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Abstract

In this thesis we have studied dynamical tunneling and random matrix theory in
the field of quantum chaos.
First, we have considered the spectra of quantum Hamilton systems characterised
by the mixed-type classical dynamics. In the semiclassical limit the Berry-Robnik
(BR) statistics applies whereas at larger values of ~eff one can notice deviations
from BR due to localisation and tunneling effects. We have derived a 2-level random
matrix model which can be treated analytically and the N -level random matrix
model which has been treated numerically. Both models describe tunneling effects.
The coupling between the regular and the chaotic levels due to tunneling is assumed
to be Gaussian distributed. The results are predicted to apply in mixed-type systems
at low energies. The two-level model describes many features of large matrices. The
proposed 2 and the N level spacing distributions have two parameters, the BR
parameter ρ, characterising the classical phase space, and the coupling parameter
σ. The same procedure has been followed for the all-to-all couplings as well.
Second, we have studied the mushroom billiard introduced by Bunimovich, espe-
cially in terms of its level spacing distribution, avoided crossing distribution and
dynamical tunneling rates. The mushroom billiard has a nice property of sharply
divided phase space into precisely one regular and one chaotic region. By chang-
ing the appropriate parameter one can easily identify the regular or the chaotic
states without considering the Wigner functions. First we have studied the level
spacing distribution to test the random matrix model and, then, we have focused
on the avoided crossings appearing between the regular and the chaotic states. The
splittings, appearing at such avoided crossings, indicate the strength of dynamical
tunneling. Larger splitting presuppose stronger tunneling effect. With the help of
Fermi’s golden rule we have calculated the dynamical tunneling rates for each regular
state of the mushroom billiard. We have compared the results from the microwave
experiment and those from the expanded boundary integral numerical method with
the already-existing analytic prediction derived by Ketzmerick and his co-workers.
We have observed excellent agreement in the accessible regime of low energies.
Third, we have discussed various ensembles of real symmetric matrices with the
dimensions N = 2 to N = ∞ for a variety of distributions of matrix elements. For
N = 2 there exist the exact analytic results obtained by Grossmann and Robnik
whereas for N = ∞ one can rely on the theoretical findings by Hackenbroich and
Weidenmüller (HW). According to these findings the local spectral fluctuations are
exactly described by the GOE if the limiting distribution of the eigenvalues is smooth
and restricted to a finite interval. We have numerically shown, according to HW,
that such a transition to the universal behaviour is pretty fast and that it does really
not occur if one or both of the conditions from the theory mentioned are not fulfilled.
We have tested this findings for the box, the exponential, the Cauchy-Lorentz and
the singular (power law times exponential) distribution function of matrix elements.
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PACS numbers:

02.50.Cw Probability theory
02.70.Pt Boundary-integral methods
03.65.Sq Semiclassical theories and applications in quantum mechanics
03.65.Xp Tunneling, traversal time, quantum Zeno dynamics
05.45.-a Nonlinear dynamics and nonlinear dynamical systems
05.45.Mt Quantum chaos; semiclassical methods
05.45.Pq Numerical simulations of chaotic systems

Keywords: dynamical tunneling, regular, chaotic, mixed-type system, energy lev-
els, level spacing distribution, level dynamics, mushroom billiard, avoided crossings,
tunneling rates, random matrix theory, microwave experiments
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Povzetek

V tej disertaciji študiramo dinamično tuneliranje in teorijo naključnih matrik na
področju kvantnega kaosa.
Najprej obravnavamo energijske spektre kvantnega Hamiltonskega sistema z mešano
klasično dinamiko. V semiklasični limiti, ko je efektivna Planckova konstanta ~eff do-
volj majhna, velja statistika Berryja in Robnika (BR), medtem ko pri večjih vrednos-
tih ~eff (manǰsih energijah) vidimo odstopanja od BR zaradi lokalizacije in tunelskih
efektov. Izpeljemo 2-nivojski model naključnih matrik, ki ga lahko obravnavamo
analitično in N -nivojski model naključnih matrik, ki ga obravnavamo numerično.
Oba modela opisujeta tunelske efekte. Predpostavljamo Gaussovo, eksponentno ali
škatlasto porazdelitev tunelske sklopitve med regularnimi in kaotičnimi nivoji. Rezul-
tati se predvidoma uporabljajo v mešanih sistemim pri nizkih energijah. Dvonivojski
model opisuje večino lastnosti večjih matrik. Predlagani 2- in N -nivojski porazdelitvi
po razmikih med sosednjimi nivoji imata dva parametra, BR parameter ρ, ki opisuje
klasični fazni prostor, in sklopitveni parameter σ. Isti postopek naredimo tudi v
primeru sklopitve vseh nivojev z vsemi.
Nadalje eksperimentalno in numerično študiramo gobasti biljard, ki ga je vpeljal
Bunimovich, posebej porazdelitev po razmikih med sosednjimi nivoji, porazdelitev
izognjenih križanj in koeficiente dinamičnega tuneliranja. Gobasti biljard ima to
lepo lastnost, da je fazni prostor ostro ločen v natanko eno regularno in eno
kaotično komponento. S spreminjanjem ustreznega parametra razvrstimo stanja v
regularna in kaotična brez računanja Wignerjevih funkcij. Najprej se osredotočimo
na porazdelitev po razmikih med sesednjimi nivoji z namenom testiranja modela
naključnih matrik, potem pa na izognjena križanja med regularnimi in kaotičnimi
stanji. Razcep v izognjenem križanju nam pove o velikosti dinamičnega tuneliranja
in posledično o stabilnosti določenega regularnega stanja. Večji razcep pomeni večje
tuneliranje. Z upoštevanjem Fermijevega zlatega pravila smo dobili koeficiente di-
namičnega tuneliranja za vsako regularno stanje gobastega biljarda. Primerjamo
rezultate mikrovalovnega ekperimenta in numeričega računa z razširjeno metodo in-
tegriranja po robu z že obstoječo analitično teorijo Ketzmericka in sodelavcev. Našli
smo zelo dobro ujemanje v dosegljivem območju nizkih energij.
Nazadnje obravnavamo ansamble realnih simetričnih matrik dimenzij N = 2 do
N = ∞ za različne porazdelitve matričnih elementov. Za N = 2 imamo eksaktne
analitične rezultate Grossmanna in Robnika, medtem ko imamo za N = ∞ teorijo
Hackenbroicha in Weidenmüllerja (HW). Ta pravi, da so lokalne fluktuacije spektrov
natančno popisane z GOE, če je limitna porazdelitev lastnih vrednosti gladka in
omejena na končen interval. Numerično pokažemo, da je tak prehod k univerzalnemu
obnašanju, ki ga napoveduje HW, zelo hiter in da se dejansko ne zgodi, če ena ali
druga predpostavka v HW ni izpoljena. To testiramo za škatlasto, eksponentno,
Cauchy-Lorentzovo in singularno (potenčna pomnožimo z eksponentno) porazdelitev
matričnih elementov.
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PACS števila:

02.50.Cw Verjetnostna teorija
02.70.Pt Metoda integriranja po robu
03.65.Sq Semiklasične teorije in aplikacije v kvantni mehaniki
03.65.Xp Tuneliranje, čas prečenja, kvantna Zeno dinamika
05.45.-a Nelinearna dinamika in nelinearni dinamični sistemi
05.45.Mt Kvantni kaos; semiklasične metode
05.45.Pq Numerične simulacije kaotičnih sistemov

Ključne besede: dinamično tuneliranje, regularno, kaotično, sistem mešanega tipa,
energijski nivoji, porazdelitev po razmikih med sosednjimi nivoji, dinamika stanj,
gobasti biljard, izognjena križanja, koeficienti tuneliranja, teorija naključnih matrik,
mikrovalovni eksperimenti
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Chapter 1

Introduction

In classical mechanics there exist two types of motion - regular and chaotic. In an
integrable system regular motion is stable quasiperiodic or periodic and takes place on
the N -dimensional invariant tori in the classical phase space of 2N dimensions where
N is the number of degrees of freedom. Since chaotic orbits are characterised by the
exponential divergence of nearby orbits, they have positive Lyapunov exponents. The K-
system is characterised by the chaotic region in the classical phase space with positive
Lyapunov exponents and with a positive Liouville measure. If the system is ergodic as
well, i.e. if almost any orbit can visit an arbitrarily small neighbourhood of any other
point on the (2N − 1)-dimensional energy surface, we say that the system is fully chaotic.
However, in nature the generic (or typical) systems are neither integrable (regular) nor
fully chaotic but they are of mixed type. Their motion is regular on invariant tori for
certain initial conditions and chaotic for complementary ones.

1.1 Billiards

The difference between the two types of motion can easily be demonstrated in billiards.
The 2D closed billiard system is characterised by a free-point particle elastically bouncing
off the boundary of a given Euclidean domain. The 2D billiard is integrable, if apart from
the energy there exists another constant of motion. The invariant tori on the surface of
section appear as one dimensional. All the orbits are stable. The only billiards, proven
to be integrable, are the circular, the rectangular and the elliptic one. In the circular
billiard there appears the angular momentum as the additional constant of motion. Thus,
the invariant tori in this case can be either rational (resonant) or not, depending on the
reflection angle selected. If the reflection angle is a rational multiple of π, the torus is
resonant and all the orbits on this torus are periodic. If, on the other hand, the reflection
angle is an irrational multiple of π, the orbits on the torus are quasiperiodic whereas the
motion is ergodic on this torus. In the case of the semicircular billiard the second constant
of motion is the absolute value of the angular momentum. In the rectangular billiard the
constants of motion are the absolute values of momenta parallel to the walls of the billiard
in question. The phase portrait of the elliptic billiard reminds one of the mathematical
pendulum. Apart from the total energy the constant of motion is the product of the
angular momenta about both foci of the ellipse.

On the other hand the Sinai billiard was the first proven fully chaotic billiard (Sinai,
1970), whose disk (a circular obstacle) is located in the rectangle. At that time it was
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believed that the exponential divergence of orbits can only be achieved with the help of
a non-convex boundary in a billiard. A few years later L. A. Bunimovich invented the
stadium billiard (Bunimovich, 1974) and proved, that it is ergodic, that it has a mixing
property and that it is a K system, which means that it is fully chaotic. The next fully
chaotic billiard is the cardioid billiard whose chaoticity is proven in (Markarian, 1993). So
far these are the only three rigourously proven chaotic billiards. At this point one should
mention the family of Robnik billiards as an example of ’practically’ chaotic billiards
(Robnik, 1983) for λ ≥ 1

4
. This billiard family is described by the complex conformal map

of the unit circle, w = z + λz2 which determines the boundary (for λ = 1
2

one gets the
cardioid billiard). 1 Another interesting example of chaotic billiards comes from the family
of Africa billiards (Berry and Robnik, 1986) for λ ≥ 0.2, defined as a conformal map of
the circle as well: w = z + λz2 + λz3ei π

3 .
The most frequent mixed-type systems are KAM systems in which fractal structures

of the islands of stability coexist with the chaotic sea. The Robnik and the Africa billiards
are KAM systems which are characterised by a continuous transition from an integrable
to a fully chaotic billiard with the continuously changing (shape) parameter λ. There are
other examples of KAM billiards, from cosine billiard to annular billiard (Bohigas et al.,
1993a), etc. However there exists a mixed-type billiard which does not share the complex
structures of many regular islands surrounded by the chaotic sea. This billiard, which is
characterised by a sharply divided phase space, is called the mushroom billiard. It was in-
vented by L. A. Bunimovich and it was classically treated in (Bunimovich, 2001; Altmann
et al., 2005, 2006; Dietz et al., 2006; Tanaka and Shudo, 2006). This thesis discusses the
characteristics of the mushroom billiard and its quantum mechanical counterpart.

1.2 Quantum chaos

In quantum mechanics classical behaviour is related to various quantum objects, from
wave functions to energy spectra of the corresponding counterparts, etc. The field in
physics, which deals with chaos in quantum mechanics, is termed quantum chaos. One
should emphasize the fact that in quantum mechanics chaos does not exist in the time
domain since the Schrödinger equation is a linear equation. Therefore, quantum chaos was
originally meant to be a study of quantum mechanics of classically chaotic systems. Some
recent developments have proved that certain quantum integrable or chaotic systems, such
as the spin chains which are presented in (Prosen, 1998b; Pineda and Prosen, 2007), are
unique and do not have a classical limit. There arises a question of criteria distinguishing
between regular and chaotic quantum systems. Apart from the Wigner or the Husimi
functions of eigenstates lying in the quantum phase space, the most significant aspects
are the statistical properties of the spectra of bound (Hamiltonian or Floquet) systems.
These statistical properties are universal. The energy levels of integrable quantum systems
are uncorrelated and possess the Poissonian statistics whereas in chaotic systems the
neighbouring levels repel each other, which results in energy level repulsion.

On the basis of the so-called Principle of Uniform Semiclassical Condensation (PUSC)
of Wigner functions in the true semiclassical limit one can identify two types of eigen-
states in mixed-type quantum systems, i.e. those of the regular and the chaotic type

1The so-called Pascal snail curve (i.e. Pascal limaçon) only resembles the Robnik billiard, but it is not
the same as this billiard.
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(Percival, 1973), depending on where they ’live’ in the quantum phase space. But in order
to achieve such a clear classification and uniform extendedness (no localisation) of the
Wigner functions, one should really be in the semiclassical limit: otherwise, there can
emerge the so-called hierarchial states (Ketzmerick et al., 2000), ’living’ in the chaotic sea
in the vicinity of the hierarchy of the regular islands. This can happen if the value of the
effective Planck constant is not small enough.

Due to the formal similarity of the Schrödinger equation to other wave equations of
physics the concept of quantum chaos can be generalized to the field of wave chaos. In
these systems one may observe many similarities between wave mechanics and a suitably
defined ’classical’ mechanics - ray dynamics. One should also study the morphology of
the eigenfunctions and eigenmodes of the underlying wave equation. In Napoleon times
there existed certain pictures named after E. F. Chladni (1756-1827). Chladni pictures
(Stöckmann, 1999) show the nodal lines of the first randomly-distributed dust on vibrating
glass or metal plates; this phenomenon is shown qualitatively. Regular nodal patterns are
typical for the integrable systems whereas the random ones appear in the chaotic systems
of the underlying ray dynamics. To obtain more precise results people have used water
surface waves, vibrating blocks, ultrasonic fields in water-filled cavities and microwave
cavities. The Schrödinger equation of the 2D billiard system and the wave equation, which
describes the electrical field of the low frequency modes in a thin microwave resonator of
the same planar shape, are equivalent from the point of view of mathematical physics. The
great advantage of microwave cavities is in their size which is in the range of about one
meter, compared to the real implementations of quantum billiards (i.e. quantum dots,
quantum wells, quantum corrals) with the range of µm or even nm (for a review see
(Stöckmann, 1999)). In the last fifteen years microwave cavities have become the main
experimental research tool in the field of quantum chaos. In this research the cavity is
mushroom billiard-shaped.

1.3 Dynamical tunneling

Classically, individual regions of regular and chaotic motion are separated from one
other. However, from the perpective of quantum mechanics they are coupled by tunnel-
ing. This process has been termed ’dynamical tunneling’ (Davis and Heller, 1981) since it
occurs across a dynamically generated barrier in phase space. The dynamical tunneling
effect differs greatly from the majority of the familiar cases of quantum mechanical tunnel-
ing which involve tunneling through a classically forbidden region between two separate
regions of coordinate space. The EBK (Einstein-Brillouin-Keller) quantized tori do not
intersect in phase space, but their projections onto the coordinate space usually overlap,
so there is no spatial separation of the two wavefunctions participating in the dynamical
tunneling process. One can remark that if one treats the problem strictly mathematically,
one can notice that such dynamically forbidden regions are connected by complex classical
trajectories. Of course, complex algebra is needed in this case. Although the tunneling
phenomena have been systematically studied in the context of quantum chaos for more
than twenty years, we still have not managed to explain them completely.

Dynamical tunneling was first discussed in (Davis and Heller, 1981) where the authors
treated the 2D anharmonic model potential and its eigenstates and they also tried to
explain certain splittings in the vibrational states of molecules. They also showed that
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symmetry breaking increases the splittings of the doublets. A few years later some impor-
tant general considerations of the tunneling between the tori in phase space (Wilkinson,
1986) and the narrowly avoided crossings (Wilkinson, 1987) have been presented. Dy-
namical tunneling between symmetry related regular regions has been studied in many
systems: in a driven anharmonic oscillator and in a driven double well oscillator (Lin
and Ballentine, 1990, 1992), in coupled quartic oscillators (Bohigas et al., 1990, 1993b;
Tomsovic and Ullmo, 1994; Leyvraz and Ullmo, 1996), in annular billiard (Doron and
Frischat, 1995; Frischat and Doron, 1998; Dembowski et al., 2000), in certain experiments
with cold atoms (Steck et al., 2001; Hensinger et al., 2001; Mouchet et al., 2001), in the
time periodic kicked Harper system (Brodier et al., 2001, 2002; Eltschka and Schlagheck,
2005), etc. In such systems there exist the so-called quasi-modes (Arnold, 1989) lying on
the symmetric tori in phase space.

Quasi-modes are wavefunctions which are constructed on a single torus. These func-
tions fulfill the Schrödinger equation and would degenerate if tunneling was not present.
But they are not eigenstates because they do not fulfill symmetry claims, ’real’ eigenstates
are constructed via the linear combination of the quasi-modes lying on symmetry related
tori. Therefore, if a quasi-mode, which is constructed on one of the tori, develops for a long
period of time, it eventually evolves into its symmetric partner whereas its classical tra-
jectories forever remain trapped on a single torus. While quasi-modes also emerge within
the familiar 1D tunneling across the barrier, they are often surrounded by the chaotic
sea in the context of dynamical tunneling. Thus, the presence of chaotic states increases
the tunneling rates and causes an extreme sensitivity to external parameter variation.
This process is called chaos-assisted tunneling (CAT). The tunneling, thus, annihilates
the degeneracies and creates the splittings. Energy splitting is semiclassically given by

∆E = A exp(−S/~) = A exp

(
−1

~

∫

B

pdq

)
, (1.1)

where A is a constant associated with the energy of a quasi-mode, which weakly and
mostly algebraically depends on ~, whereas S is the classical action for the trajectories
from the ’forbidden’ region along the path B. A special role in this semiclassical treatment
is performed by the tori, fulfilling the EBK quantisation conditions, where the action
integrals calculated for the N independent closed paths Cj on the torus are given by

Jj =

∮

Cj

pdq = 2π~
(
nj +

νj

4

)
. (1.2)

Here nj is the quantum number, j = 1 . . . N where N is the number of degrees of freedom
of the system whereas νj is the Maslov index which counts the number of caustics encoun-
tered on the path Cj. Thus, in the far semiclassical limit, where the actions are very large,
the level splittings decrease, which reduces the tunneling between the two symmetric EBK
levels (1.2) according to (1.1).

For the sake of clarity one should emphasise that without any chaos involved, there
always exists a direct tunneling between symmetry related quasi-modes. But if chaos
is present, tunneling is usually much stronger and this is the reason why CAT is so
important. We can see this clearly if the rate of chaoticity is treated as a perturbation, as
it can be observed in the case of the model of two coupled quartic oscillators in (Tomsovic
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and Ullmo, 1994). Direct tunneling is preferred for smaller couplings whereas CAT is
preferred in the case of larger couplings. In this process, which can be best described
as a 3-level mechanism, two regular states (the doublet) and one chaotic state (which
is not part of the doublet) function as the media in the neigbourhood of the two quasi-
degeneracies. The reason why CAT is often preferred to direct tunneling lies in the fact
that chaotic orbits from the chaotic region between two tori connect these tori classically
and, thus, this type of classical transport supports quantum tunneling.

Tunneling rates also increase in the case of resonance-assisted tunneling. This type of
tunneling occurs if in regular islands the complex KAM structure of resonant tori becomes
important (Brodier et al., 2001, 2002; Eltschka and Schlagheck, 2005).

Dynamical tunneling has also been studied from a single regular region to the chaotic
sea: in the kicked rotor (Hanson et al., 1984), in the kicked rotors with complex classical
dynamics (Shudo and Ikeda, 1995) and via localisation suppression of the tunneling effects
(Ishikawa et al., 2007), in the ionisation of hydrogen atoms in polarized microwaves (Za-
krzewski et al., 1998), during the decay of quantum accelerator modes (Sheinman et al.,
2006), in electronic quantum transport through nanowires (Feist et al., 2006), etc. Tunnel-
ing is essential whenever two eigenvalues, one from the chaotic and one from the regular
region, are degenerate. Due to tunneling there emerges a quantum-mechanical mixture
of the respective eigenfunctions ψC and ψR, so the degeneracy vanishes. This type of dy-
namical tunneling is widely discussed in the present thesis, but also CAT emerges in a
slightly different way from the one presented above.

Unlike the 1D tunneling through a barrier, it is extremely difficult to quantitatively
predict dynamical tunneling. Results have only been found for specific systems or system
classes so far, most recently for 2D quantum maps. The latter has been studied with the
help of a fictitious integrable system (Bäcker et al., 2008b). However, a precise knowledge
of tunneling rates is of great importance. Apart from our spectral statistics model in
systems characterised by the mixed phase space recently studied examples are the eigen-
states affected by the flooding of regular islands (Bäcker et al., 2005, 2007) and emission
properties of optical micro-cavities (Wiersig and Hentschel, 2008). So far the dynamical
tunneling rates have not been fully quantitatively predicted since they require fitting by
the factor of about 6 in the case of the annular billiard (Frischat and Doron, 1998) and by
the factor of about 100 in the case of the mushroom billiard (Barnett and Betcke, 2007).

In Chap. 3 we have presented a combined experimental, theoretical, and numerical
investigation into the tunneling rates in mushroom billiards. The tunneling rates were
calculated with the help of Fermi’s golden rule of time perturbation theory applying to
the avoided crossings between the regular and the chaotic eigenstates. The most impor-
tant results have been published in (Bäcker et al., 2008a). Although the theoretical and
one of the numerical parts of the research have not been provided by the author of the
present thesis they are also briefly presented and discussed for the sake of completeness.
Another significant topic is avoided-crossing distribution for the mushroom billiard (which
is presented in Chap. 3).

1.4 Random matrix theory and level statistics

Random matrix theory (RMT) (Mehta, 1991; Guhr et al., 1998) has important appli-
cations in many branches of physics such as elementary particle physics, nuclear physics,
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atomic physics, molecular physics, solid state physics, and, especially, in quantum wells
(Narimanov and Stone, 1999). In quantum chaos RMT has proved to be an excellent
model for the statistical properties of energy spectra of chaotic Hamiltonian systems. It
goes back to the original paper (Casati et al., 1980) and to the classic paper (Bohigas et al.,
1984) where the conjecture about the universality of RMT for classically fully chaotic sys-
tems was formulated. The conjecture has been theoretically supported by the dynamical
and the semiclassical theory of spectral rigidity (Berry, 1985). The next important step
beyond this approximation has been achieved in (Sieber and Richter, 2001), followed by
the development of an expanded semiclassical theory (Müller et al., 2004; Heusler et al.,
2004; Müller et al., 2004).

Classically integrable quantum systems show the Poissonian statistics, which is well
known and corroborated by numerous analytical and numerical works (Berry and Tabor,
1977; Robnik and Veble, 1998). In chaotic systems spectral fluctuations obey the statistics
of the Gaussian orthogonal (GOE), the unitary (GUE) or the simplectic (GSE) ensembles
(depending on the existence of antiunitary symmetry (Robnik, 1986) and on an internal
degree of freedom - spin). Usually the well known Wigner surmise, Eq. (2.4), well describes
the level spacing distribution for the infinite dimensional GOE level spacing distribution.
For higher-order level spacing distributions of chaotic systems useful approximate closed
form formulae have been derived in (Abul-Magd and Simbel, 2000).

The spectral statistics in mixed-type systems rests upon the PUSC of the Wigner
functions, upon the theoretical foundations in (Berry, 1977), and upon the theory of su-
perposition of the so-called E(k, L) statistics (Berry and Robnik, 1984). E(k, L) statistics
is the probability of having exactly k levels in an interval of the length L after unfolding,
where the level spacing distribution P (S) is the second derivative of the gap probability
E(0, S). The theory states that the E(k, L) statistics factorise in the strict semiclassical
limit of a sufficiently small effective Planck constant ~eff , where the factorisation is a di-
rect consequence of the statistical independence of the sequences of the regular and the
irregular levels.

The Berry-Robnik (BR) theory and its resulting formulae have been verified in many
different systems in the asymptotic semiclassical regime: in the ’far’ semiclassical limit of
quantised standard map on the torus (Prosen and Robnik, 1994a,b), in the periodically
pulsed spin system (Jacquod and Amiet, 1995), in the 2D semiseparable oscillator (Prosen,
1995), in the quartic generic KAM billiard with the border described by r(φ) = 1 +
a cos(4φ) with the simple phase space structures reflected in the lower transition point
(Prosen, 1998a), in the E(k, L) statistics for the standard map on the torus and the quartic
billiard (Prosen and Robnik, 1999), in the E(k, L) statistics with a generalised Wigner
surmise tested on the Hénon-Hiles potential (Abul-Magd and Simbel, 2000), in the system
with a sharply divided phase space of kicked-rotor-type map in the ’near’ semiclassical
regime (Malovrh and Prosen, 2002), in the Andreev billiard (Kaufmann et al., 2006), etc.
There have been a number of attempts in literature to describe correctly the level statistics
in the mixed-type systems and all these approaches interpolate between the RMT and the
Poissonian statistics, but, unlike the BR, they are not based on sound physical grounds,
and they have not been confirmed in the semiclassical limit. For a review see Chapter
3.2.2 of (Stöckmann, 1999).

If the semiclassical limit is not reached, one observes deviations from the BR behaviour
which emerge due to both the localisation effects and the tunneling between the regular
and the chaotic regions in the quantum phase space of the Wigner functions of the eigen-
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states. This results in the linear behaviour of P (S) at small S, as predicted qualitatively
in (Berry and Robnik, 1984), and in the fractional power law level repulsion (which was
first presented in (Prosen and Robnik, 1994b)) for S between the linear level repulsion
regime and the BR tail. Presumably, the main reason for the fractional power law level
repulsion lies in the localisation effects (for more details see (Izrailev, 1989, 1990)).

Here, we would like to offer a new random matrix model in order to generalise the BR
level spacing distribution by including the tunneling effects between eigenstates. We will
not consider localisation effects, except for the special case where ρ can be replaced by
some effective ρeff ; for example in the case of flooding (Bäcker et al., 2005, 2007) or in the
case of hierarchical states (Ketzmerick et al., 2000). So, we will assume that the PUSC is
fulfilled and the level splittings are affected by tunneling mechanisms which couple two
regular and two chaotic levels and also regular-chaotic levels through the chaotic levels
functioning as the intermediary. Thus, our purpose is to mimic tunneling by means of
a two-level random matrix model where the non-diagonal elements correspond to the
tunneling matrix elements.

Following some recent advances in the non-Gaussian and the non-normal random
matrices in (Grossmann and Robnik, 2007a,b) we will try to verify to what extent the
properties of the matrix ensemble remain structurally stable, i. e. robust, against certain
variations of the model properties such as the statistics of the matrix elements. Finally, we
will use the theoretical results to describe the level spacing distribution of the eigenvalues
of a various configurations of the mushroom billiard, both on the basis of the experimental
data for the microwave cavities as well as on the basis of the numerical data obtained by
the expanded boundary integral method.

This work, published in (Vidmar et al., 2007), is presented in Chap. 2 and, partially,
in Chap. 3 of the present thesis.

1.5 Non-Gaussian RMT

The last part (Chap. 4) of the thesis, also presented in (Robnik et al., 2007), contains
the eigenvalue calculations for different random matrix ensembles where the distribution
of the matrix elements is non-Gaussian. The importance of the Gaussian ensembles of
the RMT has been corroborated by theory in (Hackenbroich and Weidenmüller, 1995),
where the authors have considered other random matrix ensembles than the Gaussian
ones (GOE, GUE and GSE). They have proved (using the supersymmetric techniques)
that the local spectral fluctuations (after spectral unfolding) obey universal statistical
laws described by the Gaussian ensembles in the limit of the infinite dimension N →∞,
independent of the distribution of the matrix elements, provided that two conditions are
fulfilled: (i) the energy level distribution function in this limit should be smooth, and (ii)
it should be confined to a finite interval. Thus, this important finding is some kind of a
central limit theorem for all the spectral fluctuations of random matrices.

Usually the renowned Wigner formula (Mehta, 1991) well describes the infinite dimen-
sional GOE (or also GUE and GSE) level spacing distribution. Recently in (Grossmann
and Robnik, 2007a) the authors have also studied 2D non-normal Gaussian matrices (with
asymmetric variance) and a number of non-Gaussian ensembles of 2D real symmetric ran-
dom matrices in (Grossmann and Robnik, 2007b) where explicit analytic results for level
spacing distribution have been obtained. It has been shown there that the level repulsion
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is a very robust phenomenon, which only depends on the behaviour of the distribution of
the matrix elements, i.e. on its regularity at zero value. If the distribution functions of the
diagonal and the off-diagonal matrix elements are regular and nonzero at zero value, there
always appears the linear level repulsion. If the distribution functions in question are reg-
ular and at least one of them is zero at zero value, then the level repulsion is quadratic. If
the distribution of the matrix elements is singular at zero value (e.g. an integrable power
law times exponential), there appears the fractional power law level repulsion (Prosen and
Robnik, 1994b; Prosen, 1995). The Cauchy-Lorentz distribution is also interesting, since
it does not contain a finite first moment and produces P (S) which is not normalisable to
the unit first moment (mean level spacings).

It is straightforward, interesting and important to generalise these analytic 2D results
to the higher dimensional case N > 2 where analytical results are practically impossi-
ble. Our extensive numerical calculations have shown that for regular matrix ensembles
there applies the HW theorem. In the last two singular cases (mentioned earlier) all the
assumptions from HW theory are not fulfilled, i.e. condition (ii) is not realised and, due
to this, the systems strongly violate the GOE behaviour permitted by the HW theorem
which is presented in Chap. 4.
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Chapter 2

The distorted Berry-Robnik level
spacing distribution

2.1 The Berry-Robnik level spacing distribution

Gap probability E(0, S) is the probability that there are no levels on the interval of
the length S after spectral unfolding. The level spacing distribution P (S) for an unfolded
spectrum is equal to the second derivative of gap probability: P (S) = d2E(0, S)/dS2.
Gap probability factorises upon a statistically independent superposition of independent
level sequences. From here onwards gap probability is denoted by E(S). The basic finding
in the Berry-Robnik (BR) picture (Berry and Robnik, 1984) is that the E(S) for the
total spectrum of a mixed-type system is the product of all the gap probabilities whose
arguments must be weighted by the classical parameters ρi measuring the relative volume
of the phase space of the regular component (i = 1), of the largest chaotic component
i = 2, of the next largest chaotic component (i = 3), etc. We have focused on the simple
(and usually sufficient) approximation of only two components, i.e. the regular component
i = 1, with ρ1 ≡ ρ, and the chaotic component one i = 2, with ρ2 = 1 − ρ, so that
ρ1+ρ2 = 1. Thus, gap probability for the entire spectrum equals E(S) = E1(ρ1S)E2(ρ2S).
The BR level spacing distribution can be presented by

PBR(S) =
d2

dS2
E1(ρ1S) E2(ρ2S). (2.1)

Here we have introduced two quantities related to E(S). The first one, F (S), indicates
the probability that the level spacing is larger than S. The second one is the cumulative
level spacing distribution which equals: W (S) =

∫ S

0
P (x)dx. The relations between two

quantities can be represented as: F (S) = −dE/dS = 1−W (S). Now the BR level spacing
distribution (2.1) can be rewritten thus

PBR(S) = ρ2
1P1E2 + 2ρ1ρ2F1F2 + ρ2

2E1P2 , (2.2)

where the argument of each quantity with the index i equals xi = ρiS, i = 1, 2. For the
chaotic case we have to apply the GOE (GUE, GSE) results for infinite matrices, for which
there exist no closed form expressions. For the analytical case the Wigner distribution,
which is an exact GOE result for the 2× 2 matrices (while the GUE and the GSE are not
treated here), is often used as an excellent approximation. The discrepancy between the
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Wigner distribution and the exact result for the infinite matrices is only up to 2%, so the
Wigner approximation is suitable for many practical and, especially, for many analytical
purposes. In the regular case, i = 1, we will use the Poissonian statistics (Berry and
Tabor, 1977)

E1(x1) = F1(x1) = P1(x1) = e−x1 , (2.3)

whereas in the chaotic case, i = 2, we will employ the Wigner (2D GOE) approximation;
see (Mehta, 1991).

P2(x2) =
πx2

2
exp

(
−πx2

2

4

)
, F2(x2) = 1−W2(x2) = exp

(
−πx2

2

4

)
, (2.4)

and

E2(x2) = 1− erf

(√
πx2

2

)
= erfc

(√
πx2

2

)
, (2.5)

where erf(x) = 2√
π

∫ x

0
e−u2

du is the error integral whereas erfc(x) = 1− erf(x) represents

its complement. With (2.3) - (2.5) the BR level spacing distribution function (2.2) can be
written as (Berry and Robnik, 1984)

PBR(S) = e−ρ1S

{
e−

πρ2
2S2

4

(
2ρ1ρ2 +

πρ3
2S

2

)
+ ρ2

1erfc

(√
πρ2S

2

)}
. (2.6)

The PBR and its first moment are normalised. The second moment 〈S2〉 = 2
∫∞

0
E(S) dS

can sometimes be useful as well. For the BR level spacing distribution the second moment
can be expressed in a closed form

〈S2〉BR =
2

ρ1

{
1− e

ρ2
1

πρ2
2 erfc

(
ρ1√
πρ2

)}
. (2.7)

In case of the Poissonian statistics (ρ1 = 1, ρ2 = 0) 〈S2〉 equals 2, while in the case of the
Wigner distribution (ρ1 = 0, ρ2 = 1) 〈S2〉 equals 4/π.

2.2 General distortion of the general level spacing

distribution

Let us consider 2 × 2 real symmetric matrices A = (Aij) where i, j = 1 or 2. Only
the difference between the eigenvalues is of relevance in the present context. Without any
loss of generality (Grossmann and Robnik, 2007a) one may assume that the trace of A
vanishes

A =

(
a b
b −a

)
, (2.8)

where a and b are real. Thus, for the eigenvalues of A one obtains

λ1,2 = ±
√

a2 + b2 , (2.9)
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where the difference λ1 − λ2 between the both eigenvalues equals 2
√

a2 + b2. Thus, the
level spacing distribution is given by

P (S) =

∫ +∞

−∞

∫ +∞

−∞
da db δ

(
S − 2

√
a2 + b2

)
ga(a) gb(b), (2.10)

where δ(x) is the Dirac delta function whereas ga(a) and gb(b) are the normalised proba-
bility densities of the diagonal and the off-diagonal matrix elements a and b respectively.
In the above construction P (S) is defined for S ≥ 0.

P (S) is automatically normalised,

∫ ∞

0

P (S) dS =

∫ +∞

−∞

∫ +∞

−∞

∫ ∞

0

da db dS δ
(
S − 2

√
a2 + b2

)
ga(a) gb(b)

=

∫ +∞

−∞
ga(a) da

∫ +∞

−∞
gb(b) db

∫ ∞

0

δ
(
S − 2

√
a2 + b2

)
dS

= 1 , (2.11)

but this is not true for its first moment; in general
∫∞
0

S P (S) dS 6= 1.
If we now introduce the polar coordinates

a = r cos ϕ, b = r sin ϕ (2.12)

where r ∈ [0,∞) and 0 ≤ ϕ ≤ 2π, we can do the r-integration and obtain the general
formula (Grossmann and Robnik, 2007b)

P (S) =
S

4

∫ 2π

0

dϕ ga

(
S

2
cos ϕ

)
gb

(
S

2
sin ϕ

)
. (2.13)

If ga(a) and gb(b) are regular and nonzero at a, b = 0, then the integrand at S = 0 is just
a nonzero number equal to ga(0)gb(0). For small S we then obtain

P (S) ≈ πS

2
ga(0)gb(0). (2.14)

Thus, in cases where both ga(a) and gb(b) are regular and non-zero at a, b = 0, there
appears the linear level repulsion. It is very robust since it only depends on the regular-
ity properties of the distribution functions of the diagonal and the off-diagonal matrix
elements at zero value. For the regular distribution functions ga(a), gb(b) higher-order cor-
rections in S to this formula can be obtained from the Taylor expansions of ga(a) and
gb(b) around a, b = 0. If either ga(a) or gb(b) is zero at a, b = 0, the level repulsion is no
longer linear but of a higher order, which depends on the behaviour of ga(a) and gb(b) at
a, b = 0. One also notices that the level repulsion is not linear in S if ga(0) and gb(0) do
not exist, provided that the distributions ga(a) and gb(b) are singular at a, b = 0. In the
case of the fractional power singularity (Grossmann and Robnik, 2007b) one obtains the
fractional power law level repulsion, which was discovered and studied in detail in (Prosen
and Robnik, 1993a,b) where the repulsion exponent is between 0 and 1. At this point we
conclude the discussion about the general level spacing distribution and its distortion and
continue with it in Chap. 4. Now, the thesis continues by applying the BR distribution as
the distribution ga(a).
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2.3 Gaussian distortion of the BR distribution

Eq. (2.13) can be applied to arbitrary distributions of the diagonal and the off-diagonal
matrix elements of matrix A. We have assumed that in the absence of the off-diagonal
elements level spacing distribution of A is given by Eq. (2.6). PBR(S) is normalised,
〈1〉BR = 1 with the unit mean level spacing, 〈S〉BR = 1. If there are no off-diagonal
elements, this means b = 0 or that, equivalently, gb(b) = δ(b). By using Eq. (2.8) we get

PBR(S) =

∫ +∞

−∞
da δ (S − 2 |a|) ga(a)

=
1

2

∫ +∞

−∞
dt δ (S − |t|) ga

(
t

2

)

=
1

2

[∫ +∞

0

dt δ(t− S)ga

(
t

2

)
+

∫ 0

−∞
dt δ(t + S)ga

(
t

2

)]

=
1

2

[
ga

(
S

2

)
+ ga

(
−S

2

)]

= ga

(
S

2

)
, (2.15)

where ga was assumed to be an even function of its argument. Eq. (2.15) defines the ga(a)
distribution function.

In the presence of the off-diagonal matrix elements b the BR level spacing distribution
is distorted. If we first assume that the off-diagonal matrix elements exist between all the
pairs of eigenstates, then there appear the so-called all-to-all level couplings. An example
of this can be found in the spectra obtained in a microwave experiment due to the presence
of an antenna (Šeba et al., 1997). 1 Thus, in this context we can also use the term antenna-
distorted distribution. For the sake of simplicity we will follow the usual practice in RMT
and assume the normalised Gaussian distribution for the off-diagonal elements b, which
has already been suggested in (Tomsovic and Ullmo, 1994)

gb(b) =
1

σ
√

2π
exp

(
− b2

2σ2

)
. (2.16)

The standard deviation σ can be considered as a measure for the strength of the phys-
ical coupling between the coupled states. If σ = 0 we get gb(b) = δ(b), which corresponds
to vanishing coupling. At nonzero values of σ there appear nonzero bs functioning as level
coupling. Eventually (see Sec. 2.5) it turns out that the 2D theory, parameterized by the
value of σ, is in very good agreement with the numerical simulations of the level spacing
distributions for large matrices, provided that σ is not too large.

At this point one should comment on the choice of the statistics of the off-diagonal el-
ements. In the case of arbitrary non-Gaussian N -dimensional random matrix ensembles it
has been shown in (Hackenbroich and Weidenmüller, 1995), using Efetov’s supersymmet-
ric techniques, that the RMT statistics of the local spectral fluctuations is universal for all
of them, provided that the limiting level distribution N →∞ is smooth and confined to

1All the eigenvalues also acquire imaginary parts due to the presence of the antenna, which is not
considered in this thesis.
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a finite interval. In general, this universal behaviour enables one to choose the Gaussian
matrix element distributions in any further large matrix simulations. But, our ensemble
is different because on the diagonal there appear the BR distribution and the off-diagonal
elements are obtained from some other general ensemble. Intuitively, one expects that the
final result will mainly depend only on the standard deviation σ of the off-diagonal matrix
elements. This is true to some extent; nevertheless, there appear some deviations from
the Gaussian case if the off-diagonal matrix element distribution is replaced by the expo-
nential or the box (the uniform) distribution with the same σ. However, the 2D analytic
theory is always in agreement with the higher dimensional counterpart (with the same
statistical model), so that the results do not actually depend on the size of the matrix.
This is discussed in more detail in Sec. 2.7 where we show the results of our analytic and
numerical studies.

Now, we will continue with Eq. (2.16) where we have chosen the Gaussian distribution
of the off-diagonal matrix elements. We should emphasise that the variance σ2 represents
the strength of the all-to-all coupling between the eigenstates. Using the fact that both
ga and gb are even functions, the resulting level spacing distribution is represented as

PA
DBR(S) =

S

σ
√

2π

∫ π/2

0

dϕ PBR (S cos ϕ) exp

(
−S2 sin2 ϕ

8σ2

)
, (2.17)

which was termed as the antenna-distorted Berry-Robnik (DBR) distribution. One can
easily verify that for σ → 0 one returns to PA

DBR = PBR, as expected. Since we have
not used special properties of the BR distribution so far, this formula is valid for any
prescribed level spacing distribution function P0(S) instead of PBR(S). Moreover, other
gbs can be used instead of (2.16)(see Sec. 2.7). As known (see Sec. 2.1) the PBR(S) has one
parameter ρ = ρ1 which measures the fraction of the regular part of the classical phase
space.

In Sec. 2.4 we will evaluate the antenna-distorted level spacing distribution by inserting
the explicit form of the BR distribution function PBR(S) into (2.17). At this point we will
briefly discuss the main features of the new distribution function PA

DBR(S). At small values
of S, provided that PBR(0) 6= 0, the level repulsion is linear

PA
DBR(S) ≈ S

√
πPBR(0)

2σ
√

2
. (2.18)

The steepness of the linear rise is inversely proportional to σ. Thus, the smaller the
coupling effects, modelled by the off-diagonal elements, the steeper PA

DBR(S) increases with
S due to the level coupling. The smaller σ, the closer gb(b) approaches the delta function,
i. e. the vanishing distortion. Concerning the completely chaotic systems PBR(S) reduces
to the GOE level spacing distribution (2.4) (reminding x ∝ S), so that PBR(0) = 0 and
PBR(S) is linear in S for small values of S. Consequently, in accordance with (2.18), the
PA

DBR(S) is quadratic in S for small S. The distorted level distance distribution, therefore,
has the quadratic level repulsion. The same quadratic level repulsion has been observed
in the experimental spectra from the Sinai microwave billiard (Šeba et al., 1997).

Let us stress that this quadratic level repulsion has nothing to do with the breaking of
the time reversal (antiunitary) symmetry in the system (Robnik and Berry, 1986) since
only time reversal symmetric systems are treated in this thesis.

At very large S/σ the main contribution to the integral (2.17) comes from ϕ ≈ 0. In
this case we can make the approximation sin ϕ ≈ ϕ, and cos ϕ ≈ 1, where the integration
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interval can be extended from 0 to ∞, thereby committing only an exponentially small
error. To the leading order in S/σ we find

PA
DBR(S) ≈ PBR(S), (2.19)

which means that PA
DBR(S) has precisely the BR tail. We will present more analytical

aspects of (2.17) in the following section.
The antenna-distorted BR distribution, which is defined by (2.17), is normalised by

construction whereas this is not true for the first moment. If we want to use it as the
model distribution for real, experimental spectra after the spectral unfolding, it has to
be normalised to the unit mean level spacing 〈S〉 = 1. This normalised distribution is
denoted by PAn

DBR(S). It can easily be obtained if one rescales the argument of PA
DBR(S)

by a factor BA,

PAn
DBR(S) = BA PA

DBR(BAS), with BA =

∫ ∞

0

x PA
DBR(x) dx. (2.20)

For each particular set of parameters (ρ, σ) we have numerically evaluated the integral
from Eq. (2.17) together with the integral from Eq. (2.20) in order to obtain the constant
BA and, thus, the resulting PAn

DBR(S), which is plotted in Figs. 2.1 - 2.6 with the full or-
ange curve. For the sake of reference each figure includes the BR level spacing distribution
(dashed line) with the same ρ, which shows the effect of level coupling very clearly. In
each picture one clearly sees the linear level repulsion and the later overshooting. Asymp-
totically, at large values of S, the distribution PAn

DBR(S) behaves like the stretched BR
distribution, which is more visible at larger σ.

The resulting BAs for the same set of parameters (ρ, σ) are shown in the third column
of Tab. 2.1. We see that BAs lie in the interval [1, 1.2] for the parameters selected. In
Sec. 2.5 we will compare the 2× 2 and the N ×N RMT results whereas in Sec. 3.5.3 the
RMT results will be compared with the spectra of real physical systems.

Let us now assume that there are tunneling processes which only couple the integrable
and the chaotic parts of the spectrum. In this case the off-diagonal matrix elements only
appear between the regular and the chaotic states and not between two regular or two
chaotic states. We should again emphasise that ρ1 and ρ2 = 1 − ρ1, where ρ1 and ρ2 are
the relative densities of the regular and the chaotic levels respectively. The number of
pairs of states participating in the tunneling equals 1 − ρ2

1 − ρ2
2 = 2 · ρ1 · ρ2 = 2ρ(1− ρ),

which is, in fact, the complement of the regular-regular and the chaotic-chaotic pairings.
The distribution function, presented by Eq. (2.16), has to be modified into

gb(b) = 2ρ(1− ρ)
1

σ
√

2π
exp

(
− b2

2σ2

)
+ [1− 2ρ(1− ρ)]δ(b). (2.21)

Here σ measures the tunneling strength between the regular and the chaotic states whereas
ρ measures the relative fraction of the available regular tunneling partners. The number of
pairs coupled by tunneling is described by 2 times the number of regular states times the
number of chaotic states. With this gb(b) we now obtain the resulting tunneling-distorted
Berry-Robnik distribution function

P T
DBR(S) = 2ρ(1− ρ)PA

DBR(S) + [1− 2ρ(1− ρ)]PBR(S). (2.22)
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ρ σ BA BT

0.10 0.05 1.0083 1.0015
0.25 0.05 1.0097 1.0036
0.35 0.05 1.0106 1.0048
0.50 0.05 1.0116 1.0058
0.65 0.05 1.0124 1.0057
0.75 0.05 1.0128 1.0048
0.90 0.05 1.0132 1.0024
0.10 0.10 1.0287 1.0052
0.25 0.10 1.0321 1.0120
0.35 0.10 1.0341 1.0155
0.50 0.10 1.0367 1.0184
0.65 0.10 1.0387 1.0176
0.75 0.10 1.0397 1.0149
0.90 0.10 1.0406 1.0073
0.10 0.15 1.0579 1.0104
0.25 0.15 1.0631 1.0237
0.35 0.15 1.0662 1.0301
0.50 0.15 1.0703 1.0351
0.65 0.15 1.0735 1.0334
0.75 0.15 1.0751 1.0281
0.90 0.15 1.0764 1.0138
0.10 0.20 1.0938 1.0169
0.25 0.20 1.1006 1.0377
0.35 0.20 1.1047 1.0476
0.50 0.20 1.1101 1.0550
0.65 0.20 1.1143 1.0520
0.75 0.20 1.1164 1.0437
0.90 0.20 1.1183 1.0213
0.10 0.30 1.1809 1.0326
0.25 0.30 1.1900 1.0712
0.35 0.30 1.1956 1.0890
0.50 0.30 1.2030 1.1015
0.65 0.30 1.2091 1.0951
0.75 0.30 1.2121 1.0796
0.90 0.30 1.2149 1.0387
0.50 0.01 1.0007 1.0004
0.50 0.02 1.0024 1.0012
0.50 0.03 1.0049 1.0024
0.50 0.04 1.0080 1.0040

Table 2.1: Numerically calculated normalisation constants BA and BT from Eqs. (2.20) and
(2.23) respectively, used for various parameters (ρ, σ).
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Figure 2.1: The antenna-distorted level spacing distribution (orange), Eq. (2.20), and the
tunneling-distorted level spacing distribution (red), Eq. (2.23), for the level coupling parameter
σ = 0.05 and for various values of the regular fraction ρ= 0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90.
The dashed (blue) curve represents the BR distribution which deviates noticeably. Both curves
(the red and the orange one as well) are calculated using the exact evaluation of the GOE gap
probability.
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Figure 2.2: The same as Fig. 2.1 for the level coupling parameter σ = 0.1 and for various values
of the regular fraction ρ=0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90.
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Figure 2.3: The same as Figs. 2.1 - 2.2 for the level coupling parameter σ = 0.15 and for various
values of the regular fraction ρ =0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90.
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Figure 2.4: The same as Figs. 2.1 - 2.3 for the level coupling parameter σ = 0.2 and for various
values of the regular fraction ρ =0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90.
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Figure 2.5: The same as Figs. 2.1 - 2.4 for the level coupling parameter σ = 0.3 and for various
values of the regular fraction ρ =0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90.
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Figure 2.6: The same as Figs. 2.1 - 2.5 presenting the regular fraction ρ = 0.5 and various values
of the level coupling parameter σ =0.01, 0.02, 0.03, 0.04.

This is, in fact, the weighted mean of the undistorted and the antenna-distorted (dis-
torted by the all-to-all couplings) BR distributions. For both limiting cases ρ = 0 and
ρ = 1 the original GOE and PE (the Poissonian ensemble) level spacing distributions
are recovered as expected. One should note that the tunneling-distorted BR distribution
(2.22) is normalised to unity whereas its first moment (i.e. the mean level spacing) is
not. In order to compare the theoretical level spacing distribution with the level spacing
distribution from the real data (experimental or numerical ones) the rescaling, or the
normalisation of the first moment to one, has to be performed exactly as suggested in
Eq. (2.20). In the end we obtain the final theoretical tunneling-distorted BR distribution
function by using the rescaling factor BT

P Tn
DBR(S) = BT P T

DBR(BT S), with BT =

∫ ∞

0

x P T
DBR(x) dx. (2.23)

The BT s for the set of parameters (ρ, σ) are shown in the forth column of Tab. 2.1. They
appear in the range [1, 1.1] for the parameters selected.

Again, for each set of parameters (ρ, σ) the integrals in Eqs. (2.23) and (2.17) are
evaluated numerically. The resulting P Tn

DBR(S)s are plotted in Figs. 2.1 - 2.6 with the full
red curve. One can clearly see that there are no examples of repulsion. Why does this hap-
pen? For mathematical reasons P Tn

DBR(S) is a superposition of PA
DBR(S) and PBR(S) where

the latter has this property. This feature is discussed in more detail in the Subsec. 2.5.2.
At larger values of S of the distribution P Tn

DBR(S) one also notices the overshooting and,
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asymptotically, P Tn
DBR(S) also behaves like the stretched BR distribution.

2.4 Analytical studies of the distorted Berry-Robnik

distribution

We will calculate analytical approximations for the antenna-distorted BR level spacing
distribution PA

DBR given in Eq. (2.17), i.e. for small S and for large S, by using (2.6) for
PBR in the general expression (2.17).

2.4.1 Small S behaviour of PA
DBR(S)

Let us expand PBR(x) from (2.6) into the Taylor series at small x,

PBR(x) =
∞∑

k=0

akx
k. (2.24)

Then PA
DBR(S) is given by the series, from Eqs. (2.17) and (2.24),

PA
DBR(S) =

S

σ
√

2π

∞∑

k=0

akS
k

∫ π/2

0

cosk ϕ exp

(
−S2 sin2 ϕ

8σ2

)
dϕ , (2.25)

which should be a good approximation for small S. The relevant integrals can be calculated
using the relation

∫ π/2

0

cosk ϕ exp
(−α sin2 ϕ

)
dϕ =

√
πΓ(1+k

2
)

kΓ(k
2
)

1F1

(
1

2
, 1 +

k

2
,−α

)
, (2.26)

where 1F1(x) is the confluent hypergeometric function. In our case α = S2/8σ2. The
confluent hypergeometric function can be further expressed in terms of the certain special
functions as follows:

k = 0 : 1F1

(
1

2
, 1,−α

)
= e−α/2I0

(α

2

)
, (2.27)

k = 1 : 1F1

(
1

2
,
3

2
,−α

)
=

√
π

2
√

α
erf(

√
α), (2.28)

k = 2 : 1F1

(
1

2
, 2,−α

)
= e−α/2

[
I0

(α

2

)
+ I1

(α

2

)]
. (2.29)

I0 and I1 are the modified Bessel functions of the first kind, of the zero and the first
order respectively. The terms k = 3 are not presented here since these are complicated
combinations of exponential and error functions and their complexity even increases if one
increases k. The coefficients in the Taylor expansion (2.24) can be presented as follows
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a0 = ρ2
1 + 2ρ1ρ2, (2.30)

a1 = −ρ3
1 − 3ρ2

1ρ2 +
πρ3

2

2
, (2.31)

a2 =
1

2
(ρ4

1 + 4ρ3
1ρ2 − 2πρ1ρ

3
2), (2.32)

a3 =
1

24
(−4ρ5

1 − 20ρ4
1ρ2 + 20πρ2

1ρ
3
2 − 3π2ρ5

2). (2.33)

The hypergeometric function can be expanded into the Taylor series in terms of α =
S2/8σ2 so, accordingly, we can calculate all the terms up to and including the cubic term
in S. For small S we get

PA
DBR(S) ≈ S

σ
√

2π

{π

2

(
ρ2

1 + 2ρ1ρ2

)
+

(
−ρ3

1 − 3ρ2
1ρ2 +

πρ3
2

2

)
S (2.34)

+
π

4

(
a2 − a0

8σ2

)
S2 +

1

3

(
− a1

8σ2
+ 2a3

)
S3

}
+ O(S5) .

One sees that the antenna-distorted level spacing distribution PA
DBR(S) is linear at S = 0

if ρ1 6= 0, i.e.

PA
DBR(S) ≈

√
π

2σ
√

2
(ρ2

1 + 2ρ1ρ2)S. (2.35)

If the regular part is missing (ρ1 = 0) and only the chaotic part contributes (ρ2 = 1),
there appears the quadratic level repulsion with the leading term

PA
DBR(S) ≈

√
π

2σ
√

2
S2, (2.36)

which, as mentioned earlier, is expected due to the assumption that all the pairs of levels
are coupled, namely the regular and the chaotic ones as well as the two chaotic (chaotic-
chaotic) and the two regular (regular-regular) ones; obviously, only chaotic-chaotic cou-
plings are of relevance in this case (Haake et al., 1996).

We have verified the accuracy of the approximation (2.34) numerically and compared
it with the exact evaluation of PA

DBS(S). It has turned out that the quadratic and the
cubic terms in the curly brackets, which emerge due to the expansion of the confluent
hypergeometric function 1F1, do not significantly improve the quality of the approximation
for small S values. In fact, the region of agreement with the exact formula within about a
few percent extends up to S ≤ 0.4, provided that only the first two terms from Eq. (2.34)
are taken into account, and up to S ≤ 0.7 if all the terms from Eq. (2.34) are considered.

2.4.2 Large S behaviour of PA
DBR(S) and P T

DBR(S)

We again use Eq. (2.17) and calculate PA
DBR(S) at a large S/σ À 1. The main con-

tribution to the integral comes from the interval close to ϕ = 0. Therefore, we can make
the approximations sin ϕ ≈ ϕ and cos ϕ ≈ 1 + ε ≡ 1 − ϕ2/2. Then we can apply the
Taylor expansion PBR(S + εS) = PBR(S) + εSdPBR/dS in Eq. (2.17) and extend the
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upper integration limit to ∞, thereby committing only an exponentially small error. Now
the integrals can be done in a closed form, so that we obtain

PA
DBR(S) ≈ PBR(S)− 2σ2

S

dPBR(S)

dS
. (2.37)

The derivative dPBR(S)
dS

can be calculated explicitly from Eq. (2.6), i.e.

dPBR(S)

dS
= −1

4
exp

(
−ρ1S − π

4
ρ2

2S
2
)

(2.38)

×
{

12ρ2
1ρ2 − 2πρ3

2 + 6πρ1ρ
3
2S + π2ρ5

2S
2 + 4ρ3

1 exp
(π

4
ρ2

2S
2
)

erfc

(√
πρ2

2
S

)}
.

It means that, asymptotically, PA
DBR(S) has exactly the same tail as PBR(S) and its first

lowest correction is described in terms of the first derivative of PBR(S). Its higher-order
corrections increase in complexity, but they can be worked out if necessary.

Using Eqs. (2.37) and (2.22) we can also represent the asymptotic behaviour of the
tunneling-distorted BR distribution (here 〈S〉 is not normalised yet) at large S, namely

P T
DBR(S) ≈ PBR(S)− [1− 2ρ(1− ρ)]

2σ2

S

dPBR(S)

dS
. (2.39)

The normalised distributions PAn
DBR(S) and P Tn

DBR(S) are then calculated using the rescal-
ing procedure as defined in Eqs. (2.20) and (2.23). Due to the rescaling factor BT the tail
of P Tn

DBR(S) is not exactly the BR distribution but, rather, the stretched BR distribution
according to Eq. (2.23), unless BT = 1. The same reasoning applies to PAn

DBR(S) with the
rescaling factor BA.

One should notice that the Wigner approximation (2.4), (2.5) is very suitable for
analytical studies as it includes all the important features of the BR as well as those
of the distorted BR level spacing distribution. However, to get the precise expression
for the BR distribution as defined in Eqs. (2.1) and (2.2), and, consequently, for the
antenna-distorted BR distribution from Eq. (2.17), the exact GOE results from the large
dimension limit for P2, F2, E2 should be applied in precise numerical calculations and
analysis. This is indeed what we have done in our numerical studies where we used the
Padé approximations from Section 4.11 (p69-78) from the reference (Haake, 2001) for the
quantity W2(S) = 1 − F2(S), from which P2(S) is obtained by differentiation whereas
E2(S) is obtained by integration (for more details see 2.1).

If the Wigner approximation were used instead, one would notice statistically sig-
nificant deviations (within one percent or so) of the two-level formula from PAn

DBRN(S),
provided that the ρ1 values were not too large (i.e. ρ1 ≤ 0.35) while for larger ρ1 the
Wigner approximation would be precise enough. This is important for the applications
presented in the next section.

2.5 Simulations with random matrices

2.5.1 The antenna distorted BR distribution (all-to-all couplings)

Let us start with the assumption that there exist the Gaussian distributed off-diagonal
matrix elements for all the pairs of eigenvalues. As stated above, this corresponds to
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microwave cavities (i.e. ”quantum billiard systems”) in the presence of an antenna (see
Sec. 3.3). This is not exactly true since, normally, the matrix elements are not Gaussian
distributed in this case. For a delta-like scatterer the off-diagonal matrix element, which
couples two states n and m, is proportional to ψnψm where ψn and ψm correspond to the
values of the wave functions of the unperturbed cavity at the antenna position; for more
details see Chap. 6 in (Stöckmann, 1999). If both ψn and ψm are Gaussian distributed at
the antenna positions (which is the case if both states n and m belong to the chaotic part of
the phase space) the distribution of the product ψnψm is described by the modified Bessel
function, i. e. it is non-Gaussian! Thus, for regular eigenstates there exists no universal
distribution for the wave function amplitudes (needed at the antenna positions), which
consequently implies that the distribution of matrix elements (coupling chaotic and regular
as well as two regular states) is non-universal as well.

But, since this chapter mainly deals with the modification of the Berry-Robnik for-
mula resulting from the tunneling, we have applied a pragmatic approach and chosen the
Gaussian distributions with the same variance for all the off-diagonal matrix elements. In
Sec. 2.7 we will study how the type of the statistics of the off-diagonal matrix elements
influences the results obtained in the research.

At this point we will introduce the normalized N -level antenna-distorted BR level
spacing distribution function denoted by PAn

DBRN where N is the dimension of the matrix.
This, after unfolding, is the level spacing distribution of a random matrix ensemble whose
diagonal has the BR distributed eigenvalues (taking the exact large N limit distance
distribution for the GOE part) with the given and fixed-value parameters ρi, i = 1, 2, . . . ,
whereas all the off-diagonal elements are Gaussian distributed (see Eq. (2.16)) with the
same variance σ2.

In cases where the chaotic components smaller than the dominating one are ignored
(as presented by the 2× 2 model), there remain only two parameters: the BR parameter
ρ1 = ρ together with ρ2 = 1 − ρ, and the coupling parameter σ. We expect that this
two-parameter level spacing distribution function adequately describes the level spacings
of real quantum dynamical systems of the mixed type.

We have done extensive numerical calculations for the two-parameter distribution
function PAn

DBRN(S), with N = 1000. The diagonal spectrum was generated by the block
random matrix with the Poissonian block of the relative size ρ, and with the remaining
chaotic block of the relative size 1 − ρ with the GOE statistics. Spectral unfolding was
performed with the help of the Wigner semicircular level density rule for the chaotic
part. After sorting all the eigenvalues, one obtains the BR spectrum. One should also
emphasise that random numbers were calculated using the procedure based on ran1 from
(Press et al., 1986).

Then the distorted BR matrix of the dimension N = 1000 (indicated by DBRN) was
constructed for M = 1000 realisations of the same ensemble and diagonalised as well.
In this way each histogram contains one million objects, which results in high statistical
significance manifested in small fluctuations of the histogram around the expected smooth
theoretical curve. The resulting spectrum was unfolded each time with the help of the
phenomenological rule determining the local density of levels (or local mean level spacing)
- we have averaged the nearest unf = 30 levels, (15 neighbouring levels up and 15 down).

The results are presented in Figs. 2.7 - 2.9 where the numerical histograms for PAn
DBRN(S),

N = 1000 are compared with the 2D prediction of PAn
DBR(S) for a variety of different val-

ues of ρ and σ. We must emphasise that no curve fitting was applied in this case. The
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N unf M stat χ2/(stat∆S)
1000 6 1000 999000 0.4333
1000 8 1000 999000 0.1188
1000 10 1000 999000 0.0629
1000 12 1000 999000 0.0450
1000 14 1000 999000 0.0307
1000 16 1000 999000 0.0303
1000 18 1000 999000 0.0274
1000 20 1000 999000 0.0276
1000 30 1000 999000 0.0254
1000 40 1000 999000 0.0279
1000 50 1000 999000 0.0348
1000 60 1000 999000 0.0291
1000 70 1000 999000 0.0304
1000 80 1000 999000 0.0334
1000 90 1000 999000 0.0307
1000 100 1000 999000 0.0319
1000 200 1000 999000 0.0312

50 10 20000 980000 0.0369
50 12 20000 980000 0.0232
50 14 20000 980000 0.0285
50 16 20000 980000 0.0258
50 18 20000 980000 0.0208
50 20 20000 980000 0.0302

100 20 10000 990000 0.0219
200 20 5000 995000 0.0237
500 30 2000 998000 0.0278

Table 2.2: Numerically calculated χ2 for matrices with different sizes of N and with various
number of points unf subjected to the unfolding procedure. The number of repetitions for each
matrix is indicated by M whereas stat is the number of all the objects (spacings) forming the
histograms: stat = (N − 1) ×M and ∆S is the bin size. All the calculations have been done
with the parameters ρ = 0.25, σ = 0.1. The chosen configuration for the simulations shown in
Figs. 2.7 - 2.13, 2.15, 2.16 is marked in bold.

agreement for small variance σ2 and for all the regular part fractions ρ is very good.

In higher dimensions (i.e. for the large N) we expect the GOE level spacing distri-
bution, ρ = 0, maps to the distorted GOE level spacing distribution, for σ larger than
the characteristic σc. The transition is slow and can be seen in Fig. 2.10 for 4 different
coupling parameters: i.e. σ = 0.1, 0.2, 0.3, 0.4.

It is obvious that the two-level approximation is suitable only in the cases where
the off-diagonal elements are small compared to the mean level spacing (i.e. if σ ¿ 1).
To illustrate this, Fig. 2.7 compares the results obtained from the simulation PAn

DBRN(S)
with the results from the two-level expression (2.20) for PAn

DBR(S) for σ = 0.05 and for
a number of ρ values which measure the relative contribution of the regular states. An
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. .
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. .

Figure 2.7: The numerical histogram for the N -level (N = 1000) antenna-distorted BR level
spacing distribution PAn

DBRN (S) is compared with the PAn
DBR(S) from the 2-level model (2.20),

for the level coupling parameter σ = 0.05 and for various values of the regular fraction
ρ =0.10, 0.25, 0.35, 0.50, 0.75, 0.90. All the eigenvalues are coupled here. The solid red line in-
dicates the analytical 2D-matrix plot from Eq. (2.20) whereas the dashed blue curve represents
the BR distribution. The numerical and the analytical results are almost indistinguishable, but
the BR curve deviates noticeably. Both curves are calculated using the exact evaluation of the
GOE gap probability rather than with the help of the Wigner approximation. The insets show
the small S behaviour for all the three curves.

excellent agreement is found for all the ρ values. For larger values of σ the simulation and
analytical curve (2.20) well agree with each other, as evident from Fig. 2.8 where PAn

DBR(S)
and PAn

DBRN(S) are shown for σ = 0.10 and for a set of ρ values. Fig. 2.9 compares the
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. .

. .

. .

Figure 2.8: The same as Fig. 2.7 with the doubled (but still small) coupling parameter σ = 0.10
and with various values of ρ= 0.10, 0.25, 0.35, 0.50, 0.75, 0.90. All the eigenvalues are coupled in
this figure as well.

results for the fixed ρ = 0.5 and for varying coupling strength σ = 0.01, 0.02, 0.03, 0.04;
the agreement is very good in the case of all the weak couplings while for larger coupling
values σ = 0.20 and σ = 0.30 one can notice small deviations (as expected from the
theory).

Let us now study the dependence of the model on the size of the matrices N and the
number of points unf subjected to the unfolding procedure. For the statistical measure
we use the χ2 statistics 2, defined as

2There are different definitions of the χ2 statistic. This thesis employs the definition from (Press et al.,
1986), p. 470.
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Figure 2.9: The same as in Figs. 2.7 and 2.8 but for the fixed ρ=0.5 corresponding to equally
large regular and chaotic regions and various strengths σ of the all-to-all level coupling, i.e. for
small values σ =0.01, 0.02, 0.03, 0.04 as well as for large values σ = 0.2, 0.3. All the eigenvalues
are coupled in this figure. At large values of σ one can notice small deviations of the numer-
ical simulations from the 2D theoretical model. At large values of σ = 0.2, 0.3 the tail of the
distribution (2.20) (for the solid red curve and for the numerical histogram as well) behaves
like the stretched BR distribution rather than like the ’true’ BR distribution represented by the
dashed curve. At smaller values of σ this effect cannot be visible since the stretching factor BA

is very close to 1. For the upper left plot with σ = 0.01 there appear 10 times more objects in
the statistics.

χ2 ≡ stat∆S

Nbins∑
i=1

(
PAn

DBRN(Si)− PAn
DBR(Si)

)2

PAn
DBR(Si)

, (2.40)
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. .

. .

Figure 2.10: The same as Figs. 2.7 - 2.9 but for the fixed ρ= 0 corresponding to the fully chaotic
system and to various strengths σ of the all-to-all level coupling, i.e. σ =0.1, 0.3, 0.5, 0.7. All
the eigenvalues are coupled in this case. One clearly sees the transition from the distorted GOE
(solid red curve) at σ = 0.1 to the ’true’ GOE (dashed blue curve) at σ = 0.7.

where ∆S = Si+1 − Si is the bin size (all bins have the same size) whereas stat indicates
the number of objects appearing in the histogram (see Tab. 2.2), Nbins is the number of
bins of the histogram, PAn

DBRN(Si) is the value of N -dimensional statistics in the i-th bin,
and PAn

DBR(Si) is the value of 2D statistical function in the center Si of the i-th bin. The
results are presented in Tab. 2.2. The smallest χ2 for N = 1000 appears at unf = 30,
which justifies our choice of unf = 30 in all the simulations shown in Figs. 2.7 - 2.13, 2.15,
2.16. However, one notices that there exists a wide region of possible unfolding points for
a fixed N , so for N = 1000 and unf ≥ 14 all the results are practically the same. We have
also tested matrices with N = 50 (and smaller) and observed a very good agreement as
well. Therefore, we believe that the results of the model do not depend on the dimension
of the matrices, so, for instance, the option N = 100 and unf = 20 would be equally or
(even) slightly more appropriate, as indicated in Tab. 2.2.

We have also tested the phenomenological rule with unf (for N = 1000) by using
the GOE random matrices (ρ = 0, σ = 0) where the optimal agreement with the exact
unfolding (using the Wigner semicircle rule) has been sought. The results confirm the
ones obtained from the χ2 test, which means that unf = 30 is the best possible choice in
this case where the unf does not influence the results to such a large extent.

If we consider the results of PAn
DBR(S) and PAn

DBRN(S) for sufficiently small values of σ,
we notice one interesting feature: smaller spacings are affected to much a larger extent
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than bigger ones (for the non-normalised distributions the effect would be even greater).
For the 2D model this can be explained in the following way: the spacing S = En+1−En

of the coupled system, which is expressed in terms of the spacing of the uncoupled system
S0 = En+1,0 − En,0 = 2a ≥ 0 as well as in terms of the coupling b (for the definition of
matrix elements a and b see Eq. (2.8)), is given by

S =
√

S2
0 + 4 b2 (2.41)

If En,0 and En+1,0 are equal (i.e. a = 0), then S = 2 b, otherwise S = S0

√
1 + 4 b2

S2
0
. If σ is

small, which we have assumed here, the coupling b is small as well, i.e. b ¿ S0. Thus, we
can only take the first order in the Taylor expansion and get

S ∼= S0 + 2
b2

S0

. (2.42)

The S0 from the denominator explains why smaller spacings change to much a larger extent
than bigger ones. It seems that the two-level process dominates in the N -dimensional
model as well.

2.5.2 The tunneling distorted BR distribution

In order to describe the tunneling between the regular and the chaotic phase space
regions in physical systems we will assume that the non-zero off-diagonal matrix elements
only occur between the regular and the chaotic states but not within the regular or
the chaotic block itself. In the cross coupling case the two-level approximation expresses
the tunneling-distorted Berry-Robnik formula P Tn

DBR(S) which is a weighted mean of the
antenna-distorted and the undistorted Berry-Robnik formula which is normalised to 〈S〉 =
1, as presented in Eqs. (2.22) and (2.23). Fig. 2.11 shows the results from the simulations
of P Tn

DBRN(S) and from the two-level expression for P Tn
DBR(S), for σ = 0.05 (as also applied

for the all-to-all couplings) and for a number of ρ values. Fig. 2.12 represents P Tn
DBRN(S)

and the P Tn
DBR(S) for σ = 0.1 and for a number of ρ values. Fig. 2.13 displays the results

for ρ = 0.5 and σ = 0.01, 0.02, 0.03, 0.04. In all the cases the agreement between the
N -level simulation and the two-level analytical formula (2.22) is rather encouraging. The
agreement is better for larger values of ρ where the regular part dominates.

Although the general agreement for σ = 0.05 is still good, there appear significant
deviations between the two-level approximation and the results from the N -dimensional
simulations for small values of S. In the N -dimensional simulation the linear level repul-
sion is always observed in cases of small values of S while the two-level approximation
starts with a non-zero value at S = 0. For a steep linear level repulsion the region in S,
which should appear within an exponentially small interval ∝ exp(−const./~eff ) typical
of tunneling phenomena, is indeed very small (see the insets in Figs. 2.11 - 2.13). This
reflects that the accidental degeneracies, which occur generically in the regular part of the
spectrum, are not lifted in the case of the two-level approximation. In the N -dimensional
simulations, on the other hand, all the degeneracies are lifted in the regular block although
there are no direct tunneling matrix elements; there only appears the second order tun-
neling which couples two regular states indirectly, i.e. via one or more chaotic ones. Here
the two-level approximation is certainly not appropriate. 3

3Here the term ’degeneracies’ also includes nearby lying states, i.e. the so-called quasi-degeneracies.
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. .

. .

. .

Figure 2.11: The numerical histogram for the N -level (N = 1000) tunneling distorted BR
level spacing distribution P Tn

DBRN (S) is compared with the P Tn
DBR(S) from the 2-level model

(2.23) for the fixed coupling parameter σ = 0.05 and for various sizes of the regular regions
ρ =0.10, 0.25, 0.35, 0.50, 0.75, 0.90. For the sake of comparison the blue dashed line represents
the BR distribution with the same ρ. Only the couplings between the regular and the chaotic
eigenvalues are allowed in this case; couplings cannot occur between two regular states or two
chaotic ones. The insets show the small S behaviour of all the three curves plotted. The tunnel-
ing formula (2.23) is in good agreement with the numerical simulations. For the lower left plot
with ρ =0.75 there are 10 times more objects in the statistics.

We should also mention that neither localisation (Leyvraz and Ullmo, 1996; Ishikawa
et al., 2007) nor flooding effects (Bäcker et al., 2005, 2007) have been treated so far.
Typically, localisation of chaotic states (as a deviation from the PUCS-uniformity) would
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. .

. .

. .

Figure 2.12: The same as in Fig. 2.11 but for the doubled cross-coupling (tunneling)
strength σ = 0.10 and for various values of the relative size of the regular regions
ρ =0.10, 0.25, 0.35, 0.50, 0.75, 0.90. Again only cross couplings of the integrable with the chaotic
states are allowed here; couplings cannot occur between two regular states or two chaotic ones.
All the plots have the same number of objects in the statistics.

be modelled by the suppression of tunneling between certain basis-states. Localisation
near regular (stability) islands (classically stickiness) would be modelled by replacing ρ
with some larger effective ρeff , whereas (partial) flooding of regular (stability) islands
would be modelled by some smaller effective ρeff .
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. .

. .

. .

Figure 2.13: The same comparison of level spacing distributions as presented in Figs. 2.11 and
2.12, but now for the fixed ρ =0.5 (equal for both the regular and the chaotic parts) and for
other (smaller and larger) coupling σ = 0.01, 0.02, 0.03, 0.04, 0.20, 0.30 affected by tunneling.
Again only cross couplings between the integrable and the chaotic eigenvalues are allowed. In
the upper left plot with σ =0.01 there appear 10 times more objects in the statistics.

2.6 Improvements on the tunneling-distorted BR dis-

tribution

Sec. 2.5.2 proves that the 2D model has certain disadvantages. This section represents
two possible improvements to this model.

The formulation from Eq. (2.21), which presents the distribution of tunneling matrix
elements, could be replaced by
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gb(b) = 2ρ(1− ρ)
1

σ
√

2π
exp

(
− b2

2σ2

)
+ [1− 2ρ(1− ρ)]

1

σ1

√
2π

exp

(
− b2

2σ2
1

)
, (2.43)

where σ1 > 0 phenomenologically represents the second order splitting in the regular
block. This block is not fully regular here, so it is not proportional to δ(b). Since the
splitting of the regular states is the second-order effect, σ1 should be interpreted as being
proportional to σ2. So far we have not been able to establish an explicit relation between
σ1 and σ in this modification of the model. This is open for the future research.

To remove the degeneracies appearing due to the 2D model, one could use the 3 × 3
matrices, as proposed in (Stöckmann, 2007). These are chosen in such a way that they
indicate the tunneling which couples two neighbouring regular states with the closest
chaotic state: i.e. R-C-R tunneling. Since this coupling causes the repulsion of the regular
levels, it also removes the degeneracies appearing in the regular sequence.

At this point we will select a mixed-type sequence on the basis of which we will develop
the 3-level theory. Our Hamiltonian is written as

Hn =




EnR 0 w1n

0 E(n+1)R w2n

w1n w2n EC


− EnR + E(n+1)R

2
1 =




δn 0 w1n

0 −δn w2n

w1n w2n ∆n


 (2.44)

where n is the index of the regular levels whereas EnR, E(n+1)R are the neighbouring regular
levels with EnR ≤ E(n+1)R and EC is the closest chaotic level. w1n and w2n are couplings

of one regular and one chaotic level whereas δn =
EnR−E(n+1)R

2
and ∆n = EC− EnR+E(n+1)R

2
.

The characteristic polynomial is thus expressed as

χ(E) = det(Hn − E) = (E2 − δ2
n)(E −∆n)− (w2

1n + w2
2n)E + (w2

1n − w2
2n)δn. (2.45)

The chaotic level can lie above or below the mean of two neighbouring regular levels.
Therefore ∆n may have positive or negative values with equal probability and the mean
〈∆n〉n (the average is calculated for all the regular levels) equals zero in this case. In
addition, the averages 〈w2

1n〉n = w2
1 and 〈w2

2n〉n = w2
2 are equal.

Rigorously, this has to be applied to all the chaotic states affecting all the regular
pairs. But, as presented at the end of Subsec. 2.5.1, the states that are far away from one
another do not influence each other. In the first approximation we have therefore selected
two neighbouring regular levels influenced by a close lying chaotic one. At this point we
can make two additional approximations. Thus, we replace:
a) ∆n with its mean 〈∆n〉n = 0. This indicates that the closest chaotic level lies in the
very middle of two regular levels. This is not completely true since the chaotic levels would
then obey the Poissonian statistics as well. Despite this the results obtained in this way
could be useful.
b) w2

1n−w2
2n with its mean 〈w2

1n−w2
2n〉n, which results in 〈w2

1n〉n−〈w2
2n〉n = w2

1−w2
2 = 0.

The final result will show whether the two approximations are meaningful.
By including the approximations into Eq. 2.45 we obtain

χ(E) = (E2 − δ2
n − w2

1n − w2
2n)E, (2.46)
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with the solutions

EI,II
n = ±

√
δ2
n + w2

1n + w2
2n, EIII

n = 0. (2.47)

Thus, the chaotic state does not change in any way whereas certain changes can be
observed in the case of the two regular states. The distance between the latter equals

∆En = |EI
n − EII

n | = 2
√

δ2
n + w2

1n + w2
2n. (2.48)

At this point we would like to learn how the regular spectrum changes if one follows
the above procedure. For the spacing distribution of the regular levels PPoisson(x1), where
x1 = 2|δn|, we have chosen the distribution from Eq. (2.3), weighted by the fraction ρ of
the Nreg regular levels appearing in the spectrum

PPoisson(x1) = ρ exp(−ρx1). (2.49)

The new distribution PDPoisson(x), which is termed the distorted Poisson distribution,
reads

PDPoisson(x) =
1

Nreg

Nreg∑
n=1

〈δ (x−∆En)〉w1n,w2n

=
1

Nreg

Nreg∑
n=1

〈
δ

(
x− 2

√
δ2
n + w2

1n + w2
2n

)〉

w1n,w2n

(2.50)

=
1

Nreg

Nreg∑
n=1

∫
dx1 δ (x1 − 2|δn|)

〈
δ

(
x−

√
x2

1 + 4(w2
1n + w2

2n)

)〉

w1n,w2n

=

∫
dx1

1

Nreg

Nreg∑
n=1

δ (x1 − 2|δn|)
〈

δ

(
x−

√
x2

1 + 4(w2
1n + w2

2n)

)〉

w1n,w2n

,

where δ(y) is the Dirac delta function of y whereas the average is calculated for all the
off-diagonal elements w1n and w2n. By evaluating the sum over n in the limit of large Nreg

we obtain

PDPoisson(x) =

∫
dx1 PPoisson(x1)

〈
δ

(
x−

√
x2

1 + 4(w2
1 + w2

2)

)〉

w1,w2

, (2.51)

where w1 and w2 are the average couplings described above. Here we have assumed that
w1 and w2 are Gaussian distributed (2.16), which was also the case in the 2 × 2 model:

gb(w) = 1
σ
√

2π
exp

(
− w2

2σ2

)
where w could either be w1 or w2, both with the same variance

σ2. If we incorporate this into (2.51), we obtain

PDPoisson(x) =
ρ

2πσ2

∫ ∞

0

dx1e
−ρx1

∫ ∞

−∞
dw1

∫ ∞

−∞
dw2 e−

w2
1+w2

2
2σ2 δ

(
x−

√
x2

1 + 4(w2
1 + w2

2)

)
.

(2.52)
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If we introduce the polar coordinates: w = w1 cos ϕ, w = w1 cos ϕ, where w ∈ [0,∞) and
0 ≤ ϕ ≤ 2π, we get

PDPoisson(x) =
ρ

σ2

∫ ∞

0

dx1e
−ρx1

∫ ∞

0

w dw e−
w2

2σ2 δ

(
x−

√
x2

1 + 4 w2

)
. (2.53)

By replacing 4 w2 with z and by using the relation δ(x−
√

x2
1 + z) = (x+

√
x2

1 + z) δ(x2−
x2

1 − z), we get

PDPoisson(x) =
ρ

8σ2

∫ ∞

0

dx1e
−ρx1

∫ ∞

0

dz e−
z

8σ2

(
x +

√
x2

1 + z

)
δ
(
z − x2 + x2

1

)
, (2.54)

and by evaluating the integral with δ function

PDPoisson(x) =
ρx

4σ2

∫ x

0

dx1 e−ρx1 e−
x2−x2

1
8σ2 . (2.55)

If we calculate the integral from (2.55) with the Mathematica, we obtain

PDPoisson(x) =
ρx

4σ2
e−2ρ2σ2− x2

8σ2 σ
√

2π

(
erfi

(
ρσ
√

2
)
− erfi

(
4ρσ2 − x

2σ
√

2

))
, (2.56)

where erfi(z) is the imaginary error function of z: erfi(z) = −i erf(iz). Due to normalisation
the final result equals

P n
DPoisson(x) = BDPoisson PDPoisson(BDPoissonx), with BDPoisson =

∫ ∞

0

y PDPoisson(y) dy.

(2.57)
The normalised distorted Poisson distribution P n

DPoissin(x) is shown in Fig. 2.14. One
clearly sees the disappearing of the degeneracies and the presence of the overshooting. The
distribution quickly increases at small x values, which confirms our expectation. However,
at very small x values there appears the quadratic level repulsion, i.e., by evaluating
Eq. (2.55) for small x values, we obtain PDPoissin(x) ≈ ρx2/4σ2, which is evident from
Fig. 2.14. The 1/σ2 dependence of the PDPoissin(x) on the σ shows the expected behaviour
of the second order effect contrary to the first order effect represented by Eq. (2.18). But
the x2 dependence on the regular spacing x is really surprising (or even unacceptable)
since one has expected the linear level repulsion in this case. The reason for this may lie
in one of our assumptions, which is, most probably, the assumption a).

Despite this one can conclude that the 3 × 3 CAT model could, in fact, improve the
defect of the model for the level spacing distribution of the mixed systems. P n

DPoissin(x)
has to be used instead of the ’true’ Poissonian distribution function, so that there can
emerge the new Berry-Robnik distribution function (see Sec. 2.1) followed by the new
distorted Berry-Robnik distribution function (see Sec. 2.3).

If one applies Eqs. (2.55, 2.57) in this case, this can be pretty complicated due to
numerical integrals. Instead, it might be better if the correct behaviour of Eq. (2.55)
were represented via a simpler approximate analytic expression for the distorted Poisson
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Figure 2.14: The comparison between two theoretical curves, i.e. the normalized distorted Pois-
son level spacing distribution Pn

DPoisson (red line) from Eq. (2.57) and the ’true’ Poissonian
distribution function from Eq. (2.49) with ρ = 1 (blue dashed line) for two strengths of the level
coupling σ, i.e. for σ = 0.05, 0.1. The normalisation factor BDPoisson equals 1.021 for the left
curve and 1.074 for the right one.

distribution, which could be employed in a much easier way. This and the elimination of
the quadratic level repulsion could be studied in the future.

At this point on could briefly mention an interesting work presented in (Leyvraz and
Ullmo, 1996). Using the RMT model, similar to the one presented in this thesis, the
authors (by neglecting the direct tunneling) calculated the distribution of the splittings
∆E (according to the CAT) of the exactly degenerate states in the systems with the
discrete symmetry. This provides a simple analytic result, i.e. that the level splitting
distribution in the cases where the chaotic part of the phase space is simple (i.e. without
partial barriers etc.) is a Cauchy-Lorentz distribution one up to the border

P (∆E) =
4vt

∆E2 + 4πv2
t

∆E < vt (2.58)

and zero afterwards, where v2
t is the average variance of the off-diagonal (tunneling) ma-

trix elements (in the model represented here this would be σ2). They have tested these
results for the system of two coupled asymmetric quartic oscillators possessing the spatial
symmetry, parity, where all the regular states appear in degenerate pairs. Our result pre-
sented in this section can be applied to all the systems where no spatial symmetries occur.
This changes all the (particularly smaller) spacings S between the regular eigenvalues, not
only the quasi-degenerate levels.

2.7 Dependence of the model on the matrix element

statistics

This section studies how the model presented in this thesis is influenced by the statistics
of the off-diagonal matrix elements for which only the Gaussian distribution with a given
dispersion σ2 has been employed up to this section.

For general non-Gaussian random matrix ensembles, which model fully chaotic sys-
tems, the statistics of local spectral fluctuations obey the universal Gaussian RMT in the
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. .

Figure 2.15: The comparison between the two theoretical curves for the normalised antenna-
distorted BR level spacing distribution PAn

DBR resulting from the exponential and the Gaussian
distributions of the off-diagonal elements and the histogram presented the PAn

DBRN from the
numerical simulations with the matrices N = 1000, using the exponential distributions for all
the off-diagonal matrix elements. The histogram agrees well with the 2D formula (solid curve),
but both of them only slightly deviate from the Gaussian model (dotted curve). The figure also
shows the BR distribution function with the same ρ (dashed curve). In the case of the Gaussian
distribution with N = 1000 the result well agrees with the 2D formula represented in Figs. 2.8
(top-right) and 2.7 (bottom-left).

limit of large dimensions N →∞ (Hackenbroich and Weidenmüller, 1995), provided that
the level density in this limit is smooth and confined to a finite interval. For 2D ensembles
an explicit analytic theory has recently been performed (Grossmann and Robnik, 2007a,b)
for a variety of matrix element distribution functions, including the exponential and the
box (the uniform) distributions. Extensive numerical studies of such ensembles at high
dimensions of the matrices (see Chap. 4) confirm the Hackenbroich-Weidenmüller predic-
tion and show that the transition to the universal behaviour is pretty fast. If one or both
of the Hackenbroich-Weidenmüller conditions are not fulfilled, e.g. for the Cauchy-Lorentz
distribution of the matrix elements, there appear deviations from the GOE level spacing
distribution.

Bearing in mind all this we would like to explore the sensitivity of the distorted BR
level spacing distribution as regards the choice of the matrix element statistics. Thus, in
addition to the Gaussian distribution treated earlier, as defined in (2.16), we will consider
the box (the uniform) distribution

gb(b) =

√
3

6σ
if | b |≤ σ

√
3 and zero, otherwise, (2.59)

and the exponential distribution

gb(b) =

√
2

2σ
exp

(
−|b|

√
2

σ

)
, (2.60)

both with the variance σ2.
It is obvious that the deviations from a Gaussian distribution are not as large as one

might expect, which is clearly demonstrated in Figs. 2.15, 2.16, representing the results
for the normalized antenna-distorted BR distribution PAn

DBRN(S), for the Gaussian, for
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. .

Figure 2.16: The same as Fig. 2.15 for the box (instead of the exponential) distribution of the
off-diagonal matrix elements: the histogram from the numerical simulations with the matrices
N = 1000 well agrees with the 2D formula (solid curve), but both of them only slightly deviate
from the Gaussian model (dotted curve).

the exponential and for the box (the uniform) distribution with the same dispersion σ2.
These are various theoretical curves with the same σ2. One should emphasise that no
best curve fitting has been applied. One notices that the 2D theory for PAn

DBR(S) from
Sec. 2.3 is a suitable approximation for the random matrix ensembles of the dimension
N = 1000. Nevertheless, the curves slightly differ from one another, especially in the
central region of 0.3 ≤ S ≤ 0.6 whereas the small S behaviour (the level repulsion) and
the large S behavior (the tail) are in good agreement with the model where the gb(b) is
the Gaussian distribution function. In fact, the tail for the exponential distribution is,
analytically, the same as one for the Gaussian model (2.37). The ratio of the slopes at
S = 0 for the exponential and the Gaussian case equals

√
π whereas this ration equals√

π/6 in the case of the box and the Gaussian distribution. This ration remains the same
within 2% after one has rescaled the first moment to unity by using the stretch factor BA.
The agreement in the case of the Gaussian and the other ensembles is, therefore, quite
satisfactory.

One intuitively expects that the statistical spectral properties of random matrix en-
sembles mostly depend on the variance of the matrix elements and not on other details
of the ensemble unless these become singular in one way or another.

Some basic results from this chapter are tested in the following one.
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Chapter 3

Dynamical tunneling in mushroom
billiards

3.1 Mushroom billiard - classical

The mushroom billiard (shown in Fig. 3.1) was introduced in (Bunimovich, 2001).
It is composed of a semicircle - the head, and a rectangle - the foot. We have used
the rectangle for the foot although some other shapes, such as a triangle, etc., may be
used instead. The mushroom billiard is a 2D autonomous system with the Hamiltonian
H(p,q) = p2/2M + V (q), where (q,p) are 2D coordinates and momenta of the particle
whereas M is its mass and V is its potential. The potential is zero inside and infinite
outside the billiard domain D.

Figure 3.1: The geometry of the mushroom billiard: R = radius of the semicircle, 2a = width of
the foot, l = height of the foot, b = position of the foot (the larger distance from the edge).

The energy is the only global constant of this billiard. There exists one additional
local constant of motion for the orbits which do not enter the foot, i.e. the absolute
value of the angular momentum. The orbits with the same angular momentum form a
semicircular caustic. There is one critical caustic which rigorously separates the orbits
into the regular and the chaotic ones. The orbits inside the head with a larger or equal
caustic forever remain in the head whereas the other orbits eventually enter the foot, so
they are chaotic (top two of Fig. 3.2). Since the billiard system has precisely one chaotic
and one integrable component in the phase space, which are well separated from one
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another (bottom of Fig. 3.2), this system is particularly attractive for analysis. Such a
clear separation of the phase space first appeared in certain classical maps (Lee, 1989;
Malovrh and Prosen, 2002).

Figure 3.2: Top-left: Example of a regular (70 reflections) orbit in the mushroom billiard. Top-
right: Example of a chaotic (100 reflections) orbit. Bottom: Phase space portrait. The abscissa is
the border coordinate s (of the reflection point) beginning at the right π

2 corner of the semicircle
whereas the ordinate p is the sinus of the reflection angle.

The regular part of the phase space of the mushroom billiard is simple since it consists
of a single regular island. Due to this the volume of the regular (or the chaotic) part of
the phase space can be calculated much easier than in the case of a KAM system. The
group from Dresden, which was lead by R. Ketzmerick, derived an analytic expression for
the effective chaotic area of the mushroom billiard with the central (b = R− a) foot
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Ach = 2 la +
[
R2 arcsin

( a

R

)
+ a

√
R2 − a2

]
, (3.1)

where Ach is the effective chaotic area of the configuration space of the mushroom billiard.
If one wants to obtain the fraction ρ2 of the chaotic component, the Ach has to be divided
by the entire area of the billiard, i.e. A = 2 la + πR2

2
. If the foot is not in the central

position (b 6= R − a), then instead of a in [. . . ] from Eq. (3.1) one employs a′ defined as:
a′ = 2a + b−R. This calculation is represented and confirmed in Appendix A.

While the regular component of the phase space is very simple, the chaotic one consists
of a complex distribution of families of marginally unstable periodic orbits (MUPOs). The
first class of MUPOs corresponds to the orbits bouncing between the parallel walls in the
foot of the mushroom billiard. Similar MUPOs can be found in many other billiards
with parallel walls. The other, more interesting class of MUPOs, corresponds to periodic
orbits in the chaotic region which remain trapped in the head of the mushroom billiard
(Altmann et al., 2005, 2006). Since these sticky chaotic orbits, characterised by an almost
regular motion and by the zero Lyapunov exponent, have measure zero, they do not affect
the ergodicity of the system. Nevertheless, due to the MUPOs with long periods, one
can understand certain dynamical properties of the system, such as the transport and
the decay of correlations. As presented in (Altmann et al., 2005) these MUPOs result in
an exponent γ = 2 for the asymptotic power-law decay of the commutative recurrence
time distribution Q(T ) ∝ T−γ. If P (t)dt indicates the probability that the first return to
the chosen region will happen at the time between t and t + dt], NT is the number of
recurrences in that region with the recurrence time t > T whereas N represents the total
number of recurrences, so that then Q(T ) =

∑∞
t=T P (t) = limN→∞

NT

N
. In fully chaotic

hyperbolic systems Q(T ) decays exponentially. This definitely proves that the system
discussed has the property of stickiness.

If one perturbs the system by employing the uniform transverse magnetic field (and
inserts a charged particle) the situation changes. In this case there emerge the KAM tori
whereas the phase space is not sharply divided anymore - now it exhibits the hierarchy
of KAM-like islands and cantori which are surrounded by the chaotic sea.

3.2 Mushroom billiard - quantum

Quantum mechanically the billiard inside the domain D is described by the time-
independent Schrödinger equation with the Hamiltonian H(p,q), the eigenenergies Ej

and the eigenstates ψj

−~
2∇2

2M
ψj(q) = Ejψj(q), (3.2)

where ~ is the Planck constant divided by 2π whereas ∇2 is the Laplace operator; we use
2M = ~ = 1 in the following. In the case of hard walls represented in mushroom billiard
the Dirichlet boundary conditions have to be applied: ψn(q)|∂D = 0.

The eigenstates are either mainly regular or mainly chaotic, depending on the phase
space region they concentrate on. One clearly sees (Fig. 3.4) the two types of wavefunc-
tions which are already classified in (Percival, 1973). In this thesis we have used the
desymmetrised mushroom billiard when the foot has been located in the central position,
so that we would not have to deal with two symmetry classes of eigenstates.
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Figure 3.3: The radial part NmnJm (jmnr) of the quarter circle eigenfunctions from Eq. 3.3.
The upper two plots show these functions for the fixed radial quantum numbers: n = 1 and
m = 2, 4, . . . , 28 on the upper left plot (black), n = 2 and m = 2, 4, . . . , 24 on the upper left plot
(red), n = 5 and m = 2, 4, . . . , 14 on the upper right plot (orange), n = 6 and m = 2, 4, . . . , 12
on the upper right plot (violet). The lower two plots represent the fixed azimuthal quantum
numbers: m = 2 and n = 1, 2, . . . , 8 the lower left and m = 20 and n = 1, 2, . . . , 8 the lower right
plot.

The regular wavefunctions resemble those of the Hamiltonian H1/4 for the quarter
circle. If R = 1, its eigenenergies and eigenfunctions, written in polar coordinates (r, ϕ)
read

Emn
1/4 = j2

mn and ψmn
1/4(r ≤ 1, ϕ) = NmnJm (jmnr) sin(mϕ), ψmn

1/4(r > 1, ϕ) = 0 (3.3)

These are characterized by the radial (n = 1, 2, . . . ) and the azimuthal (m = 2, 4, . . . )
quantum numbers. Here Jm is the m-th Bessel function whereas jmn indicates its n-
th root and Nmn = −

√
8/π/Jm−1(jmn) is the normalisation constant. The radial part

NmnJm (jmnr) of the quarter circle eigenfunctions is shown in Fig. 3.3.

In Fig. 3.4 (the right picture) we have resolved the quantum numbers (m,n) for a
mushroom regular eigenstate and written down the energies of this regular and the neig-
bouring chaotic state; these energies are very close together. As evident from the following
dynamical tunneling can, in fact, explain this small splitting.
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Figure 3.4: A neighbouring ’chaotic’ and ’regular’ state in the desymmetrised mushroom billiard.
The probability density |ψ(q)|2 is plotted.

3.3 Microwave experiments

3.3.1 The similarity between QM and ED

By first employing the Maxwell equations one obtains the Helmholtz equation for the
propagation of electromagnetic waves (Jackson, 1982)

∇2

{
E
B

}
+ k2

{
E
B

}
= 0, (3.4)

with a wavenumber k = 2πν
c

, where ν is the frequency and c is the speed of light. Now
one applies the cartesian coordinates and the cylindrical waveguide with walls from any
ideal conductor, with any cross section oriented along the z direction. Using the ansatz

E(x, y, z, t)
B(x, y, z, t)

}
=

{
E(x, y)ei(±kzz−2πνt)

B(x, y)ei(±kzz−2πνt) (3.5)

Eq. (3.4) can be simplified to

[∇2
x,y + k2 − k2

z

] {
E
B

}
= 0. (3.6)

The boundary conditions for the EM field at the ideal conducting boundary have to be
taken into account: Etang = 0 and Bnorm = 0 where neither the electric field at the surface
along the axis z nor the surface currents are allowed. If one encloses the infinite long
waveguide at z = 0 and z = d, one gets the resonator of thickness d.

At this point we will select the components of the field parallel to the axis z (all the
other components can be derived from them). The boundary conditions are written as

Ez(x, y, z)|Boundary = 0,
∂Bz(x, y, z)

∂n
|Boundary = 0. (3.7)
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In the z direction the condition kz = nπ
d

with n = 0, 1, 2, . . . has to be fulfilled as
well. There are two classes of solutions: the transversal-electric (TE) and the transversal-
magnetic (TM) modes. For both, respectively, one finds

Bz(x, y) = φB(x, y) sin
(nπz

d

)
n = 1, 2, 3, . . . , Ez(x, y, z) = 0 TE

Ez(x, y) = φE(x, y) cos
(nπz

d

)
n = 0, 1, 2, . . . , Bz(x, y, z) = 0 TM (3.8)

where φB(x, y) and φE(x, y) are scalar fields.
At lower frequencies ν < νG = c

2d
corresponding to the wavenumbers k < π

d
, only TM

modes with n = 0 (kz = 0) appear whereas all the other modes are exponentially damped.
Eq. (3.6) is reduced to

(∇2
x,y + k2

)
φE(x, y) = 0 (3.9)

with the Dirichlet boundary condition φE(x, y)|Boundary = 0. Thus, there exists a one-to-
one correspondence between Eqs. (3.2) and (3.9) with the boundary conditions fulfilled as
well. Due to this in the experimental studies of quantum billiards thin microwave cavities
can be used instead of the quantum dots, which is experimentally realised in a simpler
way. Studies of this type were initiated by H.-J. Stöckmann at the University of Marburg
(Stöckmann and Stein, 1990).

3.3.2 Resonances

Figure 3.5: The measurement of the mushroom billiard resonances.

The eigenmodes were measured (Stöckmann, 1999) in such a way that the microwaves
were fed into a resonator (Fig. 3.5) by means of an antenna which consists of a small
wire with the radius RA = 0.2 mm and which was introduced into the resonator through
a small hole. The resonator with the thickness 8 mm was made of aluminium plates.
Thickness was determined via the maximal possible frequency of microwaves, which was
18.61 GHz in this case. We measured in the range from 0.05 Ghz to the maximum in
steps of 0.2 Mhz, so that about 93000 frequency points were treated in the end. In cases
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Figure 3.6: The absolute value of the reflection amplitude spectrum from Eq. (3.13). The mark
’11’ in S11 on the ordinate indicates that the waves are emitted and detected with the same
antenna.

like the one presented the reflected microwave power is measured using the microwave
bridge which separates the incoming and the outgoing waves, but various transmission
measurements between two or more antennas can be employed as well.

The real and the imaginary part of the spectra have been measured with the help
of Vector Network Analyzer by the company Agilent. The system has been calibrated
with load, short and open standards. We have even performed the phase calibration to
eliminate the antenna eigenfrequencies. Fig. 3.6 shows the absolute value of the measured
reflection spectra of the mushroom billiard. Since energy is absorbed in the aluminium
walls of the resonator at eigenfrequencies, each minimum in the reflected microwave power
indicates an eigenmode.

The derivation in the previous subsection is exact only for ideal conducting walls of
the resonator. In reality EM waves penetrate into the walls where they are damped due
to the skin effect (Jackson, 1982). Thus, the energy loss in the walls causes the Lorentz
broadening Γ0walls of the resonances. The emitted electric scalar field at the frequency ν
equals φemitted

E (t) = φE(0)e−2πiνtΘ(t) which, in the vicinity of an eigenfrequency ν0, after
the reflection, transforms into φreceived

E (t) = S0(ν)φE(0)e−2πiνtΘ(t). Here the Θ(t) is the
Heaviside step function whereas S0(ν) is the complex reflection amplitude for an isolated
resonance, i.e.

S0(ν) = 1− h0

ν − ν0 −∆0 + iΓ0

, (3.10)

where h0 is the amplitude of the eigenfrequency while ∆0 = ∆0walls+∆A
0 indicates its shift

caused by the absorption in the walls and the coupling of the antenna with the resonator,
so that the sum ν0 + ∆0 is the resonant frequency, i.e. the position of the Lorentzian in
the spectrum. Γ0 = 1

τ
= Γ0walls + ΓA

0 is the width of the Lorentzian influenced by the
walls and the coupling. 1 The higher the frequency, the stronger the coupling between the
waves and the cavity; in such cases the (absolute) shifts and the widths increase as well.
This results in (Stein et al., 1995)

1The index 0 is attached to the quantities of the isolated resonance. For the other resonances from
the entire spectrum this index is replaced by the consecutive index j of the resonance.
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∆A
0 = <(α0)|ψ0(r)|2 and ΓA

0 = =(α0)|ψ0(r)|2. (3.11)

where α0 is a complex coupling parameter which depends on the antenna shape as well as
on the frequency of the microwaves, and ψ0(r) is the wavefunction at the antenna position
r.

How frequency increases in the coupling can be shown in the case of the ideal circular
antenna with the radius RA of the antenna which is much smaller than the wavelength
2π/k0 where one obtains (Stein et al., 1995)

α0 ≈ 2π

ln(k0RA)
, (3.12)

and k0 = 2πν0/c. This indicates that the shift ∆A
0 is negative and that its absolute value

increases with the frequency whereas the ΓA
0 equals 0 (in this ideal case). Unfortunately (i)

due to the non-ideal geometry of the antenna one does not obtain the α0 values expected
from the theory (ii) since the wavefunctions were not measured at all and (iii) since we
cannot precisely determine the values for the shifts due to the absorption in the walls -
presumably these values are small. This implies that the ∆0 is a mere phenomenological
parameter, so that by employing the fitting, one cannot determine the eigenfrequency ν0

(which is our purpose) as precisely as if one used the analytic expression for the ∆0 (Veble
et al., 2000).

The resonant frequency ν0 and the width Γ0 of the Lorentzian are related via the
resonator quality Q = ν0

Γ0
, which is usually between 103 and 104. This quality limits the

total number of eigenfrequencies Nmax (for a cubic cavity one gets Nmax = Q
3
) which can

be determined experimentally. In our case Nmax was about 600. The same experiments can
be extended to the superconductive cavities (Gräf et al., 1992; Dietz et al., 2007) where
quality factors up to 105 were obtained. These experiments result in a large number of
extraordinarily sharp resonances.

If the nodal line of the wavefunction falls at the antenna position or if it approaches
this position very closely, then resonances cannot be detected. One notices that if the
resonances are measured only at one antenna position, the fraction of the missing reso-
nances is quite large. For this reason we have measured and analysed the level dynamics
(see Sec. 2.9) in order to determine where the levels expected are missing.

3.3.3 Harmonic inversion

If one wants to obtain useful information from the spectra, one has to determine
the positions, the heights and the widths of the Lorentzians from (3.10) appearing in the
spectra (see Fig. 3.6). A few years ago only the conventional fit procedure was used. In this
procedure one first selects the starting parameters for each individual resonance and then
one manually treats the entire spectrum to fit each individual resonance separately. This
thesis employs a kind of automatization of the conventional fit, i.e the so-called harmonic
inversion (HI) introduced in (Wall and Neuhauser, 1995) and improved in (Main et al.,
2000).

The reflection amplitude spectrum (Fig. 3.6) is a superposition of the Lorentzians
(Kuhl et al., 2008)
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Figure 3.7: The harmonic inversion of a reflection spectrum: the rough spectrum (black) and
harmonic inversion fit (blue). The two parameters for the harmonic inversion are Γmax = 60
Mhz and hmin = 0.005. One can notice that there exists only a very slight difference between
the signal and HI fit.

S(ν) = 1−
∑

j

hj

ν − νj + iΓj

(3.13)

for ν ≥ 0, and S(ν) = 0 for ν < 0, where hj is the height, Γj the width and νj is
the resonant frequency including the shift, and j in principle runs over all the resolvable
resonances up to Nmax. We have actually only evaluated a window of about NHI = 20
resonances at once and, then, the solutions were glued together. If one decides to apply
the HI technique, the spectrum from Eq. (3.13) has to be transformed to the time domain
via the Fourier transform

Ŝ(t) =
1

2π

∫ ∞

−∞
S(ν) e−2πi(νj−iΓj)tdν = δ(t)−

∑
j

hj e−2πi(νj−iΓj)t (3.14)

for t ≥ 0, and Ŝ(t) = 0 for t < 0, with the amplitude hj and the complex frequency
νj − iΓj from the j-th state.

Since the measured data are presented in a discrete form, the second term of expression
(3.14) has to be rewritten in a discrete form as well, which results in a system of nonlinear
equations

Ŝ(kτ) = 1−
NHI∑
j=1

hj e−2πi(νj−iΓj)kτ = 1−
NHI∑
j=1

hj zk
j k = 0, 1, . . . , 2Nmax − 1.

(3.15)



50 Chapter 3. Dynamical tunneling in mushroom billiards

Since we would like to solve the system for zj = e−2πi(νj−iΓj)τ and hj, we will apply the
stable Decimated Linear Predictor method (Main et al., 2000). Normally one obtains a
much greater number of solutions than the estimated number of eigenvalues in this window
region represented by the Weyl formula (see the next section). If one wants to avoid the
spurious solutions, one has to select the maximal suitable width Γmax and the minimal
suitable height hmin of the resonances. Then, one moves one time step τ to the left and
recalculates the HI. Thus, one estimates the error and decides which calculated resonances
are appropriate and which have to be rejected. The error has to be below a previously
estimated value Errmax. One should emphasise, that (i) a cut-off of the modulus square
|Ŝ(t)|2 of the Fourier transform has been employed, so that the constant background can
be eliminated (Kuhl et al., 2008) and, (ii) the border of the window has not been taken
into account due to the problems that could arise. We have used the procedure, which was
implemented by R. Höhmann (Höhmann, 2004). Fig. 3.7 shows the reflection spectrum
and its corresponding HI fit which only slightly differ from one another.

The advantages of the harmonic inversion are:

• The parameters of the Lorentzians can be determined for many resonances simulta-
neously even if these strongly overlap with each other, which, for example, happen
when the width is 10 times larger than the mean resonance spacing, as recently
presented in (Kuhl et al., 2008);

• The procedure is stable, so it can be applied to many data;

• No starting points are needed for this procedure. The determination of the starting
points in the case of overlapping resonances is a big disadvantage of the conventional
fit procedure. Therefore, HI can be applied in higher frequency region.

There are also certain disadvantages to the harmonic inversion such as:

• There appear certain the deviations if one tries to determine the pole positions in
cases where two neighbouring resonances lie very close to one another and their
amplitude is very large. Deviations also emerge with small resonances;

• The optimal filter parameters Γmax, hmin and Errmax depend on the spectrum,
so one has to select such parameters that one eventually obtains as many desired
resonances as possible;

• There are some unresolved (about 15%) and a few redundant resonances. Therefore,
after the calculation one has to check the entire spectrum and, additionally, fit the
missing resonances by applying the conventional fit procedure and eliminate all the
redundant ones.

3.4 Level Statistics

As soon as one has calculated the eigenfrequencies νj of the microwave billiard, one

has already obtained the eigenenergies Ej of the corresponding QM system: Ej = ~2
2M

k2
j =

4π2

c2
ν2

j . At this point one should emphasise again that in microwave billiards the eigen-
frequencies are systematically shifted to the left, i.e. microwave eigenvalues are slightly
smaller than the QM ones (Stein et al., 1995).
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Here we will consider the total number of states N(E) of a 2D quantum billiard
system below the energy E. This function is termed the spectral staircase function and
it fluctuates about its average value 〈N(E)〉, which only depends on the area A, on the
circumference L, on the curvature and on the edges of the billiard K. This dependence is
represented by the generalised Weyl formula

〈N(E)〉 =
1

4π

(
AE − L

√
E

)
+ K. (3.16)

If one wants to compare the fluctuations Nfluc = N(E) − 〈N(E)〉 in the regions
with different 〈N(E)〉, one has to unfold the spectrum first, i.e. the spectrum has to be
transformed in such way that the average density of states remains the same for all the
states treated. e can be defined as e ≡ 〈N(E)〉 so that N(e) = e + Nfluc(e), which means
that the mean level spacing of N(e) equals 1. The unfolded energy levels ej are subject
to the statistical analysis where the level spacing distribution P (S), which was already
discussed in Chap. 2, is chosen as the main statistical measure.

3.4.1 Level dynamics

If one wants to measure level dynamics, one has to change the parameter of the system
and observe how its eigenvalues behave during the changes. In the experiment presented
the position of the foot b was moved in 1 mm steps from the central to the outermost
right position.

The motion of the energy eigenvalues, employed as a function of an external parame-
ter, resembles the dynamics of the particles of a one-dimensional gas with the repulsive
interaction (Pechukas, 1983; Yukawa, 1985; Stöckmann, 1999). Like in particle dynam-
ics there also exists a conservation law for the eigenvalues employed as a function of an
external parameter. The lower plot in Fig. 3.8 is obtained from the numerical calcula-
tion (described in detail in Sec. 3.5) where almost all the eigenvalues connect into the
so-called spaghetti (Barth et al., 1999) appear. If, on the other hand, one measures the
eigenfrequencies experimentally with only one antenna, spaghetti are broken due to the
missing resonances (upper plot of Fig. 3.8) since the antenna hits the nodal lines of the
wavefunctions. In the experiment presented here 37% of the resonances are missing. We
believe that the missing resonances are randomly, not systematically, distributed. But
there are no missing spaghetti, so one can identify the neighbouring eigenvalues, which is
absolutely necessary if one wants to calculate the level spacing distribution. In this way
the experiment is fully autonomous and it does not depend on the numerics.

Although the position of the foot of the mushroom billiard constantly changes, the
total area and the circumference always remain constant, so all the spectra have the same
mean density and the number of levels represented in Eq. (3.16). One can also notice that
certain spaghetti are represented as mere straight lines up to a certain parameter value
and as ’wavy’ lines as soon as the parameter value is exceeded. Up to that parameter value
these levels correspond to the regular levels. All the ’wavy’ spaghetti correspond to the
chaotic levels. Some straight-lined spaghetti are long whereas the others are short. This
can be explained in terms of the radial quantum number n of the semicircle which counts
the number of ’hills’ of the absolute square of the wavefunction in the radial direction.
The same quantum numbers can be attributed to the regular wavefunctions as well. Thus,
the regular wavefunctions with smaller n (and larger m) ’survive’ longer if one changes
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Figure 3.8: The microwave mushroom billiard levels from Fig. 3.1 with the foot moved in 1 mm
steps. The radius of the semicircle equals R = 400 mm, which is the same as the diameter 2a
of the foot where the depth l = 100 mm. There are 200 different positions from the central to
the outermost right position. For the sake of better comparison the units in numerical plot are
the same as the ones from the experimental plot although these are not real units in numerical
calculations. All the details are explained in the text.
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the position of the foot, which is due to the fact that these functions mainly ’live’ in the
vicinity of the border of the semicircle (see Fig. 3.3).

One has to admit that in level dynamics there also appear the misconnections, so one
can wrongly determine the neighbouring eigenvalues. But this error is not as frequent as
the eigenvalues disappearing from a single spectrum.

3.4.2 The level spacing distribution - comparison with the RMT
prediction

Fig. 3.9 compares the mushroom experimental spectra (Fig. 3.8) with the RMT pre-
diction treated in Chap. 2. One notices that the best fitting Gaussian model for PAn

DBR is
very suitable for the experimental data. Similarly, the best fitting exponential model is
of comparable quality. In both cases σ appears as the only fitting parameter whereas ρ is
determined by classical dynamics.

For each experimental spectral data we have used 21 configurations by employing
equidistant positions of the foot around the central values b + a − R = 10 mm (the up-
per plot) and 30 mm (the lower plot). For each configuration we have used the spectral
stretches in the interval of 100-300 consecutive levels. The parameter ρ for these configu-
rations varies up to ±7.5% (the upper plot) and ±8.5% (the lower plot) around the central
values indicated in the plots. In the experimental spectra the level spacing distribution is
affected by an antenna and by tunneling as well although, experimentally, the two effects
cannot be separated. For the Fig. 3.9 we have chosen the best fitting plots although the
curve may not fit so well in certain cases. One can, thus, conclude that this experiment,
in fact, well agrees with our theory although it does not confirm it completely.

3.4.3 Absorber in the foot

As evident from Fig. 3.2 the classical chaotic orbits enter the foot whereas the regular
ones remain outside of it. Due to this the regular and the chaotic eigenvalues can be
separated by the microwave experiment. This can be achieved if a carbonate absorber
is inserted into the bottom of the foot (Fig. 3.10). Thus one creates an open system,
which absorbs the energy, so that the chaotic eigenstates disappear in the end. We have
qualitatively obtained the expected results, i.e. the chaotic states are mainly absorbed
whereas the regular ones remain intact (Fig. 3.11).

3.5 Expanded boundary integral method

We have calculated the numerical eigenvalues from Eq. (3.2) by using the expanded
boundary integral method (EBIM), developed in (Veble et al., 2007) and based on the
classical boundary integral method (BIM) described in (Bäcker, 2003). With the help of
these two references one can describe the basic characteristics of the method. The method
is general, so it can be applied to any billiard shape (which is its greatest advantage)
although it is rather slow (which is its greatest disadvantage).

Eq. (3.2) can be represented by the k form:

(∇2 + k2)ψ(q) = 0, (3.17)
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.

.

Figure 3.9: The comparison between the experimental data (histogram) and the best fitting
theoretical curves for PAn

DBRN : The solid red curve represents the Gaussian model, the dash-
dotted black curve indicates the exponential model, the dashed blue curve is the BR distribution
(with the same ρ) whereas the dotted brown curve represents the Wigner distribution. σG and
σE are the best fitting values of σ for the Gaussian and the exponential model respectively. N
is the number of objects in the histogram. The experimental configuration is discussed below.

with k2 = E where the natural units 2M = ~ = 1 have been used. One can represent the
wavefunction inside the billiard region D \ ∂D by its normal derivative u = ∂

∂n
ψ at the

boundary ∂D (see Eq. (3.21)) where u must obey the integral equation
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Figure 3.10: The experimental mushroom billiard with the absorber positioned at the bottom
of the foot.

Figure 3.11: One part of the reflection microwave spectrum of the open mushroom billiard
measured with the absorber. The same part of the spectrum is shown in the right plot of
Fig. 3.6 for a closed system. The remaining resonances represent the regular resonances from
the closed system.

u(s) = −2

∮

δD

∂

∂n
Gk(q(s),q(s′))u(s′)ds′. (3.18)

Here s denotes the arc-length parameter of the boundary whereas n represents the outward
pointing normal vector and ∂

∂n
Gk(q,q′) the normal derivative of the Green function for

the inhomogeneous case: (∇2 + k2)Gk(q,q′) = δ(q − q′). For the Green function one

selects the complex Hankel function of the first kind: Gk(q,q′) = −i/4 H
(1)
0 (k|q− q′|) =

−i/4 (J0(k|q− q′|) + iN0(k|q− q′|).
One may discretise Eq. (3.18) on a finite set of points as determined by their arc-length

parameters si which results in
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[A(k)u]i =
∑

j

Aij(k)uj = 0. (3.19)

where uj is the value of the normal derivative at the point q(sj). If there are corners at the
boundary, the q(sj) should not be positioned at the very corner otherwise the uj could
not be defined. 2 Aij(k) is a complex non-Hermitian matrix

Aij(k) =

{
li

(
1− liκi

2π

)
, i = j

iklilj
2

H
(1)
1 (kτij) cos φij, i 6= j

, (3.20)

where τij = |q(si) − q(sj)| is the distance between the points q(si) and q(sj), cos φij =
n(si) · (q(si) − q(sj))/τij represents the angle between the normal n at the point q(si)
and the distance vector between the two points whereas κi is the boundary curvature at
the point q(si) which is defined in such a way that the convex parts of the boundary are
indicated by the positive curvature, so that, for example, κi = 1 for the circle with the
radius one. The arc-length parameter of the boundary section, which is centered at q(si),
is denoted by li. The discretisation is characterised by the parameter B = 2πNp/(kLb)
where Np is the number of the discretisation points whereas Lb is the total length of
the billiard boundary. The parameter B indicates the number of discretisation points per
wavelength; in our calculations B = 12 has been used.

The solutions of Eq. (3.19) provide suitable approximations for the eigenvalues ks and
the eigenvectors us. From the latter, if necessary, the wavefunctions inside the billiard at
a point q ∈ D \ ∂D can be calculated via the integration

ψ(q) =
1

4

∮

δD
Y0(k|q− q(s)|)u(s)ds. (3.21)

Now one has to solve Eq. (3.19). There are several possibilities for this; usually one
tries to find the zeros of the determinant det(A(k)), although, typically, certain levels,
especially those close to degeneracy, disappear in this case. This problem can be solved
by expanding the matrix A(k) in the Taylor series around a chosen reference value k0

(Veble et al., 2007), so that one can determine the solution(s) k close to the reference
value: k = k0 + δk where δk must be small. From the Eq. (3.19) one obtains

[
A(k0) + δkA′(k0) +

(δk)2

2
A′′(k0) + . . .

]
u = 0, (3.22)

where A′(k0) and A′′(k0) are the first and the second derivative of the matrix A with
respect to the k at the point k0 which is obtained by calculating the derivatives of each
matrix element. If only the first two terms on the left side are selected, one obtains the
generalised eigenvalue problem

A(k0)u0 = −δk0A
′(k0)u0, (3.23)

where u0 and δk0 are the first orders of the expansions of u and δk respectively. In the
case of the mushroom billiard the accuracy of Eq. (3.23) is, numerically, one order of
magnitude higher than expected: if k0 varies about the final solution, the eigenvalues

2The convex corners were treated in (Okada et al., 2005) by changing the starting Eq. (3.18).
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from Eq. (3.23) are the third order polynomial in δk as opposed to the general second
order polynomial that was expected.

Thus, Eq. (3.23), which was selected in the end, is very suitable in this case. After
solving it, one has to decide which δks are good solutions. Larger δks are rejected since
they do not agree with the starting assumption of the expansion. Each diagonalisation is
characterised by a number of good solutions which also depend on the accuracy desired.
In our calculation of the mushroom billiard from the ground state up to k2 = 5000,
there appear up to 3 appropriate eigenvalues per diagonalisation. While the accuracy
of the method is of the third order in δk0 (see Eqs. (3.22, 3.23) and the text below
Eq.(3.23)) and the mean level spacing is proportional to 1/k0, we have chosen the steps
of ∆k0(k0) = 0.05( k0

k0 Start
)−1/3, so that similar errors in the units of the mean level spacing

appear across the entire region of the calculation. Such a step dependence ∆k0(k0) might
not be crucial and the constant ∆k0 = 0.05 would probably not be so inappropriate, but
it was used and it applied well in (Veble et al., 2007) in the case of the Monza billiard, so
we decided to use it for the mushroom billiard as well.

In the non-convex geometry the BIM can provide exterior solutions for the Neumann
boundary conditions as well although this did not happen when EBIM was employed in
the calculation of the mushroom billiard levels. If one wants to check the results roughly,
one has to apply the Weyl formula and observe the difference N(E)−〈N(E)〉 which should
oscillate around zero. If there are too many or too few eigenvalues, N(E)−〈N(E)〉 has a
jump up or down, which immediately indicates that an eigenvalue is redundant (spurious)
or that it is missing. In such cases one focuses on the critical region and repeats the
calculation. Usually the shift in initial value k0 suffices, so that one manages to obtain a
missing level or eliminate a redundant one.

3.5.1 Corners and the accuracy of EBIM

The method and its accuracy have been tested on the 3/4 circle billiard with R = 1.
The results of the comparison between the numerical and the exact (analytic) solutions
are shown in Fig. 3.12 where the upper right plot corresponds to the equidistant points
around the boundary. One can notice that the errors in units of the mean level spacing
are not small. Since in our EBIM the boundary points must not be located at the corners,
we believe that corners are the most important source of the errors. For all the corner,
which are rational fractions p/q of π any eigenfunction can be expanded into a convergent
series of the Fourier-Bessel functions

ψ(r, θ) =
∞∑
i=1

aiJ q i
p
(kir) sin

(
q i

p
θ

)
, (3.24)

where r and θ are the polar coordinates starting at the corner whereas ai are the ex-
pansion coefficients. If one expands the Bessel functions J q i

p
(kir) for small r values (i.e.

around the corner), one obtains J q i
p
(kir) ∝ r

q i
p , which indicates the following: the smaller

the exponent q
p
, the larger the value of the ψ(r, θ) for small r values. The 3/4 circle is

characterised by two π/2 corners and by a single 3π/2 corner. Around the latter the
wavefunction are larger which, consequently, influences the results in a larger extent than
the π/2 corners. For this reason the points were condensed around the 3π/2 corner; first
with a 3 times larger constant density from the corner in the interval up to 0.2 R. Due
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Figure 3.12: |dEunf | =
∣∣∣
〈
N(Enumerics

j )
〉
−

〈
N(Etheory

j )
〉∣∣∣ - eigenvalue errors numerically ob-

tained for the 3/4 circle compared with the theoretical (zeros of Bessel functions) for the 1/4
circle (only) in units of the mean level spacing. The quantities in the upper right plot are the
same as in the lower two plots. The Ns on the abscissa (alone in this plot) correspond to the
consecutive indices js of the eigenvalues of the 3/4 circle. All the details are explained in the
text.

to this, the results shown in the lower left plot of Fig. 3.12 are largely improved. If one
increases the density of points, the calculation requires more time. Bearing in mind both
the accuracy and the CPU time we have decided to employ a denser mesh of points by a
factor 1 to 4 which linearly increases over an interval of length 0.4 R away from the corner
(the lower right plot from Fig. 3.12); the same procedure was followed in the case of the
mushroom calculations as well.

Fig. 3.13 shows the first 9 lowest eigenstates of the mushroom billiard whereas Fig. 3.14
represents a few excited eigenstates with their regular, nonlocalised and localised chaotic
(bouncing-ball or scarred) wavefunctions. In the upper plot from Fig. 3.15 one notices
the difference between the eigenvalues calculated for B = 12 and those calculated for the
three times larger B = 36 (for l = a = 10

19
R). Almost all the eigenvalues increase as soon as

one applies a larger number of discretisation points per wavelength. The largest absolute
difference is 0.0122 whereas the mean absolute difference equals 0.0023. The lower plots
from Fig. 3.15 represent the eigenstates with the largest difference; one can see that the
3π/2 corner is still problematic since these wavefunctions have large amplitudes around
it.
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Figure 3.13: The lowest 9 wavefunctions of the mushroom billiard calculated with EBIM (l =
a = 10

19R). The regular states are red, the chaotic ones are blue whereas the ground state is
black. The probability density with 8 equidistant contours from 0 up to the maximal value is
plotted. The upper three plots also show the boundary points.
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Figure 3.14: The same as Fig. 3.13, but here 9 higher exited states are represented.
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Figure 3.15: The upper plot: dEunf =
〈
N(EB12

j )
〉
−

〈
N(EB36

j )
〉

- the difference between the

numerically obtained eigenvalues for the mushroom billiard with the configuration l = a = 10
19R

for two different numbers of discretisation points per wavelength, i.e. for B = 12 and for B = 36.
The lower plots: the eigenstates with the largest eigenvalue errors.

In the next step all the eigenvalues with the difference ≥ 0.009 were tested one more
time, with the six times bigger B = 72, which resulted in the maximal difference 0.0152.
Bearing in mind all this the maximal numerical error of the calculation for B = 12 was
estimated to 0.02 of the mean level spacing. One should be aware that this is the largest
possible error whereas the mean error is more than 5 times smaller.

3.5.2 Level dynamics - increasing the depth l

In addition to level dynamics described in Subsec. 3.4.1 we have calculated another
one, i.e. by deepening the foot of the mushroom billiard. This method is better since
the regular eigenstates do not disappear in this case, which is indicated by a full-length
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Figure 3.16: The numerically obtained levels for the central (b = R−a) desymmetrised mushroom
billiards with the foot depth l increasing in steps of ∆l = 1/760 ≈ 0.00139. The radius of the
semicircle is R = 1, the width a = 10/19 ≈ 0.526. There are 1029 different positions, beginning
with l = 0 and continuing equidistantly up to lmax = 257/190 ≈ 1.35263. The energy E = k2 is
presented on the abscissa whereas the parameter, linearly dependent on the depth of the foot l,
appears on the ordinate. The lower right plot represents the level dynamics around one regular
state (showed in the lower left plot) for all possible parameter variations; the regular state is, in
this case, surrounded by a cluster of chaotic levels.

vertical straight lines in the level dynamics plots (Fig. 3.16). This level dynamics was
also presented by our second experiment which is described and used in Subsec. 3.7.2,
although the experimental eigenvalues have not been connected into the spaghetti.
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Figure 3.17: The upper plot: level dynamics showing the bouncing-ball states as bent, vertical
structures. The lower plot: three bouncing-ball states for the parameters l = a = 10

19R.

First, the eigenvalues were calculated for l = lmax in each small interval ∆k0. In the
next configuration with l = lmax −∆l (where ∆l indicates the step size), the eigenvalues
from the previous step were used as initial eigenvalues. One can repeat this procedure
until l = 0 is reached. Due to the decreased level density the eigenvalues were even shifted
appropriately since, on average, the eigenvalues of the next configuration are larger than
those from the previous one. In this way we have managed to improve our calculation to
such an extent that it became faster by a factor of about 4.

At this point one should briefly mention the so-called bouncing-ball states which also
appear in our system (the lower plots of Fig. 3.17). These states are localised along the
classical parabolic periodic orbits. Contrary to the regular states their eigenvalues are
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represented by bent vertical ’lines’ (structures) in the level dynamics plot (the upper plot
in Fig. 3.17), which indicates that they are not as strong as the regular states, but that
they are, in fact, stronger in some positions and weaker in the others - this depends on the
position of the foot of the mushroom billiard since these eigenstates may also be localised
outside the foot. There exists a correlation between the slope of these vertical ’lines’ and
the strength of the bouncing-ball modes, i.e the stronger (or purer) a bouncing-ball mode
the more vertical the corresponding ’line’ in the level dynamics plot. We have also seen
some scarred eigenstates (the upper left plot from Fig. 3.14) which are localised along the
classical hyperbolic orbits and whose ’lines’ in the level dynamics plot, as expected, are
much more bent than the ’lines’ indicating the bouncing-ball states.

3.5.3 The level spacing distribution - comparison with the RMT
prediction

Figs. 3.18 - 3.22 show the results of the comparison between the mushroom numerical
spectra (Fig. 3.16) and the tunneling RMT prediction treated in Chap. 2. One notices
that the best fitting Gaussian model for P Tn

DBR appropriately describes the numerical data.
Similarly, the best fitting exponential model is suitable in this case as well. In both cases
σ is the only fitting parameter whereas ρ is determined by classical dynamics.

We have employed sequential levels from jmin to jmax for 101 geometrical configurations
of the equidistantly varied parameter l in steps of ∆l = 1/760 ≈ 0.00139 around the
central position l0. The parameter ρ for these configurations varies only up to 4% around
the central value indicated in each plot.

The lower plot from Fig. 3.22 represents the enlarged interval for small S. Due to the
numerical error 0.02 of the mean level spacing (see Subsec. 3.5.1) the histogram in the
interval S = [0, 0.04] is not reliable. Figs. 3.18 - 3.22 prove that the numerical histograms
well agree with the best fitting theoretical curves describing the tunneling effects from
Chap. 2. But in order to confirm the theory even more stronger, one should improve it
and one should also obtain more precise numerical results for S ⇒ 0.

3.6 Avoided crossings

The narrowly avoided crossings, where ∆E indicates the separation at the closest
approach (splitting), are especially interesting. Such crossings, for example, appear in the
study of atomic systems perturbed by external fields, in the molecular systems employed
as a function of the internuclear distance, etc.

Let us consider the level dynamics of the Hamiltonian written as

H = H1 + λH2, (3.25)

with the fixed Hamiltonian H1 and with the parameter λ dependent second term λH2.
The parameter from a regular system is changed in such a way that the system remains
regular, there only appear normal crossings but no avoided crossings appear. Thus, the
distribution of the regular crossings can be represented by

PRegular(∆E) = δ(∆E). (3.26)
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Figure 3.18: The comparison between the numerical data (histogram) for (jmin, jmax) =
(300, 400) (the upper plot) and (jmin, jmax) = (200, 300) (the lower plot) and the best fitting
theoretical curves for P Tn

DBRN : The solid red curve represents the Gaussian model, the dash-
dotted black curve is used for the exponential model, the dashed blue curve indicates the BR
distribution (with the same ρ) and the dotted brown curve represents the Wigner distribution.
σG and σE are the best fitting values of σ for the Gaussian and for the exponential model re-
spectively. N is the number of objects in the histogram. The billiard parameters: a = 10/19,
R = 1 (both plots), l0 = 1.287 (the upper plot) and l0 = 1.024 (the lower plot). All the details
are explained in the text.

However, the avoided crossings appear if the H is strongly chaotic in the full energy
range of varying λ. Here we have considered time reversal invariant systems obeying the
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Figure 3.19: The same as Fig. 3.18 for (jmin, jmax) = (200, 300) (both plots), l0 = 0.892 (the
upper plot) and l0 = 0.761 (the lower plot).

GOE universality class, provided that the symmetry of the system does not change if
one changes the parameter λ . On could, in fact, obtain a simple analytic formula for
the avoided-crossing distribution if one assumed that such crossings are isolated, i.e. that
the third level is so far away that one can neglect its influence, which means that each
avoided crossing can be treated as a two-level mechanism. One may even make a weaker
assumption, i.e. the multiple avoided crossings appear less frequently, so they are statis-
tically insignificant. Then one may locally consider only two strongly interacting levels.
Thus, one can select a two-dimensional subspace of two neighbouring levels which meet
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Figure 3.20: The same as Fig. 3.18 for (jmin, jmax) = (100, 200) (the upper plot), (jmin, jmax) =
(300, 400) (the lower plot) and l0 = 0.629 (both plots).

in the avoided crossing. In this subspace the effective Hamiltonian may be represented by
the 2 × 2 matrix in the basis where H2 is diagonal (Zakrzewski et al., 1993; Stöckmann,
1999). Thus, one obtains

H =

(
a b
c d

)
+ λ

(
v1 0
0 v2

)
, (3.27)

where a, b, c, v1, v2 are real numbers. A simple explicit calculation shows that the de-
pendence of the levels on the parameter λ can be represented as a hyperbola whose two
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Figure 3.21: The same as Fig. 3.18 for (jmin, jmax) = (100, 200), l0 = 0.497 (the upper plot) and
(jmin, jmax) = (200, 300), l0 = 0.366 (the lower plot).

branches E1,2(λ) can be calculated

E1,2(λ) = ±1

2

√
((v1 − v2)λ + a− b)2 + 4c2 +

1

2
((v1 + v2)λ + a + b) . (3.28)

The minimal gap ∆E between the energy levels E1 and E2 as function of λ appears at
λ0 = a−b

v1−v2
and equals 2 |c|. Since H obeys the GOE universally class, the matrix element

c is normally distributed according to RMT. Due to this the probability distribution of

avoided crossings reads P (∆E) = 1
α
√

2π
exp

(
−∆E2

8α2

)
where α is a free parameter. Since
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Figure 3.22: The same as Fig. 3.18 for (jmin, jmax) = (100, 200), l0 = 0.234 (the upper plot) and
enlarged (the lower plot). All the details are explained in the text.

the ratio of the average avoided crossing to the average spacing is a system dependent
quantity (Zakrzewski et al., 1993), one has to normalize P (∆E) to unit average avoided

crossing to obtain α =
√

π

2
√

2
, which results in

PGOE(∆E) =
2

π
exp

(
−∆E2

π

)
. (3.29)

Since the crossings are non-generic, the probability of the level crossings in the chaotic
systems with one system parameter equals zero. Due to this one has to change two or
more system parameters to create a degeneracy. When only one parameter is varied,
there appears a finite closest approach ∆E to the eigenvalues E1(λ) and E2(λ) rather
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than a degeneracy. It was numerically confirmed that, for different systems, Eq. (3.29)
appropriately describes what is happening in chaotic systems (Zakrzewski et al., 1993).

We would like to deal with the avoided crossings in the mixed-type systems, especially
in the mushroom billiards in the case where one deepens the foot (see Subsec. 3.5.2). There
exist two types of avoided crossings: the RC avoided crossings, which appear between
a regular and a chaotic level, and the CC avoided crossings, which appear between two
chaotic levels (Fig. 3.23). The RC avoided crossings appear due to tunneling, which affects
the system; their size is employed as a tunneling measure. The two-hyperbola fit (see
Fig. 3.23 - the upper and the middle plots) was applied to each (RC or CC) isolated avoided
crossing. For practical reasons the two hyperbolas E1,2(λ) are described by a somewhat

different set of five parameters a0, a1, a2, a3 and a4: E1,2(λ) = ±
√

a2
0(λ− a2)2 + a2

1 +a3 +
a4(λ−a2) where the new parameters are simple functions of a, b, c, v1, v2 from Eqs. (3.27,
3.28). The minimal energy distance ∆E = 2 |a1| occurs at λ0 = a2. For the two-hyperbola
fit we have used about 20 points whereas in the experimental data fewer points were often
available due to the missing resonances.

If the density of states at the local scale does not vary much, one can apply the two-
hyperbola fit on the energy or on the Weyl axes - one only switches the avoided-crossing
distances to another scale if necessary. For the purpose of this section avoided-crossing
distances have to be placed on the Weyl axes. Therefore, we have first unfolded the spec-
tra up to the E = 4200 and, then, we have employed the two-hyperbola fit, so that we
eventually devised the histogram of the splittings at the avoided crossings. For the sake
of comparison with the theoretical prediction, the histogram has to be normalised to unit
area and to unit average splitting at avoided crossings. The lower plot from Fig. 3.23
represents the avoided-crossing distribution of the mushroom billiard levels obtained nu-
merically.

For the CC avoided-crossing distribution the results are in accordance with the the-
oretical prediction for fully chaotic systems. However, this does not happen in the case
of larger crossings which cannot be adequately described by the 2 × 2 model since they
cannot be treated as isolated pairs of levels. Another exception is the ratio of the mean
avoided crossing to the mean level spacing 〈∆E〉/〈S〉. In the Hamiltonian from Eq. (3.25)
the mean level spacing explodes to infinity for a big λ . If one wants to avoid this explosion,
the Hamiltonian has to be expressed by (Zakrzewski et al., 1993)

H = cos(λ)H3 + sin(λ)H4, (3.30)

where H3 and H4 are GOE random matrices with the same mean level spacing. Then
the mean level spacing of H from Eq. (3.30) does not dependent on λ any more. With
this H the theoretical prediction results in 〈∆E〉/〈S〉 =

√
2− 1 ≈ 0.41. Simulations with

large (N = 50) GOE random matrices yield 〈∆E〉/〈S〉 ≈ 0.52 (Zakrzewski et al., 1993).
The results differ because the nonisolated avoided crossings are also treated in the GOE
model. In real chaotic systems 〈∆E〉/〈S〉 is a system dependent quantity, which is usually
larger than the 2 × 2 RMT theoretical prediction. This equals 0.51 for the kicked-top
model, 0.49 for the Africa billiard and 0.42 for the magnetised hydrogen atom (Zakrzewski
et al., 1993). There appear certain discrepancies (i) because the avoided crossings in real
systems cannot be regarded as isolated as well as (ii) due to the localised bouncing-ball
and scarred eigenstates. If a bouncing-ball or a scarred eigenstate and another chaotic
eigenstate, which create an avoided crossing, are dislocated from one another, so they do
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Figure 3.23: The upper plot: the avoided crossings in a numerically calculated level dynamics
fitted on the Weyl axis; the RC crossings are indicated by the red colour whereas the CC
ones are blue. The dotted lines represent the eigenvalues for the quarter circle. The middle
plots: the magnification of a CC (blue) and a RC (red) avoided crossing where the closest
distances are indicated by small horizontal coloured straight lines whereas the black straight
lines represent the asymptotes of the hyperbolas. The blue number at a regular state indicates
the azimuthal quantum number m divided by 2 whereas the red number is the radial quantum
number n. The lower plot: the distribution of splittings for each of the cases, where the solid
blue curve represents the Eq. (3.29). N(RC) and N(CC) are the numbers of objects included in
each histogram. For the sake of comparison the first moment of the RC histogram is normalised
with respect to the first moment of the CC histogram. K is defined in Eq. (3.16).
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not overlap very strongly, which results in smaller splittings reducing the 〈∆E〉/〈S〉.
In our system this ratio for the CC avoided crossings equals

〈∆E〉CC

〈S〉all

≈ 0.27. (3.31)

The value does not change if the quantities are scaled in the appropriate way, i.e. the
mean level spacing 〈S〉all for the entire spectrum is scaled with the mean level spacing
〈S〉C for the chaotic states and the mean CC splittings with 〈S〉C as well since both
quantities were divided by the same constant. Thus, the final result from (3.31) greatly
differs from the theoretical 2 × 2 RMT prediction value (0.41) and, even more greatly,
from the N×N value (0.52). We believe that the discrepancy occurs (i) due to the mixed-
type nature of the system; the CC avoided crossings, their gaps and even their existence
also depend on the neigbouring regular states; and (ii) due to several bouncing-ball and
scarred eigenstates appearing. This could be studied in the future as well. Nevertheless,
we are convinced that, due to this result, the validity of Eq. (3.29) could be extended to
the mixed-type systems.

In the RC case (red) the average distances are much smaller than those from the
CC case, and the ratio 〈∆E〉RC/〈S〉all of the mean avoided crossing and the mean level
spacing of the entire spectrum is about 0.07. We have not managed to describe the RC
histogram (for all the regular states) with an analytical function since we do not expect
the universal behaviour. But, one can predict the tunneling rates for each regular state
separately, which is discussed in the following section.

3.7 Tunneling rates

This section considers the tunneling rates in the mushroom billiard. First one should
mention a typical example of tunneling under the barrier, i.e. the 1D double well problem
(Landau and Lifshitz, 1989) with the symmetric potential

U(x) = α
(
x2 − x2

0

)2
. (3.32)

Quantum mechanically, two quasi-modes with the same energy can be constructed:
i.e. one, ψL, in the left well and the other, ψR, in the right well. The eigenstates are
constructed if one employs a symmetric and an antisymmetric linear combination from
ψL,R

ψ+ =
1√
2

(ψL + ψR) , ψ− =
1√
2

(ψL − ψR) (3.33)

with the energies ES and EA respectively. The splitting ε = ES −EA in the semiclassical
limit is given by

ε =
~ω

4πM
exp

(
−1

~

∫ +x1

−x1

|p(x)| dx

)
, (3.34)

where the integral goes over the barrier, ±x1 are the two turning points of the trajectories
from the right as well as those from the left well respectively, i.e. the points where the
moment p vanishes (see Fig. 3.24) whereas ω corresponds to the angular frequency of the
classical trajectory.
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Figure 3.24: The double well potential U(x) from Eq. (3.32).

If the initial state of the system is ψL, its time evolution Û(t)ψL can be indicated by

Û(t)ψL =

√
2

2
Û(t)(ψ− + ψ+) =

√
2

2
e−iEAt/~(ψ− + e−iε t/~ψ+). (3.35)

Thus, its absolute square, the probability |Û(t)ψL|2, oscillates between |ψL|2 and |ψR|2
with the time period t0 = π~/ε, provided that the two-level approximation is justified. In
the case of small splittings the time period t0 is very long and this is why these modes
are called quasi-modes.

Only two close-lying states were treated here. In the case of many (continuum) final
close-lying states the qualitative behaviour of the system differs: there appears the ex-
ponential decay of the probability of the initial state, so one can apply Fermi’s golden
rule here. However, at times larger than the Heisenberg time τH = ~

∆E
, where ∆E is the

mean level spacing of the discrete spectrum, there can occur quasi- or almost periodic
oscillations which depend on the discrete energy specter.

3.7.1 Fermi’s golden rule

Fermi’s golden rule indicates the transition rates in systems with a perturbation. It
is derived from the time-dependent perturbation theory although the perturbation ap-
pearing in Fermi’s golden rule is time independent. The time-independent Hamiltonian is
written as

H = H0 + V, (3.36)

where H0 is the unperturbed Hamiltonian while V indicates the perturbation. If |ψ0
j 〉 and

|ψ0
k〉 are two different eigenstates of the H0, their matrix elements of the perturbation

may be represented in terms of the full Hamiltonian: i.e. 〈ψ0
j |V |ψ0

k〉 = 〈ψ0
j |H|ψ0

k〉. As
mentioned earlier the eigenstates |ψj〉 of the full Hamiltonian are either mainly regular
or mainly chaotic. On the basis of these two types we have introduced purely regular
|ψ̃reg〉 and purely chaotic orthogonal states |ψ̃ch〉 (Bäcker et al., 2008b) which in the first
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approximation are the eigenstates of H0. The Appendix B describes how these states can
be calculated. One may doubt the existence of the H0. Although H0 cannot be explicitly
represented as a slight variation of H, it is well defined by its eigenstates |ψ0

j 〉 and their
corresponding eigenvalues E0

j

H0 =
∑

j

E0
j |ψ0

j 〉〈ψ0
j |. (3.37)

If one wants to obtain the E0
j eigenvalues, the spectrum of H has to be regarded as

a function of l and every RC avoided crossing has to be replaced by an exact crossing
whereas the CC avoided crossings remain intact.

The exponential tunneling decay e−γt of a purely (unperturbed) regular state |ψ̃reg〉
into the chaotic states |ψ̃ch〉 is described by the tunneling rate γ. For the systems with a
finite phase space (like ours) this exponential decay mostly occurs up to the Heisenberg
time t < τH = ~

∆ch
where ∆ch is the mean level spacing of the chaotic states. The central

assumption of this formalism is that the chaotic states, which meet with one specific
regular state in many avoided crossings, or the avoided crossings of this specific regular
state themselves, are so dense, that they can, in fact, be regarded as a quasi-continuum.
Thus, Fermi’s golden can be applied to γ, which (if ~ = 1) results in

γ = 2π〈|v|2〉ρch. (3.38)

Here 〈|v|2〉 is the averaged squared matrix element between the regular state and the

chaotic states characterised by similar energy whereas ρch = d〈N(E)〉
dE

is the density of the

chaotic states in the vicinity of the regular state. According to Weyl’s formula ρch ≈ Ach

4π
,

where Ach is the effective chaotic area, i.e. the area of the billiard times the fraction of
the chaotic phase-space volume 1− ρ1 (for the mushroom billiard see Appendix A). Note
that one should consider level dynamics if one wants to observe how one regular state
meets with many chaotic states. If only one billiard configuration were considered, there
would not appear more than one (if any) avoided crossing per regular state. In this case
no exponential decay would occur; one would rather notice true oscillations between the
states (at avoided crossing) as in the case of 1D double potential well, provided that the
Heisenberg time is larger than the oscillation time.

The theory for the tunneling rates γmn for any pure regular state |ψ̃reg〉 = ψmn
1/4 of the

mushroom billiard from Eq. (3.3), was successfully derived by the group from Dresden
(R. Ketzmerick, A. Bäcker and S. Löck) and it is discussed in Appendix B. The analytic
result for R = 1 reads

γmn =
8

π

∞∑′

s=1

Jm+ 2s
3
(jmna)2

Jm−1(jmn)2
, (3.39)

where the definitions are the same as in Sec. 3.2. The sum over s excludes all the multiples
of 3 which is indicated by the prime, and this sum is rapidly converging. Its dominant
contribution is s = 1, so if one uses s ≤ 2, this is sufficiently accurate. The resulting γmns,
which are presented in Fig. 3.27, are connected by solid lines for fixed values of the radial
quantum number n.

If one changes the foot height l and if ρch is not too big (otherwise the flooding of
regular islands (Bäcker et al., 2005, 2007) can occur), there appear the avoided crossings
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between individual regular states and different chaotic states. If the full Hamiltonian
is represented in the same way as in Eqs. (3.25) and (3.27), the splittings ∆E = 2|c|
determine individual matrix elements for different billiards with varying ρch where c equals
v from this section. Thus, the average in Eq. (3.38) can also been applied to ρch, provided
that the regular-to-chaotic tunneling rate γ is a local property of the head region where
the regular phase-space component resides, so it does not depend on the foot height. This
results in

γ = 〈[∆E]2Ach/8〉, (3.40)

where Ach varies from 0.5 R2 to 1.2 R2 if l increases from 0 to 25.7 cm at R = 19 cm (in
experiment) and from 0 to 257/190 at R = 1 (in numerics).

3.7.2 Tunneling rates - the experiment

Figure 3.25: The desymmetrised experimental mushroom billiard with the radius R = 19 cm,
the foot width a = 10 cm and the foot height l = 0 . . . 25.7 cm. The antenna is located 4 cm left
from the right corner and 0.75 cm above the horizontal wall.

Fig. 3.25 shows the mushroom billiard-shaped microwave cavity we have measured
the tunneling rates with. The mushroom billiard with the radius R = 19 cm and the foot
width a = 10 cm is made of brass. The spectra are (regarded as) a function of the foot
height l of the mushroom billiard in the frequency regime from 3.0 to 13.5 GHz, which
corresponds to the values of kR between 11.9 and 53.8.

Fig. 3.26 shows part of the spectra from a small E = (kR)2 window. One should again
emphasise that since the energy of the regular states from the quarter circle does not
depend on the foot height, these states are indicated by straight vertical lines whereas
the chaotic ones, with increasing foot height l, shift to the lower energies, which reflects
the increasing density ρch of chaotic states. For each of the regular states, described by
Eq. (3.3), with the radial quantum numbers n between 1 and 5 and the azimuthal m
even between 8 and 32, all the accessible splittings appearing at avoided crossings have
been determined by means of the two-hyperbola fit (in this case the two-hyperbola fit
was performed using full energy prior to spectral unfolding). Fig. 3.26 shows two such
fits: a ’reliable’ (red) and an ’unreliable’ (yellow) one - these fits are explained at a later
point but, for the time being, they are not treated separately. The tunneling rates γmn
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Figure 3.26: A small part of the evaluated experimental resonance spectra of the mushroom
microwave billiard vs. the parameter, linearly dependent on the foot height l. The vertical lines
indicate the eigenenergy of the quarter circle with the quantum numbers m/2 = 8 and n = 3.
The RC two-hyperbola fits are red (the ’reliable’ hyperbola; see the text) and yellow-green (the
’unreliable’ hyperbola). All the other signatures are the same as in the middle plot from Fig. 3.23.

from the regular states (m,n) to the chaotic sea were determined in such a way that we
employed the fixed values of (m,n) and averaged all the ∆Es by applying Eq. (3.40).
The resulting γmn vs. the wavenumber k are presented in Fig. 3.27. The energy of regular
states is represented as the square of the Bessel zero divided by R2. Thus, if one wants to
obtain the dimensionless units, the tunneling rates should be multiplied by R2 whereas
the wavenumber should be multiplied by R.

Apart from the deviations for n = 1 and for one or two points with n = 2 the results,
including the error bars, are in very good agreement with the theoretical prediction,
Eq. (3.39). Some points are missing; if two regular levels are very close to one another,
it is not recommendable to fit and, thus, resolve their avoided crossings with the chaotic
states since this would result in a 3-level mechanism which is not described by the theory
employed.

The experimental resolution of the avoided crossings is limited by the line widths of
the resonances caused by the wall absorption and the antenna coupling. In the frequency
regime studied the line widths were about ∆νw = 0.01 GHz, which corresponds to ∆kwR ≈
0.04. From the hyperbola fit of the avoided crossings all the splittings ∆kR larger than
0.1∆kwR could still be resolved, corresponding to the tunneling rates γ between 0.001
and 0.024. If one selects the average Ach of 0.85 R2, the estimated lower limit of the
experimentally accessible rates in Fig. 3.27 is indicated by the dashed line.

Fig. 3.27 also represents the error bars indicating the standard error SE of the mean
tunneling rate γ0(= γmn) for the selected sample of the avoided crossings along one regular
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Figure 3.27: The dynamical tunneling rates from the regular region to the chaotic sea for the
quantum numbers n = 1 to n = 5 vs. kR for the mushroom billiard with a/R = 10/19. The
figure also represents the theoretical predictions (’+’s connected by solid lines for a fixed n, just
to guide the eye) from Eq. (3.39) and from the experimental results. The quantum numbers m/2
are indicated in the figure and connected by dotted lines for a fixed quantum number n. In the
experimental results the standard error bars are plotted as well. The dashed line denotes the
lower limit of the experimental resolution of the resonance splittings.

line. The standard error indicates the uncertainty around the estimated mean measured
value whereas the standard deviation σmeas measures the spreading of the individual data
points. The standard error and the standard deviation are related in the following way

SE =
σmeas√

N
, (3.41)

where N is the sample size which, in this thesis, indicates the number of the avoided
crossings obtained for a chosen (m,n).

In our study of the tunneling rates in the mushroom billiards, there appear two different
types of errors: a) the statistical errors; its standard deviation is indicated by σstat. b)
the fitting error; its standard deviation is denoted by σfit. Due to their independence the
total, squared standard deviation is represented as the sum of the squares of both the
standard deviations

σ2
meas = σ2

stat + σ2
fit. (3.42)

If the mean is represented by
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Figure 3.28: The same as Fig. 3.27 whereas the ’unreliable’ hyperbolas are represented by the
distance 0 and NOT by the fitted distance.

γ0 =
N∑

i=1

([∆E]2Ach)i

8N
, (3.43)

the statistical error is written as

σ2
stat =

N∑
i=1

(([∆E]2Ach)i/(8N)− γ0)
2

N
. (3.44)

Due to the uncertainty δEi of each individual avoided crossing ∆Ei the fitting error can
be calculated as:

γ0 ± σfit =
N∑

i=1

([∆E ± δE]2Ach)i

8N

=
N∑

i=1

([∆E]2Ach)i

8N
± 2

N∑
i=1

(∆EδEAch)i

8N
+

N∑
i=1

O([δE]2i ) (3.45)

with
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m/2 n NhypALL NhypREL
NhypREL

NhypALL
σfit/σstat SE/γ0

4 1 3 3 100% 0.31 11.2%
5 1 3 / / 1.10 93.1%
6 1 10 8 80% 0.54 21.6%
7 1 12 11 92% 0.25 16.3%
6 2 17 16 94% 0.08 21.3%
8 1 14 10 71% 0.22 23.5%
7 2 23 16 70% 0.35 17.3%
9 1 21 9 43% 0.24 31.8%
11 1 20 1 5% 0.48 27.6%
9 2 29 12 41% 0.40 21.3%
8 3 38 35 92% 0.05 14.3%
12 1 17 3 18% 0.29 50.4%
10 2 28 9 32% 0.44 25.7%
9 3 40 37 92% 0.06 15.1%
13 1 18 3 17% 0.19 37.7%
11 2 23 1 4% 0.39 35.1%
12 2 50 5 10% 0.31 23.9%
11 3 63 44 70% 0.12 12.9%
13 2 56 23 41% 0.22 18.6%
10 4 65 61 94% 0.05 13.5%
12 3 73 42 58% 0.18 15.0%
11 4 74 65 88% 0.06 12.7%
13 3 77 32 42% 0.23 14.2%
13 4 99 57 58% 0.13 11.8%
12 5 84 70 83% 0.05 12.7%
14 4 102 38 37% 0.18 15.3%
13 5 110 90 82% 0.07 11.6%
15 4 105 19 18% 0.21 17.4%
14 5 121 77 64% 0.08 12.5%
16 4 111 9 8% 0.33 17.9%
15 5 122 65 53% 0.10 14.3%

Table 3.1: The number counting all and only the ’reliable’ hyperbolas with their fraction for
the experimental data for various quantum numbers (m, n) plotted in Figs. 3.27 and 3.28. The
6th column shows the ratio of two different errors whereas the last column indicates the relative
error. The quantum numbers selected are ordered according to increasing energy.

σ2
fit =

1

16

(
N∑

i=1

(∆EδEAch)i

N

)2

. (3.46)

For this reason one needs to calculate the uncertainty δEi which is obtained from the
least square fit procedure and which is equal to the square root of its χ2, i.e. the sum of
the squares of the distances between the hyperbola and the fitted points divided by M
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which indicates the number of the fitted points reduced by the number of the free (5 in
our case) parameters of the hyperbola. If one follows this procedure, one can calculate the
correct (standard) error for each individual tunneling rate γmn indicated by the error bars
in Fig. 3.27. The entire (standard) error represents about 10 − 30% of the mean, which
implies that the procedure selected is reliable. In Tab. 3.1 one notices that the statistical
error is much more important (larger) than the fitting one, so one might even disregard
the latter one.

The standard error of the individual hyperbola can be obtained from its uncertainty:
δEi/(M − 5). A hyperbola is classified as ’reliable’ if its standard error is by at least
a factor 1.5 smaller than the standard error of the two-straight lines fit describing the
hyperbolas in infinity.

Tab. 3.1 shows the hyperbolas employed. About one half of these hyperbolas are char-
acterised as the ’unreliable’ ones. From all the 1256 points, since it was not possible to
fit all the hyperbolas, some distances (appearing at avoided crossings) have been deter-
mined manually (15 such points) and treated as the ’reliable’ ones whereas some of them
have been determined with the distance 0 (3 such points) and treated as the ’unreliable’
ones. So far (Fig. 3.27) the results for all the hyperbolas have been presented. However,
in Fig. 3.28 the results are presented in such a way that the ’unreliable’ hyperbolas have
been taken with the distance 0. One can learn from Tab. 3.1 that all the hyperbolas are
’unreliable’ at the missing point (m/2, n) = (5, 1). The difference between the results is
significant for the lower values of the tunneling rates where some points even fall be-
low the experimental resolution. This happens because the majority of the ’unreliable’
hyperbolas are characterised by small splittings. So if one selects the splitting 0, this
changes the result, which is clearly seen in the logarithmic scale. For this reason γmns
for (m/2, n) = (5, 1), (11, 1), (12, 1), (13, 1), (11, 2), (12, 2), (16, 4) might not be taken into
account.

Another complication arises due to the antenna which causes an additional splitting
(see Chap. 2). The size of this splitting is proportional to the absolute value of the product
|ψmn

1/4(qa)ψch(qa)| of the wavefunctions at the antenna position qa (see Subsec. 2.5.1). For

the points (m/2, n) = (7, 1), (8, 1), (9, 1) and (13, 2) |ψmn
1/4(qa)| is considerably larger than

|ψm′n
1/4 (qa)| for m/2 > m′/2, which could probably explain the deviations between the

experimental results and the theoretical prediction (see Figs. 3.27 and 3.28).
Tab. 3.1 shows that the higher the energy of a regular state, the more avoided crossings

are formed. The fraction of the ’unreliable’ hyperbolas increases with the increasing m at
a fixed n. The avoided distances are in many cases small, which can be explained by the
fact that many Bessel functions have larger values at a larger radius, so the hyperbolas
resemble straight lines.

Thus, this is the very first experimental confirmation of any theoretical prediction of
tunneling rates in billiards without the fitting parameter, with the agreement extending
over more than 2 orders of magnitude. This is the most important result in our study of
the dynamics of the avoided crossings in the mushroom billiard.

3.7.3 Tunneling rates - the numerics

With the numerically obtained levels the tunneling rates have been calculated in the
same way as the experimental tunneling rates and their errors; the eigenvalues are the
same as the ones employed in the analysis of the level spacing distribution model treated
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Figure 3.29: The same as Figs. 3.27 and 3.28 for numerically calculated levels with EBIM. The
upper plot represents all the hyperbolas considered whereas in the lower plot the distance 0
is applied to the ’unreliable’ hyperbolas. The ’numerical resolution’ of an avoided crossing is
indicated by the horizontal dashed line.
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in this thesis. (see Subsecs. 3.5.2 and 3.5.3). The results are presented in Fig. 3.29 and
Tabs. 3.2 and 3.3. Obviously, the numerical results confirm the theoretical findings up to
4 orders of magnitude, which indicates that the agreement in this case is by a 1.5 order
of magnitude better than it was in the experiment case.

The dashed horizontal line indicates the error which appeared when we tried to resolve
a gap at an individual avoided crossing by our method, which is estimated to be 0.004 in
units of the mean level spacing (see Subsec. 3.5.1). This error corresponds to the tunneling
rate γ of about 0.0003 where k changes from 7.5 to 68. In this case all the gaps ∆E larger
than 0.1 × 2 ∆Eerror (see Subsec. 3.7.2) could still be resolved via the two-hyperbola fit
of the avoided crossings where ∆Eerror is the error of a single level prior to unfolding.

As expected, one notices that the ratio of the fitting and the statistical error is smaller
than the one from the experimental study. Due to this and due to a larger number of
hyperbolas the standard error is smaller than the one obtained in the experiment. As
evident from Tabs 3.2 and 3.3 some (m,n)s contain only the ’unreliable’ hyperbolas, so,
consequently, these are not presented in the lower plot from Fig. 3.29. We believe that all
these γmns and, at least, also (m/2, n) = (19, 4) should not be considered in our analysis.
In an extreme situation one might select the distance zero for the ’unreliable’ hyperbolas,
although it would probably be better if one chose the mean of the fitted distance and the
distance zero (namely ∆E/2), however, such an approach is not necessarily useful.

Numerical accuracy is a large problem here since (as already mentioned above) the
corners, especially the non-convex corner of 3π/2, are the main sources of errors.

After all the eigenvalues had been calculated, there emerged a completely new, a very
efficient and highly accurate numerical method, especially adapted for the mushroom
billiard (Barnett and Betcke, 2007). This method is based on a set of basis functions
ξi, which are termed particular solutions. These obey the Helmholz equation (3.2) or
(3.9) although they do not individually fulfil the Dirichlet boundary condition. For this
reason one should obtain such values for Ej, that the specific linear combination of the
corresponding basis functions would disappear at the boundary. These linear combinations
would, then, be regarded as good approximations for the eigenfunctions whereas the
Ejs for the eigenvalues. The authors of the method employed the previously-mentioned
Fourier-Bessel functions represented by

ξi = J 2 i
3
(
√

Er) sin

(
2 i

3
θ

)
, (3.47)

as a set of basis functions. The non-convex corner is selected as the center of the coordinate
system. These functions accurately capture the behaviour at the corner.

Since the group from Dresden had already calculated the energy spectra using the new
method, we have not performed our own calculation with this method. Their calculation
and the results for the tunneling rates are briefly represented in Appendix C. The results
agree with the theory at over 18 orders of magnitude, which indicates an extremely strong
confirmation.

Even if we tried to improve our EBIM method by treating the influence of the corners
more precisely, the agreement would probably not be improved for more than a few orders
of magnitude. We have solved the problem by using a general numerical method which is,
consequently, slower and less accurate. Nevertheless, we can conclude that the theoretical
prediction has also been confirmed by the numerical results.



3.7. Tunneling rates 83

m/2 n NhypALL NhypREL
NhypREL

NhypALL
σfit/σstat SE/γ0

2 1 2 2 100% 0.13 4.1%
3 1 3 3 100% 0.79 0.9%
4 1 3 3 100% 0.10 11.9%
5 1 9 8 89% 0.04 24.3%
4 2 6 6 100% 0.01 25.8%
6 1 12 12 100% 0.02 21.4%
5 2 13 13 100% 0.006 17.1%
7 1 15 14 93% 0.06 19.0%
6 2 21 20 95% 0.007 20.4%
8 1 20 14 70% 0.09 19.8%
7 2 25 24 96% 0.01 17.9%
9 1 25 / / 0.43 28.3%
11 1 37 / / 0.31 17.0%
9 2 37 31 84% 0.02 14.0%
8 3 41 40 98% 0.01 14.6%
12 1 43 / / 0.55 32.5%
10 2 45 36 80% 0.08 13.3%
9 3 47 45 96% 0.02 13.3%
13 1 52 / / 0.46 23.2%
11 2 50 33 66% 0.10 13.3%
12 2 59 7 12% 0.25 12.7%
11 3 66 54 82% 0.04 11.2%
13 2 68 / / 0.36 25.2%
12 3 77 65 84% 0.05 9.9%
14 2 78 / / 0.35 15.9%
11 4 76 72 95% 0.02 12.2%
13 3 84 68 81% 0.06 10.1%
12 4 85 80 94% 0.05 11.0%
14 3 95 58 61% 0.11 10.2%
13 4 100 91 91% 0.04 8.6%
15 3 98 18 18% 0.38 15.2%
14 4 102 89 87% 0.03 9.5%
16 3 108 / / 0.24 15.2%
13 5 91 89 98% 0.06 11.2%
15 4 109 96 88% 0.03 8.6%
17 3 122 / / 0.30 20.7%
14 5 113 106 94% 0.05 9.8%
16 4 130 84 65% 0.17 9.4%
15 5 132 119 90% 0.05 9.3%
17 4 140 64 46% 0.40 8.8%
16 5 122 106 87% 0.05 9.5%

Table 3.2: The same as Tab. 3.1 for the numerical data.
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m/2 n NhypALL NhypREL
NhypREL

NhypALL
σfit/σstat SE/γ0

18 4 137 32 23% 0.26 16.1%
17 5 143 129 90% 0.08 7.9%
19 4 154 1 1% 0.23 15.8%
18 5 165 126 76% 0.09 7.9%
20 4 166 / / 0.30 16.7%
17 6 150 140 93% 0.03 10.0%
19 5 195 127 65% 0.18 7.2%
18 6 134 117 87% 0.06 9.9%

Table 3.3: Continuation of the previous table.
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Chapter 4

Numerical studies of non-Gaussian
real symmetric random matrices

4.1 2D real symmetric random matrices

Here we refer to Sec. 2.2 where the 2 × 2 symmetric matrices A = (Aij) (i, j = 1 or
2) have been considered and where their level spacing distribution P (S) from Eq. (2.13),
which is expressed in terms of the distribution function of the diagonal ga(a) and the
off-diagonal gb(b) matrix elements of A, has been calculated.

As mentioned earlier the distribution (2.13) is normalised by construction, 〈1〉 = 1,
but this is not true for the first moment where 〈S〉 6= 1. If this distribution is selected
as the model distribution for real, experimental spectra after the spectral unfolding, it
must be normalised to unit mean level spacing 〈S〉 = 1. Such a normalised distribution
function is denoted by P n(S) and it can be easily obtained if one rescales the argument
of P (S) by the scale factor B, i.e.

P n(S) = B P (BS), with B =

∫ ∞

0

x P (x) dx. (4.1)

In this section we will introduce four non-Gaussian 2D random matrix ensembles and
their results for the level spacing distribution, following the reference (Grossmann and
Robnik, 2007b). First we will test the analytic results and, in the next step, we will
generalise them to the higher dimensions of matrix A.

4.1.1 Box (uniform) distribution

The distribution functions of matrix elements are defined as

ga(a) =
1

2a0

, if |a| ≤ a0, 0 otherwise , (4.2)

gb(b) =
1

2b0

, if |b| ≤ b0, 0 otherwise. (4.3)

Without any loss of generality one can assume that b0 ≤ a0. In this case the exact result
for the level spacing distribution is written as
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P (S) =





πS
8a0b0

, if S ≤ 2b0 ≤ 2a0,
S

4a0b0
arcsin 2b0

S
, if 2b0 ≤ S ≤ 2a0,

S
4a0b0

(
arcsin 2b0

S
− arccos 2a0

S

)
, if 2a0 ≤ S ≤ 2

√
a2

0 + b2
0,

0, if S ≥ 2
√

a2
0 + b2

0.

(4.4)

If one selects b0 ≥ a0 instead of b0 ≤ a0, one should only interchange a0 and b0 in the
above formulae.

4.1.2 Exponential distribution

The distribution functions of matrix elements are defined as

ga(a) =
λa

2
e−λa|a|, gb(b) =

λb

2
e−λb|b|. (4.5)

For the level spacing distribution function one obtains

P (S) =
λaλb

4
S

∫ π/2

0

dϕ exp

(
−S

2
(λa cos ϕ + λb sin ϕ)

)
, (4.6)

which cannot be analytically evaluated in a closed form. For small values of S the linear
level repulsion law is recovered, i.e.

P (S) ≈ πλaλb

8
S. (4.7)

For large values of S we use λa cos ϕ + λb sin ϕ = Â sin(ϕ + φ), with φ = arctan(λa/λb),
and Â =

√
λ2

a + λ2
b . Then the integration variable ϕ is substituted by χ = ϕ + φ which

now runs from φ to φ + π/2. This transforms P (S) into

P (S) =
λaλb

4
S

∫ φ+π/2

φ

dχ e−
S
2

Â sin χ. (4.8)

Since the integrand is continuous and bounded, the mean value theorem can be applied
in this case, indicating that there is a value χ0(S) in the interval between φ and φ + π/2,
so that the level spacing distribution can be presented as

P (S) =
πλaλb

8
· S · e−S

2
Â sin χ0(S), (4.9)

where, as expected, χ0(S) is only weakly dependent on S. Due to this the tail of P (S) is
roughly exponential.

4.1.3 Cauchy-Lorentz distribution

The normalized probability densities for matrix elements are defined by

ga(a) =
1

πa0(1 + a2

a2
0
)
, gb(b) =

1

πb0(1 + b2

b20
)

. (4.10)

The level spacing distribution is given by
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P (S) =
S

4π2a0b0

∫ 2π

0

dϕ

(1 + S2

4a2
0
cos2 ϕ)(1 + S2

4b20
sin2 ϕ)

. (4.11)

The integral for S → 0 results in 2π, so that, at small values of S, P (S) ≈ S/(2πa0b0),
which well agrees with Eq. (2.14). The integral in (4.11) can be calculated analytically,
resulting in

P (S) =
S

2πa0b0

· α2
√

1 + β2 + β2
√

1 + α2

(α2 + β2 + α2β2)
√

1 + α2
√

1 + β2
, (4.12)

where α2 = S2/(4a2
0) and β2 = S2/(4b2

0). The asymptotic behaviour of P (S) at large S is
characterised as an inverse quadratic power law,

P (S) ≈ 4(a0 + b0)

πS2
, (4.13)

implying that, due to divergence, P (S) does not have the first moment.

4.1.4 Singular times exponential distribution

The normalized singular distributions are defined as

ga(a) = Ca|a|−µae−λa|a|, gb(b) = Cb|b|−µbe−λb|b|, (4.14)

with the normalization constants

Ci = λ1−µi

i /(2Γ(1− µi)). (4.15)

Here i = a, b and the exponents µi < 1 whereas Γ(x) is the gamma function. These
distribution functions are singular but integrable power laws for a, b → 0 and they decay
nearly exponentially in the tails. For the level spacing distribution it follows

P (S) = CaCb S

(
S

2

)−(µa+µb) ∫ π/2

0

dϕ exp
(−S

2
(λa cos ϕ + λb sin ϕ)

)

cosµa ϕ sinµb ϕ
, (4.16)

but this formulae still have no analytical solutions. One can evaluate it for small argument
S where the exponential can be approximated by 1. This results in the following level
repulsion law, i.e. the fractional exponent power law

P (S) = CaCb S

(
S

2

)−(µa+µb) Γ(1
2
− µa

2
)Γ(1

2
− µb

2
)

2Γ(1− µa

2
− µb

2
)

. (4.17)

The power law distribution of matrix elements leads to the power law repulsion in the
level spacing distribution.

4.1.5 Comparison with numerics

Fig. 4.1 shows the numerically evaluated P (S) for 2D random matrices defined by the
four ensembles mentioned above and compared to the theoretical curves. An excellent
agreement is observed for certain typical parameter values.
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Figure 4.1: The numerical histograms are compared with the theoretical curves for the four
ensembles from Sec. 4.1 (not unfolded, except for the singular times exponential case). M is the
number of matrices taken from the ensemble. Top-left: Box distribution, a0 =

√
2/2, b0 = 1/2,

M = 108. Top-right: Exponential distribution, λa =
√

2, λb = 1, M = 108. Bottom-left: Cauchy-
Lorentz distribution a0 = 1/2, b0 = 1/2, M = 108. Bottom-right: Singular times exponential
distribution: λa =

√
2, λb = 1, µa = 0, µb = 1/2, M = 107; this distribution is unfolded.

4.2 Numerical calculations with higher dimensional

non-Gaussian random matrices

We have generalized the random matrix ensembles from Sec. 4.1 from N = 2 to the
higher dimension N by applying the distribution ga(a) for all the diagonal elements of the
N -dimensional real symmetric matrix and the distribution gb(b) for all the off-diagonal
matrix elements.

This study primarily intends to determine whether there exists the transition (in the
cases 4.1.1 and 4.1.2), or maybe there is not any (in the cases 4.1.3 and 4.1.4), from
the nonuniversal behaviour at small N values to the Hackenbroich-Weidenmüller (HW)
universal GOE behaviour at N = ∞. In the numerical studies of the spectra we have
used two different types of spectral unfolding which is necessarily approximate due to the
finite dimension of the spectra. For small matrices we have calculated the level spacings
for the M representatives from the given ensemble (M is the number of matrices drawn
from the ensemble). The spacings obtained have then been divided by the mean spacing
calculated for the entire set. In the case of large matrices this rule does not make sense
since the density of eigenvalues is strongly non-uniform. Therefore, in the case of larger
matrices, we have applied the phenomenological rule (see Subsec. 2.5.1), which means
that we have selected a certain number of the nearest neighbours (typically unf = 20 for
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N = 120), so that the local mean level spacing has been calculated by averaging the entire
set. One should emphasise that N = 120 and unf = 20 in the phenomenological unfolding
procedure means 120− 20 = 100 effective energy levels (for comparison: in Sec. 2.5 only
the effective points have been treated). The two unfolding procedures differ in the mean
used; this mean can be either global or local, so it is sometimes hard to decide which
type of mean is to be applied in the calculation. The results (unavoidably) depend on
the unfolding method selected although, in most cases, its influence is not as large as one
might expect at first sight.

4.2.1 Box (uniform) distribution

As observed in Fig. 4.2 the transition from N = 2 to GOE is quite fast since for
N = 3, 4 one still notices certain deviations from the GOE (approximated by the Wigner
distribution) whereas at N = 7 the agreement with the Wigner distribution is already
perfect despite the fact that we have used the unfolding procedure for small matrices in this
case (the procedure is described in the previous section). At the dimension N = 120 one
observes perfect agreement with the GOE distribution for both the unfolding procedures,
i.e. for small matrices as well as for the 20 neighbours-rule. This demonstrates that, at
least in this case, the final results relatively weakly depend on the unfolding procedure.
The last plot in Fig. 4.2 shows the eigenvalue distribution for the dimension N = 120, so
one clearly sees that the limiting distribution is smooth and confined to a finite interval.
Since the assumptions from the HW theorem are fulfilled in this case, the transition to
the GOE behaviour is expected (see the plots from Fig. 4.2).

4.2.2 Exponential distribution

In comparison with the previous subsection the transformation of the level spacing
distribution as a function of N is relatively slower here, but it completes at N = 120,
which confirms the theoretical prediction (as observed in Fig. 4.3). The level spacing
distribution approaches the Wigner distribution already at N = 4. Then the value of N
increases from 7 to 10 and 20 so that the agreement is almost perfect. The last plot in
Fig. 4.3 re-confirms this for the dimension N = 120. Like in the case of the box distribution
the distribution of the eigenvalues for N = 120 is smooth and confined to a finite interval
(but this is not shown in the figure).

4.2.3 Cauchy-Lorentz distribution

The Cauchy-Lorentz distribution is interesting, since its first moment diverges. One
also knows that according to Eq. (4.13) the tail of P (S) for N = 2 is proportional to
1/S2, so it does not have the first moment either. In the limit of very large Ns, such as
N = 120, one clearly sees (Fig. 4.4) that the density of the eigenvalues is not confined to
a finite interval. Thus, one of the assumptions from the HW theory is not fulfilled in this
case, so in the limit N →∞ one might expect certain deviations from the universal GOE
behaviour. This is indeed what one notices in Fig. 4.4, which shows the level spacing
distribution for N = 120 for the unfolding procedure with unf = 20 neighbours. At
smaller Ns, such as N = 3, 4, 7 and, also, at N = 120 if one uses the unfolding procedure
typical of small matrices, we have observed an unusual behaviour of P (S) which differs
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Figure 4.2: The numerical histograms compared with the Wigner curve for the ensemble with
the box distribution for a0 =

√
2/2, b0 = 1/2. M is the number of matrices from the ensemble.

Top-left: N = 3, M = 106, unfolding for small matrices. Top-right: N = 4, M = 106, unfolding
for small matrices. Middle-left: N = 7, M = 106, unfolding for small matrices. Middle-right:
N = 120, M = 104, unfolding for small matrices. Bottom-left: N = 120, M = 104, unfolding
with unf = 20 neighbours. Here the curve represents the exact GOE result. Bottom-right: the
eigenvalue distribution for N = 120, M = 104, showing that the distribution is smooth and
confined to a finite interval.

in each case; clearly, this behaviour is influenced by the fact that the mean energy level
spacing approaches infinity when N → ∞. If certain singularities of the Cauchy-Lorentz
distribution of the matrix elements are eliminated (by cutting off the tails at a large but
finite a, b), one observes the immediate transition to the GOE behaviour, which well agrees
with the HW theory (see Fig. 4.4). The cutting is realised via the transformation from the
uniform distributed random numbers abox, bbox to the Cauchy-Lorentz distributed random
numbers a, b. This transformation is represented by
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Figure 4.3: The numerical histograms compared with the Wigner curve for the ensemble with the
exponential distribution for λa =

√
2, λb = 1. M is the number of matrices from the ensemble.

Top-left: N = 3, M = 106, unfolding for small matrices. Top-right: N = 4, M = 106, unfolding
for small matrices. Middle-left: N = 7, M = 106, unfolding for small matrices. Middle-right:
N = 10, M = 105, unfolding for small matrices. Bottom-left: N = 20, M = 105, unfolding with
unf = 6 neighbours. Bottom-right: N = 120, M = 103, unfolding with unf = 20 neighbours.
Here the curve represents the exact GOE result.

a = a0 tan

(
π

2

abox

a0

)
, b = b0 tan

(
π

2

bbox

b0

)
, (4.18)

where abox, bbox are uniformly distributed on the intervals [−a0(1 − ε), a0(1 − ε)] and
[−b0(1−ε), b0(1−ε)] respectively. Thus, a, b are Cauchy-Lorentz distributed with ga(a), gb(b)
from Subsec. 4.1.3 up to the border acut = a0 tan

(
π
2

(1− ε)
)

and bcut = b0 tan
(

π
2

(1− ε)
)

where |a| ≤ acut and |b| ≤ bcut. The value ε = 0.01 has been chosen for the last plot from
Fig. 4.4.
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Figure 4.4: The numerical data for the ensemble with the Cauchy-Lorentz distribution for
a0 =

√
2/2, b0 = 1/2. M indicates the number of matrices selected from the ensemble. For

the sake of comparison the thin curve represents the Wigner distribution. Top-left: the density
of the eigenvalues for N = 120, M = 103 which is obviously not confined to a finite interval.
Top-right: N = 120, M = 103, unfolding with unf = 20 neighbours, the smooth curve is
the Wigner distribution for the sake of comparison. Middle-left: N = 3, M = 106, unfolding
for small matrices. Middle-right: N = 4, M = 106, unfolding for small matrices. Bottom-left:
N = 7, M = 106, unfolding for small matrices. Bottom-right: N = 120, M = 103, unfolding
with unf = 20 neighbours. Here the tails of the matrix element distribution function have been
cut off at the specific value of ε = 0.01, due to which the level spacing distribution immediately
approaches the GOE behaviour.

4.2.4 Singular times exponential distribution

The singular (times exponential) distribution from Sec. 4.1.4 (4.14) at the dimension
N = 2 might trigger off a completely new phenomenon, i.e. the fractional power law
level repulsion (see Fig. 4.1). Surprisingly, if this ensemble is generalised to the higher
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Figure 4.5: The numerical histograms compared with the Wigner curve (except for N = 120
where the exact GOE appears) for the ensemble with the singular times exponential dis-
tribution for λa =

√
2, λb = 1, µa = 0, and µb = 1/2, except in the last plot (bottom-right)

where µb = 0.9. M indicates the number of matrices chosen from the ensemble. Top-left: N = 3,
M = 105, unfolding for small matrices. Top-right: N = 4, M = 105, unfolding for small matrices.
Middle-left: N = 7, M = 105, unfolding for small matrices. Middle-right: N = 120, M = 5×103,
unfolding with unf = 20 neighbours. Here the curve represents the exact GOE result. Bottom-
left: N = 120, M = 5 × 103, the eigenvalue density. Bottom-right: N = 3, M = 105, unfolding
for small matrices.

dimensions of N > 2, for µa = 0 and µb = 1/2, one observes a transition to the linear
level repulsion already at the dimension N = 3. Fig. 4.5 shows a relatively fast transition
to the GOE distribution appearing with the increasing values of N . One can verify that
the level density for N = 120 is confined to a finite interval, so the HW prediction applies
in this case. If one increases the value of µb to µb = 0.9, i.e. closer to the nonintegrable
singularity µb = 1, this influences the P (S) behaviour so strongly that the fractional
power law level repulsion can be observed in the end.
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Figure 4.6: The numerical histograms compared with the Wigner curve for the ensemble with the
singular times exponential distribution for λa =

√
2, λb = 1, µa = 0, and µb varying from

0.9 to 0.9999. In all the cases the dimension of the matrices was N = 120 and the unfolding
was calculated via unf = 20 neighbours. M indicates the number of matrices chosen from
the ensemble. Top-left: µb = 0.9, N = 120, M = 2 × 103. Top-right: µb = 0.95, N = 120,
M = 2× 103. Middle-left: µb = 0.97, N = 120, M = 2× 103. Middle-right: µb = 0.99, N = 120,
M = 2× 103. Bottom-left: µb = 0.999, N = 120, M = 103, one can also observe the Poissonian
curve P (S) = exp(−S). Bottom-right: µb = 0.9999, N = 120, M = 2× 104 and the Poissonian
curve P (S) = exp(−S) as well.

However, as the exponent µb increases and approaches the nonintegrable singularity
µb = 1, in the case of large matrices with N = 120 there appears the transition from the
GOE (at smaller values of µb) to the Poissonian (exponential) if µb is sufficiently close to
the value 1 (see Fig. 4.6). At the intermediate values of µb, such as µb ≈ 0.99, we have
conjectured the fractional power law level repulsion, althoug additional analytical as well
as numerical analysis is needed to provide more quantitative predictions and descriptions.
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Summary and conclusions

This thesis mainly discusses dynamical tunneling (a concept introduced in (Davis and
Heller, 1981)) in the systems with the mixed (i.e. regular-chaotic) type dynamics. We have
considered two different aspects: (i) we have studied the level spacing distribution for a
general mixed-type system and tested the theory for the mushroom billiard levels and (ii)
we have analysed the tunneling rates as well as the avoided-crossing distribution for the
mushroom billiard. Additionally, we have calculated the level spacing distribution for the
random matrices of non-Gaussian ensembles in order to model the fractional power-law
level repulsion.

In Chap. 2 we have devised a new random matrix model which describes the distorted
Berry-Robnik level spacing distribution affected by the tunneling between the regular and
the chaotic states, denoted by P Tn

DBRN(S). We have derived a two-level analytic formula
for P Tn

DBR(S) which agrees with the results for higher dimensional random matrices at not
too large values of the coupling parameter. We have also developed an analytic two-level
model creating the level spacing distribution PAn

DBR(S) for the all-to-all level couplings,
which well applies in the cases of general perturbation such as the presence of an antenna
in a microwave resonator. Since this all-to-all two dimensional model, where all the levels
are coupled, perfectly agrees with the N -dimensional simulations denoted by PAn

DBRN(S),
this is, certainly, a very successful model. Its exact integral representation PA

DBR(S) can
be analytically expressed in a closed form for small as well as for large values of S. The
same applies for the tunneling-distorted Berry-Robnik distribution P Tn

DBR(S) where only
the regular and the chaotic levels are coupled. However, an overall good, simple analytic
approximation has not been devised yet. We have also shown that the non-Gaussian
models for the all-to-all couplings (i.e. the exponential and the box distributions for the
off-diagonal matrix elements) well agree with the Gaussian model although they deviate
from it significantly a the intermediate values of S. However, they almost perfectly agree
with the corresponding two-dimensional model.

The experimental and the numerical data for the mushroom billiard (see Chap. 3)
can be well described by the theoretical models employed. If the energy increases towards
infinity (the semiclassical limit), σ should approach zero (and there appears the BR be-
haviour), which does not necessarily happen quickly and monotonously. We have noticed
that σ somehow decreased (but not monotonously), but this cannot be confirmed by the
results obtained, so one cannot make any definite conclusions at this point. The reason,
presumably, lies mainly in the theory since two important things were not taken into
account, i.e (i) the splittings of regular states due to the presence of chaotic states and
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(ii) localisation effects. There may be other reasons as well, i.e. the experimental and the
numerical inaccuracy of the mushroom levels or, even, the specific properties of the very
mushroom billiard, such as scarred (Dietz et al., 2007) or bouncing-ball eigenfunctions.
In the future we intend to improve the theory in the way discussed in Sec. 2.6, so that it
can be tested in other systems, billiards or maps, or even in the recalculated mushroom
billiard levels with the new method of particular solutions. In the case of the mushroom
billiard the semiclassical limit is reached very quickly, i.e. already after a few thousands
of levels. For the numerical level dynamics in this high lying regime one should definitely
apply the method of particular solutions since the EBIM would be too slow in this case.
Experimentally, without using the superconducting cavity - in (Dietz et al., 2007) the au-
thors resolved the first 938 resonances and some additional ones as well, but they did not
reach more resonances since they only measured one billiard configuration at different an-
tenna positions whereas we reached the 600th branch in the level dynamics measurement
- obviously, this semiclassical limit is unreachable.

According to the overall picture of the level spacings in the mixed-type systems (Rob-
nik and Prosen, 1997), there exists the regime of linear level repulsion at small S whereas
the regime of the fractional power law level repulsion appears at larger S followed by
the Berry-Robnik tail. Thus, the theoretical approach presented seems to be very promis-
ing. The linear level repulsion, which always exists due to tunneling, is a very robust
phenomenon indeed (Grossmann and Robnik, 2007b).

Recently, V.A. Podolskiy and E.E. Narimanov have tried to correct the Berry-Robnik
level spacing distribution by modelling the tunneling effects in another way, which has
resulted in the formula presented in (Podolskiy and Narimanov, 2003b) and based on
(Podolskiy and Narimanov, 2003a). However, this derivation is incomplete and inconsis-
tent since it does not incorporate the normalisation and since the physical grounds and
the results are questionable, so this approach is not discussed in any further details.

Localisation effects should cause the fractional power law level repulsion, as captured
by the Brody-like distribution (Prosen and Robnik, 1994a,b). We have tried to model
localisation in Chap. 4 of the thesis where we have numerically studied four non-Gaussian
ensembles of real symmetric random matrices for various dimensions N , from N = 2 to
N = 120, defined by (a) the box, (b) the exponential, (c) the Cauchy-Lorentz and (d) the
singular times exponential distribution. We have studied the transition to the universality
regime at N → ∞, precisely described by the GOE from the random matrix theory, as
predicted in (Hackenbroich and Weidenmüller, 1995), provided that two conditions are
fulfilled, i.e. (i) the limiting eigenvalue distribution is smooth, and (ii) it is confined to a
finite interval.

In the first two cases (a) and (b) the two conditions are fulfilled, so the HW prediction
is confirmed whereas in the case (c) the level spacing distribution clearly deviates from
the GOE curve since the eigenvalue distribution is not confined to a finite interval. At
the intermediate values of N the behaviour of P (S) is quite unusual indeed. In the case
(d), for the singular times exponential distribution of the off-diagonal matrix elements,
only a partial deviation from the HW theorem and the two conditions presented can be
observed. This happens at those values of µb which closely approach to the nonintegrable
singularity µb = 1. Thus, surprisingly, the fractional power law level repulsion, which is
clearly manifested in the two-dimensional theory (Grossmann and Robnik, 2007b) and in
its simulation, does not appear at the higher dimensions N > 2, except, possibly, for the
case of a specific interval of µb approaching the nonintegrable value 1, e.g. at µb ≈ 0.99.
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However, only additional numerical and analytical studies could explain the behaviour
of singular random matrix ensembles in more details. Indeed, the Hamilton operators of
nearly integrable systems (slightly perturbed integrable systems in the KAM scenario)
in the basis of the integrable part are quantally represented as sparsed matrices, which
should exhibit singular distribution of matrix elements (Prosen and Robnik, 1993a).

Chap. 3 experimentally and numerically studies the tunneling rates γmn in the mush-
room billiards. Fermi’s golden rule is applied to all possible eigenstates ψmn

1/4 of the quarter
circle which are also termed ’pure regular states of the mushroom billiard’ and which de-
cay into the neighbouring chaotic states. The results have confirmed the theory especially
devised for the mushroom billiard. We have observed a very good agreement without any
free parameters including the error bars, which is unprecedented for billiards. On average
an eigenstate of the quarter circle with quantum numbers (m, n) decays by about one
order of magnitude slower than the one with quantum numbers (m,n + 1). This result
could be, potentially, applied in the field of microlasers, optical fibres, etc.

Surprisingly, Fermi’s golden rule which is derived for the continuum distribution of
levels, well applies in closed systems, i.e. in systems with the discrete distribution of
levels. Strictly speaking, this rule should be applied only in the case of the open mushroom
billiard where the depth of the mushroom foot is infinite, but it is, obviously, suitable in
this case as well.

In theory, the approach using a fictitious integrable system could, hopefully, be ap-
plied to other generic billiards where it is much more challenging and difficult to determine
an appropriate Hreg. In the experiment presented the unavoidable coupling to the envi-
ronment was preferred for small tunneling rates; however Fig. 3.27 shows that in the
microwave experiment the coupling by the antenna is actually negligible beyond three
orders of magnitude. This is a promising aspect for future experimental studies of more
complex systems, especially in the cases where the numerical and theoretical results are
not available yet.

Similarly, the tunneling rates could also be studied in the full chaotic systems, such as
the Sinai or the stadium billiard. Here, one could study the decay rates of the bouncing-ball
states into the (pure) eigenstates. In this way, one could learn a lot about the strength of
interaction between the bouncing-ball modes and the eigenstates, one could, for example,
determine how localisation influences the splittings at avoided crossings, to determine the
relationship between tunneling and localisation. Similarly, this could also be studied in
the mushroom billiard.

Chap. 3 also presents the results of the numerical study of the avoided-crossing dis-
tribution in the mushroom billiard. Both types of splittings, i.e. splittings at CC avoided
crossings and splittings at RC avoided crossings, were studied separately. In the case of
CC splittings we have found very good agrement with the 2×2 RMT prediction. However,
one still cannot explain a ratio of the mean splitting and the mean level spacing which is
smaller than predicted. Due to these new results, the RMT prediction may eventually be
generalised to the CC splittings from the mixed-type systems.
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Appendix A

ρ1 calculation for the mushroom
billiard

The group from Dresden has analytically derived the classical effective chaotic area of
the desymmetrised mushroom billiard for the central position of the foot: b = R− a. The
derivation is presented in this appendix together with our numerical results.

The fraction ρ2 of the chaotic part of the classical phase space volume of the 2D billiard
system can be generally represented as

ρ2 =
ΩPSC

ΩPS

=

∫
dq dpχch(q,p) δ (E −H(q,p))∫

dq dp δ (E −H(q,p))
, (A.1)

where ΩPS is the volume of the whole classical phase space and ΩPSC is the volume of
the chaotic part of the classical phase space; χch(q,p) equals 1 if the trajectory with the
coordinate q and the momentum p is chaotic, but if this trajectory is regular, χch(q,p)

equals 0. Due to the relation H(q,p) = p2

2M
= E in billiards the ΩPS is written as

ΩPS =

∫
dq dp δ

(
E − p2

2M

)
. (A.2)

The integration over the space coordinates provides the area A of the billiard. By replacing
the double integral over the momenta with the integral over the energy one gets

ΩPS = 2πMA

∫
dE δ

(
E − p2

2M

)
. (A.3)

The remaining integral equals 1, which results in

ΩPS = 2πMA. (A.4)

The phase space of the mushroom billiard (Fig. A.1) is given by {(r, ϕ, ϑ) : (r, ϕ) ∈
D, ϑ ∈ [0, 2π]}, where (r, ϕ) are the polar coordinates of the position of the particle, D is
the domain of the billiard and ϑ is the angle determining the direction of the particle’s
momentum. The ΩPSC is written as
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ΩPSC =

∫
dq dpχch(q,p) δ

(
E − p2

2M

)

=

∫
dq p dp dϑ χch(q, ϑ) δ

(
E − p2

2M

)

= M

∫
dq dE dϑχch(q, ϑ) δ

(
E − p2

2M

)
(A.5)

= M

∫
dq dϑχch(q, ϑ)

= 2πMAch,

where the last integration introduces the so-called effective chaotic area: Ach = 1/(2π)
∫

dq dϑχch(q, ϑ).

Figure A.1: The mushroom billiard with the central position of the foot. This figure shows the
entire billiard whereas the derivation has been done for its desymmetrised part.

All the trajectories are chaotic in the foot and in the hat for r < a. Additionally, the
region r > a is characterised by regular and chaotic dynamics. Its contribution to Ach,
called I should be calculated as

Ach = la +
1

4
πa2 + I, (A.6)

where

I =
1

2π

∫ π
2

0

dϕ

∫ R

a

r dr

∫ 2π

0

dϑ χch(r, ϕ, ϑ). (A.7)

Only the radial coordinate r determines whether there appear chaotic trajectory in
the hat for r > a (see Fig. A.1). If one considers the trajectories crossing the point (r, ϕ)
with r ∈ [a,R], all the chaotic ones lie inside the red zone since they have crossed and/or
they will cross the small circle with r = a, which results in
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I =
1

2π

∫ π
2

0

dϕ

∫ R

a

r dr 4

∫ ϑ1(r)

0

dϑ, (A.8)

where ϑ1(r) is represented by trigonometric relations as ϑ1(r) = arcsin(a
r
). One gets

I =

∫ π
2

0

dϕ

∫ R

a

2

π
arcsin

(a

r

)
r dr

=

∫ R

a

arcsin
(a

r

)
r dr (A.9)

=
1

2
R2 arcsin

(a

r

)
+

1

2
a
√

R2 − a2 − 1

4
πa2.

If one inserts this into Eq. (A.6), one obtains

Ach = la +
1

2

[
R2 arcsin

( a

R

)
+ a

√
R2 − a2

]
, (A.10)

which is the equation occurring in Sec. 3.1. The fraction of the regular phase space can
be calculated directly from Eq. (A.10)

ρanalytic
1 =

A− Ach

A
=

1
4
πR2 − 1

2

[
R2 arcsin

(
a
R

)
+ a

√
R2 − a2

]

la + 1
4
πR2

. (A.11)

l ρanalytic
1 ∆ρ1 × 105

0.011 0.3597 3.1
0.063 0.3475 -1.2
0.116 0.3362 -0.9
0.474 0.2750 1.8
0.526 0.2678 -0.9
0.579 0.2610 3.1
0.711 0.2454 -3.0
0.763 0.2397 -0.5
0.816 0.2342 -10.2
0.947 0.2216 -11.0
1.000 0.2169 -17.1
1.053 0.2124 -15.7
1.247 0.1973 3.5
1.300 0.1936 -0.6

Table A.1: The regular fraction of the classical phase space volume ρ1 for various lengths l of the
foot, obtained via the analytic formula (A.11) and via numerical calculations. The last column
represents the difference ∆ρ1 = ρanalitic

1 −ρnumerical
1 . The width of the foot and the radius of the

circle are the same for all the configurations analysed: i.e. a = 10
19 and R = 1.

We have numerically tested this formula by using the standard calculation of the
classical phase space volume of the regular and the chaotic region described in (Meyer,
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1985). For the surface of section (SOS) (the lower plot in Fig. 3.2), the sine of the reflection
angle has been selected as the momentum while the arc-length parameter has been used
as the coordinate. We have also calculated the average return times.

The comparison between the analytic and the numerical calculation is shown in Tab. A.1.
There exists a good agreement within the relative fraction of 10−4, which confirms the
analytic expression (A.11) as well as the general reliability, accuracy and efficiency of the
numerical calculation of the classical ρ1 (or ρ2) parameter.
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Appendix B

Theoretical analysis of the tunneling
rates in the mushroom billiard

The group from Dresden has also derived the formula for the tunneling rates for the
desymmetrised mushroom billiard. For the sake of completeness this appendix discusses
this excellently devised derivation.

If one wants to derive the formula for the tunneling rates for a general billiard, one faces
a general problem. The matrix element v, appearing in Eq. (3.38), cannot be calculated
from the nominally regular and chaotic eigenstates of H, since those, in fact, include
small admixtures of the other type of states. This is clearly visible near avoided crossings
where the identity of the eigenstates is even exchanged under parameter variation. Due to
this fact v was then determined via the fictitious regular and chaotic billiard systems Hreg

and Hch with purely regular and purely chaotic eigenstates respectively, which extends the
approach for 1D quantum maps (Bäcker et al., 2008b). Hreg has to be chosen in such a way
that its classical dynamics resembles the classical which has to correspond to H within
the regular region as closely as possible. The eigenstates |ψreg〉 of Hreg are localized in the
regular region and continue to decay into the chaotic sea. The eigenstates |ψch〉 of Hch ’live’
in the chaotic region of H and decay into the regular islands. Since |ψreg〉 and |ψch〉 are
the eigenstates of different operators, Hreg and Hch, they are not necessarily orthogonal,
〈ψch|ψreg〉 = χ with 0 ≤ |χ| ¿ 1. In order to apply Fermi’s golden rule the orthonormalised

states were introduced |ψ̃reg〉 = |ψreg〉, |ψ̃ch〉 = (|ψch〉 − χ∗|ψreg〉)/
√

1− |χ|2, leading to

〈ψ̃ch|ψ̃reg〉 = 0.

For the coupling matrix element v = 〈ψ̃ch|V |ψ̃reg〉 = 〈ψ̃ch|H|ψ̃reg〉 it follows

v = 〈ψ̃ch|H −Hreg|ψ̃reg〉+ 〈ψ̃ch|Hreg|ψ̃reg〉
=

1√
1− |χ|2 〈ψch|H −Hreg|ψreg〉 − χ√

1− |χ|2 〈ψreg|H −Hreg|ψreg〉+ 0. (B.1)

The leading order in χ for billiards is represented by

v =

∫

Ω

ψ∗ch(x, y)(H −Hreg)ψreg(x, y) dx dy +O(x). (B.2)

Eqs. (3.38) and (B.2) can be used if one wants to determine the dynamical tunneling
rates in billiards. Here one should emphasise that Hreg and |ψreg〉 have to be selected very
carefully, which is a difficult task in the case of a general billiard.
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billiard

This approach can now be applied to the desymmetrised mushroom billiard composed
of a quarter circle and a rectangular foot (see Fig. B.1a) where we have chosen R = 1
in the following analysis. For the regular system Hreg the quarter-circle billiard H1/4 is a
natural choice (with its eigenvalues Emn

1/4 and the eigenstates ψmn
1/4 represented in Eq. (3.3)).

a

l

R

x

y
r

ϕ

ρ

ϑ

(a)

Ω

(b)

V = 0

V = W

Figure B.1: The desymmetrised mushroom billiard: (a) Schematic picture of the coordinate
systems used in the theoretical derivation. (b) The auxiliary billiard HW

1/4.

After evaluating Eq. (B.2) one obtains the undefined product of H − H1/4 = −∞
and ψmn

1/4(x, y) = 0, for y ≤ 0. Therefore, the auxiliary billiard HW
1/4 is introduced (see

Fig. B.1b) with a large but finite potential V (x, y ≤ 0) = W À E, characterised by the
eigenstates ψmn

1/4,W . Eq. (B.2) is evaluated in the limit W → ∞ where HW
1/4 approaches

H1/4, which leads to

v = lim
W→∞

∫ a

0

dx

∫ 0

−l

dy ψch(x, y)(−W )ψmn
1/4,W (x, y)

= −
∫ a

0

dx lim
W→∞

Wψmn
1/4,W (x, y = 0)

∫ 0

−l

dy ψch(x, y) exp(
√

W − Emn
1/4 y)

= −
∫ a

0

dx lim
W→∞

∂ψmn
1/4,W

∂y
(x, y = 0)

W√
W − Emn

∫ 0

−l

dy ψch(x, y) exp(
√

W − Emn
1/4 y)

= −
∫ a

0

dx
∂ψmn

1/4

∂y
(x, y = 0)

∫ 0

−l

dy ψch(x, y) lim
W→∞

√
W exp(

√
W − Emn

1/4 y)

= −
∫ a

0

dx
∂ψmn

1/4

∂y
(x, y = 0)

∫ 0

−l

dy ψch(x, y) 2 δ(y)

= −
∫ a

0

dx
∂ψmn

1/4

∂y
(x, y = 0) ψch(x, y = 0)

= −Nmn

∫ a

0

dx
m

x
Jm(jmnx) ψch(x, y = 0), (B.3)
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where the y-integration was performed on ψmn
1/4,W (x, y) = ψmn

1/4,W (x, y = 0) exp(
√

W − Emn
1/4 y),

obtained from the Schrödinger equation for y < 0 and the continuity at y = 0. Further-

more
∂ψmn

1/4,W

∂y
(x, y = 0) =

√
W − Emn

1/4 ψmn
1/4,W (x, y = 0) has been used, obtained from the

continuity of the derivative at y = 0 and limW→∞
√

W exp(
√

W − Emn
1/4y) was replaced

by the Dirac delta function; Nmn is the normalisation defined in Sec. 3.2.
One should observe that the value of the chaotic eigenstates |ψch〉 is only needed on

the line y = 0. For these eigenstates a random wave decomposition (RWD) (Berry, 1977)
was employed. Recently, the RWD has been generalised to the systems with the mixed
phase space (Bäcker and Schubert, 2002). While this description accurately describes the
behavior inside the billiard, it does not incorporate the effect of the boundary, e.g. near the
corner, which, for m ≥ 2, largely influences the (final) integral from Eq. (B.3). Therefore,
the RWD model (Berry, 2002) was extended to the case of the corner with the angle 3π/2
using the eigenstates with the Dirichlet boundary conditions (Lehman, 1959),

ψch(ρ, ϑ) ≈
√

8

3Ach

∞∑
s=1

csJ 2s
3

(√
Eρ

)
sin

(
2s

3
ϑ

)
, (B.4)

where the polar coordinates (ρ, ϑ) at the corner are related to (x, y) by x = a+ρ cos(ϑ) and
y = ρ sin(ϑ) (see Fig. B.1a). The coefficients cs of this ensemble are independent Gaussian
random variables with 〈cs〉 = 0 and 〈csct〉 = δst. The normalization is performed in such
a way that 〈|ψch(ρ, ϑ)|2〉 = 1/Ach holds far away from the corner. In this case the chaotic
states need not decay into the regular islands since Eq. (B.3) is an integral along a line of
the billiard where the phase space is fully chaotic. If one inserts Eq. (B.4) for ϑ = π and
E = Emn

1/4 into Eq. (B.3), one can determine the averaged squared matrix element, 〈|v|2〉,
and by using Eq. (3.38) one obtains

γmn = m2N2
mn〈




a∫

0

dx

x
Jm(jmnx)

∞∑′

s=1

csJ 2s
3
(jmn[x-a])




2

〉, (B.5)

where the sum over s excludes all the multiples of 3, which is indicated by the prime. The
average runs over all the chaotic states, i.e. all the possible css, which results in

γmn = m2N2
mn

∞∑′

s=1




a∫

0

dx

x
Jm(jmnx)J 2s

3
(jmn[a-x])




2

. (B.6)

The remaining integral can be calculated analytically (Abramowitz and Stegun, 1970,
Eq. (11.3.40)), to that one obtains the final result

γmn =
8

π

∞∑′

s=1

Jm+ 2s
3
(jmna)2

Jm−1(jmn)2
(B.7)

for the tunneling rates from any of the regular states ψmn
1/4 in the mushroom billiard. The

sum over s is rapidly converging. The term with s = 1 is by far the most important (large)
in the sum, so if one employs the sum for s ≤ 2, this is sufficiently accurate.
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billiard

At this point one should remark that a very plausible estimate of the tunneling rate
can be obtained if one calculates the averaged square of the regular wave function on the
circle with the radius a, i.e. the boundary to the fully chaotic phase space, which results
in γ0

mn = N2
mnJm(jmna)2/2. This quantity is equivalent to Eq. (B.7) with the single term

s = 0 and the additional factor 1/2. Surprisingly, this is for just about the factor of
2 larger for the parameters studied. Ref. (Barnett and Betcke, 2007) proposes a related
quantity, given by the integral of the squared regular wave function over the quarter circle
with the radius a. This quantity, however, is for a factor of the order 100 too small for
the parameters under consideration.
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Appendix C

Numerics with particular solutions
for the tunneling rates in the
mushroom billiard

The eigenvalues and the eigenfunctions of the mushroom billiard have also been numer-
ically determined via the improved method of particular solutions (Betcke and Trefethen,
2005; Barnett and Betcke, 2007). Due to its superior computational efficiency one can de-
termine the energies E with the relative error ≈ 10−14. The tunneling rates from Eq. (3.40)
were deduced via the analysis of the avoided crossings of the preselected regular state with
typically 30 chaotic states. One should observe that certain pairs of regular levels lie very
near together, e.g. E20,1 − E16,2 ≈ 10−4, so that their avoided crossings overlap with the
chaotic levels. Due to these overlaps the numerically calculated smaller tunneling rates do
not comply with the theoretical approach presented. Fig. C.1 shows the tunneling rates
γmn for the fixed radial quantum numbers n = 1, 2, 3 and for the increasing azimuthal
quantum number m, by comparing the theoretical prediction (3.39) with the numeri-
cal results obtained by the method of particular solutions. One can observe an excellent
agreement for tunneling rates γmn over 18 orders of magnitude.

kR

γm,nR2

10
−20

10
−15

10
−10

10
−5

10
0

20 40 60 80 a

γ30,1

10
−20

10
−15

10
−10

10
−5

10
0

0.3 0.4 0.5 0.6 0.7

Figure C.1: Left plot: The tunneling rates from the regular states with the quantum numbers
n = 1, 2 and 3 vs kR for a/R = 0.5 comparing the theoretical prediction from Eq. (3.39) (con-
nected by solid lines) and the numerical data (dots). The insets show the regular eigenfunctions
ψ12,1

reg (x, y) and ψ54,3
reg (x, y). Right plot: the tunneling rates with the varying foot width a. The

insets show the regular eigenfunction ψ30,1
reg (x, y).
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Appendix C. Numerics with particular solutions for the tunneling rates in

the mushroom billiard
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Dalǰsi slovenski povzetek

Tipični sistemi v naravi so mešanega tipa med regularnimi in kaotičnimi ter posedujejo
regularno gibanje za določene in kaotično za komplementarne začetne pogoje. Priročni za
študij dinamike gibanja so biljardni sistemi. Dandanes poznamo 3 popolnoma integrabilne
in 3 dokazano popolnoma kaotične biljarde. Drugi biljardi so mešanega tipa, med katerimi
prevladujejo tisti tipa KAM s fraktalno strukturo otokov stabilnosti, obdanih s kaotičnim
morjem. V tej disertaciji študiramo gobasti biljard (Bunimovich, 2001), ki ima to (lepo)
lastnost, da nima kompleksne KAM strukture, ampak je njegov fazni prostor ostro ločen
v natanko eno regularno in eno kaotično komponento.

Študij kvantne mehanike klasično kaotičnih sistemov imenujemo kvantni kaos. Lastna
stanja sistema mešanega tipa v semiklasični limiti klasificiramo kot regularna ali kaotična
(Percival, 1973), odvisno od tega, kje ’živijo’ v kvantnem faznem prostoru. Ker so poskusi s
kvantnimi biljardi tehnično zahtevni, lahko zaradi formalne podobnosti Schrödingerjeve in
drugih valovnih enačb fizike, študiramo valovne sisteme. Med njimi so najpomemnbeǰse
eksperimentalno orodje v zadnjih letih postali mikrovalovni eksperimenti (Stöckmann,
1999) lastnih stanj in pripadajočih lastnih energij mikrovalov v ’mikrovalovnih’ biljardih
(resonatorjih).

Medtem ko so v klasični mehaniki območja regularnega in kaotičnega gibanja dobro
ločena, so v kvantni mehaniki povezana s tuneliranjem. Temu tuneliranju, ki poteka med
dvema dinamično (in ne nujno prostorsko) ločenima stanjema in je popolnoma drugačno
od običajno poznanega tuneliranja skozi potencialno bariero, rečemo ’dinamično’ tuneli-
ranje (Davis and Heller, 1981). Dinamično tuneliranje se lahko odvija med dvema simetri-
jsko ločenima regularnima stanjema (kvazistanjema) kot direktno tuneliranje ali posredno
preko kaotičnih stanj, kar imenujemo CAT (ang. chaos-assisted tunneling). Izkazalo se je
(Bohigas et al., 1993b), da je prisotnost kaosa pogosto ključna pri jakosti tuneliranja. Di-
namično tuneliranje poteka tudi med posamezno regularno komponento faznega prostora
in kaotičnim morjem. V tem primeru je vpliv tuneliranja najbolj viden v primeru dveh
degeneriranih lastnih vrednosti, pri čemer ena pripada regularnemu in druga kaotičnemu
lastnemu stanju.

Kvantitativne napovedi dinamičnega tuneliranja so zaenkrat zelo redke in še te vklju-
čujejo dodatne parametre. V tej disertaciji predstavljamo določitev tunelskih parametrov
za tuneliranje iz ’čistih’ regularnih stanj v gobastem biljardu. Delo (Bäcker et al., 2008a)
je bilo narejeno tako eksperimentalno kot tudi numerično, s čimer smo želeli potrditi
teoretično izpeljano formulo skupine R. Ketzmericka v Dresdenu, predstavljeno v istem
članku. Dinamično tuneliranje močno vpliva tudi na statistiko in dinamiko spektrov sis-
temov mešanega tipa. V semiklasični limiti za statistiko velja teorija Berryja in Robnika
(Berry and Robnik, 1984), za statistiko nižje ležečih stanj pa še ni ustreznega opisa. Zato
smo s pomočjo teorije naključnih matrik razvili 2- in N -nivojski model, ki opǐse defor-
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macijo porazdelitve Berryja in Robnika po razmikih med sosednjimi nivoji (I) zaradi
sklopitve vseh nivojev z vsemi in (II) zaradi tuneliranja oziroma medsebojne sklopitve
samo regularnih in kaotičnih nivojev ter ga testirali na energijskih nivojih za gobasti bil-
jard (Vidmar et al., 2007). Poleg tega smo si za gobasti biljard ogledali tudi porazdelitev
razdalj v izognjenih križanjih med enim regularnim in enim kaotičnim (RC) ter dvema
kaotičnima (CC) stanjema.

V primeru, ko nismo v semiklasični limiti, na dogajanje vpliva tudi lokalizacija. Poskus
modeliranja le-te v porazdelitvi razmikov med sosednjimi nivoji s singularno krat ekspo-
nentno porazdelitvijo matričnih elementov, kot tudi nekaterih drugih porazdelitev, ki niso
v povezavi z lokalizacijo, predstavljamo v zadnjem delu te disertacije.

i Deformirana porazdelitev Berryja in Robnika po

razmikih med sosednjimi nivoji

Porazdelitev Berryja in Robnika (BR) (Berry and Robnik, 1984) po razmikih med
sosednjimi nivoji za sistem mešanega tipa v semiklasični limiti je

PBR(S) = e−ρ1S

{
e−

πρ2
2S2

4

(
2ρ1ρ2 +

πρ3
2S

2

)
+ ρ2

1erfc

(√
πρ2S

2

)}
, (i)

kjer ρ1 in ρ2 = 1 − ρ1 merita delež regularne in kaotične komponente faznega prostora,
kjer smo privzeli samo eno kaotično komponetno. PBR(S) je izpeljana kot drugi odvod
verjetnosti za energijsko vrzel po razmikih med sosednjimi nivoji. Osnovna ideja BR slike
je, da je verjetnost za energijsko vrzel enaka produktu uteženih verjetnosti za energijsko
vrzel posebej za regularni in posebej za kaotični del spektra, kjer za regularnega velja
Poissonska statistika (Berry and Tabor, 1977), za kaotičnega pa vzamemo Wignerjevo po-
razdelitev, ki je dober približek za eksaktno GOE statistiko (Bohigas et al., 1984). PBR(S)
in njen prvi moment sta normalizirana. Njena značilnost je, da je eksaktno uporabna samo
v semiklasični limiti. Ne upošteva namreč (I) linearnega odbijanja med sosednjimi nivoji
zaradi tuneliranja, saj je PBR(S = 0) = 1 − ρ2

2, kar je v primeru mešanega sistema večje
od 0, in (II) potenčnega odbijanja med sosednjimi nivoji z eksponentom manǰsim kot 1,
za kar je odgovorna lokalizacija.

Vpliv tuneliranja in posledično deformacijo porazdelitve PBR(S) modeliramo tukaj.
Zato najprej obravnavamo realno simetrično 2× 2 matriko A = (Aij) z i, j = 1 ali 2

A =

(
a b
b −a

)
, (ii)

kjer sta a in b realni števili s porazdelitvijo ga(a) in gb(b). Če za ga(a) vzamemo po-
razdelitev BR

ga(a) = PBR(2a) (iii)

in Gaussovo porazdelitev s skopitvenim parametrom σ za gb(b)

gb(b) =
1

σ
√

2π
exp

(
− b2

2σ2

)
, (iv)

potem za porazdelitev po razmikih med sosednjimi nivoji sledi
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PA
DBR(S) =

S

σ
√

2π

∫ π/2

0

dϕ PBR (S cos ϕ) exp

(
−S2 sin2 ϕ

8σ2

)
. (v)

Enačbo (v) poimenujemo splošno deformirana porazdelitev Berryja in Robnika po razmikih
med sosednjimi nivoji. 1 Tu imamo sklopitev vseh (regularnih in kaotičnih) nivojev z
vsemi, kar odraža realno situacijo pri eskperimentih lastnih frekvenc mikrovalovnih res-
onatorjev zaradi prisotnosti antene, zato oznaka A (ang. antenna-distorted ali all-to-all)
v PA

DBR. Standardna deviacija σ je mera za jakost sklopitve. Gaussovo porazdelitev za
izvendiagonalne matrične elemente upravičimo z univerzalnostjo RMT statistike lokalnih
spektralnih fluktuacij (Hackenbroich and Weidenmüller, 1995), čeprav tukaj nimamo čiste
RMT situacije, saj imajo izvendiagonalni elementi drugačno porazdelitev kot diagonalni.
Glavni lastnosti nove porazdelitvene funkcije PA

DBR(S) sta linearno odbijanje nivojev,
predvideno v sistemih mešanega tipa (Robnik and Prosen, 1997)

PA
DBR(S) ≈ S

√
πPBR(0)

2σ
√

2
, (vi)

ter konvergenca k porazdelitvi BR za velike S

PA
DBR(S) ≈ PBR(S). (vii)

PA
DBR(S) je avtomatsko normalizirana, njen prvi moment pa je potrebno dodatno nor-

malizirati z uvedno parametra BA, da dobimo rezultat (slika i)

PAn
DBR(S) = BA PA

DBR(BAS), z BA =

∫ ∞

0

x PA
DBR(x) dx. (viii)

Ker imamo v primeru tunelskih procesov (samo) sklopitev regularnih nivojev s kaoti-
čnimi, porazdelitveno funkcijo za izvendiagonalne elemente gb(b) rahlo spremenimo in
dobimo tunelsko deformirano porazdelitev Berryja in Robnika po razmikih med sosednjimi
nivoji

P T
DBR(S) = 2ρ(1− ρ)PA

DBR(S) + [1− 2ρ(1− ρ)]PBR(S), (ix)

ki je uteženo povprečje nedeformirane in splošno deformirane porazdelitve BR. Njen prvi
moment normaliziramo s parametrom BT in dobimo končni rezultat 2× 2 modela

P Tn
DBR(S) = BT P T

DBR(BT S), z BT =

∫ ∞

0

x P T
DBR(x) dx. (x)

Integrale v enačbah (v), (viii) in (x) izračunamo numerično. BA-ji se za izbrana parametra
ρ in σ gibljejo na intervalu med 1 in 1.2, BT -ji pa med 1 in 1.1. Porazdelitev P Tn

DBR(S)
je za različne parametre prikazana na sliki ii s polno rdečo črto. Vidimo, da sicer ni
odbijanja sosednjih nivojev, je pa zmanǰsanje vrednosti nove porazdelitve pri S = 0 glede
na vrednost porazdelitve BR pri S = 0. V limiti velikih S se PAn

DBR(S) asimptotsko, skrčena
za faktor BA, približuje porazdelitve BR (slika i desno spodaj), kar velja tudi za P Tn

DBR(S).

1Ang. ’antenna-distorted’ ali ’all-to-all’ prevajamo s ’splošno deformirana’, ker gre za splošno sklopitev
vseh nivojev z vsemi.
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ii Simulacije z naključnimi matrikami

Tu bomo predstavili rezultate simulacij z N dimenzionalnimi matrikami, z Gaussovo
naključno porazdelitvijo izvendiagonalnih in porazdelitvijo Berryja in Robnika diagonal-
nih elementov. Z diagonalizacijo take matrike in razgrnitvijo lastnih vrednosti dobimo N
dimenzionalno splošno in tunelsko deformirano porazdelitev BR po razmikih med sosed-
njimi nivoji: PAn

DBRN(S) in P Tn
DBRN(S). V primeru splošne deformacije imajo Gaussovo

porazdelitev z isto varianco σ2 vsi izvendiagonalni elementi dane matrike, v primeru
tunelske pa le dva pravokotna bloka elementov, ki predstavljajo sklopitev med regularnimi
in kaotičnimi lastnimi vrednostmi. Enako kot v 2D primeru v porazdelitvenih funkcijah
nastopata dva parametra: BR parameter ρ in sklopitveni parameter σ. Pričakujemo, da
bomo s P Tn

DBRN(S) dobili ustrezen opis porazdelitve po razmikih med sosednjimi nivoji v
sistemih mešanega tipa. Naredili smo obsežne izračune z matrikami dimenzije N = 1000,
pri čemer smo za razgrnitev nivojev uporabili fenomenološko pravilo unf = 30 sosedov,
15 gor in 15 dol in vsako konfiguracijo ponovili 1000 krat. Optimalno število sosedov unf
pri razgrnitvi smo poiskali tako s χ2 testom kot s primerjavo z eksaktno GOE razgrnitvijo
v primeru ρ = 0. Izkazalo se je, da je odvisnost rezultatov od števila unf zelo šibka. Lahko
bi vzeli unf ≥ 14 in bi dobili skoraj enak rezultat. Tudi odvisnost rezultatov od velikosti
matrike N je zelo majhna.

Rezultati za splošno deformacijo so predstavljeni na sliki i za tunelsko pa na sliki ii.
Histogram predstavlja rezultat N dimenzionalne simulacije, medtem ko rdeča krivulja
predstavlja 2-dimenzionalni model. Vidimo, da je v primeru splošne deformacije ujemanje
za majhne σ2 in vse ρ izredno dobro. Očitno pa je, da 2D model deluje samo dokler
so izvendiagonalni elementi majhni v primerjavi s povprečnim razmikom med nivoji. To
vidimo na sliki i spodaj desno, kjer predstavimo primer z večjo sklopitvijo σ = 0.3.

V primeru tunelske deformacije je ujemanje zadovoljivo, opogumljajoče, a so odstopanja
očitna predvsem okrog S = 0. Medtem ko imamo pri N dimenzionalnem modelu linearno
odbijanje nivojev, pri 2D modelu odbijanja ni. To opažanje odraža dejstvo, da se v 2D
modelu naključne degeneracije v regularnem delu pojavljajo generično, medtem ko so v
N dimenzionalnem modelu eliminirane. V slednjem sicer ni direktnih tunelskih matričnih
elementov, obstaja pa efektivno tuneliranje drugega reda, ki indirektno sklaplja dve reg-
ularni stanji z enim ali več kaotičnimi stanji. Zaradi tega 2D model tukaj odpove.

Imamo dva predloga odprave defekta 2D modela. Pri prvem porazdelitev izvendiago-
nalnih elementov (iv) zamenjamo z

gb(b) = 2ρ(1− ρ)
1

σ
√

2π
exp

(
− b2

2σ2

)
+ [1− 2ρ(1− ρ)]

1

σ1

√
2π

exp

(
− b2

2σ2
1

)
, (xi)

kjer σ1 > 0 fenomenološko upošteva razcep drugega reda v regularnem delu spektra. Pri
drugem vsak trojček dveh sosednjih regularnih in enega najbližjega kaotičnega nivoja
obravnavamo s 3× 3 matriko, pri čemer je sklopljen samo kaotični nivo z vsakim od obeh
regularnih (Stöckmann, 2007). Oboje je še v delu.

Pogledali smo si tudi, kaj dobimo, če je porazdelitev izvendiagonalnih elementov
škatlasta ali eksponentna. Izkaže se, da se rezultat spremeni samo nekoliko, večjih spre-
memnb pa ni. Kot smo že intuitivno pričakovali, so statistične lastnosti spektrov odvisne
predvsem od variance in ne toliko od drugih detajlov porazdelitvene funkcije izvendiago-
nalnih elementov dane matrike.
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Slika i: Rezultati za splošno deformirano porazdelitev BR po razmikih med sosednjimi nivoji
PAn

DBR(S) (rdeča krivulja) in PAn
DBRN (S) (histogram) za različne parametre σ in ρ. Vsi nivoji so

sklopljeni. Za primerjavo črtkasta modra črta predstavlja porazdelitev BR. Pri obeh krivuljah
smo pri izračunu BR uporabili eksaktno GOE porazdelitev. Pri povečavah prikažemo obnašanje
histograma in krivulj za majhne S. N dimenzionalni (numerični) in 2D (analitični) rezultati so v
primeru σ = 0.01, 0.05 in 0.1 praktično identični, krivulja BR pa se razlikuje znatno. Pri velikih
σ = 0.3 pa vidimo razliko med modeloma. Tam je lepo vidno tudi odstopanje modelov od BR
za velike S, ki nastopi zaradi skrčitve oziroma raztegnitve modelskih funkcij, kot smo razložili
v tekstu. Pri majhnih S ta efekt ni viden. V primeru s σ = 0.01 imamo 10-krat več objektov v
histogramu.
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Slika ii: Rezultati za tunelsko deformirano porazdelitev BR po razmikih med sosednjimi nivoji
P Tn

DBR(S) (rdeča krivulja) in P Tn
DBRN (S) (histogram) za različne parametre σ in ρ. Sklopljeni so

samo regularni in kaotični nivoji. Za primerjavo črtkasta modra črta predstavlja porazdelitev
BR. Pri povečavah prikažemo obnašanje histograma in krivulj za majhne S. N dimenzionalni
(numerični) in 2D (analitični) rezultati se relativno ujemajo zadovoljivo, razlikujejo se predvsem
okrog S = 0. Na srednji desni in spodnji levi sliki imamo 10-krat več objektov v histogramu.
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iii Gobasti biljard

Gobasti biljard (Bunimovich, 2001) je sestavljen iz polkrožne glave in pravokotne noge
(slika iii).

Slika iii: Geometrija gobastega biljarda: R = radij polkroga, 2a = širina noge, l = vǐsina noge,
b = pozicija noge (dalǰsa razdalja do roba).

Slika iv: Zgoraj levo: primer regularne orbite z 70 odboji. Zgoraj desno: primer kaotične orbite
z 100 odboji. Spodaj: fazni portret. Abscisa je koordinata roba s pri odboju, medtem ko je
ordinata p sinus odbojnega kota.

Posebna lastnost gobastega biljarda je ostra ločenost faznega prostora v natanko eno
kaotično in eno regularno komponento (slika iv spodaj), zato je ta biljard posebej privlačen



124 Dalǰsi slovenski povzetek

za analize. Orbite, ki pridejo enkrat v nogo, so kaotične, vse ostale so regularne (slika iv
zgoraj). Regularne orbite se nahajajo v polkrožnem kolobarju nad polkrožno kavstiko
z najmanǰsim dovoljem radijem 2a + b − R. Ta kavstika ostro loči regularne orbite od
kaotičnih.

Regularni del klasičnega faznega prostora je zelo preprost. Zato je volumen regularnega
(ali kaotičnega) dela faznega prostora enostavneje izračunati kot pri KAM sistemih. V
skupini R. Ketzmericka v Dresdenu jim je uspelo dobiti analitičen izraz za efektivno
kaotično površino gobastega biljarda s centralno pozicijo noge (b = R− a)

Ach = 2 la +
[
R2 arcsin

( a

R

)
+ a

√
R2 − a2

]
, (xii)

kjer za delež regularne komponente faznega prostora sledi

ρanalitic
1 =

A− Ach

A
=

1
4
πR2 − 1

2

[
R2 arcsin

(
a
R

)
+ a

√
R2 − a2

]

la + 1
4
πR2

. (xiii)

Ta rezultat smo potrdili z numeričnim izračunom z relativno natančnostjo 0.0002.

Medtem ko je regularni del faznega prostora enostaven, pa je kaotični del bolj komplek-
sen. Ta poleg odbijajočih stanj (ang. bouncing balls) vsebuje tudi druge družine marginalno
nestabilnih periodičnih orbit (Altmann et al., 2005, 2006), t. i. ’lepljive’ orbite.

Slika v: Verjetnostna gostota sosednjih kaotičnega in regularnega stanja.

Kvantnomehansko biljard opǐsemo s časovno neodvisno Schrödingerjevo enačbo s hamil-
tonko H(p,q), lastnimi energijami Ej in lastnimi stanji ψj. V našem primeru imamo
Dirichletove robne pogoje: ψn(q)|∂D = 0. Lastna stanja lahko razvrstimo kot v glavnem
regularna ali v glavnem kaotična (slika v). Regularne valovne funkcije in pripadajoče en-
ergije so podobne lastnim fukcijam in energijam polkroga, kjer pri R = 1 v polarnim
koordinatah (r, ϕ) dobimo

Emn
1/4 = j2

mn and ψmn
1/4(r ≤ 1, ϕ) = NmnJm (jmnr) sin(mϕ), ψmn

1/4(r > 1, ϕ) = 0. (xiv)

Tukaj je Jm m-ta Besslova funkcija (m = 2, 4, . . . ), jmn njena n-ta ničla (n = 1, 2, . . . ) in
Nmn = −

√
8/π/Jm−1(jmn) normalizacijska konstanta.
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Slika vi: Absorbcijski EM spekter, nad katerim smo izvedli harmonično inverzijo. Med spektrom
(črna) in rezultatom harmonične inverzije (modra krivulja) skorajda ni razlike.

iv Mikrovalovni eksperimenti in numerična metoda

EBIM

Izkaže se, da je enačba za z komponento električnega polja stoječih elektromagnetih
valov v tankem resonatorju enaka Schrödingerjevi enačbi za 2D biljard vključno z robnimi
pogoji (Stöckmann, 1999). To nam omogoča bogato eksperimentalno raziskovanje.

Z eno anteno, ki mikrovalove hkrati oddaja in sprejema, smo merili realni in imaginarni
del odbojnega spektra (I) aluminijastega in (II) medeninastega resonatorja v obliki gob-
astega biljarda in dobili absorbcijske resonance (slika vi) pri (nekoliko zmanǰsanih) lastnih
frekvencah. Zaradi absorbcije mikrovalov v stenah resonatorja so resonance razširjene,
medtem ko je za njihov premik odgovorna prisotnost antene.

Z metodo harmonične inverzije iz spektra dobimo lastne frekvence (Kuhl et al., 2008). S
Fourierovo transformacijo spektra, zapisanega s kompleksno vsoto prispevkov posameznih
resonanc, in diskretizacijo dobimo sistem nelinearnih enačb, ki ga rešimo z metodo dec-
imalnega linearnega prediktorja (Main et al., 2000). S to metodo harmonične inverzije
dobimo veliko večino (cca. 85%) resonanc (slika vi), preostale moramo poiskati s fitanjem
vsake resonance posebej, kar pa je veliko zamudneǰse. Naj dodamo, da premik resonanc
zaradi prisotnosti antene predstavlja sistemsko napako meritve, saj ga iz rezultatov ne
moremo izločiti.

Numerične lastne vrednosti pa smo računali z metodo integriranja po robu EBIM
(ang. expanded boundary integral method) (Veble et al., 2007). Metoda je splošna in ima
to prednost, da je uporabna za vsako obliko biljarda, njena slabost pa je počasnost. Pri tej
metodi Schrödingerjevo enačbo za lastne energije in lastne funkcije prepǐsemo v integral
normalnega odvoda po robu biljarda. Slednjega diskretiziramo in izračunamo numerično
tako, da dobljeno matriko, ki je odvisna od lastnega valovnega števila k, razvijemo okrog
vnaprej izbranega k0. V našem primeru zadošča že prvi red razvoja, saj je iste natančnosti
kot formalni drugi red.

Po k osi se premikamo po korakih ∆k0(k) = 0.05( k
kStart

)−1/3 od kStart do k =
√

5000.
Pri vsakem koraku izračunamo poslošen diagonalizacijski problem lastnih vrednosti in
vektorjev, iz katerih dobimo tudi lastne valovne funkcije, če jih potrebujemo. Pri vsaki
diagonalizaciji dobimo največ 3 dobre lastne vrednosti začetnega problema, vse ostale
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Slika vii: Valovne funkcije gobastega biljarda izračunane z EBIM (l = a = 10
19R). Narisana je

verjetnostna gostota z 8-ekvidistantnimi izohipsani od 0 do največje vrednosti. Na levi sliki so
označene tudi robne točke.

zavržemo, ker ne ustrezajo izhodǐsčni ideji razvoja v Taylorjevo vrsto. Dobljeno število
lastnih vrednosti testiramo z Weylovo formulo. V primeru računanja dinamike lastnih en-
ergij zadošča, da preǰsnjo lastno vrednost od sosednje konfiguracije vzamemo za izhodǐsčno
vrednost nove konfiguracije, kar za približno faktor 4 poveča hitrost numeričnega računa.

Metodo smo testirali na 3/4 krogu z R = 1, kjer smo ugotovili, da je nekonveksni kot
3π/2 največji izvor napake, zato smo okrog njega linearno zgostili točke od faktorja 1 do
4 na intervalu 0.4 stran od vogala, kar je bistveno izbolǰsalo natančnost. To smo potem
uporabili tudi na gobastem biljardu, kjer smo napako metode z 12 robnimi točkami na
valovno dolžino ocenili na maksimalno 0.02 srednjega razmika med sosednjimi nivoji. Na
sliki vii je prikazanih nekaj lastnih stanj.

v Dinamika lastnih energij gobastega biljarda

Merili smo dinamiko lastnih energij gobastega biljarda s premikanjem pozicije noge od
sredine do desnega roba. Rezultati so prikazani na sliki viii levo, kjer so lastne vrednosti
povezane v t. i. ’̌spagete’ ali veje lastnih vrednosti. Valoviti ’̌spageti’ ustrezajo kaotičnim,
pokončni in ravni pa regularnim lastnim stanjem. Pri meritvah smo izgubili 37 % lastnih
vrednosti. Vendar to ne moti, saj dobljene povežemo med seboj, pri čemer je napaka
pri povezovanju relativno majhna. Tako dobimo vse ’̌spagete’ in ni manjkajočih, zato so
ekperimentalni rezultati popolnoma avtonomni. Enak eksperiment smo naredili tudi z
absorberjem v nogi biljarda. Rezultati potrjujejo, da vse kaotične valovne funkcije živijo
tudi v nogi biljarda, zato v dinamiki lastnih stanj od tega eksperimenta vsa kaotična
stanja izginejo, ostanejo samo regularna.

Za ta tip dinamike lastnih energij smo naredili tudi izračun, ki pa se je izkazal za
premalo natančnega, zato ga v nadaljevanju ne uporabljamo. Smo pa naredili izračun
za drugo dinamiko, ko poglabljamo nogo gobe. Izračunane lastne energije so prikazane
na sliki viii desno. V tem primeru nagnjeni ’̌spageti’ (veje lastnih vrednosti) ustrezajo
kaotičnim, pokončni pa regularnim lastnim stanjem. Pri numeriki ne izgubimo nobenega
stanja. Poleg regularnih pokončnih ’̌spagetov’, dobimo kot skoraj pokončne ali nekoliko
nagnjene tudi tiste, ki ustrezajo stanjem odbijajočih žogic (and. bouncing-ball modes),
tisti, ki ustrezajo lastnih funkcijam brazgotin, pa so zelo nagnjeni. Za enake konfiguracije
smo izvedli tudi eksperiment, ki ga bomo predstavili v nadaljevanju.
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Slika viii: Levo: energijski nivoji mikrovalovnega gobastega biljarda, pri katerem premikamo nogo
v korakih po 1 mm, R = 2a = 400 mm in l = 100 mm. Merili smo 200 različnih konfiguracij, od
centralne do skrajno desne pozicije noge. Desno: energijski nivoji desimetriziranega gobastega
biljarda s centralno pozicijo noge (b = R − a) izračunani z EBIM, pri katerem smo poglabljali
nogo v korakih po ∆l = 1/760 ≈ 0.00139, R = 1 in a = 10/19 ≈ 0.526. Računali smo 1029
različnih konfiguracij, začenši z l = 0 ekvidistantno do lmax = 257/190 ≈ 1.35263. Na abscisi
imamo E = k2, na ordinati pa parameter, linearno odvisen od globine noge l.

Porazdelitev po razmikih med sosednjimi nivoji - primerjava z RMT
napovedjo

Če želimo spektre primerjati med seboj, jih moramo najprej razgrniti - prevesti na
konstantno povprečno gostoto energijskih nivojev. Na razgrnjenih spektrih računamo ra-
zlične statistične količine, v našem primeru bo to porazdelitev po razmikih med sosednjimi
nivoji P (S).

Na sliki ix zgoraj so prikazani rezultati primerjave eksperimentalnih rezultatov in
teoretične napovedi PAn

DBR, spodaj pa je primerjava numeričnih rezultatov in teoretične
napovedi P Tn

DBR. Oboji se relativno dobro ujemajo s teorijo. Pri eksperimentalnih spektrih
smo vzeli 21 sosednjih konfiguracij iz dinamike lastnih energij, pri numeričnih pa 101 le-teh
(slika viii). ρ1 je klasični parameter, ki ga dobimo iz enačbe (xii) in se spreminja za ±7.5 %
(zgornja) in±3 % (spodnja slika) okrog srednjih vrednosti ρ, vpisanih na obeh slikah. Edini
prilagoditveni (ang. fitting) parameter je sklopitev σ. Vidimo, da so tako ekperimentalni
kot tudi numerični rezultati dobra, a seveda ne dokončna potrditev naše teorije. Zato v
primeru P Tn

DBR potrebujemo večjo natančnost izračunanih nivojev, ko S ⇒ 0, izbolǰsanje
teorije in seveda tudi izračun lastnih energij kakšnega drugega sistema mešanega tipa.

vi Izognjena križanja in tuneliranje

Veje lastnih stanj se lahko križajo ali pa tudi ne, v tem primeru dobimo t. i. izognjena
križanja dveh vej z najbližjo razdaljo ∆E. V regularnem sistemu izognjenih križanj ni, v
popolnoma kaotičnem sistemu pa so vsa križanja izognjena. Če ima tak sistem simetrijo
na obrat časa, je v njem porazdelitev razcepov v izognjenih križanjih Gaussova, kar sledi
iz 2×2 GOE modela naključnih matrik za izolirano izognjeno križanje (Zakrzewski et al.,
1993). Normalizirana na enotski povprečni razcep se porazdelitev glasi:
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.

.

Slika ix: Primerjava eksperimentalnih podatkov (histogram) z najbolj prilegajočo se teoretično
krivuljo PAn

DBRN (zgornja) in numeričnih z najbolj prilegajočo se teoretično krivuljo P Tn
DBRN

(spodnja slika), kjer je rdeča krivulja za Gaussov, pikčasto črtkasta črna za eksponentni model,
črtkasta modra za BR porazdelitev z istim ρ in pikčasta rjava za Wignerjevo porazdelitev. σG in
σE sta vrednosti najbolǰsih fitov za σ za Gaussov in eksponentni model. N je število objektov
v vsakem histogramu. Na zgornji sliki imamo nivoje na intervalu (jmin, jmax) = (100, 300), na
spodnji pa na intervalu (jmin, jmax) = (100, 200).

PGOE(∆E) =
2

π
exp

(
−∆E2

π

)
. (xv)
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Slika x: Zgornja slika: izognjena križanja v numeričnem izračunu dinamike lastnih energij
do k2 = 4200 na Weylovi osi; RC hiperbole so označene rdeče, CC pa modro. Črtkaste črte
označujejo lastne vrednosti četrtkroga. Srednji sliki: povečava enega CC in enega RC izogn-
jenega križanja; najbližje razdalje so označene s horizontalno barvno črtico, črne ravne črte
pa so asimptote hiperbol. Pri regularnem stanju je modra številka azimutalno kvantno število
m deljeno z 2, rdeča pa radialno kvantno število n. Spodnja slika: porazdelitev razcepov za
vsak tip izognjenih križanj, kjer polna modra črta predstavlja izraz (xv). N(RC) in N(CC) sta
števili objektov v posameznem histogramu. Zaradi primerjave je prvi moment RC histograma
normaliziran glede na prvi moment CC histograma. K je definiram v formuli (3.16).
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Veji lastnih energij E1 in E2 v odvisnosti od zunanjega parametra sistema λ imata v
bližini izognjenega križanja obliko hiperbol

E1,2(λ) = ±
√

a2
0(λ− a2)2 + a2

1 + a3 + a4(λ− a2), (xvi)

parametriziranih z a0, a1, a2, a3 in a4. Najmanǰsa razdalja med njima ∆E = 2 |a1| je pri
λ0 = a2.

Nas zanimajo izognjena križanja pri gobastem biljardu, do katerih pride med po-
dalǰsevanjem globine noge l. Tu obstajata dva tipa izognjenih križanj: CC izognjena
križanja so med sosednjima kaotičnima stanjema, RC pa med regularnim in sosednjim
kaotičnim stanjem. RC izognjena križanja so neposredna posledica tuneliranja v sistemu,
njihova najmanǰsa razdalja pa je mera za tuneliranje. Vsako izognjeno križanje, v primeru
numeričnih podatkov smo uporabili okrog 10 točk za vsako vejo, smo po razgrnitvi spektra
’pofitali’ z dvema hiperbolama iz enačbe (xvi), glej slika x.

Izvrednotili smo izognjena križanja do k2 = 4200, izračunali histogram razcepov in
ga normalizirali na enotski razcep. Tako se za CC izognjena križanja histogram dobro
ujema z 2 × 2 teoretično napovedjo za popolnoma kaotične sisteme, kar nakazuje možno
razširitev veljavnosti enačbe (xv) na sisteme mešanega tipa. Neskladje je pri velikih raz-
cepih, ki jih seveda ne moremo popisati z izoliranimi izognjenimi križanji, ter pri kvocientu
povprečnega razcepa in povprečne razdalje med sosednjima stanjema, ki je precej manǰsi
od tistega, ki ga napoveduje 2× 2 model.

Pri RC-jih je razcep v povprečju veliko manǰsi kot pri CC-jih, pri njihovi porazdelitvi
pa ne pričakujemo univerzalnosti. So pa RC izognjena križanja idelna za kvantitativno
analizo dinamičnega tuneliranja. Če bi obravnavali eno samo izognjeno križanje danega
regularnega stanja, kar pomeni ’srečanje’ tega regularnega stanja s kaotičnim, ki ima
podobno energijo, bi dobili oscilacije verjetnostne gostote iz enega stanja v drugo in
nazaj. Tukaj bomo obravnavali koeficiente tuneliranja iz določenega regularnega stanja,
upoštevajoč dinamiko lastnih stanj in posledična srečanja tega regularnega stanja s sosed-
njo vejo kaotičnih stanj. V tem primeru uporabimo Fermijevo zlato pravilo.

Fermijevo zlato pravilo

Fermijevo zlato pravilo pove velikost prehoda med stanji v sistemu s perturbacijo. Tak
je tudi naš sistem, le da njegove hamiltonke ne moremo zapisati kot vsote nezmotenega
dela in motnje. Eksponentni tunelski razpad e−γt čistega (nezmotenega) regularnega stanja
v kaotična stanja, ki traja do Heisenbergovega časa tH , opǐsemo s koeficientom tuneliranja

γ = 2π〈|v|2〉ρch, (xvii)

kjer je 〈|v|2〉 povprečni matrični element med tem regularnim in kaotičnimi stanji s
podobno energijo, ρch pa gostota kaotičnih stanj v okolici regularnega stanja. Za gob-
asti biljard so v skupini v Dresdenu (R. Ketzmerick, A. Bäcker in S. Löck) izračunali
teoretične koeficiente tuneliranja γmn za vsako čisto regularno stanje gobastega biljarda
iz enačbe (xiv) in dobili

γmn =
8

π

∞∑′

s=1

Jm+ 2s
3
(jmna)2

Jm−1(jmn)2
. (xviii)



vii. Numerična študija negausovskih realno simetričnih matrik 131

Vsota po s izključuje večkratnike od 3 in konvergira zelo hitro. γmn so predstavljeni na
sliki xi.

Ker je razcep v izognjenem križanju direktno preko ∆E = 2|v| povezan z matričnim
elementom v iz (xvii) in smemo pri ne preveliki kaotični komponenti faznega prostora
povprečenje razširiti čez ρch oziroma Ach iz (xii), dobimo

γ = 〈[∆E]2Ach/8〉. (xix)

Koeficienti tuneliranja - eksperiment in numerika

Pri poglabljanju noge smo poleg numeričnega izračuna naredili tudi eksperiment. Za
vsako regularno stanje pri eksperimentu s kR med 11.9 in 53.8 in numeriki s k med
11.9 in 67 smo obravnavali vsa izognjena križanja in dobili njihove razcepe v enotah en-
ergije pred razgrnitvijo. Z uporabo formule xviii smo dobili koeficiente tuneliranja pri
eksperimentalni in numerični obravnavi, rezultati so prikazani na sliki xi. Zaradi velikega
deleža nezanesljivih hiperbol pri fitanju, ki so posledica eksperimentalne oziroma nu-
merične ločljivosti in prisotnosti antene pri eksperimentu, točke (m/2, n) = (5, 1), (7, 1),
(8, 1), (9, 1), (11, 1), (12, 1), (13, 1), (11, 2), (12, 2), (13, 2) in (16, 4) izločimo iz končne
obravnave. Preostale točke se s teorijo ujemajo zelo dobro, zato lahko rečemo, da je to
prva eksperimentalna potrditev teorije koeficientov tuneliranja brez dodatnega parametra
z ujemanjem, ki je večje od dveh redov velikosti.

Pri numeriki iz istih razlogov (razen prisotnosti antene) zavržemo točke (m/2, n) =
(9, 1), (11, 1), (12, 1), (13, 1), (13, 2), (14, 2), (16, 3), (17, 3), (19, 4) in (20, 4). Preostale se
s teorijo ujemajo zelo dobro, s čimer smo tudi z numeričnim računom potrdili teorijo in
to na 4 rede velikosti natančno.

vii Numerična študija negausovskih realno simetričnih

matrik

Izhodǐsče za to študijo je simetrična matrika A = (Aij) (i, j = 1 ali 2) iz enačbe (ii) s
porazdelitveno funkcijo ga(a) diagonalnih ter gb(b) izvendiagonalnih matričnih elementov.
Tej matriki smo za različne porazdelitvene funkcije izračunali porazdelitev po razmikih
med sosednjima lastnima vrednostima P (S) in opazovali njeno obnašanje. Kot že omen-
jeno, je taka P (S) pri normaliziranih ga(a) in gb(b) avtomatično normalizirana, medtem
ko njen prvi moment ni in ga dodatno normaliziramo

P n(S) = B P (BS), z B =

∫ ∞

0

x P (x) dx. (xx)

Uvedli smo škatlasto (enakomerno)

ga(a) =
1

2a0

, če |a| ≤ a0, sicer 0, (xxi)

gb(b) =
1

2b0

, če |b| ≤ b0, sicer 0, (xxii)

eksponentno
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Slika xi: Koeficienti dinamičnega tuneliranja iz regularnega stanja (m/2, n) v kaotično morje za
kvantna števila n = 1 do n = 5 (eskperiment) in n = 6 (numerika) versus kR za gobasti biljard z
a/R = 10/19. Prikazana je teoretična napoved (’+’-i, povezani v krivuljo za fiksen n) iz enačbe
(xviii) in eksperimentalni (zgornja) oziroma numerični rezultati (spodnja slika). Predstavljeni
so na način, da so kvantna števila m/2 izpisana na sliki in povezana s pikčasto črto za fiksno
kvantno število n. Pri eksperimentalnih in numeričnih rezultatih so vrisane tudi napake, ki
pomenijo standardne napake povprečja. Črtkasta črta na vsaki sliki označuje eksperimentalno
oziroma numerično resolucijo za γ.
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ga(a) =
λa

2
e−λa|a|, gb(b) =

λb

2
e−λb|b|, (xxiii)

Cauchy-Lorentzovo

ga(a) =
1

πa0(1 + a2

a2
0
)
, gb(b) =

1

πb0(1 + b2

b20
)

(xxiv)

ter singularno krat ekponentno porazdelitev matričnih elementov

ga(a) = Ca|a|−µae−λa|a|, gb(b) = Cb|b|−µbe−λb|b|, (xxv)

z normalizacijsko konstanto Ci = λ1−µi

i /(2Γ(1 − µi)). Z numeričnih testom na 2 × 2
matrikah smo potrdili analitične rezultate (Grossmann and Robnik, 2007b).

Problem smo posplošili na večje matrike z dimenzijo N = 120. Hoteli smo testirati
HW obnašanje (Hackenbroich and Weidenmüller, 1995), ki pravi, da pri (I) končnih in
(II) omejenih porazdelitvenih funkcijah ga(a) in gb(b) vedno dobimo univerzalno GOE
obnašanje, ne glede na podrobnosti porazdelitev. V primeru škatlaste in eksponentne
porazdelitve smo potrdili napoved in za P (S) dobili Wignerjevo porazdelitev oziroma
njen eksakten ekvivalent v ∞ dimenzijah. Pri škatlasti porazdelitvi matričnih elementov
je prehod zelo hiter in se zgodi že do N = 7, medtem ko je pri eksponentni počasneǰsi, a je
pri N = 120 že popolnoma končan. Zanimiva je Cauchy-Lorentznova porazdelitev (xxiv),
ki nima prvega momenta in posledično njene lastne vrednosti niso omejene na končen
interval (slika xii levo). Tu ne dobimo GOE obnašanja, kar vidimo na sliki xii desno. Če
pa porazdelitvenim funkcijam v (xxiv) pri izbranih a in b odrežemo repe, se takoj pojavi
GOE obnašanje. Oboje je v skladu z napovedjo (Hackenbroich and Weidenmüller, 1995).

Slika xii: Numerični rezultati za ansamble s Cauchy-Lorentzovo porazdelitvijo matričnih el-
ementov iz enačbe (xxiv) z a0 =

√
2/2 in b0 = 1/2. M je število matrik tega ansambla. Levo:

gostota lastnih vrednosti za N = 120, M = 103, kjer je jasno vidno, da ni omejena na končen
interval. Desno: porazdelitev po sosednjih razgrnjenih lastnih vrednostih za N = 120, M = 103,
kjer je razgrnitev narejena s fenomenološkim pravilom unf = 20. Tanka krivulja je Wignerjeva
porazdelitev za primerjavo.

Še bolj zanimivo pa je obnašanje v primeru singularne krat eksponentne porazdelitve
matričnih elementov iz enačbe (xxv), ki že pri N = 2 za λa =

√
2, λb = 1, µa = 0

in µb = 1/2 (slika xiii zgoraj levo) obljublja nov pojav, imenovan potenčno odbijanje
sosednjih nivojev z eksponentom manǰsim od 1 (ang. fractional power law level repulsion).
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Slika xiii: Numerični rezultati za ansamble s singularno krat eksponentno porazdelitvijo
matričnih elementov iz enačbe (xxv) z λa =

√
2, λb = 1, µa = 0 in µb = 1/2. M je število matrik

tega ansambla. Levo zgoraj: N = 2 in M = 107, kjer je razgrnitev narejena s povprečjem po
obeh lastnih vrednostih (vrisana je tudi teoretična vrednost (Grossmann and Robnik, 2007b)).
Desno zgoraj: N = 3 in M = 105, kjer je razgrnitev narejena s povprečjem po vseh treh lastnih
vrednostih. Sredina levo: N = 120 in M = 5 × 103, razgrnitev s fenomenološkim pravilom
unf = 20. M je število matrik tega ansambla. Sredina desno: µb = 0.95 in M = 2 × 103, sicer
isto kot na srednji levi sliki. Spodaj desno: µb = 0.99 in M = 2 × 103, sicer isto kot na srednji
levi sliki. Spodaj desno: µb = 0.9999 in M = 2× 104, sicer isto kot na srednji levi sliki. Za lažjo
primerjavo rǐsemo tudi Wignerjevo in na zadnji sliki Poissonovo porazdelitev.

Presenetljivo je, da pri istih parametrih že pri N = 3 opazimo prehod v linearno odbijanje
nivojev in posledično v Wignerjevo porazdelitev pri N = 120, pri čemer je porazdelitev
lastnih vrednosti polkrožna (ang. semicircle law), kar izpolnjuje pogoje HW napovedi.

Ko povečujemo µb proti neintegrabilni singularnosti µb = 1, se P (S) spreminja zelo
močno in zdi se, da je spet prisotno potenčno odbijanje sosednjih nivojev z eksponentom
manǰsim od 1. Opazimo prehod P (S) od GOE pri majhnih vrednostih µb k Poissonovi
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(eksponenti) porazdelitvi, ko smo dovolj blizu µb (slika xiii). V vmesnem območju pa se
nakazuje željeno potenčno odbijanje.
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Izjava o avtorstvu

Izjavljam, da sem v predloženi doktorski disertaciji uporabljal rezultate lastnega razisko-
valnega dela.

Ljubljana, 29. september 2008. Gregor Vidmar


