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Abstract

Milan Randi¢’s contributions to resonance in benzenoids is recalled, with particular focus on his recent identification
and exploration of his “algebraic Kekule structures” (in terms of a suitable sequence of digits). In particular, further such
vectorial representations of Kekule structures are noted, are characterized a bit, and are compared to one another.

1. Setting the Stage

Milan Randié has worked on an immense variety of
chemical graph-theoretic topics — often making seminal
contributions. One frequent area of his work concerns Ke-
kule structures (or perfect matchings) on a molecular
graph (prototypically representing a homo-atomic 7-net-
work of a molecule). See, e.g., Milan’s review' of aroma-
ticity, especially of benzenoids. He references somewhere
approaching 100 of his relevant works in the area, along
with somewhere approaching 1000 other articles.

A finite graph B is termed benzenoid if it is planar,
2-connected, and all internal faces of a planar embedding
may be taken as hexagonal such that a pair of rings either
share a single edge or nothing. That is, B may be viewed
as a planar network of edge-fused regular hexagons. For
any benzenoid system B, some common notation is use-
ful. Let h, n, and e respectively denote the numbers of he-
xagons, vertices, and edges in B. Also let n™ be the num-
ber of internal vertices (i.e., vertices belonging to 3 hexa-
gons) in B. Further presume that B is Kekulean, which
means that B has at least 1 fully neighbor-paired resonan-
ce structure, termed a Kekule structure k. Then following
Randi¢’s ideas®”’ denote:

- |K1§ as the electron-count for k' in ring & of B, obtai-

ned as the sum of: first the number of bonds of k
coinciding with an edge shared by £ with a second
ring; and second, twice the number of bonds of k
coinciding with an edge belonging to just &.

—R(x) as the h-component vector of numbers |K1§,
with & ranging over the A ring labels.

— R(x) as the sum of the || over all rings & of B.

Indeed it was only recently that Randi¢ introduced?
the vector R(k) as a novel invariant, associated to a Keku-
le structure k of B. Milan called R(k) an “algebraic Keku-
le structure”, but we describe such as the Randic vector
representation — because R(x) seems more like a vector
than a member of an algebra. For contrast Milan described
the usual pictorial representations of a Kekule structure as
“geometric Kekule structures”. It seemed’ that the R(x)
are faithful for most cata-condensed benzenoids, in that
each Kekule structure of a given B has a different vector
R(%), and indeed this was quickly shown” to be true (so
long as 2 < n < «). But otherwise R(k) is sometimes un-
faithful, with more than one Kekule structure giving the
same vector R(k). Obviously there is unfaithfulness for
benzene. But for a more wide-spread sort of non-faithful-
ness see pyrene in figure 1. Indeed this unfaithfulness for
pyrene essentially persists on appending rings in suitable
ways — e.g., for the species of figure 2. Moreover, diffe-
rent aspects of Milan’s representation were quickly pur-
sued, by several interested workers — as in [3,4,5,6,7].

Here this notion of representations for Kekule struc-
tures is pursued from a broadened perspective, looking for
other near-faithful, or even fully faithful vector represen-
tations of the various Kekule structures of a Kekulean
benzenoid B. Such representations continue to entail vec-
tors (for each Kekule structure) with numerical values for
components. After noting other such representations, we
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indicate some characteristics, and make some compari-
sons.

Figure 1. Two distinct Kekule structures of pyrene, with the same
indicated R(x) = (5,3,3,5). These two Kekule structures also turn
out to have the same Sahini symbol S(x) = (3,2,2,3).

o8 &

Figure 2. Two further species which manifest unfaithfulness. For
the first species simply append rings on the left-most and right-
most rings of pyrene (of figure 1). For the second species, take the
two structures of figure 1 and make the top ring of the first structu-
re coincide with the bottom ring in the second structure — and for a
second Kekule structure with the same representation, make the
bottom ring of the first coincide with the top ring of the second.

2. Other Vector Specifications
for Kekule Structures

Before delving into these other vector representa-
tions for Kekule structures, a useful result is:

Lemma 1 — Let B be a benzenoid with /2 hexagons
and n, internal vertices. Then n = 4h + 2 — n, and
e =5h+1-n,, while also B is Kekulean = n, is even &
R(x) = 4h + 2 — n, is independent of K. The equations for
n and e are widely recognized®, and are here useful to ex-
press and relate dimensions of different Kekule-structure
vector representations (such as R(x)). The result concer-
ning R(x) follows from the realization that for each doub-
le bond (or equivalently for each 7 -bond), there is a net
count of 2 electrons upon summation over all rings.

As a first further example, note that there is yet anot-
her vector representation of a Kekule structure descri-
bed”!! by Sahini in 1961, and also considered in Harary

et al."* in 1991. This Sahini representation S(k) again has
components in correspondence with the rings of B, the
component for a ring & taking a value which is the number
of edges of k in common with the edges of &. This repre-
sentation also is non-faithful for benzene and pyrene, as
may be seen from figure 1. Again the unfaithfulness per-
sists with suitable appending of extra rings. Sahini’s re-
presentation however has a narrower range for the values
of its components: {0,1,2,3} for S(x) vs. {0,1,2,3,4,5,6,7}
for R(k). Though S(x) shares many general features with
R(x), evidently Milan® did not entertain this index as he
wished to partition the 7 electrons to rings — the idea of
not “double counting” electrons goes back to Clar'?, with
the idea being whole-heartedly endorsed (and even cham-
pioned) by Milan, e.g., in his review."

As a second example, there is a common vector re-
presentation of Kekule structures, which we term geome-
tric (since it is so intimately related to what Milan termed?
“geometric”’). One introduces a vector G(x) with compo-
nents corresponding to the edges of x such that the {u,v}th
component of G(x) is 1 if this edge {u,v} (between verti-
ces u and v) also occurs in B and otherwise is 0. An exam-
ple structure is shown in figure 3. Perhaps Randic ignored
this representation as “vector” because it is so directly re-
lated to the common “geometric” diagrams superimposed
on B itself. As this geometric vector representation identi-
fies the particular edges in a Kekule structure, it is clear
that G(x) is faithful. But it resides in a vector space of a
dimension somewhat greater than that of Randic:
e=5h+1-n, for G(k) vs. h for R(k). Still the compo-
nents of the G(k) are confined to a narrower range of va-
lues: {0,1} for G(x) vs. {0,1,2,3,4,5,6,7} for R(k).

A third connectivity vector representation of a Kekule
structure, is also given as a vector C(k), this time with a
number of components corresponding to the number of
starred sites of B. [Here B is bipartitioned into starred and
unstarred sites, such that each site of one set is adjacent on-
ly to others of the other set.] Then the component of C(x)
for such a starred vertex u corresponds to the direction
which the edge of kincident at u takes: say, O if this edge is
in the vertical direction from u, and + or — as it leaves from
u to the right or left. Of course there are generally 6 choices
for such an orientation of a molecular structure — and one
might wish to take the standard IUPAC orientation. But al-
so there are 2 choices for starred and unstarred vertices —
though they of course give the same numbers of bonds for
corresponding bond directions. Again see figure 3. Notably
this vector representation is faithful, since it specifies the
direction of each edge of x from the (unique) “starred” site
to which the edge is incident in B. Here the dimension of
the space in which these vectors reside is n/2 = 24 + 1
—n, /2 vs. h for R(k). On the other hand the range of values
for the components is smaller: {+,0,—} for C(x) vs.
{0,1,2,3,4,5,6,7} for R(k). Again this representation is
faithful — indeed as is reflected in the use of much this sort
of representation in different resonating VB computations.
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We summarize:

Theorem 2 — Both the Randi¢ and the Sahini vector
representations sometimes are unfaithful, with each some-
times failing when the other does not, and sometimes both
fail. The geometric and connectivity vector representa-
tions are faithful.

Here most of this has been already established — asi-
de from the non-mutual failures of the Randi¢ and Sahini
schemes. Thus in figure 4 a case is shown where the Ran-
dic representation is faithful, while the Sahini scheme is
not. And in figure § a case is shown where the Sahini re-
presentation is faithful, while the Randi¢ scheme is not.

O 1213
19‘[ 16
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Figure 3. A Kekule structure of pyrene, with a selected numbering
for the bonds. Then G(x) = (0101010100010100101). Also if we
order the indicated starred vertices row by row reading first from
left to right and second from top to bottom, then C(k)
= (- +00+00-).

30 GO

Figure 4. Both of these Kekule structures have the same Sahini
symbol (3,2,3), while they have distinct Randi¢ symbols (5,3,6)
and (6,3,5).

Figure 5. Both these Kekule structures have the same Randic sym-
bol, with the two central rings (o and f§) having the same value
R, (k) = 4 = Ry(x). The Sahini symbol assigns corresponding va-
lues 3 and 2 for the first Kekule structure, and 2 and 3 for the se-
cond one.

3. Further Characteristics
of Representations

One might seek other general distinguishing charac-
teristics of different vector representations, beyond the di-
mensions of the associated vector spaces and the ranges of
the vector components. For instance, Randi¢ points>* out
that for his representation, every vector R(x) has a sum of
its components independent of k, and equal to the total
number n of electrons. Milan (and perhaps especially A.
T. Balaban) advocate this vector as a chemically meaning-
ful way to partition the 7-electrons amongst the different
rings — with this partitioning emphasized in the titles to
their joint papers®®. The alternative sum

R.= ZA_L&"E;. (1)

is less explored but yields what evidently is'* an “aromatic
content” for the ring £.

The Sahini representation sum over rings to gene-
rally give different values for each Kekule structure of a
benzenoid B:

D> Se(w)=S(k) )

The sum here counts each interior 7-bond twice (as
each such bond is in 2 rings) whereas the 7 -bonds on the
boundary are only counted once. Thus noting that there
are n/2 7 -bonds in all, we have n — n, /2 < S(k) < n, and
further n — S(x) and S(k) — n/2 respectively count numbers
of interior and boundary 7 -bonds. Moreover if we count
up the number of rings & for which S é( K) =3, then thisis a
conjugated 6-circuit count'>" for the Kekule structure x
— such a count d,(k) arguably giving an “importance” of a
Kekule structure k. Thence d,(x) leads to a plausible “si-
ze-consistent” weight x%% (0 < x <) for K in a ground-sta-
te resonating valence-bond (VB) wave-function for B. In-
deed such an Ansarz has been used'®, and there is'® further
evidence in a more general context that such an Ansatz is
reasonable. The alternative sum

>, Sek) =S5, 3)

(or the modified alternative Z" o ) could be a plausib-
le weight measuring the “aromaticity” of a ring &, as was
fairly early so suggested by Milan®. This interpretation
parallels that for the corresponding Ré-sum, though which
might be better is presently uncertain.

For the (standard) geometric representation G(k),

the sum Z:Gb-'-'l‘” *fun gives the well-known Pauling bond
order”'. The alternative sum _Zﬁu.-.-)(ﬂ clearly gives a con-

stant k -independent value n/2.
Finally, the connectivity vector C(k), has simple

starred
ZC;(K)

Y Gt

sums ® or = , with the first simply giving
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(again) the k -independent value n/2. The second sum re-
gisters something about 77 -bond anisotropy at site u. But
in place of this second sum, what is more fundamental is

) explidfC,(x)}=C, 4)

This gives the direction on average for a bond from
site u. A similar alternative to the first sum

2miC (k)
2.n7 Zexp-{-—-—-r 3‘ K‘;-

would also give a mean bond direction, now as averaged
over the molecule for a given k. These two complex sums
depend on the orientational choices for B — though in an
especially simple way: just differing by an overall scalar
factor e*2% or complex conjugation. The magnitudes are
independent of these (6) choices, whence it is natural to
introduce

23 expli%C,(x))| = a(B) )

to indicate the degree of anisotropy of double-bond orien-
tations. Our choice of not labelling this with the Kekule-
structure label k is made since this is k -independent, as
follows because the number of bonds in each orientation
is?>** the same for each Kekule structure k. That is, o (B)
is an anisotropy invariant for B — which if very high is an
indicator of bond localization, with consequent chemical
reactivities. The triple (n,, n,, n) of the numbers of 7-
bonds in each direction has been a more frequent invariant
— though when C, is combined with n (= 2(n,+ n, + n))
this triple is recovered — and even from o«(B) and n one re-
covers the n, n,, n_in unordered form.

The overall results of this section may be summari-
zed in a pseudo-theorematic form:

Observation 3 — Each of the vector representations
(Randié, Sahini, geometric, and connectivity) lead to dif-
ferent chemically meaningful component sums — sums
either over Kk or over the components for a particular k.

4. Efficiency of Vector
Representations

In fact one may look at global comparisons of diffe-
rent vector representations. For a mode X of vector ex-
pression where each Kekule structure is represented by an
m-vector with ¢ choices for the values of each component
of such a vector, one naturally defines an extravagance for
X as its potential information® content

x(X)=log, " (6)

One might in general wish to subtract from this the
information content for the least extravagant yet faithful

measure, if we knew the value of the extravagance for this
optimal mode of presentation. The bare extravagances for
several such modes of vector representation of Kekule
structures are:

Table 1: Extravagances for various vector representations

X x(X)

geometric e-log,2 =5h+1-n,

Sahini h-log,4 =2-h

Randi¢ h - log,7 =281-h

connectivity & log,3 =317-h+158-0.79 - n,,
minimal maxglog, K(B) ~05-h

Here despite their extravagances relative to the geo-
metric representation, the schemes of Randi¢ and Sahini
are not faithful (i.e., are incomplete designations of Keku-
le structures) — though the scheme of Sahini*'® is less ex-
travagant. The connectivity designation is faithful, though
with an extravagance comparable to that the Randic¢ (un-
faithful) scheme. The extravagance of this faithful con-
nectivity scheme is less than that of the Randi¢ scheme for
n, > 0.46 - h, as occur for bulkier graphene-like structures,
where the number of boundary sites n —n, ~ Vn and n, —
2h. Indeed this faithful (connectivity) scheme becomes
less extravagant than Sahini’s (unfaithful) scheme for n, >
1.48 - h, though here there is less leeway before the grap-
heneic limit. Finally the last extravagance is that for a
hypothetical faithful scheme identifying the minimum ex-
travagance which is possible, its value given in the table
just being a rough estimate (from known numbers of Ke-
kule structures of large grapheneic fragments). There
seems to be a notable excess extravagance to any of the 4
concrete vector representations we have mentioned.

Indeed one may observe that there is a “quasi-orde-
ring” of representations X as mediated by x(X). (A brief
chemical discussion of partial orderings and the relation
to quasi-orderings is available?.) That is, given two vector
representations X and Y, we say that X > Y if x(X) > x(Y)
for all choices of B. Such an ordering is neatly shown with
a Hasse diagram which is minimal and such that when
x(X) > x(Y) there is a path (in this diagram) from X to Y
with each step downward — as shown for our present cir-
cumstance in figure 6.

A related partial ordering might be introduced for
the degree of faithfulness of different representations.
That is, one says X > Y if the X-representation is never un-
faithful in a case (i.e., for a B) where Y is unfaithful. The
faithfulness Hasse diagram then is shown in figure 7. The-
re also we have introduced a double representation R @ S
where the Randi¢ and Sahini vectors are used together to
simultaneously label Kekule structures. In figure 7, the
feature which distinguishes a quasi-order is manifested,
when the 3 faithful representations are clustered together.
(Perhaps also it should be noted that the extravagance of
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the double R @ S representation would be x(R @ S) =
x(R) + x(S).)

A further point is that granted a faithful representa-
tion in terms of m-vectors each of whose components ta-
kes c possible values, then ¢" clearly provides an upper
bound to the number K(B) of Kekule structures of B.

Theorem 4 — If X is a faithful vector representation,
then K(B) < 2°%.

In particular from the connectivity representation,
we have K(B) <9 - 3'in/2.

More generally for unfaithful representations, one
might manage to introduce some sort of unfaithfulness
measure u(X) for representation X, and then develop a
bound of the form K(B) < 2®#X_There could be a more
elaborate quasi-ordering, reflecting both the extravagance
and degree of unfaithfulness.

geometric

v

Randi¢

connectivity

A

Sahim

S

minimal

Figure 6 — The Hasse diagram for extravagances of the 5 conside-
red types of Kekule structure representations.

Randi¢ Sahini

R®S

A 4

connectivity, geometric, minimal

Figure 7 — The Hasse diagram for faithfulness of various types of
Kekule structure representations.

5. Conclusion and Prospects

In summary, it has been shown (typically with illu-
strations):

— that there are a number of (even natural) vector re-

presentations of Kekule structures;

— that some representations are unfaithful while ot-
hers are faithful;

— that each of these natural representations is asso-
ciated to meaningful graph invariants (or molecu-
lar descriptors);

— that some representations are less “extravagant” in
terms of the potential realm of information con-
templated; and

— that these ideas lead to quasi-ordering relations of
representations.

It may be noted that the lesser extravagant yet faithful
schemes provide a natural framework for resonating VB
computations.

As a yet further comment note that a number of the
ideas here developed in the context of benzenoids extend
to grapheneic nanostructures embedded in suitable locally
Euclidian surfaces other than the Euclidean plane. Parti-
cularly a torus or an extended cylinder can be covered by
hexagons in a benzenoid-like fashion, so that a certain
amount of what has been said here should extend to these
circumstances. The formulas for n and e in lemma 1 no
longer apply, but many of the ideas depending more expli-
citly on Kekule structures remain applicable. The 4 basic
definitions for vector representations carry through: the
Randi¢ and Sahini representations work best for systems
with all rings hexagons; the geometric representation
works generally with little qualification; the connectivity
representation applies for bipartite (or alternant) graphs.
Fullerenes and nano-cones entail other sized rings, when-
ce besides the mathematical restrictions mentioned, there
can be questions about the chemical relevance and inter-
pretation. Particularly in the cases with pentagonal rings,
the systems are non-alternant (i.e., non-bipartite) whence
Pauling’s”” Kekule-structure “phases” turn out to not so
easily be handled and thence leads to problems of “phase
consistency” (which at least in selected cases'® can be sur-
mounted).

It may be noted that even at a modest level of gene-
ralization to infinite benzenoids some modifications oc-
cur. The formulas of lemma 1 no longer apply (at least in
the simple form given) — and the result that the Randié
R(k) are faithful for cata-fusenes (with n > 2), turns out to
be no longer true — as illustrated in figure 8. Of course re-
al experimental benzenoids are never infinite, though it is
emphasized that these extended systems provide a “pro-
per” reference for large (e.g., nano-structural) systems —
such as occurs in molecular orbital theory with “bands”.
But also even in thinking of resonance theory and Kekule
structures, useful results apply, e.g., as found elsewhe-
re’>?31 Another extension®? entails vector representa-

Klein: Vector Representations of Kekule Structures of Benzenoids

595



Acta Chim. Slov. 2010, 57, 591-596

tions for Clar structures — but also useful ideas emerge
from this limit even when?® Clar structures are used in pla-
ce of Kekule structures. Thus there remains much further
to investigate about Kekule-structure representations — es-
pecially as concerns applications to the current high-inte-
rest carbon nano-structures.

The various results reported here then notably broa-
den the realm of discourse considered by Milan and the
several other chemical graph theoreticians who have pub-
lished on vector representations (again often called “alge-
braic” representations) of Kekule structures. It seems that
there is much more to be done, with some of it of chemi-
cal import — as it is felt should interest Milan Randi¢, nu-
merous chemical graph theoreticians, and perhaps also the
more general chemical community.

Acknowledgement is made of support (via grant
BD-0894) from the Welch Foundation of Houston, Texas.

Regeavarats
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Figure 8 — Three Kekule structures on an infinite (cata-condensed)
phenacene chain. Each has R.(k) = 4 for every ring £ in the chain.
Here the Sahini representation distinguishes the first two (as well as
the first and third), but it does not distinguish the last two from one
another — so that even the combined R @ S manifests unfaithful-
ness, on catafusenes.
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Pregledali smo prispevke Milana Randica k Studiji resonance benzenoidov, s posebnim poudarkom na njegovi nedavni
oznaki in raziskavi »algebrajskih Kekuléjevih struktur« (v smislu ustreznih zaporedij Stevk). OpaZene so nadaljnje vek-
torske predstavitve Kekuléjevih struktur, ki jih v tem prispevku delno okarakteriziramo in primerjamo med seboj.
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