want to risk any damages to the chip.

possible change in the exponent also when the data is treated as a unity. No discrepancy
was found.

We even went a step further and tried to determine the influence of the thermoconduc-
tive paste that we omitted. For that we measured the same chip twice, first “non-glued”
and “glued”. As presented in Fig. 4.26 the measured conductances at the same nominal
temperatures differ severely, indicating that the real temperature of the sample is much
higher than the measured one and therefore we cannot reliably extract the main trans-
port mechanism from the data. We can conclude that also thick bundles are submitted
to variable range hopping, but neither Luttinger liquid behavior nor Coulomb blockade
phenomena were observed. We believe that due to high dimensionality, perhaps even dif-
ferent internal structure, the onedimensional strands, if present, do not contribute to the



4.2 The thick bundles 117

0.0 0.1 0.2 0.3 0.4

0.01

0.1

 λ=1/4
 λ=1/3
 λ=2/5
 λ=1/2
 λ=3/5
 λ=2/3
 λ=3/4
 λ=1G

 [
n
S
]

T -λa)
1/4 1/3 2/5 1/2 3/5 2/3 3/4 1

0.976

0.978

0.980

0.982

0.984

C
or
re
la
ti
on

λb)

Figure 4.24: a) The variable range hopping plots could be present with 3D hopping
according to b) the correlation histogram.
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Figure 4.25: a) Also after annealing variable range hopping could be present at least until
110 K. For lower temperatures the data points naturally depart from a straight line due
to discrepancy of real temperature over the set temperature. b) Correlation histograms
for fits over all data and until 110 K suggest 3D hopping with the exponent 1/4 to govern
the hopping.

overall transport or the contributions aren’t sufficiently strong. Possible isolated islands
could separate the bundle only at bigger sizes (approximately the bundle diameter) but
in that case the charging, while passing through it, wouldn’t play any decisive role thus
dismissing any form of Coulomb blockade. Importantly the annealing experiments indis-
putably confirmed substantial conductance improvement and even suggest that the trans-
port mechanism through the bundle doesn’t change upon annealing and consequentially
that the structure remains unaltered. The change in conductance could be a consequence
of the connection improvement between the bundle and the metal contact. We believe
that since the material gets in contacts with many chemical compounds during sample
preparation, the bundle surface might react, forming a thin layer of isolative molecules
that prevent injection of electrons in the bundle. High temperatures could disintegrate
such molecules thus facilitating better electronic contacts.
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Figure 4.26: The data depart severely implying temperature discrepancy form the nominal
towards the actual value. Since the lowest conductance for the non-glued sample aligns
with the value at ∼130 K for the glued one, the temperature never dropped below this
temperature in the non-glued case.

Unfortunately the story doesn’t end here. For some bundles we observed what we call
“the cycling” effect, where the conductance vs. temperature curves change several times
after each temperature scan before settling. This observation is discussed in the following
subsection.

4.2.1 The cycling effect

This phenomenon was observed two times, based on pure chance since all circuits’ manu-
facture procedures were identical. In Fig. 4.27a and 4.27b the observed cycling curves of
the conductance G vs. T are presented for the samples na double (two bundles of 40 nm
and 50 nm both bridging the gap) and na13 (a single bundle with 60 nm in diameter).
In the first case the transition appears to occur at room temperature, just before starting
a new cycle, whereas in the case of the na13 the first transition happened at 110 K and
the others again after starting new scan. By looking at the IV curves we noticed in the
first case (Fig. 4.28a) that the characteristics were completely linear for each measured
temperature, whereas for the na13 the curves show familiar bending for the first cycle
until the transition at 110 K where they straighten up and remain linear for all other
points. On the Fig. 4.28b the bending trend5 for the last point before transition (point
A for the Fig. 4.27b) is shown along with the straight curve at the lowest point (point
B for the Fig. 4.27b) in the last cycle at 15 K, where the curvature, if present, should
have been the most expressed. We can even notice that during the IV scan at point A,
for the positive voltages, the current values start to scatter, implying that some change
is occurring in the bundle/chip. This suggests that the transition at 110 K is different,
perhaps more profound compared to all other ones. Our suspicion is confirmed when
the data get tested on variable range hopping behavior. From the Fig. 4.29a we notice
that the data before transition appears to be in agreement with the 1D variable range

5Not surprisingly, since the bundle isn’t very thick.
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Figure 4.27: The conductance curves tend to change upon each temperature scan before
settling: a) for the sample na double and b) for the na13. Also the shape of the curves
is different compared to what we observed for other chips, since the conductance appears
to reach some minimum value at each cycle.
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Figure 4.28: a) The IV characteristics for the na double are completely linear as for the
most measured points of na13 except for the beginning of the first cycle, where the curves
exhibit familiar bending. b) On diagram are presented the curved characteristic for point
A and the linear dependance for point B from Fig. 4.27b.

hopping (the exponent λ=1/2 from histogram Fig. 4.29b), whereas all other curves tend
to depart for a straight line, following some other transport law. The sample na double,
on the other hand, doesn’t show this profound transition (Fig. 4.30a), but appears to
have two regimes: the variable range hopping at high temperatures with the exponent
1/4, thus 3D hopping (from the histogram Fig. 4.30b) and the constant conductance at
low temperatures.
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Figure 4.29: a) For the na13 the variable range hopping appears to be present only in first
part of cycle 1, whereas all others depart severely form straight lines. For clearer depiction
the variable range hopping plot is shown only for the optimum exponent λ = 1/2, read
from b) the correlation histogram of cycle 1 form room temperature until 110 K.
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Figure 4.30: a) For the na double the variable range hopping is present only for higher
temperatures. We present only the plot for the settled last cycle 5 since all other resemble
closely. b) the correlation histogram implies the 3D hopping with the exponent 1/4 to be
present for all cycles.

These observations can be explained qualitatively if we take a look at the fundamen-
tals of the variable range hopping theory (section 2.5). We learned that in general the
disordered systems form a band with the localized states in the extremities and the non-
localized ones in the middle, forming a continuum of states (Fig. 4.31). The conductive
properties are related to the position of the Fermi energy inside of the band. If it lies deep
in the non-localized region the conductance should have metallic properties with constant
conductance6 with respect to temperature, but if it is surrounded by many localized states,
the variable range hopping governs the transport. Since our nanowires/nanobundles struc-
turally differ form each other, also band structure and consequently the position of the

6We overlook the phonons.



4.2 The thick bundles 121

Fermi energy alters for individual samples. To explain the cycling effect we have to go one
step further by assuming that the bundle structure changes during temperature scans, re-
sulting as the formation/vanishing of localized and non-localized states. To observe such
transitions the Fermi energy must lie close to the mobility edge7 EC so that the conversion
of states would change the Fermi level neighborhood, thus altering the conductance prop-
erties. In general, there are three possibilities of the Fermi level position (Fig. 4.31): I. EI

F

is in the lower localized state extremity, II. EII
F is in the middle of the continuum band and

III. EIII
F is in the upper localized extremity. In the first case, a semiconductor behavior

at high temperatures could be observed, since the electrons can get excited into the con-
tinuum band, passing the gap EC −EI

F (2.157), and the variable range hopping for lower
temperatures, where the electrons remain confined in the localized states. The second

Figure 4.31: For a general Fermi glass band structure, we have three possibilities for the
Fermi level position: I. EI

F is in the lower localized state extremity, II. EII
F is in the middle

of the continuum band and III. EIII
F is in the upper localized extremity. If for the I. and

II. the Fermi level lies close to the mobility edge, the Fermi function could excite the
electrons above the gap EC − EI,II

F to the neighboring region.

case should result as metallic behavior, due to the continuum nature of the surrounding
states, with the conductance proportional to the number of states of at the Fermi level. If
the level is placed close to the upper mobility edge, also the upper localized states would
be initialized at higher temperatures, adding variable range hopping to the transport. In
the last case the variable range hopping should be present exclusively, since the electrons
remain confined to the localized states for the entire temperature range. This is also the
most observed behavior, suggesting high disorder, with many localized states and with
Fermi level in the upper localized extremity. If we now apply the transitions of local-
ized to non-localized states and place the Fermi energy closer to the mobility edge (Fig.
4.32a), then indeed the broadening on the continuum states could overpass the Fermi
level, thus changing its surrounding states from localized to non-localized (Fig. 4.32b).

7The energy that separates the localized and non-localized states.
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Consecutively also the initial variable range hopping is replaced by metallic behavior, ex-
pressed as constant conductance at low temperatures. Realistically, only limited amount
of states becomes non-localized, thus placing the Fermi level still close to the mobility
edge. At high temperatures in such a situation the electrons would, according to the
Fermi function, get excited also to the upper localized states (Fig. 4.32b), adding also
the variable range hopping to the overall transport, but not in the strict form, since also
the temperature dependance of the Fermi function adds to the behavior. By looking at
the cycling data, this scenario could be recognized: at the beginning in the sample na13
the Fermi energy is lying in the upper localized states extremity, close to the mobility
edge (the scheme in Fig. 4.32a). During the first cycle it follows variable range hopping
until 110 K (Fig. 4.29), where some of the localized states become non-localized, with
the mobility edge passing the Fermi energy, but with the Fermi function still reaching
into the localized states region, thus contributing to the conductance, but only at higher
temperatures, where the overlapping of the Fermi function and the localized extremity is
substantial (the scheme in Fig. 4.32b).

Figure 4.32: a) In special cases the Fermi energy lies in the upper extremity of the localized
states, just after the continuum of the non-localized states. b) Upon structural change
in the bundle some of the localized states become non-localized, effectively causing the
mobility edge to travel outwards, passing the Fermi level.

The subsequent cycles don’t exhibit such profound changes, since new non-localized
states only push the mobility edge away from the Fermi level, thus only changing the
limiting conductance at low temperatures due to the reformation of the band states, that
influences also the density of states at the Fermi energy and thus the conductance. The
sample na double could be explained in similar way, only that here the Fermi energy lies
from the beginning in the non-localized part of the band (as on scheme in Fig. 4.32b), with
cycling influencing only the low temperature conductance limit. In contrast to the na13,
here the variable range hopping is confirmed for high temperatures with the exponent
λ = 1/4 remaining constant for all cycles, thus placing the mobility edge close to the
Fermi level.
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The assumption of localized to non-localized transitions is based on high structural
disorder that may facilitate soft localized states, which can become non-localized even
for slight modification in structure8. The driving force, that induces such changes, could
be the dissipative electric energy in form of heat that could rearrange the structure. We
believe that it is more likely for a localized state to become non-localized, since changes
always tend to improve structural order by minimizing the free energy, thus sometimes
passing the Anderson localization criterion from localized to non-localized state. This
suggests the transitions to be irreversible, which was supported also by the measurement
data.

Just to show that these structural changes can produce a variety of cases we report on
the most intriguing measurement we came across (Fig. 4.33). The data exhibits in one
scan from the lowest till room temperature three transitions, the second one even to lower
conductances which is in contrast to our observations in the cycling data. At the end the
system didn’t settle down and the conductance continued to wobble. Each section has its

80 160 240
1E-4

1E-3

0.01

0.1

1
α

Ι
=6.90

α
ΙΙ
=7.38

α
III
=7.87

G
/G

30
0

T [K]

α
IV
=8.06

Figure 4.33: The most intriguing measurement shows three jumps (at 123 K, 140 K and
170 K) in the same temperature scan, each time changing the slope and the hopping
exponent (Fig. 4.34)

own slope, implying that the conductance regions differ quite severely when we tested the
data on variable range hopping9, even the exponents changed profoundly, since λ started
with 3/5 or 1/2, jumped to 1/4, raised to 1 and finally returned to 1/4, as in contrast to
e.g. na double where the hopping dimensionality remained constant.

We can only speculate about the scenario that could explain such a sequence, we
can only say that the structural changes appear to be rather radical, vividly changing the
neighboring states of Fermi levels, perhaps even producing disorder and new electron traps.

Considering all presented results, a general picture emerges regarding the MoSIx
nanowires from the perspective of the electron transport measurements. The highly dis-

8This could happen if such states include weak electron traps, that could vanish upon structural
change.

9Lets keep in mind that the regions are quite short thus following closely a straight line.
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Figure 4.34: a) The regions appear to be governed by variable range hopping, but b) with
different exponents: I - 2/5 or 1/2, II - 1/4, III - 1 and IV - 1/4.

ordered tendency, predicted by general chemical properties and the synthesis procedure,
was confirmed, since no transport mechanism was found to exclusively govern the system.
For the thin ones, this is particularly true and the combinations of variable range hopping
and Luttinger liquid properties or environmental Coulomb blockade phenomenon were
observed. For the thicker bundles mostly the variable range hopping is observed, with no
convincing indications that other mechanisms are involved. From the cycling effect we
can deduce that thicker bundles can have more ordered structure, enabling the formation
of continuum states inside the bands, thus expressing yet another type of transport that
involves simple metallic behavior and variable range hopping mechanism. We can get this
impression also by looking at the AFM images where thin wires and a majority of the
thicker ones appear to be soft and bendy. We believe that these are the ones with higher
disorder and are also mostly observed in the experiments. But there are also some rigid
bundles among the thick ones above ∼50 nm, which we believe could be some other stable
phases, perhaps even elongated crystalline structures with crosslinks between the bundles.
The necessary annealing process used in the chip production also confirms the reports of
stability of the material in vacuum at least up to 700◦C and suggests an intrinsic wrapping
of bundles with an isolative layer. Its chemical nature is still a matter of debate, all we
can say is that from our perspective this contamination can be a good explanation for
poor electric connection to the contact metal and its dramatic improvement as the film
disintegrates at high temperature during the annealing process.
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Conclusion

The presented work on electronic transport properties included steps form the sample
preparation, the circuit manufacture using electron beam lithography, single bundle inte-
gration into the measurement chips with annealing procedure, the actual measurements
and finally the result analysis according to relevant transport mechanisms. Unfortunately
searching for successful sample preparation took most of our research time, since the ma-
terial composition wasn’t clear, nor were the basic chemical properties that would help
us prepare single bundle dispersions. The task proved to be even more demanding be-
cause our main goal was to test the thinnest bundles which were especially hard to find.
Nevertheless we found a recipe to prepare an extraction of single bundle by using big
amounts of initial material and by dispersing it in acetone, that turned out to be the best
solvent for our material. Modifying the electron beam lithography technique we manufac-
tured measurement electrodes on the oxidized silicon wafer. We determined the optimal
distance of the gap between the channels to be several hundreds of nanometers, based
on the observation that smaller distances would facilitate multiple objects to bridge the
gap, whereas in the opposite case the thinnest bundles prove to be to short to reach both
electrodes. When dealing with bundle attachment over prefabricated electrodes, gentler
dielectrophoresis turned out to be the best way to extract single and thin bundles from a
dispersion as in opposite to the aggressive electrophoresis that attracts charged particles,
resulting as extremely dense depositions even using low voltages. In fact, both methods
turned to be much more effective than we needed and even 10 mV, 50 Hz AC background
signal was sufficient to isolate only few bundles from a dispersion. Not only the AFM was
an irreplaceable way to monitor sample preparation and dielectrophoretical attachment,
it proved to be a powerful tool to clean the circuits, cut selected bundles and even to
perform conductance measurements. If for primer imaging a general silicon nitride tips in
tapping mode provided sharp and noninvasive images, for cleaning and measuring plat-
inum/iridium covered tips were the most suitable for the job. The second one for the
obvious reason of establishing an electric contact, whereas for cleaning the slight poten-
tial on the conductive tip turned out to pick up the unwanted debris altogether, not only
pushing them aside. To finalize the bundle integration into a chip, an unexpected anneal-
ing procedure was necessary in order to improve conductance (or conductivity) into the
accessible measurement ranges. The high temperature during annealing turned out to be
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quite destructive, since in many cases the bundles got disintegrated or the contacts fused
together, creating short circuits. In successful treatments, on the other hand, the bundles
remained intact that implies unaltered structure after annealing. Closer examination for
all bundle thicknesses revealed up to three orders of magnitude improvement, but with
different values. The thicker ones showed conductivity between 0.05 and 10 Sm−1, whereas
for the thinnest the value increased up to 11900 Sm−1 for the absolute champion. From
the relative improvement we could conclude that the connection between the metal and
the bundles gets altered, most probably on the account of impurity wrapping, that could
cover the bundles due to relatively high reactivity and substantial use of different solvents
in the process of sample preparation. The enormous discrepancy in absolute value be-
tween thick and thin bundles could be explained, if only nanowires in direct contact to the
electrodes or in their vicinity actually carry the current; the fraction is estimated below 1
% for the thick bundles. This relatively low conductivity for the preliminarily measured
thick samples was also one of the main reasons to push our research towards measuring the
properties of the objects with the lowest diameters. When we finally succeeded to measure
several thin samples we found, along with higher conductivities, also different transport
properties. If the thick ones showed linear IV characteristics, the curves got severely bent
for the thin bundles. Studying the work of other researches we tested our data on three
main theories: the variable range hopping, the environmental Coulomb blockade and the
Luttinger liquid. Since we were expecting for our material to include disorder, the vari-
able range hopping was on the top of the list. Indeed we confirmed its presence in thick
and also in thin bundles, but with different hopping dimensionalities/exponents. Mostly
for the thick ones the variable range exponents 1/4 and 1/2 or 3D and 1D hopping were
observed, thus with constant density of state. Annealing also appeared to have no effect
on the dimensionality, confirming the assumption that the bundles preserve their struc-
ture during temperature treatment. When we turned our attention to the thin samples
we observed two groups according to the IV curves. For the “S” group we got convincing
confirmation that the Luttinger liquid applies as well, whereas in the “J” group there was
strong evidence of charging effect implying that also the environmental Coulomb blockade
also governs the transport. This combination of transport mechanisms could be perhaps
explained by assuming that a bundle is composed of onedimensional nanowires, broken
randomly in many places, sometimes even with an isolated island separating bundle in
half. The first case could hold for the “S” curves and the charging from the “J” group
could come from the separation island that acts as a quantum dot. These possibilities have
never been theoretically explored, most probably due to tedious treatments involved. The
cycling effect found for some thick bundles made the measured results even more excit-
ing, since the conductance changed for each temperature scan and even during scans. By
looking at the fundamentals of the variable range hopping theory we propose a transition
of some localized states to non-localized states to explain the behavior. We believe that if
in such a case the Fermi energy would be close to the mobility edge and the effect of sev-
eral localized states turning to non-localized states would be observable. For the drastic
transition during scans we believe that the mobility edge passes the Fermi level, placing
it into the continuum part of the band, resulting as profound temperature dependance
change. In other cases the level is falling deeper into the continuum, only changing the
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conductivity limit at low temperature as the theory predicts. This explanation qualita-
tively fits the results perfectly, but for quantitative analysis we believe that a theoretical
treatment would be needed.

We can conclude by saying that we succeeded to develop all necessary steps from the
raw sample in form of black wooly dust till the final measurement of integrated chips. The
obtained results were reliable and showed a combination of transport mechanisms. For
the future work we propose additional measurements, since perhaps also other phenomena
could be revealed, and also additional theoretical exploration of the transport mechanisms
combinations for disordered onedimensional wires.



Poglavje 6

Uvod

Razširjeni povzetek v slovenščini

Nanotehnologija vedno bolj prodira med klasične in moderne znanstvene discipline. Pose-
bej se uveljavlja v temeljnih raziskavah v medicini, elektroniki, fiziki, biokemiji, kemiji,. . . ;
kjer odpira nove možnosti na področjih diagnostike, informacijske tehnologije, zdravljenja
raka, pri sintezi novih kompozitov. Tej novi tehnologiji daje posebno moč in potencial
velikostna skala delcev. Če obvladujemo in razumemo svet atomov preko kemije in njej
sorodnih disciplin ter makro svet od astronomskih razsežnosti do mikrosveta skozi veje
fizike in inženirskih znanosti, potem nanotehnologija zapolnjuje vrzel med molekulami in
mikronskimi razsežnostmi, zato pravimo, da se ukvarja z mezoskopskimi sistemi. Kar
ji daje poseben potencial, je ravno združitev zahtev mejnih svetov: visok fizični nad-
zor nad delci velikosti nekaj nanometrov z natančno predpisano sestavo na atomskem
nivoju. Približevanje temu idealu bi omogočilo oblikovanje novih rešitev in razširitev
razumevanja ustroja sveta. Če je sinteza teh novih nanomaterialov že močno razvita
(nanoprahovi, nanocevke, nanožice, fine membrane), je področje vodenja in nadzorovanega
vgrajevanja nanogradnikov v večje sestave še vedno v primežu laboratorijskih raziskav in
je zaenkrat še na nivoju eksperimentalnega dela. V prvi vrsti izziv zahteva zanesljivo
opazovanje nanoelementov, ki ga omogočajo šele moderneǰse tehnike mikroskopiranja
(elektronski mikroskop, mikroskop na atomsko silo, tunelski mikroskop), primarna ma-
nipulacija posameznih objektov pa v večini primerov sloni na modificiranih napravah
z vgrajenimi mikromanipulatorji. Takšen pristop se največkrat uporablja pri temeljnih
raziskavah merjenja osnovnih fizikalnih lastnosti snovi, medtem ko se spontano samoure-
janje kljub omejenemu nadzoru kaže kot možna pot k splošneǰsi uporabi in nenazadnje k
novim aplikacijam tako v znanosti kot v industriji. K zaokrožitvi področja spada gotovo
še razvoj ustreznih perifernih tehnik izdelave mikrovezij, instrumentalnih naprav in novih
tehnik merjenja, ki jih v makrosvetu sicer ne poznamo. Predvsem gre tukaj za pomemben
vpliv okoljskih motenj in približevanja svetu kvantne mehanike, ki mnogokrat vpliva na
meritve in izvedbe eksperimentov. Prav posebej pa je treba poudariti razvoj rokovanja
z materialom, ki ga največkrat zaradi praškastih oblik priročno razpršujemo v izbranih
topilih. Takšen pristop povleče za sabo kopico novih možnosti in obenem pasti, saj ne
smemo pozabiti da gre za drobne delce z drugačnimi kemijskimi in fizikalnimi lastnostmi.
Tako se velikokrat večino raziskav usmerja v iskanje ustreznega postopka (pred)priprave
vzorcev materialov, ki omogočijo uspešno sestavo in izvedbo eksperimentov z zanesljivimi
in natančnimi rezultati. V svetu je močno razvito področje raziskav ogljikovih nanocevk
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in sorodnih kompozitov, kar je potisnilo razvoj miniaturnih vezij na osnovi elektronske [1]
in fotolitografije na vǐsji nivo ter s tem omogočilo izdelavo vezij z integriranimi nanoob-
jekti. Meritve elektronskih lastnosti ogljikovih nanocevk so pokazale enodimenzionalno
obnašanje Luttingerjeve tekočine [2, 3, 4, 5, 6] in efekte impedančne Coulombove blokade,
ki jih napovedujejo teoretične obravnave [7, 8, 9]. Tudi študije elektronskih lastnosti
anorganskih nanožic (niobijev in molibdenov selenid) so potrdile prisotnost Luttingerjeve
tekočine, v nekaterih primerih pa poročajo tudi o mehanizmu spremenljivega preskako-
vanja [10, 11], ki ga obravnava teorija Fermijevega stekla in opisuje vpliv nehomogenosti
v strukturi na lastnosti snovi [12]. V tem doktorskem delu smo se posvetili obrav-
navi temeljnih transportnih lastnosti anorganskih nanožic na osnovi molibdena, žvepla
in joda s splošno oznako Mo6SxI9−x, ki jih poznamo tudi pod signaturo MoSIx [13, 14].
Študije na makroskopskih tabletkah so obravnavale propagacijo zvoka [19] in optične last-
nosti [15, 16, 17, 18], meritve električnega transporta na mrežah nanosvežnjev [21, 22] in
tankih filmih [20] pa so podobno kot pri drugih anorganskih nanožicah pokazale prisotnost
preskakovalnega mehanizma pri prevajanju elektronov. Kar daje prednost anorganskim
kompozitom pred organskimi je bolǰsa kompatibilnost z osnovnimi kemijskimi topili in
predvsem z vodo, kot so pokazale raziskave topnosti svežnjev MoSIx [23, 24], to pa je
odločilnega pomena za vstop nanomaterialov na biokemijsko področje. Tudi njihova last-
nost samourejanja in enostavne funkcionalizacije z različnimi (bio)materiali [26] jim daje
poseben potencial in prednost pred drugimi spojinami in to je bil eden temeljnih razlogov
za usmeritev raziskav v to družino nanožic. Meritve prevodnosti na posameznih debeleǰsih
svežnjih (s premerom nad 50 nm) so prav tako pokazale prisotnost preskakovalnega meh-
anizma [1, 25], nas pa so zanimale električne transportne lastnosti najtanǰsih svežnjev. S
fizikalnega vidika so zanimive zaradi svoje strogo nizkodimenzionalne zgradbe, ki pred-
videva obstoj faze Luttingerjeve tekočine, pričakovane nehomogenosti pa bi še dodatno
vplivale na transport elektronov.

Pričujoče doktorsko delo vsebuje dopolnitev in nadgradnjo izdelave vezij z elektron-
sko nanolitografijo, iskanje postopkov za pripravo razpršin nanožic oz. nanosvežnjev v
katere se povezujejo, njihovo integracijo v miniaturna vezja, izvedbo meritev in analizo
rezultatov skozi napovedi nekaterih temeljnih teoretičnih obravnav električnih lastnosti
enodimenzionalnih sistemov.
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Teoretične napovedi

Efekti kvantne mehanike postajajo izraziteǰsi šele na nizkih, (sub)nanometrskih skalah,
zato so nanožice, nanocevke, tanki filmi, nanodelci zanimivi tudi iz teoretičnega vidika.
Ker je naše delo vključevalo tudi meritve električne prevodnosti na realnih objektih, v
tem razdelku predstavljamo nekatere možnosti elektronskega transporta, predvsem skozi
nizkodimenzionalne, prostorsko omejene sisteme, obenem pa se posvetimo še obravnavi
vpliva naključnih sipalnih mest na transportne lastnosti skozi sistem.

7.1 Kvantne pike in (impedančna) Coulombova blokada

Pod tem izrazom mislimo na izoliran, z nekim potencialom omejen prostor v katerem se
prosto gibljejo elektroni. Obravnava takšnega sistema [27] [28] v osnovi zahteva izračun
energijskih stanj in pripadajočih valovnih funkcij preko Schrödingerjeve enačbe:
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Grafično so stanja in verjetnostna porazdelitev za prvih nekaj lastnih funkcij prikazane
na sliki 7.1.
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Slika 7.1: Energijska stanja za enodimenzionalni harmonski oscilator (levo) in verjetnostna
porazdelitev prvih nekaj lastnih stanj (desno); barve črt na obeh diagramih pripadajo
istemu kvantnemu številu n.

Ker so realni otočki tridimenzionalni zapǐsimo še rešitve, ki jih za nesklopljene dimen-
zije dobimo kar iz enodimenzionalnih rešitev z dodajanjem novih kvantnih števil. Tako
dobimo tri kvantna števila nx, ny in nz ter s tem dopolnitev lastnih stanj z dodatnimi
členi v (7.5) in valovnih funkcij s faktorji v obliki Hermitovih polinomov v (7.6):
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Soroden je tudi rezultat za stopničast potencial, oz. za potencialno jamo širine x0, y0 in
z0 le da stanja niso več ekvidistančna, funkcije pa so sinusi (v resnici linearna kombinacija
sinusov in kosinusov glede na robne pogoje):
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Ko se velikost pike zmanǰsuje, se energijska razlika med stanji povečuje dokler ne pre-
seže tipične energije termičnih fluktuacij kT . Nad tem pragom meja med zasedenimi in
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prostimi stanji postane zelo ostra, kar posledično vodi pri transportnih meritvah elek-
tronov do zanimivega pojava izmenjavanja prostega in zaprtega prevajanja glede na mer-
itvene parametre. Pojav prepovedanega transporta imenujemo Coulombova blokada([8] 5.
poglavje).

Kot pri večini neposrednih meritev električne prevodnosti tudi v tem primeru na mer-
jenec, torej kvantno piko, priključimo dva Fermijeva rezervoarja oz. dve elektrodi (izvor
ter ponor), v bližino pa postavimo še elektrodo, preko katere lahko induciramo polje v
merjencu in jo imenujemo vrata. Shema postavitve je prikazana na sliki 7.2. Pika je z

Slika 7.2: Kvantna pika je priključena na izvorno in ponorno elektrodo, v bližini pa so
postavljena še vrata, ki s svojim potencialom vplivajo na polje merjenca.

rezervoarji sklopljena le kapacitivno, kar pomeni, da energijska stanja ostanejo nespre-
menjena, vendar pa obenem dovoljujemo preskakovanje elektronov iz rezervoarjev na piko
in obratno. To je mogoče le (v limiti T → 0), kadar sta Fermijevi energiji EF porav-
nani z najnižjim stanjem upoštevaje dodatne energije zaradi kapacitivne sklopitve e2/C
ter zunanjega polja vrat φext. Račun preko velike kanonične porazdelitve daje pogoj za
prevajanje v obliki:

EN +

(
N − 1

2

)
e2

C
= EF + eφext. (7.8)

Ta pogoj razdelimo na preskok na piko (7.9) in z nje (7.10); obakrat je na piki N elek-
tronov:

EN +
e2

2C
= EF + eφext(N − 1), (7.9)

EN −
e2

2C
= EF + eφext(N). (7.10)

Obe situaciji sta tudi grafično prikazani na sliki 7.3.
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Slika 7.3: a) Pogoj za tuneliranje elektrona na piko zahteva, da je najvǐsje nezasedeno
stanje pike e2/2C pod EF . b) Zaradi kapacitivne sklopitve pike z elektrodami, elektron
doda energijo e2/C, zato se novo stanje dvigne za e2/2C nad EF . c) Ko elektron na koncu
tunelira v ponorno elektrodo, se energijska stanja vrnejo v prvotno konfiguracijo.

Pogoji prevajanja se še obogatijo, ko dodamo vpliv vrat in natančno ločimo med
posameznimi kapacitivnostmi C1, C2, Cg ter obravnavamo naboj q1, q2, q0 na stikih med
piko in elektrodami, kakor je prikazano na sliki 7.4.

Slika 7.4: Kvantna pika s tunelskima stikoma med izvorom na potencialu VS in ozemljenim
ponorom. Tuneliranja skozi vrata ne dovolimo, pač pa na piki preko kapacitivne sklopitve
inducirajo dodaten zvezni naboj.

Da bo transport omogočen, mora biti razlika proste energije pri tuneliranju dodatnega
elektrona n1 +1 na piko ter enega s pike n2−1 negativna. Rezultat računa so premice, ki
omejujejo območja blokade za parametra VS in Vg, obenem pa ločijo med sabo še število
elektronov na piki med posameznimi odprtimi režimi prevajanja. V diagramu 7.5 VS proti
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Vg pogoje za prevajanje zapǐsemo v obliki:

VS >
Cg

C2 + Cg

Vg +
e

2(C2 + Cg)
− ne

C2 + Cg

, (7.11)

VS < −Cg

C1

Vg −
e

2(C1)
+
ne

C1

. (7.12)

Slika 7.5: V diagramu družine pogojev (7.11) in (7.12) svetleǰsi paralelogrami označujejo
območje blokade. Strmini k1 in k2 pripadata posameznemu številu elektronov na piki n z
ničlami −e/2Cg + ne/Cg.

Vendar pa tudi ta opis sistema za realne meritve toka v odvisnosti od napetosti še ni
zadosten, saj moramo v splošnem upoštevati še končno impedanco merilnega sistema([8]
2. poglavje). Jedro teorije, ki jo imenujemo Impedančna Coulombova blokada, se ukvarja z
vplivom poljubne impedance Z(ω) na prehajanje elektronov skozi tunelski stik, kakršni se
tvorijo med kvantno piko in izvorno oz. ponorno elektrodo. Simbolna shema na sliki 7.6b
ponazarja takšno dopolnjeno obravnavo priključitve napetosti V na tunelski stik z neko
splošno končno impedanco Z(ω). Problem se rešuje preko hamiltoniana, sestavljenega iz
kvazidelcev v elektrodah, zunanje impedance ter tuneliranja:

H = H̃qd +Himp + H̃T . (7.13)

Tok skozi stik je sorazmeren z razliko stopenj tuneliranja v eno in drugo smer:

I(V ) = e(
−→
Γ (V )−

←−
Γ (V )), (7.14)
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Slika 7.6: a) Shema tunelskega stika s stopnjo prehajanja elektronov Γ v smereh, kot
jih nakazujejo puščice. b) Tunelski stik s kapaciteto C in upornostjo RT je sklopljena z
zunanjo napetostjo V preko splošne zunanje impedance Zω.

ki ju dobimo iz Fermijevega zlatega pravila upoštevajoč prehod iz začetnega stanja |i〉 v
končno stanje |f〉:

Γi→f =
2π

~

∣∣∣〈f |H̃T |i〉
∣∣∣2 δ(Ei − Ef ). (7.15)

Problem je analitično rešljiv le v limitah nizke temperature in nizke oz. visoke napetosti:

I(V ) =
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pri T = 0 K in V → 0, (7.16)
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]
za V →∞, (7.17)

kjer je g = RQ/Z(0) ter RQ = h/e2. Zaradi teh omejitev pri analiziranju meritev globalnih
prilagoditvenih krivulj nimamo, tako da se moramo zadovoljiti le z ocenami ter kvali-
tativno primerjavo z rezultati numerične analize, prikazane na sliki 7.7. Ta teoretična
napoved torej predvideva za nizke temperature in napetosti potenčno odvisnost toka od
napetosti (7.16) z eksponentom 2/g = 2Z(0)/RQ, nato pa prehajanje preko kolena v
linearno funkcijo s strmino 1/RT (7.17).
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Slika 7.7: Numerične krivulje pri T = 0 za g = ∞, 20, 2, 0.2 in 0 od zgoraj navzdol. a)
IV karakteristike s b) pripadajočimi odvodi dI/dV , ki se za visoke napetosti približujejo
konstantni vrednosti 1/RT .

7.2 Preskakovanje spremenljivega dosega

V realnih sistemih so nehomogenosti, nečistoče in ostali strukturni defekti neizogibni. V
predhodnjem razdelku smo obravnavali primer izoliranega otočka, tudi segmentiranega
sistema, ki združuje še vedno veliko število gradnikov nanostruktur. Bolj subtilni defekti
na nivoju atomov imajo drugačen vpliv na transportne lastnosti, ki jih obravnava teorija
Fermijevega stekla[12]. V osnovi dodajanje nereda vpliva na periodičnost in homogenost
potenciala, ki vodi iz začetnih nelokaliziranih do lokaliziranih stanj preko Andersonove
lokalizacije. Konkretno lahko rečemo, da se idealni kristalni potenciali, s popolnoma
določeno periodo in konstantno globino z nehomogenostmi preoblikujejo v neperiodične
oz. nekristalne potenciale. Ena izmed možnosti obravnave predvideva modifikacijo globin
posameznih potencialnih jam, kar močno vpliva na strukturo energijskega pasu, kot je
prikazano na slikah 7.8a in 7.8b.

Razmerje V0/B opisuje odmik od popolne kristalne strukture in je temeljni parameter
te teorije. Izkaže se namreč, da z njegovim povečevanjem valovne funkcije, ki popisujejo
takšen nekristalen potencial, potanejo lokalizirane. Za takšne funcije tudi rečemo, da
izpolnjujejo Andersonov kriterij, pojav pa imenujemo Andersonova lokalizacija. Še več,
ne glede na vrsto ali množino nehomogenosti se lokalizirana in nelokalizirana v energijskem
pasu ne mešajo, pač pa se slednja koncentrirajo v centralnem delu, medtem ko prva tvorijo
razširivene repe, obe območji pa sta ločeni z ostro mejo EC oz. E ′C , imanovano tudi rob
mobilnosti. Opisana zvonasta oblika gostote stanj je prikazana na sliki 7.8c.

Lastnosti sistema so seveda odvisne od položaja Fermijeve energije. Če leži znotraj
nelokaliziranih stanj, je prevodnost kovinska, če pa leži na koncéh oz. med lokaliziranimi
stanji, lahko dobimo polprevodnǐsko obnašanje ali pa transport teče v celoti preko prostih
lokaliziranih stanj in sledi zakonu preskakovanja spremenljivega dosega. V prvem primeru
se elektroni zaradi termične energije vzbujajo v nelokaliziran del pasu, kar opǐsemo s
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Slika 7.8: a) Potencialne jame popolne kristalne strukture s pripadajočim energijskim pa-
som širine B. b) Vnos nehomomgenosti naključno spreminja globine potencialnih znotraj
maksimalne magnitude V0. Rečemo, da se kristalna mreža transformira v Andersonovo
mrežo. c) Nelokalizirana stanja v Andersonovem modelu so centrirana v sredǐsču pasu,
medtem ko lokalizirana stanja zapolnjujejo repa pasu in so ostro ločeni z robom mobilnosti
EC oz. E ′C on nelokaliziranih stanj.

poznanim izrazom za prevodnost polprevodnikov, le da širino reže Eg nadomestimo z
EC − EF :

σ(0) = σmine
EC−EF

kT , (7.18)

kjer σmin označuje prevodnost kontinuuma. Tudi v drugem primeru je dinamika preskako-
vanja odvisna od temperature, vendar je močno povezana z dimenzijami sistema d in
disperzijo gostote stanj N(E) ∝ Eµ. V približku nizkega polja prevodnost popǐse izraz:

σ = σ0e
−(TVRH

T )
λ

in λ =
µ+ 1

µ+ d + 1
. (7.19)

Eksponenti λ za nekatere osnovne primere sistemov so zbrani v tabeli 7.1.

dimenzija N(E)=konstanta N(E) ∝ |E| N(E) ∝ E2

1 1
2

2
3

3
4

2 1
3

1
2

3
5

3 1
4

2
5

1
2

Tabela 7.1: Eksponenti λ iz izraza (7.19).

Ta teorija je nepogrešljiva pri obravnavi realnih sistemov, saj je strukturni nered vsaj
na nivoju posameznih atomov prisoten že pri sintezi kompozitov in ga moramo upoštevati
kot del temeljnega ustroja strukture.



138 7.3 Teorija Luttingerjeve tekočine

7.3 Teorija Luttingerjeve tekočine

Če v makrosvetu teorija Fermijeve tekočine zadovoljivo opǐse lastnosti elektronskega plina,
v enodimenzionalnih sistemih temu ni več tako. Ne moremo namreč več govoriti o ele-
mentarnih vzbujenih stanjih kot o kvazidelcih, ampak le o kolektivnih vzbujenih stanjih.
Rečemo lahko tudi, da v eni dimenziji korelacije med delci ostajajo močne, kjub šibkim
interakcijam, torej ravno naprotno od tridimenzionalne obravnave, kjer korelacije ostajajo
šibke, kjub močni interakciji. Nov opis sistema tako zajema teorija Luttingerjeve tekočine
[6, 5]. Naštejmo nekaj njenih temeljnih lastnosti:

1. vzbujena stanja niso več elementarna, pač pa kolektivna,

2. vzbuditve naboja in spinske vzbuditve (holoni in spinoni) nimajo energijskih rež,

3. zaradi elektronskih interakcij se vzbuditvi (tudi hitrosti) za naboj in spin ločita, kar
onemogoči kvazidelčni opis,

4. parametra Kν (ekvivalent Landauovim parametrom v teoriji Fermijeve tekočine), vν

popolnoma popǐseta fizikalne lastnosti Luttingerjeve tekočine.

Preko obravnave na osnovi bozonizacije je moč izpeljati izraz za prevodnost v obliki
toka v odvisnosti od napetosti:

I = I0T
1+α sinh

(
γeV

2kT

) ∣∣∣∣Γ (
1 +

β

2
+ i

γeV

2πkT

)∣∣∣∣2 . (7.20)

V izrazu nastopata parametra α in β, ki se nanašata na stik med dvema Luttingerjevima
tekočinama (α), če je sistem iz kakršnihkoli razlogov prekinjen in pa na stik med Fermijevo
in Luttingerjevo tekočino (β) na mestih, kjer je sistem povezan z zunanjimi elektrodami.
Parametra sta povezana še z razmerjem Fermijeve ter holonske hitrosti g = vF/vρ:

α = (g−1 − 1)/4,

β = (g + g−1 − 2)/8, (7.21)

kar da v realnih sistemih z majhnim g zvezo α = 2β. Parameter γ v izrazu (7.20) reskalira
padec napetosti na dejansko vrednost, ki se v realnih meritvah razlikuje od nominalne
vrednosti na instrumentu med meritvijo. Zberimo še temeljne lastnosti krivulj, ki so nam
v vodilo pri obdelavi rezultatov meritev:

1. vse karakteristike pri različnih IV temperaturah se združijo v eno krivuljo, kadar jih
predstavimo na diagramu I/Tα+1 v odvisnosti od eV/kT (slika 7.9),

2. pri nizkih temperaturah stik med Luttingerjevima tekočinama prevlada, zato pri
nizkih napetostih prevodnost sledi potenčni odvisnosti G ∝ TαLL-LL ,

3. pri visokih napetostih prvlada stik med Fermijevo in Luttingerjevo tekočino, kar se
izrazi v potenčni odvisnosti toka od napetosti I ∝ V αFL-FL+1.
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Slika 7.9: Združitvena krivulja za vse IV odvisnosti na diagramu I/Tα+1 v odvisnosti od
eV/kT vsebuje tudi tipično koleno.

S to precej eksotično teorijo sklenjamo krog teoretičnih napovedi. V grobem smo tako
spoznali možnosti transporta skozi idealne oz. popolnoma homogene sisteme ter skozi
realne strukture, ki lahko vsebujejo tako defekte na nivoju posameznih atomov, kakor tudi
v obliki izrazitih nehomogenosti, ki vodijo do izoliranih segmentov znotraj kompozita.
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Nanožice MoSIx in izvedba
eksperimenta

Glavni cilj doktorskega dela je bila meritev prevodnosti nanožic oz. svežnjev z distribuci-
jskim imenom MoSIx. Sinteza materiala ni bila del raziskav, saj smo ga dobili od podjetja
Mo6 d.o.o.1, vse druge korake priprave vzorca, izdelovanja vezij, intergracije svežnjev v
merilna vezja in končne meritve pa smo izvedli sami. V tem razdelku predstavljamo
kemijsko stukturo nanožic ter pripravo in izvedbo eksperimenta.

8.1 Nanožice MoSIx

Kemijsko gre za širšo skupino anorganskih nanožic molibdena, žvepla in joda s sorodno
stihiometrijo pod skupno formulo Mo6SxI9−x [14, 13]. Posamezne nanožice so kompo-
ziti molibdenovih oktaedrov, zaporedno povezanih preko treh žveplov v vezni ravnini z
atomi joda, ki obdajajo osnovni skelet (slika 8.1). Struktura je podobna veliki skupini

Slika 8.1: Žice MoSIx sestavljajo molibdenovi oktaedri, povezani z vezno ravnino treh
žveplov in obdani z atomi joda. a) S strani je povezava med oktaedri preko vezne ravnine
lepo vidna. b) Prerez preko oktaedra prikazuje možno konfiguracija joda okoli molibdena.

Chevrelovih faz s splošno formulo MxMo6X8, kjer M označuje kovino, X pa enega izmed
halkogenidov. Poleg tega se posamezne nanožičke zdužujejo v svežnje, vendar med seboj
niso povezane preko kemijskih vezi, kakor je to običajno pri Chevrelovih fazah. Na sliki
8.2 so prikazane celice nekaterih sorodnih struktur s poudarkom na mrežnih vezeh. Zaradi

1Mo6 d.o.o., Tehnološki park Ljubljana, Teslova 30, SI-1000 Ljubljana, Email: info@mo6.com
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te množice podobnih struktur je bila sinteza naših žičk zelo delikatna, kakor tudi kasneǰsa
priprava razpršin za integracijo žičk v merilna vezja.

Slika 8.2: a) Osnovna celica svežnja nanožic MoSIx in b), c), č) nekaterih podobnih
Chevrelovih faz z označenimi mrežnimi vezmi.

Nekatere osnovne lastnosti teh žičk so napovedale tudi teoretične študije [37]. Po
teoriji gostotnih funkcionalov ima gostota elektronskih stanj na Fermijevi gladini vzdolž
žice končno vrednost (slika 8.3a), kar uvršča snov med prevodnike s prevodnostjo okoli
5 · 1000 S/cm v vzdolžni smeri. Analiza mehkih vezi med molibdenovimi okatedri preko
veznih ravnin žvepla je pokazala dve stabilni konfiguraciji na različnih razdaljah (slika
8.3b), kar vnaša intrinzičen in naključen nered v osnovo naše strukture.

Slika 8.3: a) Teorija gostotnih funkcionalov napoveduje končno gostoto elektronskih stanj
na Fermijevi gladini. b) Analiza proste energije položajev veznih atomov žvepla med
molibdenovimi oktaedri razkriva dve različni stabilni razdalji med njimi. Temu rečemo
tudi efekt harmonike.
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Za rokovanje z nanodelci je morda najprimerneǰsa priprava njihove razpršine, saj jih je
na ta način moč nanašati, ločevati na frakcije, redčiti in nenazadnje kemijsko modificirati.
Naš cilj je bila meritev prevodnih lastnosti najtanǰsih svežnjev, morda tudi posameznih
nanožičk. Kot osnovno strategijo za izdelavo merilnega čipa smo izbrali dielektrofore-
tično integracijo oziroma nanašanje individualnih svežnjev iz razpršine preko reže med
dvema tankima elektrodama (8.4a). Vezje z režo smo izdelali z elektronsko nanolitografijo
[1], kjer z elektronskim curkom narǐsemo izbrani vzorec preko tanke plasti elektronsko
občutljivega polimera (8.4b) (v našem primeru dve plasti: 190 nm PMMA/MAA/33% in
90 nm PMMA 950k) na silicijevi rezini s 600 nm debelo plastjo oksida, kamor po razvi-
janju (8.4c) napršimo 20 - 25 nm niklja (8.4č), ki ostane na substratu po končni odtopitvi
odvečnega polimera v obliki narisanega vzorca (8.4d).

Slika 8.4: a) Shema nanosvežnja preko ozke reže med kovinskima elektrodama na nepre-
vodnem substratu. Nanolitografski postopek sestavljajo: b) pisanje z elektronskim curkom
preko elektronsko občutljivega polimera, c) razvijanje oz. odtopitev porisanih območij,
č) nanašanje kovine, d) po odstranitvi preostalega polimera ostane na površini kovina v
obliki risanega vzorca.

Da bi se želenemu cilju približali, je morala razpršina zadoščati nekaterim zahtevam:

• monodisperzija,

• zadostna populacija najtanǰsih svežnjev,

• malo nečistoč,

• nizka stopnja aglomeracije in stabilnost razpršine,

• izbira ustreznega topila glede na dielektroforezo.

Preizkusili smo različne vrste topil, koncentracij materiala, strategij razprševanja in
priprave frakcij. S spektroskopijo v ultravijoličnem in vidnem območju smo izkustveno
oblikovali testiranje vsebnosti nanosvežnjev v razpršinah. Kot je prikazano na spektrih na
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sliki 8.5a smo povezali položaje vrhov proti vǐsjim energijam z vsebnostjo tanǰsih svežnjev.
Tudi rumenkasti odtenki (slika 8.5b) razpršin so bili korelirani z vǐsjimi koncentracijami
drobnih svežnjev, medtem ko so modrikaste razpršine vsebovale debeleǰse strukture z
močno aglomeracijo, nestabilnostjo razpršin in močno sedimentacijo (slika 8.5c).
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Slika 8.5: a) Razpršine tankih svežnjev imajo najnižji vrh nad 1,78 eV oz. pod 700 nm,
medtem ko je pri debeleǰsih svežnjih vrh pomaknjen k nižjim energijam oz. k vǐsjim val-
ovnim dolžinam. Fotografiji razpršin b) tankih svežnjev s tipičnim rumenkastim odtenkom
in c) debelih svežnjev z modrikasto barvo in močneǰso sedimentacijo.

Kot uspešen recept za pripravo razpšin se je izkazal sledeči postopek:

1. celotno količino materiala iz sintezne ampule razpršujemo 10 minut z ultrazvočno
konico v 50 ml acetona,

2. razpršino pustimo sedem dni, da se največji delci posedejo na dno,

3. 10 ml stabilne razpršine dekantiramo v steklen rezervoar,

4. aceton lahko zamenjamo s ciljim topilom tako, da razpršino posušimo na vroči plošči
(60◦C) in nato dodamo želeno topilo

5. posušen material razpršujemo 2 minuti v ultrazvočni kopeli.

V postopku pripenjanja posameznih svežnjev preko reže med kovinskima kontaktoma
izkorǐsčamo privlačno silo izmeničnega električnega polja na nevtralne ali nizko nabite
delce, medtem ko nabiti delci nihajo okoli praktično stacionarne točke. Izkaže se namreč,
da morda naravneǰsa izbira elektroforeze oz. konstantnega potenciala preveč agresivno
privlači neželene nabite delce, v večini nečistoče, ki popolnoma prekrijejo vezje [26, 39, 38].
Tudi izbira topila vpliva na uspešnost pripenjanja posameznih svežnjev. Če je aceton
najprimerneǰsi za pripravo razpršin, njegova visoka hlapljivost onemogoča zadosten nadzor
nad pripenjem in največkrat opazimo debele nanose svežnjev. Bolǰsa alternativa je voda,
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vendar nam ni uspelo pripraviti ustrezne razpršine, zato smo na koncu izbrali izopropanol,
ki kompromisno združuje topne lastnosti acetona in nižjo hlapljivost. Kot je prikazano
na sliki 8.6a, smo uporabili 100 µm kovinske žičke kot mehanske kontakte, ki smo jih
upravljali preko navpičnega mikromanipulatorja slika 8.6b.

Slika 8.6: a) Tanke žičke smo uporabili kot mehanski kontakt med napetostnim genera-
torjem in vezjem. b) Navpični mikromanipulator pritisne kontakte na vezje.

Nanašanje svežnjev smo morali ponoviti velikokrat, zato smo isto vezje med vsakim
poskusom očistili in uporabili večkrat. Od tod tudi izbira niklja za izdelavo vezij, saj je
mehansko odporen in hkrati primeren za elektronsko litografijo. Koraki oz. parametri
pripenjanja so:

1. vezje z občutkom očistimo z vatirano palčko, namočeno v izopropanol in ga posušimo
s stisnjenim dušikom; vezje očistimo pred vsakim poskusom nanosa,

2. mehanske kontakte z mikromanipulatorjem pod lupo spustimo na vezje do prepričljivega
stika žic z vezjem,

3. 5 µl razpršine s pipeto previdno kapnemo na vezje,

4. vključimo generator izmenične napetosti s frekvenco 50 Hz in amplitudo 10 mV,

5. po desetih sekundah kapljico posušimo s stisnjenim dušikom,

6. po dvigu mehanskih kontaktov lahko vezje vstavimo v mikroskop na atomsko silo.

Izkaže se, da je za uspešno integracijo potrebno še temperaturno popuščanje, da se
vzpostavi dober električni stik med vezjem in svežnjem. Pri tem postopku zapremo vezje
v ampulo, izčrpamo zrak do tlaka 2 · 10−5) mbar ter vstavimo v peč na 700◦C za eno uro.
Tudi v tem primeru je nikelj najbolǰsa izbira kovine za izdelavo vezja, saj ostane kljub
visoki temperaturi razmeroma inerten, kontakti pa ohranijo svojo obliko. Primer uspešne
izdelave in integracije je prikazan na sliki 8.7.
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Slika 8.7: Idealen nanos a) enega samega svežnja s b) prepričljivim prekrivanjem elektrod.
c) Po temperaturnem popuščanju kovina zalije strukturno ohranjen sveženj in tako izbolǰsa
stik med njima.

Žal je bilo veliko vezij po popuščanju uničenih, tako da smo meritve uspeli izvesti
na štirih tankih svežnjih (tabela 8.1). Vzrok za visok izmet je bila v večini oksidacija
cevk ali kovine ob slabšem vakuumu v ampuli in pa nabrekanje kontaktov vezja zaradi
površinskih napetosti tankih plasti ob visokih temperaturah; zmerno gubanje opazimo
tudi pri uspešnih integracijah (slika 8.7c).

oznaka svežnja premer[nm] dolžina[nm]
na12 5 530
na23 4,2 265
na27 4 200
na28 12,5 190

Tabela 8.1: Premer in dolžina uspešno pomerjenih svežnjev.
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8.3 Meritev

Čeprav nam prevodne lastnosti povedo mnogo o sistemu, kakor smo spoznali v teoretičnem
razdelku, gre v osnovi za eno najosnovneǰsih meritev v fiziki: na merjenec pritisnemo
napetost in odčitamo tok skozi sistem. Ker nas je zanimala tudi temperaturna odvisnost
prevodnosti, smo merilne čipe vstavili v kriostat. Opazljivke so bile torej krivulje toka v
odvisnosti od napetosti (IV krivulje), merjene pri različnih temperaturah. Shema merilne
postavitve je prikazana na sliki 8.8a, fotografija kriostata z bakrenim nosilcem, na katerem
je s prevodno smolo prilepljen merilni čip, pa na sliki 8.8b.

Slika 8.8: a) Na merilni čip v kriostatu smo pritisnili napetost in merili tok skozenj. b)
Silicijev substrat z vezjem smo s temperaturno prevodno pasto prilepili na bakren nosilec
kriostata, vezje in merilni konektor pa smo povezali s 25 µm zlato žico in srebno pasto.

Da bi dobili zanesljive vrednoisti, smo pred meritvijo vsakič posebej stabilizirali tem-
peraturo, nato pa pomerili zadostno število točk (zajemali smo povprečne vrednosti 10
zaporednih odčitavanj), ki so omogočile dober izračun strmin krivulj, ki nastopajo pri
analizi. Ker smo opazili spreminjanje lastnosti merjenca med meritvami, smo temper-
aturne cikle ponovili večkrat in s tem termalizirali merjence. Kriostat nam je omogočal
ohladitve do 18 K, vsaka ponovitev meritve na celotnem temperaturnem območju s koraki
po 10 K ali 5 K pa je trajala 14 ur.
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Rezultati

Kljub temu, da smo dosegli cilj in izmerili prevodne lastnosti najtanǰsih svežnjev (pod 10
nm premera), bi za zanesljiveǰso analizo potrebovali še več meritev različnih svežnjev, tudi
z različnimi dolžinami in premeri. Ker je bil material soroden mnogim strukturam, smo
pričakovali različne lastnosti sicer podobnih nanosvežnjev, ki bi jih opazili le pri bogate-
ǰsi statistiki meritev. To je bila tudi naša glavna motivacija pri zahtevnem izdelovanju
merilnih čipov, saj smo upali na bogate rezultate tudi s teoretičnega vidika.

9.1 Tanki svežnji

Jedro našega dela so bile meritve štirih različnih svežnjev s premeri pod 15 nm in dolži-
nami med 190 nm in 530 nm. Pri vseh v grobem opazimo padanje prevodnosti s padajočo
temperaturo (9.1) in zvezno prehajanje skoraj linearnih karakteristik IV pri sobni tem-
peraturi v izrazito nelinearne lihe krivulje pri nižjih temperaturah (9.2). Po obliki jih
razdelimo v dve skupini:

1. krivulje tipa “S” - karakteristike IV spominjajo na črko S; mednje uvrščamo svežnja
na12 in na27,

2. krivulje tipa “J”- pri visokih napetostih so krivulje precej linearne, z gladkim nižan-
jem strmine proti nižjim napetostim; mednje uvrščamo svežnja na23 and na28.

Analiza meritev sloni na treh glavnih teoretičnih napovedih: Luttingerjeva tekočina,
preskakovanje spremenjivega dosega in impedančna Coulombova blokada. Pri njihovem
testiranju smo sledili strategijam:

Luttingerjeva tekočina Testiranje združevanja krivulj vseh karakteristik na diagramu
I/Tα+1 v odvisnosti od eV/kT glede na izraz 7.20 (7.9). Parameter α je strmina
premice na loglog grafu prevodnosti G za majhne napetosti v odvisnosti od tem-
perature T , β pa je eksponent v predvideni potenčni zvezi I ∝ V β+1 za visoke
napetosti (eV � kT ). Paramater γ uravnava dejanski padec napetosti na merjencu
v primerjavi z njeno nominalno vrednostjo.
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Slika 9.1: Karakteristike IV od sobne temperature do 18 K kažejo zmanǰsevanje pre-
vodnosti s padajočo temperaturo (od zgoraj navzdol) a) na12; označene so tudi napake
meritve (0,5 % - 1 % ), b) na23, c) na27 and č) na28.

Preskakovanje spremenljivega dosega Krivulje ln(G) (za nizke napetosti) v odvis-
noti od T−λ se približajo premicam za prave eksponente preskakovanja (tabela 7.1).
Linearnost krivulj za različne λ testiramo s Pearsonovo korelacijo med točkami in
prilagoditveno premico (dobro ujemanje daje korelacijo blizu 1).

Impedančna Coulombova blokada Karakteristike IV so linearne za visoke napetosti
in gladko prehajajo k nižjim strminam za nižje napetosti. Posledično tudi odvod
dI/dV narašča zvezno od začetne vrednosti do konstantne asimptote. V obeh
primerih opisano obnašanje testitamo le kvalitativno oz. jih primerjamo z numer-
ično teoretično napovedjo diagramov s slike 7.7. Za nizke temperature in napetosti
krivulje IV sledijo potenčnemu zakonu I ∝ V 2/g (7.16).
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Slika 9.2: Normalizirane krivulje od sobne temperature do 18 K (od zgoraj navzdol)
jasneje kažejo zvezen trend nelinearnega ukrivljanja s padajočo temperaturo: a) na12, b)
na23, c) na27 and č) na28.

9.1.1 Krivulje tipa “S”

Krivulje močno spominjanjo na sinh odvisnost Luttingerjeve tekočine iz izraza 7.20. Te-
stiranje združevanja krivulj na slikah 9.3b in 9.4b zadovoljivo potrdi prisotnost transport-
nega mehanizma, kot ga napoveduje Luttingerjeva tekočina. Ta sklep podkrepijo še prila-
goditvene vrednosti parametrov, ki se ujemajo z vrednostmi, ki jih dobimo iz teoretičnih
napovedi: α iz strmine v loglog grafu prevodnosti od temperature, β pa iz I ∝ V β+1 za
visoke napetosti. Prisotnost Luttingerjeve tekočine v svežnjih potrjuje notranjo zgradbo
svežnjev iz posameznih nanožic, ki jih lahko tretiramo kot močno enodimenzionalne ob-
jekte. Ker se krivulje IV ne približujejo linearni odvisnosti, ne moremo govoriti o Coulom-
bovi blokadi, zato testiramo meritve na preskakovalni mehanizem. Presenetljivo je tudi
ta način transporta potrjen, kot kažeta graf in pripadajoča histograma s slik 9.5 in 9.6,
čeprav je dimenzionalnost preskakovanja (parameter λ) različna.
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Slika 9.3: a) Strmina prilagoditvene premice α = 2 dobro prilagaja tudi b) združitveno
krivuljo za vzorec na12.
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Slika 9.4: a) Strmina prilagoditvene premice α = 2.3 dobro prilagaja b) združitveno
krivuljo za vzorec na27.

Za sveženj na12 je preskakovanje enodimenzionalno (λ = 1/2), za na27 pa tridimen-
zionalno (λ = 1/4). Istočasna prisotnost obeh transportnih mehanizmov ni intrinzična,
kot dokazuje poročilo o podobnih meritvah na nanožicah NbSe3 [11], kjer preskakovalni
mehanizem ovržejo in sklepajo le na transport Luttingerjeve tekočine.

9.1.2 Krivulje tipa “J”

V tej skupini prisotnost Luttingerjeve tekočine ni tako prepričljiva. Testiranje združe-
vanja krivulj za sveženj na23 kaže močno razpršitev in neujemanje karakteristik (9.7a),
medtem ko sicer nekoliko bolǰse ujemanje pri svežnju na28 nima značilnega kolena (9.7b).
Če verjamemo izsledkom skupine “S” in pričakujemo enodimenzionalno obnašanje tudi v
tem primeru, potem obstaja kakšen drug, močneǰsi transportni mehanizem, ki preglasi
efekte Luttingerjeve tekočine. Kot primeren mehanizem se kaže impedančna Coulombova
blokada, saj izmerjene krivulje (9.2b in 9.2d) kvalitativno močno spominjajo na numerične
napovedi te teorije (7.7a). Še prepričljiveǰsi so odvodi krivulj, ki pa se za visoke napetosti
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Slika 9.5: a) Linearne odvisnosti ln(G) od T−λ potrjujejo prisotnost preskakovalnega
transportnega mehanizma. b) Histogram korelacij med prilagoditvenimi premicami in
meritvami za posamezne eksponente izpostavlja enodimenzionalno preskakovanje z λ =
1/2 za sveženj na12.
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Slika 9.6: a) Linearne odvisnosti ln(G) od T−λ potrjujejo prisotnost preskakovalnega
transportnega mehanizma. b) Histogram korelacij med prilagoditvenimi premicami in
meritvami za posamezne eksponente izpostavlja tridimenzionalno preskakovanje z λ = 1/4
za sveženj na27.

ne približujejo konstatni asimptoti kot pričakovano (7.7b), pač pa linearni fukciji (9.8).
Ta efekt lahko pripǐsemo, podobno kot v skupini “S”, preskakovanju spremenljivega

dosega. Tudi ta mehanizem lahko vsaj za vǐsje temperature potrdimo, vendar z različnimi
parametri λ. Za sveženj na23 na podlagi histograma na sliki 9.9b najbolǰsa prilagoditev
pripada λ = 1/3 ali morda λ = 3/5, medtem ko je pri na28 λ enaka 1/4, po sliki 9.10.
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Slika 9.7: Testiranje združevanja krivulj Luttingerjeve tekočine za svežnja a) na23 in b)
na28. V obeh primerih prisotnost Luttingerjeve tekočine ni prepričljiva.
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Slika 9.8: Odvodi krivulj (9.2b in 9.2d) v prvem kvadrantu so podobni numeričnim
napovedim, le da se za visoke napetosti ne približujejo konstantni asimptoti, pač pa lin-
earni funkciji s končno strmino. Graf a) pripada svežnju na23, b) pa na28.

Na podlagi te analize lahko rečemo, da pri krivuljah tipa “S” transport elektronov teče
preko mehanizmov Luttingerjeve tekočine, istočasno pa sledi tudi preskakovanju spre-
menljivega dosega. Kakor je prikazano na shemi 9.11a lahko tako situacijo razložimo
z naključno prekinjenimi nanožicami znotraj svežnja. Transport tako teče preko eno-
dimenzionalnega medija, vendar mora ob prekinitvah preskakovati med posameznimi
nanožicami, ki pa ga popisuje preskakovalni mehanizem. Enak sklep je mogoč tudi za
krivulje tipa “J”, kjer znotraj svežnja vgradimo še izoliran segment, torej kvantno piko, ki
poleg mehanizmov enodimenzionalnega prevajanja preko Luttingerjeve tekočine in spre-
menljivega preskakovanja elektrone ovira še z efekti impedančne Coulombove blokade
(shema 9.11b). Tudi kemijska narava nanožic, sorodna mnogim Chevrelovim fazam, ne
samo dopušča, ampak morda celo predvideva nehomogen ustroj svežnjev z mnogo na-
pakami, defekti, celo segmentacijami.

V splošnem podajamo prevodne lastnosti snovi s specifično prevodnostjo in maksi-
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Slika 9.9: a) Linearne odvisnosti ln(G) od T−λ tudi v tem primeru potrjujejo prisotnost
preskakovalnega transportnega mehanizma. b) Histogram korelacij med prilagoditvenimi
premicami in meritvami za posamezne eksponente izpostavlja preskakovanje z λ = 1/3 za
sveženj na23.
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Slika 9.10: a) Linearne odvisnosti ln(G) od T−λ potrjujejo prisotnost preskakovalnega
transportnega mehanizma. b) Histogram korelacij med prilagoditvenimi premicami in
meritvami za posamezne eksponente izpostavlja preskakovanje z λ = 1/4 za sveženj na28.

malno gostoto toka skozi merjenec. Podatke za vse štiri merjene svežnje vsebuje tabela
9.1.

sveženj D[nm] l[nm] I[nA] (295 K,1 V) σ = I
V

l
S
[S/m] jmaks = I

S
[GA/m2]

na12 5 530 300 8100 1,5
na23 4,2 265 622 11900 4,5
na27 4 200 233 3710 1,6
na28 12,5 190 469 730 0,4

Tabela 9.1: Prevodne lastnosti merjenih svežnjev pri sobni temperaturi.
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Slika 9.11: a) Pri krivuljah tipa “S” so svežnji pripeti na Fermijeva rezervoarja in so ses-
tavljeni iz enodimenzionalnih vodnikov Luttingerjeve tekočine, ki so naključno prekinjeni.
b) Pri krivuljah tipa“J” sveženj vsebuje večjo, izolirano nehomogenost, ki prekinja sveženj
v celoti in jo obravnavamo kot kvantno piko.

9.1.3 Debeleǰsi svežnji in efekt cikliranja

Meritve debeleǰsih svežnjev (premera nekaj sto nanometrov) niso bile tako bogate kot
pri tanǰsih. Opažali smo preskakovalni mehanizem pri elektronskem transportu (slika
9.12) z izključno linearnimi IV karakteristikami. Zanimalo nas je predvsem izbolǰsanje
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Slika 9.12: Preskakovalni mehanizem je zelo prepričljivo prisoten, saj so a) krivulje zelo
blizu premicam. b) Po histogramu je najbližja vrednost eksponenta 2/3 ali pa 3/5.

prevodnosti po temperaturnem popuščanju, zato smo primerjali vzorce različnih kontaktov
in stihiometrij: dvotočkovna (dielektroforetični nanos) meritev, štiritočkovna meritev s
svežnjem pod kontakti, dvotočkovna meritev makrosvežnja, pripetega s srebrno pasto in
meritev z uporabo prevodne konice mikroskopa na atomsko silo [25]; rezultati so zbrani
v tabeli 9.2. Presenetljivo visoke spremembe do treh redov velikosti pri dielektroforetični
izdelavi merilnih čipov so nakazovale na globljo modifikacijo povezave med svežnji in
kovino. Da ni šlo za strukturne transformacije znotraj svežnja nakazuje meritev s prevodno
konico, ki ni pokazala nobene spremembe. Predvidevamo, da so svežnji prevlečeni s
tanko, amorfno plastjo raznih nečistoč, ki se razgradijo ob temperaturnem popuščanju in
omogočijo bolǰsi stik s kovino.
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Pred popuščanjem [S/m] Po popuščanju [S/m]

vzorec (tip meritve) (vrsta kovine) (vrsta kovine)
Mo6S3I6 (makroskopska) / 9,5 (Ag)
Mo6S3I6 (štiritočkovna) 0,07 (Ti) - 0,3 (Pd) 2,5 (Pd)
Mo6S3I6 (prevodna konica) 0,37 (Ti) - vzorec 1 0,52 (Ti) - vzorec 2
Mo6S3I6 (dielektroforeza) 1,3 ·10−4 (Ti) 0,135 (Ti)
Mo6S4,5I4,5 (dielektroforeza) 3,7 ·10−5 (Ti) 0,057 (Ti)
Mo6S2I8 (dielektroforeza) 2,3 ·10−5 (Ti) 0,048 (Ti)

Tabela 9.2: Vpliv temperaturnega popuščanja na specifično prevodost pri sobni temper-
aturi 295 K.

Najbolj zanimiv fenomen, ki smo ga opazili le dvakrat, je bil efekt cikliranja. Obakrat
sta merjenca vsebovala debeleǰse svežnje: par s premeroma 40 nm in 50 nm s signaturo
na double ter individualen sveženj s premerom 60 nm s signaturo na13. Kot je prikazano
na sliki 9.13 se je prevodnost vǐsala po vsakem ciklu, preden se je ustalila na končni
vrednosti pri nizkih temperaturah. Karakteristike IV za vzorec na double so za vse mer-
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Slika 9.13: Prevodnost pri istih temperaturah se spreminja za vsak merilni cikel do končne
saturacije: a) na double in b) na13. Tudi splošna oblika krivulj je drugačna kot običajno,
saj se praviloma približujejo neki limitni vrednosti za najnižje temperature.

itve linearne (slika 9.14a), medtem ko v primeru svežnja na13 v prvem delu kažejo jasno
tendenco nelinearnega ukrivljanja s padajočo temperaturo, ki pa po nezveznem prehodu
(točka A na sliki 9.14b) povsem zamre celo za najnižje temperature (točka B na sliki
9.14b), kjer bi morale biti nelinearnosti najbolj izrazite. Analiza meritev transportnih
mehanizmov svežnja na13 kaže na oster prehod tudi v tem pogledu, saj preskakovalni
mehanizem prvega dela prvega cikla kasneje (po točki A) ni več opazen (slika 9.15). Pri
na double pa tega ostrega prehoda ni in lahko morda prepoznamo preskakovalni meha-
nizem le pri vǐsjih temperaturah (slika 9.16).

Razlago za ta pojav lahko morda najdemo v teoriji Fermijevega stekla in konceptu
lokaliziranih in nelokaliziranih stanj v odvisnosti od stopnje nereda v strukturi. Zamis-
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Slika 9.14: a) IV karaktertistike za na double so linearne na celotnem merilnem območju,
medtem ko za b) na13 v prvem delu prvega cikla kažejo že znane trende nelinearnega
zvijanja, po ostrem prehodu v točki A s slike 9.13b pa preidejo v linearne funkcije celo
pri najnižjih temperaturah (točka B s slike 9.13b).
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Slika 9.15: a) Preskakovalni mehanizem je prisoten le za prvi del prvega cikla, kasneje pa
zamre. b) Po histogramu je v tem delu λ = 1/2.

limo si lahko, da sveženj po sintezi vsebuje strukturne napetosti (kakor surovo steklo), ki
se med meritvami pod vplivom električnega toka in posledičnega gretja delno anihilirajo.
Na ta način struktura preide v bolj urejeno konfiguracijo oz. nekatera lokalizirna stanja
postanejo nelokalizirana. Če pred strukturnim prehodom Fermijevo energijo postavimo
na zgornji del pasu in med lokalizirana stanja, a v bližino nelokaliziranih stanj (slika
9.17a), lahko po prehodu rob mobilnosti prečka Fermijevo gladino (slika 9.17b). S tem se
transportne lastnosti fundamentalno spremenijo, saj v prvem primeru elektroni prevajajo
preko lokaliziranh stanj, torej s preskakovalnim mehanizmom, v drugem pa preko kontinu-
uma nelokaliziranih stanj. Tudi po prehodu lahko preskakovalni mehanizem sodeluje v
prevajanju, saj se predvsem pri vǐsjih temperaturah elektroni vzbujajo v lokaliziran del
pasu. Vsak nadaljnji premik roba mobilnosti vǐsa delež elektronov, ki prevajajo v kontinu-
umu, in tako vǐsajo prevodnost sistema. Za vzorec na13 lahko torej rečemo, da je bila
Fermijeva energija v prvem delu prvega cikla med lokalizanimi stanji, po prehodu pa je
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Slika 9.16: a) Za na double opazimo preskakovanje le za vǐsje temperature. Predstavljene
so odvisnosti za cikel 5, ostali pa so mu kvalitativno podobni. b) Korelacijski histogram
za vse cikle izpostavlja λ = 1/4.

s prehodom mobilnega roba prešla med nelokalizirana stanja. Vsak naslednji cikel je po-
tiskal rob mobilnost še neprej stran od Fermijeve energije ter s tem povečeval prevodnost.
Zadnji scenarij lahko pripǐsemo tudi vzorcu na double, kjer je Fermijeva energija ležala v
kontinuumu stanj že od samega začetka.

Slika 9.17: a) V posebnih primerih leži Fermijeva energija v zgornjem repu pasu, med
lokaliziranimi stanji, vendar blizu roba mobilnosti. b) Po strukturnem prehodu se rob
mobilnosti pomika navzven in prečka Fermijevo gladino.

V splošnem lahko rečemo, da so nanožice oz. nanosvežnji MoSIx neurejeni sistemi, ki
vsebujejo več mehanizmov transporta. Kljub temu z opažanjem Luttingerjeve tekočine
potrjujemo notranjo strukturo svežnjev iz manǰsih nanožic, ki pa so prekinjene in tako
narekujejo tudi preskakovanje elektronov. V svežnjih pa so lahko vgrajene tudi večje
nepravilnosti v obliki izoliranih otokov, ki kažejo fundamentalne lastnosti kvantne pike v
obliki Coulombove blokade.
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Zaključek

Predstavljeno doktorsko delo s področja merjenja elektronskih transportnih lastnosti nano-
žic je vključevalo pripravo razpršin surovega materiala, izdelavo merilnih vezij z elektron-
sko litografijo, integracijo posameznih svežnjev v merilne čipe preko dielektroforeze in
temperaturnega popuščanja, izvedbo meritve in končno analizo rezultatov na podlagi rel-
evantnih transportnih mehanizmov. Največ raziskovalnega časa smo posvetili pripravi
vzorca, saj v začetku struktura in sinteza materiala še nista bili jasno določeni, niti nismo
poznali osnovnih kemijskih lastnosti, ki bi pripomogle k uspešneǰsi pripravi razpršin. Ker
so nas zanimali najtanǰsi svežnji, se je iskanje primernega recepta še podalǰsalo, vendar
se je vložen trud poplačal. Ugotovili smo, da je razprševanje celotne količine materiala
iz sintezne ampule v acetonu najprimerneǰsi postopek za pripravo začetne razpršine, od
koder preko dekantiranja dobimo frakcijo drobnih svežnjev. Tudi končno topilo lahko
zamenjamo preko sušenja in ponovne razpršitve frakcije v želeni kemikaliji; zaradi kasnej-
še integracije svežnja s pomočjo dielektroforeze smo izbrali manj hlapljiv izopropanol. Z
razvijanjem elektronske litografije smo uspeli izdelati množico vezij na neprevodnem sili-
cijevem oksidu, ki so služili kot temelj našim meritvam. V osnovi smo oblikovali režo
širine nekaj sto nanometrov, da so jo lahko individualni svežnji premostili, obenem pa
je možnost gostega nanosa ostala razmeroma nizka. Kot strategijo pripenjanja svežnjev
iz razpršine smo uporabili dielektroforezo, saj se je elektroforeza izkazala za preveč agre-
sivno, s pregostimi nanosi. Metoda se je izkazala za optimalno uspešno že pri šibkem
signalu 50 Hz in amplitudi 10 mV, ki smo ga zajeli kar iz elektromegnatnega ozadja. Tudi
uporabo mikroskopa na atomsko silo smo razširili, saj ga nismo uporabiljali le konven-
cionalno pač pa kot način finega čǐsčenja nanosov in odstranjevanja izbranih svežnjev v
primeru večih svežnjev na vezju. Ugotovili smo, da so za zajemanje slik najbolj primerne
konice silicijevega nitrida v tipalnem načinu zazanavanja topografije, medtem ko so za
manipulacijo in čǐsčenje svežnjev primerneǰse prevodne konice s prevleko iz platine in
iridija. Opazili smo namreč, da je intrinzičen potencial na konici že dovolj, da privlači
ostanke čǐsčenja, tako da jih konica ne grabi le vstran, pač pa jih s površine popolnoma
odstrani. Prvi poskusi merjenja pri sobni temperaturi so pokazali izredno velike, celo
nemerljive upornosti surovih, torej neobdelanih čipov neposredno po dielektroforetičnem
nanosu, zato smo morali vsak čip še termično popuščati v vakuumu na 700◦C, da se je
prevodnost povečala in omogočila merjenje. Žal sta visoka temperatura in ostanek kisika v



10 Zaključek 159

vakuumski ampuli tega nujnega postopka dostikrat botrovali razpadu svežnjev, kovinskih
kontaktov vezja ali pa sta povzročili celo zlivanje bregov reže. Pri uspešni integraciji pa se
svežnji, vsaj na podlagi posnetkov mikroskopa na atomsko silo, strukturno vendarle niso
spremenili. Natančneǰsa študija je pokazala izbolǰsavo prevodnosti do treh redov velikosti
tako pri debeleǰsih kot pri tanǰsih svežnjih. Pri prvih smo tako izmerili prevodnosti med
0,05 in 10 Sm−1, pri drugih pa celo do 11900 Sm−1. Na podlagi relativnih sprememb pred-
videvamo, da k vǐsanju prevodnosti prispeva v največji meri izbolǰsava stika med kovino
kontaktov in svežnjev, v manǰsi meri pa strukturne spremembe znotraj svežnja. Ta efekt
pripisujemo tankim prevlekam svežnjev, ki jih morda sestavljajo nečistoče ali pa nastanejo
s kemijsko reakcijo med svežnjem in topili pri rokovanju z materialom. Veliko razliko med
specifičnimi prevodnostmi debeleǰsih in tanǰsih svežnjev lahko razložimo, če dovolimo pre-
vajanje le po nanožicah, ki so v neposrednem stiku s kovino. Takšen privzetek sloni na
šibki vezavi med nanožicami v svežnju, tako da se elektroni med transportom zadržujejo v
plašču svežnja; delež nanožic, ki prevajajo ocenimo pod 1 %. Ravno ta nizka prevodnost
je bila glavni motiv naše usmeritve na tanǰse svežnje, saj smo se želeli približati prevod-
nim lastnostim posameznih nanožic. Zares smo poleg že omenjene visoke prevodnosti
opazili drugačne transportne mehanizme. Če smo pri debeleǰsih svežnjih opažali linearne
karakteristike IV, so bile pri tankih svežnjih močno zvite a še vedno lihe. Na podlagi
podobnih raziskav smo rezultate meritev testirali na tri glavne teorije: preskakovanje
spremenljivega dosega, impedančna Coulombova blokada in Luttingerjeva tekočina. Ker
smo iz strukturnih in kemijskih lastnosti pričakovali precej neurejeno zgradbo svežnjev, se
je prisotnost preskakovalnega mehanizma zdela najverjetneǰsa, saj smo jo opazili tudi pri
debeleǰsih svežnjih. Zares smo ta način prevajanja potrdili v vseh vzorcih, vendar z ra-
zličnimi vrednostmi glavnega parametra λ. Pri debeleǰsih svežnjih smo največkrat opazili
vrednosti 1/2 in 1/4, kar nakazuje enodimenzionalno in tridimenzionalno preskakovanje.
Sicer agresivno popuščanje ni imelo vpliva na dimenzionalnost preskakovanja, kar še pod-
krepi našo trditev, da struktura svežnjev ostaja nespremenjena tudi po popuščanju. Pri
tanǰsih svežnjih smo, glede na obliko karakteristik IV, svežnje razdelili v dve skupini.
Pri skupini “S” smo poleg preskakovanja pokazali še na prisotnost Luttingerjeve tekočine,
medtem ko pri skupini “J” opazimo efekte impedančne Coulombove blokade. Soobstoj
večih transportnih mehanizmov lahko morda razložimo, če predvidevamo, da je sveženj
sestavljen in enodimnzionalnih nanožic, ki pa so naključno prekinjene, včasih celo z ne-
homogenim in izoliranim otokom, ki prekine sveženj v celotnem premeru. Prva pred-
postavka bi ustrezala svežnjema iz skupine “S”, efekt Coulombovega nabijanja izoliranega
otočka oz. kvantne pike pa pripǐsemo skupini “J”. Ti kombinaciji teoretično še nista bili
raziskani, morda zaradi sorazmeroma zapletene matematične obravnave. Pri vseh meri-
tvah pa nas je najbolj preseneil efekt cikliranja pri meritvi nekaterih debeleǰsih svežn-
jev, kjer se je prevodnost pri istih temperaturah za različne ponovitve temperaturnega
cikla dramatično večala za vsak zaporedni cikel. Ta pojav skušamo razložiti na podlagi
teorije Fermijevega stekla in koncepta lokaliziranih in nelokaliziranih stanj. Zamislimo
si namreč lahko, da ob strukturnih spremembah nekatera lokalizirana stanja prehajajo v
nelokalizirana. Če pred spremembo Fermijeva energija leži v zgornjem repu lokaliziranih
stanj, lahko že subtilna sprememba strukture povzroči, da rob mobilnosti ob transforma-
ciji lokaliziranih stanj prečka Fermijevo gladino ter tako drastično spremeneni transportni
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mehanizem in posledično prevodnost sistema. Prevodnost se lahko spreminja tudi ob
vsakem naslednjem premiku roba mobilnosti, saj Fermijeva energija počasi tone v kontinu-
um stanj s čimer se prevodnost veča. Ta scenarij kvalitativno razloži dobljene rezultate
meritev, vendar bi za bolǰso analizo potrebovali teoretično študijo predlaganega modela.

Ob koncu lahko rečemo, da nam je uspelo osvojiti in razviti vse potrebne korake od
surovega materiala do končne meritve integriranih čipov. Dobljeni rezultati so zanesljivi in
kažejo na kombinacijo različnih transportnih mehanizmov. Za nadaljnje delo predlagamo
dodatne meritve, saj bi lahko morda opazili še kakšen nov pojav, in pa teoretične študije
soobstoja različnih transportnih mehanizmov v enodimenzionalnih sistemih.
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