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0  INTRODUCTION

Metamaterials are manmade composites with exotic 
properties not found in nature through deliberate 
microstructure design. There have been intensive 
research activities on these materials during the past 
decade. The breakthrough on metamaterials should be 
attributed to Pendry and his co-workers, they designed 
respectively electromagnetic (EM) composites with 
metallic wires and split-ring resonators [1] and [2] 
which can exhibit effectively negative permittivity 
and permeability in certain frequency ranges. In 
addition, EM metamaterials with simultaneously 
negative material parameters are termed as left 
handed materials (LHMs) and they are featured 
by the property that a wave traveling through such 
material will display anti-parallel phase and group-
velocity directions. For LHM, a number of exotic 
phenomena such as negative refraction, reversed 
Doppler-effect and Cherenkov radiation [3] and [4] are 
demonstrated theoretically or experimentally. Since 
metamaterials significantly enlarge material space 
available in designing wave-control devices, extensive 
investigations were carried out in the corresponding 
resonant mechanism, dynamic homogenization 
theory and microstructural design. The rapid advance 
of metamaterials was also boosted by the advent 

of transformation theory [5] and [6], which maps a 
deformed space into stringent distribution of material 
property and provides a superior methodology in 
designing wave devices. This and the metamaterial 
technique lead to a number of potential applications, 
perhaps the most creative examples are the invisible 
cloaking and the super lensing [7] and [8]. Similar 
ideas are naturally extended to conceive mechanical 
(acoustic/elastic) metamaterials. 

The first elastic metamaterial (EMM) was 
proposed by embedding periodically silicon rubber 
coated lead spheres into a polymer matrix [9]. The 
resulting sample of the crystal can prohibit sound 
transmission in very low frequency range for which 
the corresponding wave length is over the crystal 
constant by two order of magnitudes. The underlying 
mechanism is obviously not due to the Bragg’s 
scattering of traditional phononic crystals, but should 
be attributed to effective negative mass density (NMD) 
[10]. To understand the corresponding mechanism, 
Milton and Willis [11] constructed an illustrative 
mass-spring model, and showed that the NMD is due 
to the out-of-phase motion between the observable 
and hidden parts of microstructure near the resonating 
frequency. Yao et al. [12] experimentally examined 
the model and confirmed NMD at the bandgap region 
of a finite periodic system composed of mass-spring 
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units. A Drude-model of NMD, for which the effective 
density is all negative below a cut-off frequency, is 
also found by letting the hidden mass infinitely large 
(unable to move). Based on this model, Yao et al. [13] 
designed a subwavelength structure with excellent 
sound insulating efficiency in very low frequency 
range. Yang et al. [13] proposed another scheme of 
NMD by tuning the out-of-plane resonant pattern of 
a strained membrane attached with small weights, 
and the NMD is defined by the ratio between the 
averaged acceleration and restoring force normal to 
the membrane. Membrane-type EMMs show a great 
advantage in sound insulation and absorption with 
lightweight structures [14] and [15]. Milton and Willis 
[11] also proved that dynamic effective density can 
also be a tensor by introducing different resonances 
along perpendicular directions. Huang and Sun [16] 
modeled the lattice system as an equivalent 2D elastic 
solid with its effective mass density characterized 
as a second order tensor. A continuum EMM with 
anisotropic effective dynamic mass density tensor was 
also proposed by placing lead cylinders coated with 
elliptical shaped rubbers in a matrix material [17] and 
[18]. Anisotropic mass density can also be achieved in 
non-resonant acoustic metamaterials containing fluid 
components [19] and [20]. On the other hand, Fang et 
al. [21] designed an acoustic metamaterial by using a 
one-dimensional array of subwavelength Helmholtz 
resonators, and found the abnormal transmission 
behavior in certain frequency range which can be 
explained by the effective negative modulus of the 
acoustic fluid.

However, synthesizing the known mechanisms 
achieving exotic elastic properties to build a bulk 
EMM with combined NMD, negative bulk modulus 
(NBM), negative shear modulus (NSM) or desired 
anisotropy is more complex compared to the EM 
media, this is mainly due to the inherent coupling 
between longitudinal and shear wave modes and wave 
mode conversion. In order to understand the internal 
mechanism of bulk EMMs, a systematic approach 
is to study the wave behavior of matrix-inclusion 
systems with coated sphere or cylinders, for which 
the analytical scattering solution is available [22] and 
[23]. It is now clear that the NBN, NMD and NSM 
are essentially related to the excited local resonant 
modes of monopolar, dipolar and quadrupolar 
types, respectively. In this regard, realization of 
acoustic metamaterial with doubly or triply negative 
parameters needs the simultaneous activation of more 
than one types of resonance within a certain frequency 
band, this either requires mixed fluid and solid 
components or complicated microstructure. Ding et al. 

[24] proposed a double-negative acoustic metamaterial 
by combining an array of alternating bubble-contained 
water spheres and rubber-coated gold spheres 
in an epoxy matrix, each composite spheres are 
carefully designed to have an overlapped frequency 
of monopole resonance for bubble-contained water 
spheres and of dipole resonance for rubber-coated 
gold spheres. Other similar design schemes were 
proposed [25] and [26] as well. Wu et al. [27] proposed 
a type EMM by placing rubber coated water beads 
into a foam matrix, which can possess simultaneous 
NMD and NSM. Lai et al. [28] designed a hybrid 
solid made of four types of solid materials, which 
can selectively trigger the aforementioned resonances 
with wave direction. However, due to the fluid-solid 
combination and complex integrity, these EMM 
designs are theoretically successful but practically 
remain difficult to be realized for experimental 
demonstration. By using two-dimensional (2D) 
network of Helmholtz resonators, Zhang et al. 
experimentally demonstrated that the acoustic fluid 
media in the network can possess necessary double 
negativity or anisotropy for subwavelength imaging 
[29] or invisible cloaking [30]. Many other EMM 
based devices have been suggested for promising 
applications with elastic wave manipulations such as: 
elastic metamaterials waveguides, elastic wave super 
lensing, wave cloaking and vibration insulating [31] to 
[34].

Recently, it is evidenced that a new design 
principle different from the mentioned resonant 
scheme can be pursued if microstructure chirality 
is introduced. In this review, we will summarize the 
related works. Chirality was first termed by Lord 
Kelvin [35]: I call any geometrical figure, or group 
of points, ‘chiral’, and say that it has chirality if its 
image in a plane mirror, ideally realized, cannot be 
brought to coincide with itself. Lots of examples of 
chirality can be found in nature or manmade objects, 
such as twisted ropes and chiral nanotubes for three-
dimensional (3D) case, triskelion patterns for 2D 
case, respectively. It should be mentioned that the 
chirality have been employed earlier in realizing 
metamaterials to generate negative refraction for 
EM [36] and for acoustic cases as well [37], which 
results from the breaking of degeneracy between two 
circular polarized waves. The mechanism explored in 
this paper for EMM is however different. As will be 
demonstrated in the following, an outstanding feature 
of 2D chiral solids is the coupling between bulk 
deformation and local rotation. The feature enables 
the excitation of mixed translational and rotational 
resonances in the specially designed microstructure, 
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and can be employed to realize double-negative 
EMMs in a simple and practical manner.

The paper is organized in five sections including 
this introduction. In Section 2, single-negative 
metamaterials are presented by integrating 2D chiral 
lattice with local resonators, their applications in 
broadband vibration isolating are also studied; 
in Section 3, the mechanism of mixed resonance 
and simultaneous NMD and NBM is first clarified 
by discrete models, and the design of realizable 
continuum versions of double-negative EMMs is 
given; in Section 4, recent developments on micropolar 
constitutive model which is potentially more suitable 
for characterizing chiral elastic materials and chiral 
EMMs are reported. Finally conclusions are provided 
in Section 5.

1  SINGLE-NEGATIVE CHIRAL EMM

2D periodic chiral lattice is not only a lightweight 
material with unique property for static load bearing, 
but also a highly designable phononic crystal with 
flexibly topological adaptation [38] and [39]. In 
particular, tri-chiral lattices, originally proposed by 
Prall and Lakes [40] to achieve negative Poisson’s 
ratio, are received intensive investigations as ideal 
candidates for so-called auxetic materials. The 
geometry of tri-chiral lattice is depicted in Fig. 1 
a), where a hexagonal unit cell is highlighted. The 
lattice is defined by circles of equal radius r linked by 
straight ligaments of equal length L. The ligaments are 
required to be tangential to the circles and the angle 
between adjacent ligaments is equally 60 degrees. 
The distance between circle centers is denoted as 
R, while the angle between the line connecting the 
circle centers and the ligaments is defined as β. The 
thickness of the lattice ligaments is denoted as tb. 
The lattice vectors ei can be written in the orthogonal 
Cartesian vector basis (i1, i2) as

    e i i e i i
1 1 2 2 1 2

3 2 3 2= +( ) = − +( )R R/ , / .  (1)

The ratio cosβ=L/R is denoted as the topology 
parameter. By tuning continuously this parameter, 
a variety of distinct configurations, form traditional 
triangular lattice to packed circles, can be obtained as 
shown in Fig. 1b.

In order to achieve low-frequency wave 
attenuation, Liu et al. [41] proposed an EMM model 
by integrating a tri-chiral lattice with softly coated 
inclusions, which function as NMD resonators, in the 
hollow circles. The unit cell of the EMM lattice is 
shown in Fig. 1c, and the radius of the core cylinder is 

identified as rc. The first Brillouin zone, the reciprocal 
lattice vectors (b1, b2) and the irreducible Brillouin 
zone (IBZ) of the lattice are shown in Fig. 1d. To 
study the working mechanism of the proposed single-
negative chiral EMM, band structures are calculated 
by using finite element based Bloch wave analysis. 
The configuration of the analyzed latticed composite, 
including geometry and material parameters, are 
detailed in Table 1. In the figure, results are presented 
in the normalized frequency Ω = ω / ω0 with ω0 being 
the first order flexural frequency of a simply supported 
ligament of length L.

Fig. 1.  a) Geometry of the tri-chiral lattice; b) different lattice 
configurations induced by variation of the topology parameter; 
c) unit cell of the EMM lattice; d) reciprocal lattice vectors and 

Brillouin zone; taken from Liu et al. [41]

Table 1.  Geometric and material parameters of the single negative 
chiral EMM lattice

Lattice 
parameters

topology parameter L/R =0.9

ligament length L  = 26.4 mm

node radius r  = 6.4 mm

ligament wall thickness tb  = 0.5 mm

Young’s modulus El  = 71 GPa

Poisson’s ratio vl  = 0.33

density ρl  = 2.7 g/m3

Lattice 
parameters

core-node radius ratio rc /r  = 0.5

core Young’s modulus Ec  =17 GPa

core Poisson’s ratio vc  = 0.33

core density ρc  = 13 g/m3

coating Young’s modulus Es  = 5 GPa

coating Poisson’s ratio vs  = 0.33

coating density ρs  = 0.5g/m3

The band structure of the chiral EMM is shown 
in Fig. 2a. For reference, the band diagram of a 
pure lattice structure without coated inclusions is 
also plotted in Fig. 2b. It is noticed that the band 
structures in the two lattice materials with and without 
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resonators are almost unchanged at high frequency 
range Ω∈[2, 6], while at low-frequency range, a 
considerably wide band gap Ω∈[0.81, 1.43] is found 
for the former. Dispersion curves of the first two 
lowest modes, which correspond to P (longitudinal) 
and S (transverse) modes of the pure lattice, are also 
plotted in Fig. 2a by dashed lines. It is seen that the 
lowest two branches are split into five branches due to 
the presence of local resonators.

  

Fig. 2.  Band diagrams of the lattice a) with and b) without coated 
inclusions; taken from Liu et al. [41] (For interpretation of  the 

colors in figures, the reader is referred to the web version of this 
article)

Wave modes are selectively presented in Fig. 3 to 
further understand the formation of the low-frequency 
band gap. In the figure, mode shapes of the first, third 
and fourth branches located at the high-symmetry 
points (O, A, B) of the IBZ, which are highlighted in 
Fig. 2a by dots, are displayed. Un-deformed geometry 
(red line) is imposed as reference. The first and fourth 
branches form the boundaries of the first bandgap. The 
points A and B in the first branch and the point O in 
the fourth branch are on the edge of the band gap, for 
which it can be seen that the mechanism of the wave 

attenuation is the translational resonance of the core in 
the soft coating layer and the deformation of the lattice 
is small. In this case, most part of the wave energy 
is trapped in the coated inclusion due to its local 
resonance and wave propagation is not allowed. For 
the locus away from the edge of the band gap, point 
O in the first branch corresponds to the rigid mode of 
the structure, while the modes of point A and B in the 
fourth branch show the propagating wave takes place 
through the bending of the lattice ligaments.

O A B

Branch 1

Branch 3

Branch 4

Fig. 3.  Mode shapes of three typical branches at high-symmetry 
points of the Brillouin zone; taken from Liu et al. [41]

The third branch in Fig. 2a is remarkable. It is 
found that the slope of this very narrow passing band 
Ω∈[1.14, 1.15] along the OA path is negative, which 
implies that the anti-parallel directions of group and 
phase velocity. Moreover, this negative band takes 
place in the low frequency range where the effective 
mass density of the EMM is negative, thus it is more 
appropriate to reason that in this band the effective 
modulus turns negative as well. The wave modes 
in Fig. 3 indicate that the formation of this branch 
is closely associated to the rotational motion of the 
core cylinder. It is also worthwhile to point out that 
as long as the core possessed a rotational inertia, 
the third rotation related branch always exists in the 
band diagram. However, if the chirality is not present, 
the dispersion curve of this branch will be strictly 
horizontal, which implies that the group velocity 
is zero and the rotational mode actually cannot be 
excited. Analysis of rotation related band is placed in 
Section 2.1.

In order to test vibration alleviation effect of the 
previous chiral EMM at low frequency, Zhu et al. [42] 
experimentally investigated the frequency response of 
a finite sized beam structure. The sandwiched beam 
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consists of a periodic tri-chiral lattice sandwiched 
into a rectangular frame (470 mm in length, 91 
mm in height, 10 mm in width and 0.5 mm in wall 
thickness), which is fabricated from an aluminum (Al) 
plate through a water jet cutter. Local resonators made 
of rubber (Polyteks Poly PT Flex 20 RTV Liquid 
Rubber) coated metal cylinders are inserted in lattice 
beam. Steel and tungsten cylinders with the same 
geometry are used as inclusion cores for the purpose 
of generating different resonant frequencies. The 
EMM parameters are specified by Table 2. A specimen 
containing two sections of different resonators, which 
is fabricated to test the broadband suppression of 
vibration, is shown in Fig. 4a. In the experiment, the 
beam is fixed on one end and excited by a shaker 
close to the fixed end. White noise excitation signal 
with bandwidth from 0 to 1000 Hz is generated by the 
shaker, and the response of the EMM beam is received 
by an accelerometer attached to the other end. Band 
structure analysis is conducted as well for comparison.

Table 2. Parameters of fabricated chiral EMM lattice with 
metamaterial resonators

Lattice 
parameters

topology parameter L/R =0.82

ligament length L  = 24.6 mm

node radius r  = 8.6 mm

ligament wall thickness tb  = 0.5 mm

Young’s modulus El  = 71 GPa

Poisson’s ratio vl  = 0.33

density ρl  = 2.7 g/m3

Lattice 
parameters

diameter of metal cylinder 6.35 mm
height of metal cylinder 25.4 mm
density of steel 7.85 g/m3

density of tungsten 15.63 g/m3

rubber Young’s modulus 586 Ma
loss tangent of rubber < 0.1

Fig. 4b shows the measured FRF of EMM beam 
with mixed resonators in solid line. For comparison, 
FRFs from EMM beam with single section of 
resonators (steel and tungsten cylinders) are also tested 
and plotted in dashed and dotted lines, respectively. 
It is found that the frequency region of attenuation 
of the EMM beam with mixed resonators falls in 
between 210 Hz and 700 Hz, which is very close to 
the summation of those regions of the beams with 
individual resonator section. In the figure, yellow and 
gray shaded areas indicate the band gap prediction for 
infinite chiral EMMs with two types of the resonators, 
respectively. It is seen that the measured FRFs can be 
well predicted by either individual band gaps or their 
overlap correspondingly.

Fig. 4.  a) Fabricated EMM beam structure with two sections of 
resonators; b) comparison of measured and predicted FRFs for the 

broadband EMM beam; taken from Zhu et al. [42]

2  DOUBLE-NEGATIVE CHIRAL EMM

It is seen that introducing chirality in EMMs can 
effectively activate the usually silent rotational mode 
of resonance in microstructure. This inspires a new 
mechanism to design EMMs with simultaneously 
negative NMD and NBM by making use of coupled 
translational and rotational resonances through 
appropriate microstructure design. The resulting 
double-negative EMM will contain only a single type 
of resonator, and will be considerably simpler than the 
traditional schemes.

2.1  Discrete Models

In order to illustrate how the negative effective 
modulus can be produced by rotational resonance, 
consider a 1D chiral mass-spring unit shown in Fig. 5. 
Three massless springs and a rigid disk with rotational 
inertia I are pin-connected. The two springs with 
elastic constant k2 are tangential to a rigid disk with an 
angle α. During loading process, the pin-joints A, C as 
well as the disk center are kept in the horizontal axis.

Fig. 5.  1D discrete model demonstrating negative stiffness; taken 
from Liu et al. [43]
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The rotation of the disk is induced by the equally 
applied force F. The tension in the spring k2 is given 
by:

 f k R x
2 2
= −( cos ).θ α  (2)

The rotation of the disk is governed by:

 2
2

2

2
f R I

t
= −

∂
∂
θ
,  (3)

with R being the radius of the rigid disk. Assuming the 
system is time-harmonically loaded and all quantities 
have the form as ( , , ) ( , , )F x F x ei tθ θ ω= � � � , the rotation 
of the disk and the end displacement can be related as

 θ
α
ω

 =
−

2

2

2

2

2

2

Rk
R k I

xcos
.  (4)

The balance of the force at the joint A then gives:

 F k x f= −2
1 2

cos .α  (5)

The dynamic effective stiffness of the system, 
defined by k F xeff = � �/ ( )2 , reads:

 k k k
eff = + −

−








1

2

2

0

2

0

2 2
2

1
cos

,
α ω

ω ω
 (6)

where ω
0 2

2
2= k R I/  represents the resonant 

frequency of the disk. It can be shown that the 
effective stiffness takes negative value in the following 
frequency range:

 2 2 1
1 1 2

2

0

k k k/ ( cos ) .+ < <α
ω
ω

 (7)

The physics of the negative keff can be explained 
as follows. Consider the system subjected to 
compressive deformation, that is, x  is positive. Then 
Eqs. (4) and (7) give that:

 ( )
,

2
1 2

2

2

k k
k R

x+
< < +∞

cos

cos

α
α

θ   (8)

implying in-phase (clockwise) rotation of the disk. It 
turns out that though the spring force in k1 is 
compressive ( f k x� �

1 1
2= − ), the spring force in k2 can 

be tensile due to the intensive clockwise rotation of 
the disk. Specifically, by substituting Eq. (8) into Eq. 
(2) we obtain that 2

1 2
k x f / cosα < < +∞ , this is the 

reason why the external force feels tension while the 
system is shortened.

Next, the previous negative-stiffness unit is 
used to build a 1D discrete system with double-
negative effective properties, as shown in Fig. 6. The 

system consists of an infinite host chain of masses 
m1 connected by springs k1, and the resonators, 
which consist of mass m2 and rotation inertia I  and 
two inclined springs k2 , are inserted in between the 
adjacent host masses. A dashed box in the figure 
highlights the nth unit cell in the system. Different from 
the previous negative stiffness model, here the disks 
will undergo not only rotation but also translation. 
Wang [44] considered a similar 1D discrete model in 
which two chiral resonators with different handedness 
are superimposed in a unit cell to eliminate the overall 
non-symmetric effect. The dynamic properties and 
wave behavior are thoroughly examined in their work. 
Li and Wang [45] later generalized the discrete model 
to 2D case.

Fig. 6.  1D discrete model demonstrating simultaneous NMD  
and stiffness

Assuming the harmonic response as before, the 
dynamic equation of the system can be characterized 
by the following equations:

  

− = + −( )
+ −( )

+ −

−

ω

α θ θ

2

1 1 1 1

1

1

1

1

2

1

2m x k x x x

k R

(n) (n ) (n ) (n)

(n) (n )
cos

++ + −( )
− = +

−

+

k x x x

m x k x

2

2

2 2

1

1

2

2 2 2

2

1

1

2cos ,

cos

(n) (n ) (n)

(n) (n )

α

ω α xx x

I Rk x x R k

1 2

2

2 1

1

1

2

2

2

2

(n) (n)

(n) (n ) (n) (n)

,

cos

−( )
− = − −( ) −+ω θ α θ ..  (9)

From Eq. (9) the translation and rotation of the 
rigid disk are related with the displacement of the host 
masses as [46]:

 

x x x

x x
R

2 2

1

2

1

1

1

2

0

2

1 1

1

1

1 2

1

1 2

(n)

(n ) (n)

(n)

(n) (n )

,

c

=
−

+

=
−

−

+

+

ω ω

θ
ω ω

oos ,α  (10)

where ω0 and ω1 are the natural frequencies of the 
rigid disk, given by:

 ω ω
α

0

2 2

2

1

2 2

2

2

2 2
= =
k R
I

k
m

,
cos

.  (11)
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By analyzing the dynamic motion of the host 
masses in conjunction of the boundary forces F(n+1) 
and F(n) acted on unit cell, the following relations can 
be obtained:

1

2 4 2

1

1

1

1

1 2 2

2

0

2 2

1

1

1

F F k m k

x x

(n ) (n)

(n )

cos+

+

+( ) = − +

 −






× −

ω
α

ω ω
((n)

(n ) (n)

(n ) (n)

,

.

( )

− = − +
−











++
+

F F m m x x1 2

1

2

2

1

2

1

1

1

1 2
ω

ω ω
(12)

Bearing in mind that the average tension is 
(F(n+1) + F(n))/2, elongation is x x

1

1

1

(n ) (n)+ − , total force is 
(F(n+1) – F(n)) , and the average observable acceleration 
is − ++ω 2

1

1

1
2( ) /

(n ) (n)x x , the effective stiffness and 
mass of the system are obviously;

 k k m k
eff = − +

−1

1 2 2

2

0

2 2
4 2

1

1
ω

α
ω ω

cos
,  (13)

 m m m
eff = +

−1

2

2

1

2
1 ω ω

.  (14)

The harmonic wave solution of the 1D system 
can be expressed as:

    x x x x ej j n j i qx jqL t
1 2 1 2
(n ) (n ) ( )
, , , , ,

+ + + + −( )( ) = ( )θ θ ω
    (15)

where q is the Bloch wave number, L is the length of 
the unit cell and ( , , )x x  

1 2 θ  are complex amplitudes. 
By substituting Eq. (15) into Eq. (9) and solving the 
eigenvalue problem of the coefficients, the dispersion 
relation can be expressed as:

       

ω
ω ω

α

ω
ω ω

ω
ω ω

2

1

2

2

1

2 1

2

2

1

2

1

2 2

0

2
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+
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
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
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


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−
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





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



sin ,

2

2

qL  (16)

Fig. 7.  a) Effective mass, b) stiffness and c) dispersion curves of 
the doubly negative 1D chiral discrete model

Thus, the dispersion curves are plotted according 
to Eq. (16) in Fig. 7c with the parameters as following: 
L = 0.1, R = 0.08, α = π/6, m1 = 0.2, m2 = 0.3, I = 0.0015, 
k1 = 0.2, and k2 = 0.1. It can be found in Fig. 7c that a 
pass band with negative slope (red solid line) within 
frequency range (0.88 to 1.00) is generated inside 
the bandgap region and separates the bandgap region 
into two small gaps at (0.75 to 0.88) and (1.00 to 
1.18). Fig. 7a shows the normalized effective mass  
(meff /m1) as function of frequency predicted by Eq. 
(14), the negative effective mass is found at frequency 
range (0.85 to 1.18), highlighted with grey color in the 
figure. Fig. 7b shows the normalized effective stiffness 
calculated by Eq. (13), the negative stiffness is found 
at frequency range (0.90 to 1.00). It is noticed that the 
frequency range where negative effective mass and 
stiffness occurs simultaneously is almost overlapped 
with that of the pass band with negative slope. On the 
other hand, the separated two small gaps agree well 
with the regions where only negative mass exists. 

2.2 Three-Phase Chiral EMM with Double-Negative Property

Enlightened by the discrete model of Fig. 6, Liu et al. 
[43] proposed a 2D continuum version of EMM with 
simultaneously NMD and NBM. The analogy between 
1D discrete model and continuum EMM is illustrated 
in Fig. 8a. The host lattice of discrete model is replaced 
by continuum matrix material with cavities where the 
resonators is inserted, while the chiral coating mimics 
the inclined springs of resonators. To make the EMM 
macroscopically isotropic, the resonators are arranged 
in a periodic triangular pattern with lattice constant a. 
The unit cell of the metamaterial is depicted in Fig. 
8b. A number of (ns) slots with width ts are cut out 
from the coating material. The slots are equi-spaced 
in azimuth and oriented at an angle θs with respect 
to the radial direction. The metamaterial lacks any 
planes of mirror symmetry hence it is said to be 

Fig. 8.  a) Analogy between the 1D discrete model and 2D 
continuum EMM; b) unit cell configuration of chiral EMM; taken 

from Liu et al. [43]
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chiral. The geometrical parameters mentioned above 
as well as the constituent materials were carefully 
designed to ensure the translational and rotational 
resonances occur at overlapped frequency range, and 
the overlapped frequency was further optimized to be 
as large as possible. 

In order to evaluate dynamic effective properties 
of the EMM with such a complicated microstructure, 
analytical method is not available. Instead, a 
numerical-based effective medium method based on 
the micromechanics approach is adopted. Under long-
wavelength approximation, the macroscopic stress, 
strain, resultant force and acceleration of the unit cell 
can be determined by averaging local quantities on the 
unit cell’s external boundary as [46]:

Σαβ αγ β γ αβ α β β α
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where the Einstein’s summation rule on the repeated 
subscripts is assumed and Greek subscripts range 
from 1 to 2; σαβ , uα  and üα are the local stress, 
displacement and acceleration fields, respectively;  
dsα = nαds with nα and ds being the boundary unit 
normal and line element of the boundary, respectively; 
xα and V denote the position vector and unit cell’s 
volume, respectively. Considering the macroscopic 
isotropy, the effective bulk, shear modulus and 
momentum mass density of the EMM can be defined 
as:
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where Σ'αβ and E'αβ denote the deviatoric parts of 
the macroscopic stress and strain, respectively. To 
evaluate the dynamic properties, the unit cell is 
time-harmonically loaded on the boundary by the 
prescribed displacement:

 u t u e u u E xi t
α α

ω
α α αβ β( , ) ( ) , ( ) ,x x x= = +� � � �0

 (19)

where the boundary displacement amplitude uα  is 
required to be compatible with a known macro-strain 
amplitude Eαβ . The dynamics of the unit cell is then 
solved by harmonic finite element analysis with 
frequency being swept over the interested range, from 
which the effective properties are determined by Eq. 
(18).

Fig. 9.  a) Effective density, b) effective moduli and c) band 
structure of the three-material chiral elastic metamaterial; taken 

from Liu et al. [43]

Fig. 10.  Deformation and rotational resonance modes 
corresponding to three typical values of the effective dynamic bulk 

modulus: a) quasi-static value, b) negative value and c) positive 
peak; taken from Liu et al. [43]

An example of the final EMM design is specified 
with the following parameters: epoxy resin (density 
ρm = 1110 kg/m3, bulk modulus Km = 3.14 GPa, shear 
modulus μm = 0.89 GPa), low-density Polyethylene 
(ρc = 920 kg/m3, Kc = 0.57 GPa, μc = 0.13 GPa) and 
lead (ρi = 11600 kg/m3, Ki = 52.6 GPa, μi = 14.9 GPa) 
are chosen as matrix, coating and core materials, 
respectively; the core is 5.6 mm in diameter and the 
coating thickness is 0.7 mm; the triangular lattice 
constant is a = 10.75 mm; the slot parameters are 
ns = 12, ts = 0.4 mm and θs = 56°, respectively. Fig. 9a 
shows normalized effective mass density ρeff /ρm of the 
EMM as function of wave frequency. It is seen that 
the negative density appears in range of 9.51 kHz to 
21.54 kHz. Fig. 9b shows the normalized effective 
bulk modulus Keff /μm and shear modulus μeff /μm as a 
function of frequency. It is of interest to note that Keff 
becomes negative in frequency range of 14.08 kHz 
to 14.72 kHz while μeff is always positive. The wave 
dispersion relation along ΓK direction is shown in Fig. 
9c. The lattice array and the IBZ are also plotted as 
the inset of Fig. 9c. A stop band is observed for both 
longitudinal and transverse waves in the frequency 
range of 9.44 kHz to 21.58 kHz, which matches the 
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frequency range of negative effective density quite 
well. In addition, a new pass band with negative 
slope appears in the frequency range of 14.05 kHz 
to 14.73 kHz, which again matches the overlapped 
frequency range of the negative effective density and 
longitudinal modulus (Keff+ μeff) well.

The origin of the NBM of the proposed EMM 
can be understood by examining the deformation 
and traction of a unit cell corresponding to three 
typical values of Keff as shown in Fig. 10. The un-
deformed states are identified by dashed lines. In Fig. 
10a (0 kHz), a quasi-static Keff is obtained since the 
frequency is far from the core rotational resonance 
frequency. When the frequency approaches the 
rotational resonance frequency from below (14.5 
kHz), a very large clockwise (in-phase) rotation of the 
core is generated in conjunction with expansion of the 
unit cell. Such a rotation produces a compressive state 
in the matrix and compression is also detected on the 
external boundary of the unit cell. Conversely in Fig. 
10c, when the frequency approaches the rotational 
resonance frequency from above (15.2 kHz), the anti-
clockwise rotation of the core enhances the tensile 
state in the matrix and, consequently, a positive peak 
of Keff occurs.

2.3 Single-Phase Chiral EMM with Double-Negative 
Property

The chirality and coupled translational and rotational 
resonances can be employed to design double-
negative EMMs through a single type of unit cell. 
This could simplify significantly the design of 
EMMs, however the microstructural pattern given 
in the previous section is still too complicated for 
experimental validation. To this end, Zhu et al. [47] 
proposed an innovative chiral EMM design made 
of only one single solid material, which is easy to 
be fabricated and tested in plate-based techniques. 
The unit cell of the proposed EMM is shown in Fig. 
11a, which is composed of one matrix material and 
slotted voids. The chirality of the unit cell is formed 
by properly slot-cutting in a hexagonal area and 
leaving three inclined ribs which connect the center 
piece (functioned as the mass) and the frame. The 
lattice constant is a, and the widths of the slot, ribs 
and frames are denoted by s, r and tf, respectively. In 
the design, the three ribs are very critical since they 
function as the soft chiral coating introduced in the 
previous example, and they will support not only the 
translation resonance but also the rotation resonance 
of the center piece. Therefore, by carefully choosing 

the base material and optimizing the geometrical 
parameters, it is possible to simultaneously achieve 
translation and rotation resonances and in turn the 
double negativity at a desired frequency range. 

A practical example of the proposed single-
phase EMM is specified as following: stainless steel 
with density 7850 kg/m3, Young’s modulus 200 GPa, 
Poisson’s ratio 0.3 is chosen as the base material; 
the size of unit cell and other geometric parameter 
are a = 12 mm, s = 0.5 mm, r = 0.4 mm and tf  = 1.2 
mm, respectively. The effective bulk modulus and 
the effective mass density of the chiral EMM are 
evaluated by the method explained in the previous 
section, and plotted as a function of frequency in Figs. 
11c and d, respectively. The effective mass density ρeff 
and effective bulk modulus Keff are normalized with 
the density and Young’s modulus of the base material, 
respectively. The dispersion curves along ΓM 
direction are also graphed in Fig. 11b, in which the 
lattice array and its IBZ are also inserted as the inset of 
Fig. 11b. It is found that the bandgap frequency range 
(grey area in 37.2 kHz to 53.6 kHz) predicted from the 
dispersion relation is almost the same as the frequency 
region (pink area in 37.4 kHz to 54.1 kHz) of the 
NMD. In Fig. 11c, Keff turns negative in a frequency 
range of 42.9 kHz to 45.2 kHz (blue strip). Eventually, 
both the effective longitudinal modulus Eeff= Keff +μeff 
and ρeff  become negative in the regime of 43.6 kHz 
to 45.2 kHz, which implies a pass band with negative 

Fig. 11.  a) The unit cell of the single-phase chiral EMM; b) band 
structure; c) effective bulk modulus and d) effective density of the 
proposed chiral elastic metamaterial; taken from Zhu et al. [47]
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slope for longitudinal wave in this frequency range. 
The longitudinal wavelength belonging to this band is 
from 112 mm to 121 mm, and it is much larger than 
the unit cell size a = 12 mm.

A prominent feature of double-negative 
metamaterial is the negative refraction phenomenon 
when a propagating wave impinges the interface 
between the metamaterial and a normal media, 
originated from the antiparallel direction of energy 
flow and phase velocity as well as conservation 
of transverse component of the wave vector. The 
double negativity of the proposed chiral EMM was 
numerically and experimentally justified by the 
negative refraction between an EMM and a normal 
elastic material. In the simulation, a 30-degree 
wedged sample composed of 512 EMM unit cells is 
constructed in a surrounding normal elastic material 
which is the same as the base material of the EMM, 
see Fig. 12b. A longitudinal wave beam is generated 
from the left side edge of the EMM wedge by applying 
a harmonic displacement excitation. The wave beam 
propagates inside the metamaterial, and eventually 
refracts at the inclined edge. The simulation is 
performed in COMSOL Multi Physics. 

Fig. 12.  a) The EFCs of the EMM superimposed with the EFCs for 
transverse and longitudinal waves in stainless steel at 43.8 kHz; b) 
divergence and c) curl of the velocity fields at fc = 43.8 kHz; taken 

from Zhu et al. [47]

To precisely explore refracted wave modes and 
the way of the incident longitudinal wave propagation 
through the EMM, the equi-frequency curves (EFCs) 
of the metamaterial in the frequency range of 39 kHz 
to 44.6 kHz in the first Brillouin zone are plotted in 

Fig. 12a. The wave refraction is examined at the 
frequency fc = 43.8 kHz, in which both the NMD and 
NBM are present, and the EFC for this frequency 
is highlighted by red solid curve in the contour. In 
addition, the EFCs for the P and S wave in the host 
stainless steel at the same frequency are also plotted 
in the figure as the blue dotted circle and green dashed 
circle, respectively. In the figure, Vg and k are the 
group velocity and wave vector of the incidental wave 
in the metamaterial, respectively, and Vgt is the group 
velocity of S wave in the stainless steel. The refracted 
wave can be determined in the EFCs by using the 
Snell’s law, which states that the components of 
the wave vector parallel to the refracting interface 
have to be the same for the incident and refracted 
waves. Thus the wave vector of the refracted wave 
can be determined by drawing a line (black dashed 
line) passing the end point of incident wave vector 
and being perpendicular to the interface, and then 
seeking the intersections of the line with the EFCs 
of the host media. It is seen from the figure that the 
intersection occurs in the EFC of S waved of the host 
material, and a refractive wave with angle φ = –37° 
is predicted, while no P wave is refracted since any 
intersection with blue circle is impossible. A wave 
mode conversion from P to S wave is found. It should 
be noted that the red EFC at this frequency does not 
possess exactly a circular shape, hence the vectors of 
the group velocity and phase velocity are not exactly 
antiparallel. In order to confirm these founding, full 
wave simulation is conducted, the divergence and 
curl of the velocity field obtained from finite element 
solution are shown in Fig. 12b and c to distinguish 
the P and S wave contents, respectively. It is seen 
that very weak refracted longitudinal wave field can 
be observed and much stronger refracted transverse 
wave field is found, as expected. The refraction angle 
estimated from the simulation, as shown in Fig. 12c, 
also agrees well with the prediction based on EFC. 

The negative refraction was validated by 
experiment. Due to 2D feature of the problem, the 
plate-based wave testing technique was adopted. 
The wedge-shape EMM array (326 mm × 192 mm 
× 1.5 mm) was fabricated in a thin stainless steel 
(Grade 304) plate (3048 mm × 1829 mm × 1.5 mm) 
by using a precision laser cutting technique, which 
is shown in Fig. 13. The zoomed-in views of the 
metamaterial at different scales are also shown in the 
figure. In the experiment, the dimension of the host 
plate is chosen to be sufficiently large in order to 
avoid unwanted reflected waves from the boundary. 
Since the interested frequency is very low (<50 kHz), 
the lowest symmetric Lamb wave mode (S0) can be a 
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good approximation for the in-plane wave behavior. 
An incident P wave is launched by symmetrically 
bonded piezoelectric patches on top and bottom of the 
plate. In the test, a steady wave excitation with single 
frequency is avoided since the absorbing boundary 
for a solid plate is difficult to realize, instead, a tone 
burst signal with narrow frequency band is chosen. 
The refracted in-plane waves are measured on the 
surface of the plate by a 3D laser scanning vibrometer 
(Polytec PSV-400-3D). The frequency -wavenumber 
filtering technique is also applied to remove undesired 
out-of-plane mode generated due to the inaccuracies 
in the fabrication and experiment setup.

Fig. 13.  The fabricated triangular array of the chiral EMM; taken 
from Zhu et al. [47]

Fig. 14.  a) The measured velocity field at t =1.7 ms with frequency 
43.8 kHz; b) Time domain signal envelops of the scanning points 

on the three selected lines; taken from Zhu et al. [47]

The snapshot of the measured amplitude of the 
in-plane velocity field for t = 1.7 ms at 43.8 kHz is 
shown in Fig. 14. A local coordinate system x'–y' is 
defined with x' parallel to the oblique interface. It can 
be clearly found that the measured refracted wave 
propagates downward in the negative refraction side 
with respective to the interface normal. The measured 
angle of the refraction is about –38°, which is very 
close to the numerical prediction. Fig. 14b shows the 
amplitudes of the recorded wave signal envelopes in 
the time domain at three regularly spaced lines with a 
distance from each other by 33 mm along y' direction 

(see the inset in Fig. 14a) lines 1, 2 and 3). From this 
measurement the group velocity of the outgoing wave 
in the host material can be estimated as Vg = 3320 m/s, 
which is exactly the transverse wave speed of the steel 
plate as predicted previously. 

3  MICROPOLAR MODEL FOR CHARACTERIZING PLANAR 
CHIRAL LATTICES

The effective property and wave characteristic of the 
chiral elastic metamaterial presented in the previous 
sections are considered in the framework of classical 
Cauchy elasticity, and this theory succeeds in material 
design and the interpretation of the observed wave 
phenomena. However, chiral material cannot be fully 
described by Cauchy elasticity since it is not able to 
characterize the handedness of the material [48]. For 
example, consider the tri-chiral lattice and its mirror 
reflection shown in Fig. 15, the difference between 
the two figures should be reflected somehow by 
constitutive equations. However, classical elastic 
theory remains the same upon a transformation of 
mirror reflection, which is equivalent to the inversion 
of one coordinate axis. It is interesting to note that, for 
the tri-chiral lattice, if we adopt the sign convention 
of topology parameter β according to the relative 
orientation of the ligament and the link of circle 
centers, the sign of β monitors the handedness of the 
lattice, as indicated in Fig. 15. This operation cannot 
be achieved by an in-plane rotation due to its chiral 
nature. To more comprehensively characterize the 
2D chiral solids, one should head to the higher order 
elastic theory, e.g. micropolar theory. For 3D case, 
it is found early that isotropic chiral elastic material 
can be well characterized by the non-centrosymmetric 
micropolar theory [48]. The recently developed 2D 
chiral micropolar theory [49] to [51], and some new 
wave phenomena are reviewed in this section.

Fig. 15.  Chiral lattice with a) β>0  and its handedness reversed 
pattern with b) β<0

Characterization of material chirality is closely 
related to the concept of pseudo (or axial) tensors 
which alternate sign under a mirror reflecting 



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)7-8, 403-418

414 Liu, X.N. – Hu, G.K.

transformation or the handedness change of the 
underlying coordinate system, while ordinary (or 
polar) tensors are not affected by such actions. In 
micropolar theory, rotational degree of freedom 
(DOF) ϕi is introduced in addition to the displacement 
ui at a material point [52]. The deformation measures 
are characterized as strain and curvature:

 ε φ κ φkl l k lkm m kl k lu e= + =, ,,  (20)

respectively, and the balances of stress σji and couple 
stress mji are governed by:

   σ ρ σ φji j i ji j ikl kl iu t m e J t
, ,

/ , / ,= ∂ ∂ + = ∂ ∂2 2 2 2  (21)

where eijk is the Levi-Civita tensor, ρ and J are the 
density and micro-inertia, respectively. Subscripts of 
Latin letters range from 1 to 3, subscripts of Greek 
letters range from 1 to 2, and a comma in subscript 
denotes partial differentiation with respect to 
coordinates. The governing equations is completed by 
the constitutive equations:

   σ ε φ ε φij ijkl kl ijkl k l ij ijkl kl ijkl k lC B m B D= + = +, ,, ,  (22)

where C, D and B are elastic tensors of rank four. 
Consider 2D problem defined in the x1–x2 plane where 
u3 = ϕ1 = ϕ2 = ∂ / ∂x3 = 0, Eqs. (20) and (21) reduce to:
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respectively, where ϕ3 ≡ ϕ, κα3 ≡ κα, mα3 ≡ mα are 
defined for brevity, and eαβ ≡ e3αβ can be considered 
as the 2D Levi-Civita tensor. Liu et al. [49] proved 
that 2D isotropic chiral micropolar material should be 
characterized by the following constitutive equation 
which is for clarity written in a matrix form:
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There are four classical micropolar elastic 
constants (Lame’s constants λ and μ, antisymmetric 
shear modulus κ and higher order modulus γ) and a 
new parameter A characterizing the chiral effect. 
When the handedness of the material pattern is 
reversed, the chiral constant A should reverse its sign, 

and the other constants remain unchanged. From Eqs. 
(23) to (25), the wave equations of 2D isotropic chiral 
micropolar material read:
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The form of Eq. (26) looks like those of 
anisotropic medium, however, they are essentially 
different and cannot be covered by any anisotropy 
without chirality, since the parameter A and its sign 
form a unique pattern in the constitutive matrix in Eq. 
(25). The positive definiteness of the strain energy 
density imposes condition A2<(λ+μ) κ on the chiral 
constant A, which can be either positive or negative, 
yet its absolute value is bounded.

Fig. 16.  Tetra-chiral lattice

For the tetra-chiral lattice shown in Fig. 16, 
obviously a 2D orthotropic chiral micropolar 
constitutive model is needed, which is recently given 
by Chen et al. [50] and [51] employing the theory of 
irreducible orthogonal tensor decomposition. The 
obtained constitutive tensors display a hierarchy 
structure depending on symmetry of underlying 
microstructure. Depending on the microstructure 
symmetry, up to eight material constants, in addition 
to the five for the isotropic case, are introduced to 
characterize a 2D orthotropic chiral elastic material.

The constitutive Eq. (25) provides a more 
sophisticated framework to characterize the tri-chiral 
lattice introduced in Section 2. By assuming the 
circle of the tri-chiral lattice is rigid, the five effective 
micropolar constants of the tri-chiral lattice can be 
analytically obtained as: 
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where η = tb/R indicates the slenderness ratio of the 
ligaments. It can be verified that when the chiral lattice 
is flipped over (sign of  β is reversed), A changes its 
sign, while all the other parameter remains unchanged. 
When β = 0 for a traditional triangular lattice (see Fig. 
1b), A vanishes as expected. 

The chiral micropolar theory can reveal unique 
wave property in 2D chiral solids which cannot 
be predicted by traditional elasticity theory. The 
most pronounced difference between the chiral and 
non-chiral micropolar media is that for the later 
a non-dispersive longitudinal wave with velocity 
cp = [(λ+2μ)/ρ]1/2 can always be decoupled from the 
other two shear-rotation coupled waves. This is the 
characteristic of the non-chiral micropolar media, i.e. 
the microrotation is only coupled with shear but not 
with dilatation. In the chiral micropolar theory, the 
rotation is coupled with the dilation deformation due 
to the non-zero chiral constant A. Hence there would 
be no longer pure P or pure S waves in such media. 
The three wave modes are all mixed and dispersive, 
thus we call P, S or R (rotation) dominated waves, 
respectively. Moreover, the common feature of 
circular polarization for 3D isotropic chiral micropolar 
material [53] is not presented in the current 2D case, 
i.e. material particles are linearly polarized during the 
wave motion. However, the loss of mirror symmetry 
is reflected in another way for the 2D case. Since the 
medium is in-plane isotropic, the frequency dispersion 
has to be isotropic and the EFCs of this medium 
should be concentric circles. On the other hand, the 
polarization will remain a fixed angle with respect to 
the wave vector. This feature is schematically shown 
in Fig. 17a, where the polarization of mixed P/S 
wave mode forms a chiral pattern without reflective 
symmetry. P/S mixed polarization accompanied by 
isotropic dispersion (EFC) is a unique behavior which 
cannot be predicted by traditional elasticity theory. 

Fig. 17b shows the dispersion curves (solid 
lines) of the tri-chiral lattice predicted by using 

the homogenized wave equation Eq. (26) in which 
the effective material constants Eq. (27) are taken. 
The lattice geometry is specified by R = 1.0, β = 0.9, 
η = 1/20.The ligaments of the lattice are assumed to be 
massless, while the mass and rotational inertia of the 
rigid circles are assumed to be unit. The exact solution 
of the dispersion curves (circles) obtained from 
Bloch wave analysis of the tri-chiral lattice is also 

Fig. 17.  a) Schematic wave behavior of the 2D isotropic chiral 
material; comparison of b) dispersion curves and c) polarization 

angle for the chiral and non-chiral homogenization with the 
discrete model; taken from Liu et al. [49]
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plotted in the figure as a benchmark. For comparison, 
dispersion curves (dashed lines) predicted by a non-
chiral version of micropolar homogenization [39] are 
also plotted in the figure. The dispersion curves are 
grouped in black, red and blue colors for the first, the 
second and the third branches, respectively. The first 
and second branches correspond to the displacement 
dominated modes, while the third one is the rotational 
dominated wave. The second branch is almost non-
dispersive. All three models agree well for this 
branch. However, for the first and third branches, the 
chiral theory agrees well with those given by the exact 
solution of the corresponding discrete model and a 
large discrepancy is found for the non-chiral theory. It 
is also interesting to notice that the dispersion curves 
of P and S dominated wave almost coincide at the 
long wave limit, indicating almost same phase wave 
velocities. This is the feature of waves in materials 
with Poisson’s ratio ν = –1, where the shear modulus is 
much greater than the bulk modulus. 

Since the wave is linearly polarized, it is 
appropriate to examine the wave mode of the 
displacement dominated wave through the 
polarization angle Λ. The polarization angle of the 
first two branches predicted by the chiral and non-
chiral theories are plotted in Fig. 17c as function of the 
wave number, where the first and second branches are 
marked in black and red, respectively. The non-chiral 
theory always predicts pure P and S waves, thus the 
polarization angles remain to be 0 and 90 degrees, as 
expected. For the chiral theory, the S and P dominated 
wave (for example Λ>60° and Λ<30°) can be observed 
when the wave number is small for the first and second 
branches, respectively. However, for the intermediate 
wave number, the P/S domination of the two branches 
become indistinguishable and can even interchange, 
i.e. the first branch become P-dominated and the 
second branch become S-dominated. Good agreement 
between the chiral micropolar homogenization and 
the exact discrete model (shown by circle and square 
dots) is found. 

More recently, based on the chiral micropolar 
homogenization of the tri-chiral lattice and tetra-chiral 
lattice, Bacigalupo and Gambarotta [54], reconsidered 
the single- negative EMM lattice presented in 
Section 2. By adopting the matrix chiral lattice as a 
chiral micropolar continuum and considering the 
resonator as additional degree of freedoms which 
interact with each material point through appropriate 
translational and rotational stiffness, a generalized 
chiral micropolar continuum model with six degree 
of freedoms is established for the EMM lattice. The 
dynamic equations of the proposed model are

 

σ σ ρ

σ σ ρ
111 12 2 1 1 1 1

211 22 2 2 2 1 2

, ,

, ,

+ + −( ) =
+ + −( ) =

k v u u

k v u u

d

d

� ��
� ��

mm m k J
11 2 2 21 12 1, ,

,

+ + − + −( ) =








 σ σ θ φ φθ

� ��
 (28)

 

k u v v

k u v v

k J

d

d

� ��
� ��
� ��

1 1 2 1

2 2 2 2

2

−( ) =
−( ) =
−( ) =










ρ

ρ

θ φ θθ

,  (29)

where (uα , ϕ) and (vα , θ) are the displacement and 
rotation of the host continuum and resonators, 
respectively, k d  and k θ  are the translational and 
rotational stiffness derived from the property of the 
soft coating of the resonator. Constitutive equation 
and homogenized material constants are taken from 
Eqs. (25) and (27). With this formulation, the chiral 
EMM lattice presented in Section 2 can be analytically 
studied and optimized for the purpose of tuning 
bandgaps or even emphasizing the branch of negative 
group velocity. 

4  CONCLUSIONS

Though a variety of mechanisms achieving EMM 
have been proposed for a long time, design of 
practical EMM with combined exotic property is still 
a difficult task due to complicated nature of elastic 
wave. In this paper we show that coupled rotation 
and bulk deformation of 2D chiral solids provides a 
new resonant mechanism for the design of EMMs, 
and related works are reviewed. With the help of the 
chirality and coupled resonances, double-negative 
EMM microstructure can be significantly simplified 
for fabrication. Moreover, the highly designable 
feature of chiral solids can also be explored to 
enhance the function of EMMs. On the other hand, 
the introduction of chirality needs more sophisticated 
continuum theory, e.g. micropolar theory, to better 
understand and characterize this material. We hope 
related research can promote the application of EMM 
on the advanced wave control.
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