
Informatica 35 (2011) 15-27 15

An Aspect-Oriented Approach for Supporting Autonomic
Reconfiguration of Software Architectures
Cristóbal Costa-Soria
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: cricosso@upv.es

Jennifer Pérez
E.U. Informática, Technical University of Madrid (UPM)
Carretera de Valencia km.7, E-28031 Madrid, Spain
E-mail: jenifer.perez@eui.upm.es

Jose Ángel Carsí
Dept. of Information Systems and Computation, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: pcarsi@dsic.upv.es

Keywords: dynamic reconfiguration, AOSD, autonomic computing, software architecture

Received: February 6, 2010

The increasing complexity of current software systems is encouraging the development of self-managed
software architectures, i.e. systems capable of reconfiguring their structure at runtime to fulfil a set of
goals. Several approaches have covered different aspects of their development, but some issues remain
open, such as the maintainability or the scalability of self-management subsystems. Centralized
approaches, like self-adaptive architectures, offer good maintenance properties but do not scale well for
large systems. On the contrary, decentralized approaches, like self-organising architectures, offer good
scalability but are not maintainable: reconfiguration specifications are spread and often tangled with
functional specifications. In order to address these issues, this paper presents an aspect-oriented
autonomic reconfiguration approach where: (1) each subsystem is provided with self-management
properties so it can evolve itself and the components that it is composed of; (2) self-management
concerns are isolated and encapsulated into aspects, thus improving its reuse and maintenance.

Povzetek: Predstavljen je pristop s samo-preoblikovanjem programske arhitekture.

1 Introduction
The increasing complexity of current software systems is
becoming unmanageable: large complex systems are
more and more difficult to develop and maintain [35].
One of the most promising techniques to deal with the
design of large, complex software systems is Software
Architectures [39]. Software Architectures1 provide
techniques for describing the structure of complex
software systems (i.e. the key system elements and their
organization). Its aim is to hide low-level details and help
to understand the system. The structure of a software
system is described in terms of architectural elements
(components and connectors) and their interactions with
each other. This structure can be formally described

1 This work has been partially supported by the Spanish
Department of Science and Technology under the National
Program for Research, Development and Innovation project
MULTIPLE (TIN2009-13838), and by the Conselleria
d'Educació i Ciéncia (Generalitat Valenciana) under the
contract BFPI06/227.

using an Architecture Description Language (ADL),
which is used later to build the executable code of the
software system. In addition, most ADLs generally
support hierarchical composition (i.e. a composition
hiding technique for defining systems of systems), which
may be helpful for modelling large-scale complex
systems in a scalable way. However, although software
architecture helps in the description and development of
complex systems, this is not enough: the management
and maintenance of these systems still requires a great
effort. To minimize such effort, self-managed software
architectures were proposed [28]. According to the
definition of Kramer and Magee [23], a self-managed
software architecture is one in which components
automatically configure their interaction in a way that: (i)
is compatible with an overall architectural specification,
and (ii) achieves the goals of the system. However, the
development of self-managed architectures still remains
a challenge [23]. Although several works have been

mailto:cricosso@upv.es
mailto:jenifer.perez@eui.upm.es
mailto:pcarsi@dsic.upv.es

16 Informática 35 (2011) 15-27 C. Costa-Soria et al.

proposed [4], they generally do not scale well for large
systems or do not explicitly consider the maintainability
of the self-management subsystem itself.

On designing a self-management infrastructure, also
its maintenance, scalability and flexibility must be taken
into account. First, maintenance should be improved by
isolating dynamic change concerns from functional
concerns, as it has been stated from other works [8, 10,
26]. Second, scalability can be improved by providing a
decentralized self-management infrastructure. Finally,
flexibility should be a fundamental property of the self-
management subsystem. It should deal with not only
goal-oriented proactive changes (i.e. driven
autonomously), but also reactive changes (i.e. driven
externally) to cope with unanticipated situations, such as
the addition of new functionality.

Our work is focused on the design, construction and
maintenance of systems with self-management features,
from a Model-Driven Development (MDD) perspective
[36]. This paper takes a step forward from a previous
work [10], which proposed to isolate the dynamic
reconfiguration concern from the rest of the system and
its decomposition into reconfiguration specifications and
reconfiguration mechanisms. In this paper we detail these
ideas, addressing the description and design of composite
components (i.e. a component composed of other
components) capable of reconfiguring its architecture
without depending on a unique centralized entity in
charge of reconfiguration. In addition, the
reconfiguration of composite components is managed
without tangling evolution and functional concerns. We
have called this feature aspect-oriented autonomic
reconfiguration, since local autonomy for dynamic
reconfiguration is provided for each composite
component, and separation of concerns is provided by
means of Aspect-Oriented Software Development
techniques [22]. Moreover, dynamic reconfiguration is
platform-independent, by identifying the high-level
features that a reconfigurable technology should provide.
Our approach has been applied to PRISMA [32], which
provides a platform-independent Aspect-Oriented ADL
and is supported by a MDD framework.

This paper is structured as follows. Section 2
presents the design decisions that guided our approach.
Section 3 introduces PRISMA, where this approach has
been applied to. Section 4 presents a case study, which is
used to illustrate the key ideas of this work. Section 5
describes our approach for supporting autonomic
reconfigurations. Section 6 discusses the related works
addressing dynamic reconfiguration. Finally, section 7
presents the conclusions and further works.

2 Dynamic reconfiguration of
software architectures

Our work defines a design approach to build
reconfigurable software architectures, a key issue in the
development of self-managed software architectures.
Dynamic reconfiguration of software architectures [16]
is a term that is used to refer, generally, to those changes
that are produced in the topology of a composite system

at runtime, by preserving the system state and
consistency. Those dynamic changes may involve: (i)
addition of new functionality (i.e. new components), (ii)
replacement and/or removal of existing functionality, and
(iii) modification of connections between architectural
elements.

A dynamically reconfigurable system is
characterized by different dimensions or attributes (e.g.
change type, granularity, activeness, impact,
management, etc.) [4, 5]. We state here the attributes that
we have considered the most important to include in our
approach and the reasons that guided such decisions:

Abstraction level. Several works have addressed the
support for dynamic change, although at different levels
of abstraction. On the one hand, a lot of works focus on
the technical feasibility of dynamic updating [25, 33, 34].
These works are generally tied to a specific technology:
their reconfigurations are defined at a low abstraction
level (e.g. in Java). On the other hand, other works focus
on the specification of dynamic reconfigurations at a
high abstraction level (i.e. by means of ADLs [4, 7, 12,
16]). However, generally these works have not addressed
how to support the execution of such high level
reconfigurations. Since the dynamic reconfiguration of
software systems is highly related with the management
of running software artefacts, we should consider not
only the specification of how a system should be
reconfigured, but also the mechanisms that support the
execution of this reconfiguration process. One of the
major contributions of this paper is the definition of a
model that bridges the existing gap among high-level
reconfigurations and low-level supporting mechanisms.

Activeness of changes. Dynamic reconfigurations
can be reactive or proactive. On the one hand, reactive
reconfigurations are dynamic changes that are driven by
an external agent (usually the system architect or
developer) and through a user interface. Endler defined
them as ad-hoc reconfigurations [16]. An example of
their utility is to perform component updates: to correct
bugs or introduce new unanticipated behaviours. On the
other hand, proactive reconfigurations are dynamic
changes that are autonomously driven by the system
when some specific conditions or events apply. Proactive
reconfigurations are usually described by means of
reconfiguration specifications. A reconfiguration
specification describes when the architecture should
change (e.g. in response to certain events or state
changes) and what kind of changes must be performed on
the architecture for each situation. Proactive
reconfigurations can be described at design-time (called
programmed reconfigurations [16]) or synthesized at
run-time, according to high-level goals [38]. Both
programmed reconfigurations and high-level goals are
defined by the architect. An example of their utility is to
provide system dependability: if a component instance
does not adequately respond, the system might change its
connections to another suitable component instance or
recreate the instance again. Reactive and proactive
reconfigurations should be considered as complementary.
Both must be supported to allow a system: to reconfigure
itself autonomously (i.e. using programmed

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 17

reconfigurations), and to introduce unforeseen changes or
updates at runtime (i.e. using ad-hoc reconfigurations).
Since both kinds of reconfigurations rely on the same
mechanisms to carry out the runtime changes, a way to
support reactive and proactive reconfigurations is by
explicitly modelling these mechanisms. Thus, the system
architect can specify which kinds of reconfigurations are
provided, by appropriately enabling or disabling
reconfiguration mechanisms and providing proactive
behaviour. This provides the architect with a high level
of flexibility for defining reconfigurable systems. Our
proposal provides support for both reactive and proactive
reconfigurations.

Management of dynamic reconfigurations. Due to
the growing size of software systems, the scalability of
the reconfiguration subsystem is also an important issue
[4, 23]. The management of reconfigurations can be
addressed either in a centralized or in a decentralized
way. On the one hand, centralized approaches (e.g. self-
adaptive systems [14, 17, 28]) provide a single, global
entity (the Configuror) that contains (or generates) both
the reconfiguration specifications and mechanisms that
will change the overall software system. The main
disadvantage is a poor scalability: the larger the system,
the more complex and less maintainable the configuror
is, since the scope that it must supervise increases
proportionally. In addition, a centralized reconfiguration
manager turns into a single point of failure: if it fails, the
overall system would also lose the ability to reconfigure.
On the other hand, decentralized approaches (such as
self-organised architectures [18, 37]) distribute
reconfiguration management across the elements of the
architecture, which are capable of reconfiguring the
architecture to which they belong. These approaches
have better scalability, since all components can perform
reconfigurations. However, a disadvantage is that
reconfiguration specifications are spread among different
components, thus decreasing maintenance of such
specifications. Another disadvantage is that system-wide
properties are more difficult to control.

Our proposal follows a hierarchical decentralized
approach. It is decentralized because each composite
component of the architecture has autonomy to
reconfigure its internal composition, independently of
other components. It is hierarchical because each
composite component reconfigures not only its
composition, but also drives and coordinates the internal
reconfiguration of the composite components it is
composed of. That is, a composite component can
reconfigure itself autonomously, but in these cases where
changes could impact other components of its upper
level, the reconfigurations are coordinated by its upper
level self-management subsystem, to ensure the
architectural consistency.

Separation of concerns. In the context of software
evolution, the separation of concerns is important to
separate those parts of the software that exhibit different
rates of change [26]. This should be considered to
appropriately avoid the entanglement of functional and
reconfiguration concerns [8, 10], and improve their
design and maintainability. Aspect-Oriented Software

Development (AOSD) [22] proposes the separation of
the crosscutting concerns of software systems into
separate entities called aspects. This separation avoids
the tangled concerns of software, allowing the reuse of
the same aspect in different entities of the software
system as well as its maintenance. Although several
proposals have addressed the integration of aspects in
software architectures, very few of them have considered
the encapsulation of the reconfiguration concern into
aspects [3, 10, 15]. We consider that the separation
among the functional and reconfiguration concerns is a
first step to build adaptive systems easier to maintain.
Thus, the reconfiguration code will be able to change the
functional code without being affected. Our proposal
takes advantage of AOSD techniques to improve the
reconfiguration management.

This paper provides four contributions to the design
of autonomous dynamically reconfigurable systems.
First, it defines a model to bridge the gap among high-
level reconfiguration specifications and low-level
supporting mechanisms. Second, it considers the support
for both reactive and proactive reconfigurations, to
achieve a better level of flexibility. Third, it describes a
hierarchical decentralized approach to tackle the
problems of scalability present in self-adaptive
approaches and maintainability in self-organizing ones.
Fourth, it explicitly separates reconfiguration concerns to
improve their maintainability and reuse. These ideas
have been integrated in the PRISMA software
architecture model, which is briefly introduced next.

3 Background: the PRISMA model
PRISMA provides a model and a language for the
definition of complex software systems [30, 32]. Its main
contributions are the way in which it integrates elements
from aspect-oriented software development and software
architecture approaches, as well as the advantages that
this integration provides to software development.

Among the different Architecture Description
Languages (ADLs) from the literature, the PRISMA
ADL was selected because of the benefits it provides for
supporting the dynamic evolution of software
architectures. First, PRISMA allows modelling the
functional decomposition of a system and its crosscutting
concerns by using architectural elements and aspects,
respectively. Thus, we can easily isolate functional and
reconfiguration concerns. Second, PRISMA does not
only allow modelling the structure (i.e. the architecture)
of a system, but also allows describing precisely the
internal behaviour of each architectural element. The
behaviour is specified by using a modal logic of actions
and a dialect of the polyadic n-calculus. n-calculus is
used to specify and formalize the processes of the
PRISMA model and mobility capabilities [2], and the
modal logic of actions is used to formalize how the
execution of these processes affects the internal state of
aspects. Thus, since the internal behaviour is formally
described, this allows us to automatically interleave the
actions required to perform the runtime evolution of its
instances. Lastly, the PRISMA ADL is supported by a

18 Informática 35 (2011) 15-27 C. Costa-Soria et al.

Model-Driven Development framework [36], which
allows the automatic generation of executable code from
PRISMA models/specifications [32]. This also benefits
the support for dynamic reconfiguration: the code
generation templates will only include reconfiguration
mechanisms in the final code when needed. Next, the
main concepts of the PRISMA ADL are introduced.

PRISMA introduces aspects as a new concept of
software architectures rather than simulating them using
other existing architectural terms (components,
connectors, views, etc). Aspects are first-order citizens of
software architectures and represent a specific behaviour
of a concern (safety, coordination, distribution,
reconfiguration, etc.) that crosscuts the software
architecture. PRISMA has three kinds of architectural
elements: components, connectors, and composites. Each
architectural element encapsulates its functionality as a
black box and publishes a set of services that they offer
to other architectural elements through their ports.
However, the internal view of these architectural
elements differs between simple and composite ones.

The internal view of components and connectors
(which are simple architectural elements) is an invasive
composition [1] of aspects, which can be shown as a
prism (see Figure 1). Each side of the prism is an aspect
that the architectural element imports. A component
differs from a connector in that it imports a functional
aspect, whereas a connector imports a coordination
aspect. Aspects are synchronized among them by means
of weavings, which indicate how the execution of an
aspect service can trigger the execution of services in
other aspects (see Figure 6).

Figure 1: Internal view of simple PRISMA elements

component and a connector; or a binding, if it links an
(internal) architectural element with one of the ports of
the composite (i.e. allowing the communication with
external architectural elements). Further details about the
semantics of the PRISMA ADL can be found in [30, 32].

4 Case study: Agrobot
To illustrate our approach, we present in this section the
software architecture of the Agrobot, an autonomous
agricultural robot for plague control. Its objective is to
patrol -at periodical intervals- a small field or delimited
area, looking for pests or disease attacks over a set of
growing crops. When a threat is detected, a pesticide is
applied to, as a first counter-attack measure, and a real-
time alarm is sent to the manager in order to take further
specialized actions. The Agrobot architecture is
hierarchically defined, i.e. as a system of systems. The
top level, shown in Figure 3, describes the set of
subsystems the robot is composed of and their
interactions with each other. Each subsystem is depicted
as a component, which provides and requires a set of
services through its ports. Each component not only
depicts the name of the instance (e.g. LeftCamera, see
Figure 3, bottom-left), but also the name of its
architectural type (e.g. VisionSystem), which defines the
structure, behaviour and constraints of the component.
The interaction among components is coordinated by
different connector types (represented as blue small
components), which are not detailed in this paper due to
space reasons.

Figure 2: Internal view of composite elements

The internal view of composite components (called
in the PRISMA ADL as Systems) consists of a set of
architectural elements (components, connectors and other
composites) and the links among them (see Figure 2). A
link can be of two kinds: an attachment, if it links a

Figure 3: Software architecture of the Agrobot

Each component of the Agrobot architecture
provides a different set of actions (e.g. image capturing,
pattern analysis, movement, sensing, communication,
pesticide activation, etc.), which are combined
appropriately to fulfil a task (e.g. to supervise a growing
crop, go to another crop, recharge energy, etc.). For
instance, task planning and selection is performed by the
AgrobotPlanner component, the energy management is
performed by the SolarEnergyController, the
communication is performed by the WirelessController,
etc. Among the different components, we will focus on
the image capturing subsystem, provided by the
RightCamera and LeftCamera components. Both
components are instances of the same architectural type,
VisionSystem, but are parameterized to use a right camera

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 19

or a left camera, respectively. These components capture
and pre-filter real-time images from the environment,
which are used by other components to look for crop
diseases (i.e. the PlagueAnalyzer component) or to guide
the movement (i.e. the MovementController component).
The RightCamera and LeftCamera components are
composite components, i.e. their behaviour is provided
by a composition of other architectural elements. They
are mainly composed of a video capture component,
VideoCaptureCard, a hardware device which captures
images from the environment at a constant frame rate;
and an image processing component, ImageProcCard, a
hardware device which pre-processes the images
captured. For instance, Figure 4 shows the internal
structure of the RightCamera component: an instance of
a VideoCaptureCard component, Right-VCapt, sends the
captured images to an instance of an ImageProcCard
component, ImgProc-1. These components are
coordinated by a connector, VCC-Conn. The pre-
processed images are sent to other subsystems by means
of another connector, the IPC-Conn connector.

Figure 4: Architecture of the RightCamera component

Self-management is used in the RightCamera and
LeftCamera components to reconfigure the internal
architecture when a fault is detected in one of its
components. Fault detection is performed by a watchdog
component, VisionSysWatchdog, which periodically
checks if images are being correctly captured and
processed. In case misbehaviour is detected, this
component sends an event to notify a failure. For
instance, if the image processing component does not
correctly process images or has a negative performance,
then the VisionSysWatchdog component sends an event,
which contains the name of the failing architectural type:

faultyOutput!(output "ImageProcCard")

The events raised by the watchdog component will
be captured by the self-management mechanisms,
reacting appropriately for each kind of event. For
instance, in case of an occurrence of the previously
described event (i.e. faultyOutput), the failing component
instance must be removed (i.e. the hardware image-
processing device is deactivated) and another, different,
component must be used instead: the ImageProcSoftware
component. This component implements another
(compatible) image processing algorithm, but with less
performance than the removed one. Thus, the image
capturing subsystem can continue seamlessly working.

In the next section, the self-management
mechanisms that support the dynamic reconfiguration of
a composite component are described in detail.

5 Autonomic reconfiguration of
composite components

One of our previous works was the study and
identification of the active concerns in evolution
processes. As other authors also stated [4, 17, 20, 23, 28],
we observed that self-managed architectures usually
follow a closed control loop that periodically supervises
the architecture, plans if any (corrective) change needs to
be performed, and effects them. Similar control loops
have been proposed to develop autonomous systems (e.g.
robots), being the most extended the autonomic control
loop [21], which is usually referred to as the MAPE loop
(Monitor, Analyse, Plan, Execute). This loop performs
control operations on a managed resource to achieve a set
of predefined high-level goals, which are part of the
knowledge of an autonomic (i.e. self-controlled) element.
The autonomic control loop has the advantage that
clearly isolates the main concerns commonly present in
every process of (self-)change. Other architecture-based
proposals for self-management generally merge analysis
and planning, or planning and execution, or do not
explicitly model the knowledge required to perform the
changes.

Our proposal uses the autonomic control loop as a
reference model to define how a system reconfigures
itself, bridging the gap among high-level specifications
(i.e. ADLs) and technology-specific (dynamic updating)
mechanisms. We have adapted the original MAPE loop
for this purpose: the managed resource is the architecture
of a system, and the control operations performed on this
resource are mainly introspection operations (for
monitoring the architecture) and reconfiguration
operations (for changing the architecture). Another
adaptation that has been done to the original MAPE loop
is its implementation by means of aspects: each one of
the different controlling components (i.e. Monitor,
Analyse, Plan, etc.) has been encapsulated in a different
aspect. Next subsections describe the details of the
approach.

5.1 Aspects for reconfiguration
Our approach defines four aspects to encapsulate the
reconfiguration concerns. They are the following (see
Figure 5): (i) Monitoring, the concern that captures the
events that take place in the architecture of a composite
component (i.e. the managed resource); (ii)
Reconfiguration Analysis, the concern that analyses the
different events to detect if a reconfiguration must be
done, and that defines the set of reconfigurations to be
performed on the architecture; (iii) Reconfiguration
Coordination, the concern that plans/ coordinates how
the reconfigurations must be applied safely to the
architecture without interrupting current transactions, and
(iv) Reconfiguration Effector, the concern that applies
atomic reconfiguration operations on the running system.

20 Informática 35 (2011) 15-27 C. Costa-Soria et al.

Each one of these aspects will be described in the
different subsections.

The reason of using aspects instead of modules for
encapsulating dynamic reconfiguration behaviour is
because of the advantages that AOSD provides [22], i.e.
better reuse and maintenance of the different concerns.
Although modules can be used to separate concerns, the
invocations among different modules (e.g. procedure
calls) are explicitly defined inside each module, thus
making each module dependent of the other. However, in
PRISMA aspects are, by definition, independent of each
other: there are not invocations among aspects, but there
are synchronizations among aspects. An aspect defines
provided and required services, and each service is
treated as a hook which can be intercepted. These
interceptions are performed by weavings, which are
defined outside the aspects and define how two aspects
are bound together (i.e. synchronized). Thus, aspects are
completely independent of each other: modifying an
aspect will only impact the weavings that are specifically
related to this aspect, but not other aspects.

Figure 5: Aspects for autonomic reconfiguration

For instance, Figure 6 shows some of the weavings
that have been defined in the VisionSystem architectural
type. The first weaving intercepts the execution of the
service create-ImageProcSoftware (provided by the
Reconfiguration Analysis aspect), and replaces it with
the execution of the service createArchElement
(provided by the Reconfiguration Coordination aspect).
In other words, this weaving binds the execution of a
domain-specific reconfiguration service (i.e. create-
ImageProcSoftware) to a generic reconfiguration service
(i.e. createArchElement). This weaving will be
invalidated if any of these services has its signature
changed. For instance, if a parameter is removed, the
weaving definition can be modified to provide a default
value to the other service (or the result of applying a
function). In both cases, the modification of an aspect
does not necessarily impact to the other aspects. The
analysis of this impact is outside the scope of this work;
however other authors have conveniently addressed this
problem, such as Pérez-Toledano et al. [31].

Another reason for using aspects is to avoid that
changes (i.e. maintenance operations) on technology-
specific reconfiguration mechanisms may have an impact
on the technology-independent reconfiguration
specifications, and vice versa. Each aspect has a different
role in the MDD process. On the one hand, the
Reconfiguration Analysis aspect is domain-specific: it is

defined by the architect and contains the high-level
specific reconfiguration policies (in terms of PRISMA
concepts) for the composite component it is weaved to.
On the other hand, the aspects Monitoring and
Reconfiguration Effector (depicted in Figure 5 in dark
grey) implement the technology-specific mechanisms
that provide support for supervising/changing the
architecture. They model the low-level services that are
provided by the infrastructure and allow us to combine
them to perform high-level reconfiguration operations.
This is performed by the aspect Reconfiguration
Coordination: it encapsulates the mappings from high-
level PRISMA concepts to low-level technological
services. Thus, code that has different rates of change
[26] is explicitly separated: dynamic updating
mechanisms (i.e. Monitoring and Effector aspects),
reconfiguration specifications (i.e. Analysis aspect), and
the mappings among them (i.e. Coordination aspect).

Weavings

ReconfCoord.createArchElement("ImgProcSW",
params, newID)

insteadOf
VisionSysRecAnalysis.create-ImageProcSoftware(

params, newID);

Monitoring.beforeServiceRequest(eventName,
eventParams)

insteadOf
VisionSysRecAnalysis.beforeEvent(eventName,

eventParams);

End_Weavings;

Figure 6: Example of weavings among aspects

5.1.1 The monitoring aspect
This aspect monitorizes the architecture of the composite
component where it has been imported to. It provides a
set of services for collecting information about: (i) the
events/messages that take place in the architecture, (ii)
the current configuration of the architecture, and (iii) the
runtime status of the different elements of the
architecture. These services are shown in Figure 7. Next,
they are explained in detail.

Services 1 to 3 are provided to intercept any event
triggered in the composite component and act before,
instead of, or after the event. Since this aspect supervises
the architecture of a composite component, the events
that it can capture are only those that take place at the
level of interactions, i.e. service requests among internal
components (i.e. through attachments), or coming
from/to external ports (i.e. through bindings). Thus,
internal components/connectors remain unaffected by
interception mechanisms (i.e. encapsulation is
preserved). For instance, the service 2 (see Figure 7)
intercepts a service request just before it is delivered to
the service provider. The parameter serviceName defines
the request to intercept, whereas elemID defines which
element sent the request (an external port, an
architectural instance, or a connection). As it will be
described in the following section, event capturing is
used to trigger reconfiguration processes.

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 21

Services 4 to 8 provide information about the current
configuration of the managed architecture. Since the
architecture of a dynamic reconfigurable system can
change substantially over time, information about the
configuration at any given moment is essential. For
instance, the service 4 returns a PRISMA specification
with the current configuration, so it can be analysed at
runtime. The other services are auxiliary and allow us to
get the instances of a particular type, the connections to a
given instance, etc. In this way, a composite component
can be aware of its internal configuration and use this
knowledge to decide if a reconfiguration is necessary.
Moreover, this information also allows us to verify
whether or not a set of reconfiguration actions has been
successfully executed.

Finally, service 9 provides information about the
runtime status of the elements the composite component
is made of: if the elements are idle, processing services
or stopped. This information allows a composite
component to be aware of whether its elements are ready
to be reconfigured or not.

Monitoring Aspect

Services
(1) afterServiceRequest(elemID, serviceName,

output paramList);
(2) beforeServiceRequest(elemID, serviceName,

output paramList);
(3) insteadOfServRequest(elemID, serviceName,

replacingService, output paramList);
(4) getConfigSpecification(output PRISMASpec);
(5) getArchElementInstances(typeName,

output instanceList);
(6) getConnections(archElemId,

output connectionList);
(7) getArchElementProperties(archElemID,

output propertiesList, output portList);
(8) getConnectionProperties(connID,

output archEleml, output archElem2);
(9) getStatus(elemID, output status);

End_Aspect;

Figure 7: Services of the Monitoring aspect

For instance, to be subscribed to (i.e. intercept) the
event faultyOutput when it is triggered by the
VisionSysWatchdog component (i.e. before the event is
processed), the following code must be executed:

beforeServiceRequest!("VisionSysWatchdog",
"faultyOutput", output paramList)

5.1.2 The reconfiguration analysis aspect
This aspect describes the proactive reconfiguration
behaviour of a composite component. This aspect is
application-specific: it is defined for a specific composite
component, and contains the policies that will drive the
reconfiguration of this component. The Reconfiguration
Analysis aspect defines when to perform a
reconfiguration, and how the different architectural
elements must be reconfigured. We have used the
PRISMA AOADL to define event-condition-action
(ECA) policies. These policies are expressive enough to
describe how a composite component should react in
presence of certain events or conditions. In our approach,

these policies are described at design-time, although they
can be changed at runtime by using reflective dynamic
evolution mechanisms, as described in a previous work
[11]. The system architect defines ECA policies by
means of configuration transactions (i.e. Actions) and
reconfiguration triggers (i.e. Events and Conditions). An
example of this aspect is shown in Figure 8: it shows the
Reconfiguration Analysis aspect of the VisionSystem
architectural type.

A configuration transaction is a specification that
describes an ordered set of domain-specific
reconfiguration operations to be executed transactionally
(all or none), in order to achieve a new type-conformant
configuration. Thus, reconfiguration operations will be
executed, and if anything fails, the reconfiguration will
be rollbacked. For instance, the transaction
RepairImageProcessUnit (see Figure 8, transactions
section) describes how the component ImageProcCard
must be replaced by the component ImageProcSoftware
in case of malfunction. The transaction consists of two
processes. The first one (see BEGIN process) obtains the
references to the instances that are going to be affected
by the reconfiguration process. Then, the second process
(see RECONF process) performs a set of configuration
actions: creates a new instance of the ImageProcSoftware
component, attaches this instance to the instance of the
VCC-Conn connector, detaches the failing
ImageProcCard instance from the VCC-Conn connector
instance, etc.

ReconfigurationAnalysis aspect VisionSysRecAnalysis

Triggers
RepairImageProcessingUnit() when
{eventParams==["ImageProcCard"]}
beforeEvent!("faultyOutput", out eventParams);

... [more reconfiguration triggers]

Transactions
in RepairImageProcessingUnit():
BEGIN::=
// Get IDs of instances subject to changes
oldImProcCardID=imageProcCard-list[0]
VCCConnID=VCC-Conn-list[0] ^
IPCConnID=IPC-Conn-list[0] ^ RECONF;
RECONF::=
create-ImageProcSoftware!(cameraPos,

output newImProcID)
attach-Att_VCCConn_IPCSW!(VCCConnID,

newImProcID, output newAttID)
attach-Att_IPCSW_IPCConn!(newImProcID,

IPCConnID, output newAttID) ^
detach-Att_VCCConn_IPC!(VCCConnID,

oldImProcCardID) ^
detach-Att_IPC_IPCConn!(oldImProcCardID,

IPCConnID) ^
destroy-ImageProcCard!(oldImProcCardID) ^
END;

... [more transactions]
End_Aspect VisionSysRecAnalysis;

Figure 8: Example of a Reconfiguration Analysis aspect

A reconfiguration trigger is a condition which, if
true, activates a configuration transaction. This condition
may evaluate user-defined attributes (e.g. performance),
or be true when a certain event is intercepted (e.g. an
exception, a service request, the creation or destruction

22 Informática 35 (2011) 15-27 C. Costa-Soria et al.

of connections, etc.). For instance, the reconfiguration
trigger shown in Figure 8 (see triggers section) activates
the configuration transaction RepairImageProcessUnit
when a certain event is intercepted in the architecture and
a certain condition is fulfilled. The event to intercept is
the service request faultyOutput, and the condition is that
one of the parameters of this service is "ImageProcCard".
This denotes that an instance of ImageProcCard is failing
(see section 4).

Note that this aspect does not directly invoke
services from other aspects. For instance, the
reconfiguration trigger intercepts services by means of
the service BeforeEvent. This service is really a hook that
is bound to the Monitoring aspect by means of a weaving
relationship (see the second weaving in Figure 6).
Without this weaving, the service BeforeEvent does
nothing.

5.1.3 The reconfiguration coordination aspect
This aspect is in charge of driving the successful
execution of the reconfiguration plans that have been
triggered by the Reconfiguration Analysis aspect. It
ensures that these plans are transactionally performed (all
or none), and that the current state of the architecture is
preserved. When a reconfiguration transaction is
triggered, the service beginConfigurationTransaction is
implicitly executed. The execution of this service
prepares the architecture of the composite component to
be reconfigured. Then, the execution of each
configuration action belonging to a configuration
transaction implicitly triggers the execution of one of the
generic reconfiguration services provided by the
Reconfiguration Coordination aspect. The headers of
these services are shown in Figure 9. Their behaviour is
defined using the PRISMA AOADL syntax. For
illustration purposes only these services for creating and
destroying architectural elements are completely shown.

These generic reconfiguration services describe the
set of low-level actions to perform for each different kind
of reconfiguration action (i.e. creating instances,
disconnecting instances, replacing instances, etc.). Each
generic reconfiguration service performs three steps.
First, the running transactions of the elements affected by
a reconfiguration action are finished in a consistent way.
For instance, the affected elements when performing the
destroyArchitecturalElement operation are the instance to
destroy, its connections, and its adjacent architectural
element instances. Second, the set of required low-level
changes are applied. For instance, the destruction of an
instance and its connections. These low-level changes are
performed by the Reconfiguration Effector aspect (see
section 5.1.4). Third, when the reconfiguration has been
realized, it is verified whether or not the desired
configuration has been achieved, by querying to the
Monitoring aspect about the configuration information
(see section 5.1.1). Each generic reconfiguration service
successfully executed is registered in a data structure, in
order to undo the operation if anything fails.

Finally, if a reconfiguration transaction ends
successfully, the service EndConfigurationTransaction is

implicitly executed. Then, all the elements that were
stopped are restarted. It only makes sense to start
reconfigured elements when all the reconfiguration
operations have been performed successfully. If any of
the reconfiguration services fails, the configuration
transaction is rollbacked.

ReconfigurationCoordination Aspect
BeginConfigurationTransaction():

... // Initialisation of auxiliary structures
EndConfigurationTransaction():

CHECK::= |transState=valid|COMMIT +
|transState=fail|ROLLBACK.

COMMIT::=
Destroy!(DestructionStack_popElement())^

... // [Commit and Rollback processes]
CreateArchitecturalElement(AEType, params,
output newID):
CREATE::= CreateInstance!(typeof(AEType),

params, output newID) ^ CHECK;
CHECK::= CheckConsistence!(output transState) ^
|transState=fail|EndConfigurationTransaction!()

+ CONTINUE;
CONTINUE::= ElementCreated(newID) ^

Start!(newID).
DestroyArchitecturalElement?(id):

STOP::= CheckConnections!(id) ^
Stop!(id) ^ Status!(id,status) ^
|status="Blocked"|DESTROY + STOP;

DESTROY::= DestructionStack_pushElement(id).
CreateAttachment(sourceArchElemID, srcPort,

targetArchElemID, trgPort,output attID):
[... body ommiitted for space reasons]

DestroyAttachment(attachmentID): [...]
CreateBinding(sysPortName, archElemID,

archElemPortName, out bindingID): [•••]
DestroyBinding(bindingID): [•••]
ReplaceArchitecturalElement(IDToBeReplaced,

newAEType, [initializationValues], out newID):
[...]

End_Aspect;

Figure 9: Services of the Reconfig. Coordination aspect

5.1.4 The reconfiguration effector aspect
This aspect effects, or performs, changes on the
architecture it manages. It provides a set of atomic,
simple reconfiguration services to interact with the other
high-level aspects. These services are simple because
they do not take into account the status (i.e. whether the
element has been previously stopped or not) and/or the
relations with the adjacent architectural elements. They
must be correctly coordinated to carry out a safe
reconfiguration: this is performed by the Reconfiguration
Coordination aspect (see section 5.1.3). The most
relevant services are shown in Figure 10.

The implementation of each reconfiguration service
is technology-dependent: depending on the technology
selected and how the component execution model has
been implemented, the dynamic updating mechanisms to
use will be different. For instance, the current
implementation of the PRISMA model, PRISMANET,
has been done using .NET technology and a concurrent,
event-based, aspect-oriented execution model [29]. The
management of connections at runtime has been done by
the use of indirections and publish-subscribe
mechanisms, which are implemented in ports. Among the
available strategies for implementing the quiescence of

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 23

running, stateful components [19, 24, 40], finally a
variation of the tranquillity approach was implemented.
The support for instance replacement requires the
implementation of three features: type replacement, state
mapping and interface adaptation. Our current
implementation only provides type replacement and state
mapping, in a similar way as described by Ritzau et al.
[33], but adapted for event-based, aspect-oriented
components. An example of how interface adaptation can
be provided is described in Cámara et al. [6].

ReconfigurationEffector Aspect

Services
StartElement(elemID); // Reach an Active status
StopElement(elemID); // Reach a Quiescent status
CreateInstance(componentType(initParams,

out componentID);
DestroyInstance(componentID);
Connect(componentID1, port1, componentID2,

port2, out connectionID);
Disconnect(connectionID);

ReplaceArchitecturalElement(ID,type,[params]);

End_Aspect;

Figure 10: Services of the Reconfig. Effector aspect

5.2 The evolver component: weaving the
reconfiguration aspects

The previously described aspects provide autonomic
reconfiguration capabilities to those composite
components that import them. However, the
infrastructure for supporting dynamic reconfiguration is
not costless: it may introduce a performance overhead of
2% [41]. Since not all the components of a system
require this degree of flexibility, and to optimize
performance and system resources, the decision of which
composite components will support dynamic
reconfiguration or not is left to the architect. This
decision is reflected by importing the reconfiguration
aspects in those composite components that may undergo
dynamic changes. Only when the specification of a
composite component imports these aspects, the
PRISMA Model Compiler [32] includes the
reconfiguration mechanisms in the generated code of the
composite component.

To synchronize appropriately the aspects for
autonomic reconfiguration and ease their maintenance,
these aspects have been encapsulated into a component
called Evolver2. This component provides autonomic
reconfiguration capabilities to the composite component
that it has been imported to. It is integrated in the
architecture of a composite component like another
component, but it provides services that belong to the
meta-level. That is, it offers services that introspect and
change the architecture within the Evolver resides (i.e. a
composite component).

By default, the Evolver only imports the aspects that

2 This name has been chosen because this component also
imports other aspects, related to the dynamic evolution of
architectural types. See [11] for further details.

support dynamic reconfigurations, i.e. Monitoring,
Reconfiguration Coordination and Reconfiguration
Effector. The activeness of change (i.e. proactive,
reactive or both) is specified by the architect, depending
on its needs. On the one hand, to introduce proactive
reconfigurations, a Reconfiguration Analysis aspect must
be defined. This is done by completing an automatically
generated, empty Reconfiguration Analysis aspect with
the reconfiguration policies needed. On the other hand, to
allow reactive reconfigurations, two ports must be added
to the Evolver: one for introspection and another for
changing the architecture. The former publishes the
introspection services provided by the Monitoring aspect
(i.e. the services 4 to 8 shown in Figure 7). The latter
publishes the generic reconfiguration services provided
by the Reconfiguration Coordination aspect. These ports
allow performing unanticipated reconfigurations on a
composite component. These reconfigurations could be
requested by another component (such as another
Evolver, which would act as a configuror of other
elements), or by the architect itself (e.g. by connecting
these ports to a component that provides a user
interface).

Thus, a reconfigurable composite component will
have a fixed part, i.e. the Evolver, and a variable part
where the Evolver will act upon, i.e. all the other
components and connections of the composite
component. However, this does not mean that the
reconfiguration process is unconstrained. A
reconfiguration is limited by the constraints defined in
the type of a composite component [9]. This type defines
which components can be used in the architecture and
how they can be interconnected. Thus, although different
instances of the same composite component reconfigure
its architecture, they will always maintain type
conformance, so that the overall composition is
preserved.

5.3 Hierarchically decentralized evolvers
The Evolver provides a composite component with
dynamic reconfiguration capabilities, which can be
initiated both proactively (i.e. autonomously-driven) and
reactively (i.e. externally-driven). These kinds of
activeness are combined to build a hierarchical
decentralized approach for self-management.

Each reconfigurable composite component is
provided with an Evolver that proactively manages its
architecture. This proactivity makes a composite
component autonomous, and allows us to distribute (and
decentralize) reconfiguration policies among the
different composite components that build a system. In
addition, the decentralization we propose is hierarchical.
Since not all the reconfiguration policies are confined to
a single composite component, but can span different
composites, a coordination structure among different
Evolvers is needed. This coordination is performed
hierarchically: the Evolver of a composite component
coordinates the reconfigurations of lower-level Evolvers,
i.e. those that manage the reconfigurations of composite
components integrated in the architecture of the upper-

24 Informática 35 (2011) 15-27 C. Costa-Soria et al.

level Evolver. For instance, the Agrobot system has an
Evolver that manages not only the reconfiguration of the
Agrobot architecture, but that also coordinates the
reconfigurations of the composite components that
compose this architecture (see Figure 11): e.g.
RightCamera, LeftCamera, the MovementController, etc.

This hierarchical decentralized reconfiguration is
supported by means of reconfiguration goals, reactive
reconfiguration ports (i.e. introspection and
reconfiguration ports), and reconfiguration events. The
details of this approach are described below.

Figure 11: Agrobot and the coordination of Evolvers

5.3.1 Hierarchical change coordination
Although reconfigurable composite components may
proactively reconfigure themselves, in certain cases these
changes cannot be only performed locally. This is the
case when reconfigurations impact several composite
components simultaneously. For instance, the
introduction of a new image encoding algorithm in the
Agrobot will not only impact the image capturing
subsystem (i.e. the VisionSystem), but also those
components that decode and analyse the images captured
(e.g. the PlagueAnalyzer). In these cases, changes must
be done in a coordinated manner among the different
composite components to preserve the architecture
consistency. Otherwise, a VisionSystem component may
produce images that other subsystems would be unable to
decode. In our approach, this coordination of changes is
performed hierarchically: the Evolver of a composite
component (i.e. the upper-level Evolver) drives the
reconfiguration of other composite components, through
their respective Evolvers. This can be done in two ways:
non-intrusively or intrusively.

Non-intrusive reconfigurations are driven by
changing the reconfiguration goals of reconfigurable
composite components. These goals are provided by the
Evolver of a composite component to allow its upper-
level Evolver to set reconfiguration preferences or to
initiate internal proactive reconfigurations. A
reconfiguration goal is an attribute defined by the
architect in the Reconfiguration Analysis aspect that: (1)
is externally visible and modifiable, and (2) is evaluated
in either: (i) a reconfiguration trigger, to determine if a
configuration transaction must be initiated; or (ii) a
configuration transaction, to decide how a
reconfiguration must be performed.

For instance, the Evolver of a VisionSystem
composite component provides a reconfiguration goal to
define the minimum performance that the VisionSystem
must provide. Depending on the value of this goal,
certain reconfigurations will be done or not. This goal is
set by means of an attribute called min_frame_rate,
which defines the minimum rate for producing images.
This attribute is evaluated to decide whether a
reconfiguration should be initiated to increase
performance or, by the contrary, to release resources. To
increase performance, the Evolver instantiates additional
image processing components, whereas to release
resources removes them and disables the watchdog
component (thus decreasing reliability). This way, the
upper-level Evolver, i.e. the Agrobot Evolver, can drive
how the reconfiguration of the VisionSystem should be
performed: preserving performance or reliability.

The advantage of using reconfiguration goals is that
they allow us to drive the reconfiguration of a composite
component without breaking its encapsulation, i.e.
without directly accessing its internal composition.
However, the disadvantage is that only anticipated
reconfigurations can be done (i.e. those defined by
reconfiguration goals). Unanticipated changes, such as
the addition of a new component to a composite
component, must be done intrusively. This is done
through reactive reconfiguration ports. These ports are
provided by the Evolver of a composite component to
allow externally-driven reconfigurations (see section
5.2). In this context, these ports are used to allow an
upper-level Evolver to explicitly introspect and change
the internal composition of a composite component.
Moreover, since reconfiguration services are internally
provided by the Reconfiguration Coordination aspect,
transactional reactive reconfiguration support is also
provided: even all the changes externally requested are
successfully executed, or all the changes are undone.

This way, an upper-level Evolver can reconfigure in
a coordinated way the internal composition of different
reconfigurable composite components. A coordinated
change can be also transactionally performed. Each
reconfiguration transaction initiated in a reactive port is
considered as a subtransaction of the coordinated change
transaction. If a subtransaction fails (i.e. a set of
reconfigurations cannot be performed inside a composite
component), then the coordinated change transaction can
be entirely aborted, by deferring the commits of each
subtransaction until the end of the coordinated change
process.

Note that both non-intrusive and intrusive
reconfigurations can be performed in a composite
component if and only if its Evolver has enabled them
(i.e. by exporting reconfiguration goals or reactive
reconfiguration ports, respectively). This way, the
architect of a reconfigurable composite component has a
great level of flexibility to determine whether a
composite component can be managed from outside or
not, and how it can be managed.

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 25

5.3.2 Bottom-up change notifications
Another functionality that is provided by an Evolver
component is the notification of changes to its upper-
level Evolver. This is needed when the Evolver of a
composite component has initiated changes that may
impact the upper-level, i.e. the architecture where the
composite component is located. For instance, consider
the removal of an internal component whose
functionality was being exported to other elements (e.g.
the removal of the ImageProcCard component in the
VisionSystem, due to a failure). These changes must be
notified to its upper-level Evolver, so it can initiate
additional actions to preserve architecture consistency:
disabling the VisionSystem instance that has reduced its
functionality. These changes are notified by means of
reconfiguration events.

A reconfiguration event is used to communicate
internal changes to outside, and has the following
signature: ReconfigurationEvent(type, message). The
message parameter gives a descriptive code about the
reconfiguration performed. The type parameter describes
the impact of change, i.e. what kind of change is going to
be performed: (i) local, an internal change: the existing
interfaces remain unchanged; (ii) medium, a conservative
change: new interfaces are added, or existing interfaces
are extended with new services (i.e. existing interactions
are still valid, but additional functionality is provided);
and (iii) system-wide, a potentially disruptive change:
existing interfaces are deleted, or some services removed.

Reconfiguration events can be triggered by the
Reconfiguration Coordination or the Reconfiguration
Analysis aspects. The Reconfiguration Coordination
aspect triggers a reconfiguration event automatically
when an external port or a binding to an internal
component are added, changed, or removed. The reason
is that external ports and binding are the means by which
a composite component interacts with its environment. If
an internal change impacts a port or a binding, this
change will also impact the environment, so it must be
notified. The Reconfiguration Analysis aspect may also
trigger reconfiguration events to notify about a situation
or reconfiguration performed. This is specified by the
architect in proactive specifications. For instance, in a
VisionSystem composite component, the
VideoCaptureCard component is a critical element. If
this element fails, and since the VisionSystem cannot
perform its functionality, then the environment (i.e. the
Agrobot architecture) must be notified about. This is
specified in the Reconfiguration Analysis: when the

event faultyOutput?(~VideoCaptureCard~) is
intercepted, then the following event is triggered:
ReconfigurationEvent!("system-wide", "VIDEOCARD
FAILURE"). This event will be captured by the upper-
level Evolver, which will disable the composite
component that has triggered this event to avoid
processing its results. Thus, although one VisionSystem
composite component failed, the robot would be able to
continue working, because it is provided with two
replicas of this component.

6 Related work
In the last years, a lot of research efforts have been done
to address the dynamic evolution of software systems [5,
25, 34] and the reconfiguration of software architectures
[4,16,19,24]. Some works have addressed the integration
of AOSD techniques in software architectures [13, 32],
although most of them have been mainly focused on
modelling the separation of concerns at the architectural
level. Only a few proposals have explicitly addressed the
use of aspects to separate the evolution concerns in
software architectures. AO-Plastik [3] isolates the
reconfiguration concern by using aspectualized
components and connectors to encapsulate the
reconfiguration specifications. SAFRAN [15] has
extended the FRACTAL component model to introduce
adaptation aspects, which decouple reconfiguration from
functional concerns. However, these approaches do not
take into account all the concerns involved in the
autonomous control loop, such as monitoring and
effecting changes. Greenwood and Blair [20] proposed
the use of dynamic aspects for monitoring and effecting
changes. However, this work is focused on a particular
technology whereas our approach is based at the
architecture level in a MDD context.

There are many ADLs that provide dynamic
reconfiguration support through specific language
primitives, such as Gerel [16], Darwin [24], LEDA [7] or
PiLaR [12]. These primitives are used in component
specifications to describe when and how the architecture
should be reconfigured. However, these works only focus
on reconfiguration specifications but do not address how
these specifications are finally applied on the
architecture. In addition, their functional specifications
are tangled with reconfiguration specifications. Several
architecture-based approaches that provide self-
adaptation capabilities have emerged [28]. Dashofy et al.
[14] and the Rainbow framework [17] describe an
architecture-based approach to provide self-healing and
self-adaptation of running systems, respectively.
However, both approaches use external and centralized
reconfiguration mechanisms instead of using localised
mechanisms to each composite component.

Morrison et al. [27] describe a conceptual framework
where evolvable systems are structured in Evolver-
Producer pairs (E-P). A Producer is a process that carries
out productive functionality. An Evolver is a process that
monitors the Producer and/or environmental stimulus,
and uses this information to generate a new version of
the Producer or even the locus (i.e. the context) where
the E-P pair is located. These concepts are recursively
applied to build composite systems: both an Evolver and
a Producer may be internally composed of an E-P pair.
Our approach shares several ideas with this conceptual
framework: (i) a composite component is the locus where
an E-P pair is located; (ii) the architectural elements
composing a composite component represent a Producer
process; and (iii) the Evolver component of a composite
component behaves as an Evolver process (i.e. it can
change the entire locus or generate a new version of the
Producer). Another similarity with our work is that each

26 Informática 35 (2011) 15-27 C. Costa-Soria et al.

locus is provided with localised reconfiguration
capabilities, explicitly isolating functionality from
evolution. However, the framework is only conceptual,
the high-level mechanisms for change are not described,
and coordination issues among evolvers are not
addressed.

7 Conclusion and future work
This paper has described an approach for supporting the
autonomic reconfiguration of hierarchical software
architectures. Instead of using a centralized self-
management infrastructure to supervise the entire system
and its subsystems, a hierarchical decentralized approach
is proposed. Each subsystem (i.e. a composite
component): (i) manages its internal reconfiguration
independently of other subsystems, and (ii) provides
reconfiguration events and goals to its upper level (i.e.
the architecture within which it is used), to allow its
integration and management. The upper level then: (i)
uses these events to be informed about changes which
may affect other elements, and (ii) according to the new
situation, it reconfigures its architecture and/or changes
the reconfiguration goals of components to fit the new
needs. This approach can be recursively applied, because
the same set of aspects is used at each level (i.e.
Monitoring, Reconfiguration Coordination and
Reconfiguration Effector aspects). Only the architecture-
specific aspect (i.e. the Reconfiguration Analysis aspect)
changes at each level, because the context to manage (i.e.
the architecture) is different. Thus, this approach
provides a software architecture with the following
properties: (i) flexibility, due to the use of dynamic
reconfiguration mechanisms; (ii) maintainability, because
aspect-oriented techniques are used to separate
reconfiguration concerns from other concerns, and (iii)
scalability, because management is decentralized.

Further works remain, as the dynamic generation of
reconfiguration plans f rom high-level goals. We have
used the PRISMA AOADL to define simple ECA
policies, although other kind of approaches may be used,
such as those related to the synthesis of tasks f rom high-
level goals [38]. Our contribution is not the definition of
the reconfiguration specification, but the explicit
separation between the reconfiguration specifications and
the mechanisms that support them. This way, business
logic, reconfiguration specifications, and reconfiguration
mechanisms can be maintained separately. The business
logic can be dynamically changed by reconfiguration
specifications, by means of reconfiguration mechanisms.
And reconfiguration specifications can also be
dynamically changed by using the reconfiguration
mechanisms, treating them as any other concern of the
system, as we stated in [11].

References
1. ABmann, U.: Invasive Software Composition. Springer,

2003.
2. Ali, N., Ramos, I., Solís, C.: Ambient-PRISMA: Ambients in

mobile aspect-oriented software architecture. Journal of
Systems and Software 83(6): 937-958, 2010.

3. Batista, T., Tadeu, A., Coulson, G., et al.: On the Interplay
of Aspects and Dynamic Reconfiguration in a Specification
to Deployment Environment. In: 2nd European Conf. on
Software Architecture. LNCS, vol. 5292. Springer, 2008.

4. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A
Survey of Self-Management in Dynamic Software
Architecture Specifications. In: Workshop on Self-Managed
Systems. Newport Beach, CA, 2004.

5. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.:
Towards a taxonomy of software change. Journal of
Software Maintenance and Evolution, 17(5). Wiley, 2005.

6. Cámara, J., Salaün, G., Canal, C.: Composition and Run-
time Adaptation of Mismatching Behavioural Interfaces. J.
of Universal Computer Science, 14(13), Springer, 2008.

7. Canal, C., Pimentel, E., Troya, J.M.: Specification and
Refinement of Dynamic Software Architectures. In:
Working IFIP Conference on Software Architecture
(WICSA'99). San Antonio, Texas, USA, 1999.

8. Cazzola, W., Chiba, S., Saake, G.: Guest Editors'
Introduction: Aspects and Software Evolution.
Transactions on Aspect-Oriented Software Development, 4:
114-116. Springer, 2007.

9. Costa-Soria, C., Heckel R.: Modelling the Asynchronous
Dynamic Evolution of Architectural Types. In: Self-
Organizing Architectures. LNCS, vol. 6090, pp. 198-229.
Springer-Verlag, Berlin Heidelberg, July 2010.

10. Costa-Soria, C., Pérez, J., Carsí, J.A.: Handling the
Dynamic Reconfiguration of Software Architectures Using
Aspects. In: 13th European Conf. on Software Maintenance
and Reengineering. Kaiserslautern, Germany, 2009.

11. Costa-Soria, C., Hervás-Muñoz, D., Pérez, J., Carsí, J.A.: A
Reflective Approach for Supporting the Dynamic Evolution
of Component Types. In: 14th Int. Conf. on Engineering of
Complex Computer Systems (ICECCS'09). 2-4 June 2009.

12. Cuesta, C.E., Romay, P., Fuente, P., Barrio-Solórzano, M:
Reflection-Based Aspect-Oriented Software Architecture.
In: European Workshop on Software Architecture
(EWSA'04). LNCS, vol. 3047. Springer, 2004.

13. Cuesta, C.E., Romay, P., Fuente, P.d.l., Barrio-Solárzano,
M.: Architectural aspects of architectural aspects. In proc.
of: 2nd European Workshop on Software Architecture
(EWSA'05). LNCS, vol. 3527. Springer, 2005.

14. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards
Architecture-Based Self-Healing Systems. In: Workshop on
Self-Healing Systems. Charleston, South Carolina, 2002.

15. David, P., Ledoux, T.: An Aspect-Oriented Approach for
Developing Self-Adaptive Fractal Components. 5th Symp.
on Software Composition (SC'06). Vienna, Austria, 2006.

16. Endler, M., Wei, J.: Programming Generic Dynamic
Reconfigurations for Distributed Applications. In: First
International Workshop on Configurable Distributed
Systems. London, UK, 1992.

17. Garlan, D., Cheng, S., Huang, A., et al. Rainbow:
Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer, 37:46-54. IEEE, 2004.

18. Georgiadis, I., Magee, J., Kramer, J.: Self-organising
software architectures for distributed systems. In: Workshop
on Self-Healing Systems. Charleston, South Carolina, 2002.

19. Gomaa, H., Hussein, M.: Software reconfiguration patterns
for dynamic evolution of software architectures. 4th Int.
Conf on Software Architecture (WICSA'04). IEEE, 2004.

20. Greenwood, P., Blair, L.: A Framework for Policy Driven
Auto-adaptive Systems Using Dynamic Framed Aspects.
Transactions on AOSD II. LNCS, vol. 4242, pp. 30-65.
Springer, 2006.

21. Kephart, J.O., Chess, D.M.: The Vision of Autonomic
Computing. Computer, 36(1):41-50. IEEE, 2003.

AN ASPECT ORIENTED APPROACH FOR. Informatica 35 (2011) 15-27 27

22. Kiczales, G., Lamping, J., Mendhekar, A., et al.: Aspect-
Oriented Programming. In 11th ECOOP'97.

23. Kramer, J., Magee, J.: Self-managed systems: an
architectural challenge. In: ICSE - Future of Software
Engineering (FOSE'07), pp. 259-268. IEEE, 2007.

24. Kramer, J., Magee, J.: The Evolving Philosophers Problem:
Dynamic Change Management. Transactions on Software
Engineering, 16(11):1293-1306. IEEE, 1990.

25. McKinley, P.K., Sadjadi, S., Kasten, E., et al.: Composing
Adaptive Software. Computer, 37(7). IEEE, 2004.

26. Mens, T., Wermelinger, M.: Separation of concerns for
software evolution. Journal of Software Maintenance and
Evolution, 14(5):311-315. Wiley, 2002.

27. Morrison, R., Balasubramaniam, D., Kirby, G., et al.: A
Framework for Supporting Dynamic Systems Co-
Evolution. Automated Software Engineering, 14(3):261-
292. Springer, 2007.

28. Oreizy, P., Gorlick, M., Taylor, R.N. et al: An Architecture-
Based Approach to Self-Adaptive Software. Intelligent
Systems, 14:54-62. IEEE, 1999.

29. Pérez, J., Ali, N., Costa, C., et al.: Executing Aspect-
Oriented Component-Based Software Architectures on
.NET Technology. In: 3rd International Conference on
.NET Technologies. Pilsen, Czech Republic, June 2005.

30. Pérez, J: PRISMA: Aspect-Oriented Software Architectures.
PhD Thesis, Universidad Politécnica de Valencia, 2006.

31. Perez-Toledano, M.A., Navasa, A., Murillo, J.M., Canal,
C.: TITAN: a Framework for Aspect Oriented System
Evolution. In: International Conference on Software
Engineering Advances (ICSEA'07). IEEE, 2007.

32. Pérez, J., Ali, N., Carsi, J.A., et al.: Integrating aspects in
software architectures: PRISMA applied to robotic tele-
operated systems. Information & Software Technology,
50(9-10):969-990. Elsevier, 2008.

33. Ritzau, T., Andersson, J.: Dynamic Deployment of Java
Applications. In: Java for Embedded Systems Workshop.
London, 2000.

34. Segal, M.E., Frieder, O: On-the-Fly Program Modification:
Systems for Dynamic Updating.IEEE Software, 10(2) 1993.

35. Software Engineering Institute: Ultra-Large-Scale Systems:
Software Challenge of the Future. Technical Report.
Carnegie Mellon University, Pittsburgh, USA, 2006.

36. Selic, B.: The pragmatics of model-driven development.
Software, 20(5). IEEE, 2003.

37. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-
organisation and emergence in MAS: An Overview.
Informatica (Slovenia), 30(1):45-54. 2006.

38. Sykes, D., Heaven, W., Magee, J. et al.: From goals to
components: a combined approach to self-management.
Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS'08). Germany, 2008.

39. Taylor, R.N., Medvidovic, N., et al.: Software Architecture:
Foundations, Theory and Practice. Wiley, 2009.

40. Vandewoude, Y., Ebraert, P. et al.: Tranquillity: A low
Disruptive Alternative to Quiescence for Ensuring Safe
Dynamic Updates. Transactions on Software Engineering,
33(12):856-868. IEEE, 2007.

41. Wang, Q., Shen, J., Wang, X., Mei, H.: A Component-
Based Approach to Online Software Evolution. J. of
Software Maintenance and Evolution, 18(3). Wiley 2006.

