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Abstract
Based on the principles of conservation of energy and momentum, a mathematical formula has been derived for the
squares of detonation velocities of a large set of explosives. The equation is a function of the total energy and molecular
weight of an explosive compound considered. A regressed equation has been obtained for a pool of explosives of vari-
ous types including nitramines, aliphatic and aromatic nitro compounds. Also another regressed equation for nitramines
only is given. For the regression, the total energies are obtained using DFT (UB3LYP/6-31G(d)). The regression stati-
stics are given and discussed.
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1. Introduction

The research for new energetic materials having cer-
tain desired properties is an ongoing effort of scientists
and engineers. Nowadays, the theoretical and computatio-
nal approaches are indispensable for the design of novel
explosive materials by helping systematically the impro-
vement of scientific formulations having good thermal
stability, impact and friction sensitivities and enhanced
detonation performance. Detonation velocity is one of the
important performance characteristics of explosives
which can be calculated by some computer codes having
different level of sophistication1–5. The computation of de-
tonation parameters by computer codes usually requires
the heat of formation (∆Hf) and the density of explosive as
well as the equation of state of detonation products6,7. In
addition to that for these computations it is necessary to
possess some highly expensive or restricted computer pro-
grams. While designing novel explosive structures, the in-
puts (∆Hf and density) required for these computer pro-
grams are to be previously calculated. Therefore, the need
for some simple, and cheap methods are always desirable.

A shock wave propagates into a reactive gas mixture
which is in a metastable thermodynamic-chemical (pseu-
do) equilibrium with frozen reaction. The intensity of the
shock wave and the corresponding change of state is suffi-
ciently large to start the reaction process8. There exist nu-
merous articles in the literature concerning the kinetics of

detonation of various explosives9–17. Some of these publi-
cations are on certain novel concepts rather than straight-
forward experimental measurements10. For instance, Ber-
nard using Eyring’s activated complex theory, found that
the detonation rate was determined by the rate at which
activated complex molecules transversed the potential en-
ergy barrier along the reaction path14.

Besides the detonation rate, the velocity of detona-
tion at which the detonation shock wave proceeds through
an explosive charge is an important detonation parame-
ter1. Some useful equations relate the detonation velocity
to the other Chapman-Jouguet state parameters1. Kamlet
and coworkers invoke the thermo chemical properties of
an idealized detonation reaction and make use of these for
the estimation of detonation velocity18–21. Some empirical
approaches to the detonation velocity exist in the literatu-
re such as the work of Rothstein and Peterson16,22.

While using these empirical formulas for the deto-
nation velocity, the detonation performance of a pure ni-
trated high explosive can most approximately be formula-
ted as a function of its heat content in condensed phase, its
elemental composition and loading density16,18,21,22. 

Usually, assumed decomposition products are to be
used for calculation of detonation performance.

An empirical relation is also found between the de-
tonation velocities and 15N NMR chemical shift, δN, of ni-
trogen atoms in nitro groups of a limited number of nitra-
mine type explosives with rigid structure23,24.



289Acta Chim. Slov. 2010, 57, 288–296

Türker et al.:  Velocity of Detonation-A Mathematical Model

Quantum chemical calculations at different levels we-
re reported for the determination of detonation velocities
mainly based on the method of Kamlet and Jacobs approach
and using Kistiakowsky-Wilson’s equation of state25–29. In
that method, the detonation velocity (D) is given by

D = 1.01 (NM1/2 Q1/2)1/2 (1 + 130ρ)

Where ρ: density of a compound, N: moles of gase-
ous detonation products, M: average molecular weight of
gaseous products, Q: chemical energy of detonation.

2. Theory

2. 1. The Physical Model
The physical model developed presently is based on

the following main assumptions.
i) The explosive material is oxygen sufficient and the

material balance exists between the explosive and its
explosion products.

ii) The energy and momentum are conserved. Thus, the
quantity of an explosive material having mass M
which is equal to its molecular weight (in grams) ex-
plodes and pushes a shell of mass M. Meanwhile the
energy and momentum of the explosion products are
transferred to the shell which, then acquires an initial
velocity of V0.

iii) The product gases have mass (mi) and velocity (νi).
Then, in the light of above assumptions the conserva-
tion of momentum implies,

formula 
(1)

where “i” stands for individual gaseous product “i”. Since
the explosive is assumed to be oxygen sufficient (that is the
oxygen balance is zero) then the material balance requires

formula (2)

It is known that the detonation velocity (D) and the
velocity of matter (W) are expressed as,30

formula (3)

formula (4)

Where p0 and p1 are the pressures for undisturbed
and shock disturbed media, respectively. Whereas γ0 and
γ1 are the specific volumes (γ = 1/ρ, ρ: density) for the un-
disturbed and disturbed states. Note that formulas 3 and 4
are valid irrespective of the state of aggregation30.

Combining eqs. 3 and 4 and assuming that the initial
velocity (V0) of the shell is equal to W at the end of explo-

sion. Then, one gets

formula (5)

In compact form, eq.5 is

formula (6)

where                    . Solving for V0 (assuming V0 = W) from
eq. 1 and inserting into eq. 6,

formula (7)

On the other hand, ineq. 8 holds for α ≥ 1 that is an
arithmetic mean cannot exceed the root-mean-power31.

formula 
(8)

Let ai = miνi. Then, by using ineq. 8 and α = 2 one
obtains ineq. 9.

formula 
(9)

The right hand side of ineq. 9 can be rearranged to
produce ineq. 10

formula (10)

Where, is the kinetic energy of particle i.
By a simple mathematical manipulation ineq. 10 can be
converted to

formula (11)

On the other hand, the Cauchy-Bunyakovsky32,33

inequality 12, 

formula 
(12)

can be applied for the   term of ineq. 11 that is,

formula (13)

Inserting the right hand side of ineq. 13 into ineq. 11
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for term, one obtains ineq. 14.

formula (14)

On the other hand, by multiplying and dividing the
numerator of eq. 7 by n, one obtains 

formula (15)

Inserting the right hand side of ineq. 14 into eq. 15
for one gets ineq. 16.

formula 
(16)

Ineq. 16 shows that there should be an intricate
functional relationship between D2 and kinetic energies of
product molecules.

2. 2. The Regression Model

The complexity of functional relationship governing
D reflected by ineq.16, necessitates to use some approxi-
mations to relate D to certain measurable/calculable inde-
pendent variables. The regression model is based on

i) The potential energy (Ep) of an explosive is converted
to kinetic energy of the explosion products 

ii) The potential energy, is a certain fraction of the calcu-
lated total energy (ET) of the explosive molecules con-
sidered that is

formula (17)

Thus, assuming the conservation of energy, Ep of the
explosive material considered is distributed as the kinetic
energy Ei of the product molecules. Note that for most of
the explosives the products are the same but the number of
molecules produced are different. On the other hand, M
which is equal to molecular weight of the explosive (see
the 2nd assumption in the “physical model“ part above)
considered is an easily accessible quantity. 

Squaring both sides of ineq. 16,

formula (18)

Multiplying and dividing the right side of ineq. 18
by Ep and then transferring M into the square-root sign in
the form of M2, one gets ineq. 19.

formula (19)

Inserting eq. 17 into ineq. 19 for Ep produces,

formula (20)

Since ET ≥ Ei, M ≥ mi, then obviously               and  
. So, ineq. 20 can be written as

formula (21)

To equate the both sides of ineq. 21, a proportiona-
lity factor, L, is imposed that is

formula 
(22)

Furthermore, to consider the effect of number of
NO2 groups on D2 = f(ET/M) functional relation, it is assu-
med that

formula (23)

Where, N is the number of NO2 groups and a and b
are certain constants. Combining eqs. 23 and 22 and using
new coefficients, the following regression model is obtai-
ned and used for numerical testing.

formula 
(24)

3. Method

3.1. Geometry Optimizations and Energies
In the present study, the initial geometry optimiza-

tions have been achieved by using MM2 method (molecu-
lar mechanics), followed by the semi-empirical PM3 (pa-
rametric method-3) self-consistent fields molecular orbi-
tal (SCF MO) method34,35 at the restricted level36,37. Then,
the STO (Slater-type orbitals), RHF (restricted Hartree-
Fock) and Density Functional Theory (DFT)38,39 type
quantum chemical calculations have been consecutively
performed for the geometry optimizations (finally at the
level of UB3LYP/6-31G(d)) to obtain energetically the
most favorable structures of the species presently conside-
red. The exchange term of B3LYP consists of hybrid Har-
tree-Fock and local spin density (LSD) exchange func-
tions with Becke’s gradient correlation to LSD exchan-
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ge39,40. The correlation term of B3LYP consists of Vosko,
Wilk, Nusair (VWN3) local correlation functional41 and
Lee,Yang, Parr (LYP) correlation functional42.

For each set of calculations, vibrational analyses
were done (using the same basis set employed in the cor-
responding geometry optimizations). Note that the normal
mode analysis for each structure yielded no imaginary fre-
quencies for the 3N-6 vibrational degrees of freedom,
where N for the vibrational analysis is the number of
atoms in the system. This indicates that the structure of
each molecule corresponds to at least a local minimum on
the potential energy surface. Furthermore, all the bond
lengths were thoroughly searched in order to find out
whether any bond cleavage occurred during the geometry
optimization process. The geometry optimizations and the
vibrational analysis computations were performed by us-
ing the Spartan 06 package program.43

4. Results and Discussion

Table 1 tabulates various data of the present compu-
tational study. The explosive compounds in the table are
shown by their abbreviated names (see the list of abbre-

viations). The experimental (observed) D values in Table
1 were excerpted from the literature44,45. Some of the ex-
plosive structures considered are simply aromatic nitro
compounds like TNT, TNB etc., whereas some are nitra-
mines like CPX (a cyclic molecule) and EDNA (an acyc-
lic explosive). The list also includes some mixed types li-
ke TNAZ which possesses nitro groups, so that some of
them attached to an aliphatic carbon and one attached to
an amine group. The explosives PA and PAM contain phe-
nolic and amine groups, respectively which are attached
to an aromatic nitro core structure. Note that some of the
explosives included in the table are relatively huge mole-
cules like HNS, DPE, DPM and DPA. Therefore, the po-
pulation number (PN:27) of the explosive compounds
considered for the present computational study span over
variety of structural possibilities.

The total energies employed for the study are all ob-
tained at the level of UB3LYP/6-31 G(d) and corrected for
zero point vibrational energy (in Hartree unit). For the sa-
ke of simplification purpose, instead of ET used in the
theoretical part, just symbol E will be used below for the
total energy. 

The theoretical equation (eq. 22) indicates that D2

should be a function of E/M and presently E/M ratio of

Table 1. Some data for the explosives considered.

Oxygen Corrected Total D0 Dcalc
No Name Balance energy a (E) M E/M N b NE/M km/s km/s % Err
1 DMNA –88.81 –339.560787 90 –3.76946 1 –3.76946 6.29 6.10 –2.96
2 EDNA –31.98 –599.372314 150 –3.99331 2 –7.98663 8.42 7.99 –5.12
3 MNA –42.07 –300.277329 76 –3.94816 1 –3.94816 6.70 7.59 13.36
4 OCPX –58.49 –638.657318 164 –3.89138 2 –7.78276 7.28 7.22 –0.81
5 DMEDNA –80.83 –677.937503 178 –3.80547 2 –7.61095 6.42 6.50 1.31
6 TNB –56.31 –845.628002 213 –3.96813 3 –11.90438 7.42 7.87 6.04
7 1,8–DNN –139.34 –794.718450 218 –3.64269 2 –7.28538 5.38 4.86 –9.59
8 1,5–DNN –139.34 –794.726606 218 –3.64273 2 –7.28546 5.52 4.86 –11.88
9 TENN –72.69 –1203.677160 308 –3.90599 4 –15.62395 7.30 7.46 2.27
10 TNT –73.96 –884.909411 227 –3.89601 3 –11.68804 7.02 7.32 4.32
11 PAM –56.11 –900.980629 228 –3.94959 3 –11.84887 7.50 7.73 3.09
12 TNN –100.32 –999.203061 263 –3.79687 3 –11.39060 6.27 6.50 3.67
13 PA –45.39 –920.834307 229 –4.01929 3 –12.05785 7.57 8.23 8.76
14 DPM –62.07 –1729.335860 438 –3.94626 6 –23.67765 7.29 7.89 8.28
15 DPE –70.76 –1768.619560 452 –3.91073 6 –23.46437 7.20 7.62 5.96
16 DIGEN –21.61 –299.064216 74 –4.03928 1 –4.03928 8.12 8.25 1.63
17 HNS –67.52 –1767.419410 450 –3.92557 6 –23.55344 7.27 7.74 6.47
18 Tetrogen –21.62 –598.145000 148 –4.04152 2 –8.08304 8.46 8.38 –1.56
19 TNAZ –16.66 –786.600000 192 –4.09688 3 –12.29062 8.62 8.76 1.59
20 CPX –49.35 –637.463991 162 –3.93241 2 –7.86483 7.76 7.54 –2.84
21 DNDC –72.73 –676.756000 176 –3.84520 2 –7.69041 6.75 6.85 1.41
22 RDX –21.62 –897.265000 222 –4.04173 3 –12.12520 8.89 8.39 –5.64
23 TEX –55.38 –1052.595000 260 –4.04844 2 –8.09688 8.47 8.38 –1.12
24 HNIW –10.96 –1790.961000 438 –4.08895 6 –24.53371 9.62 8.88 –7.72
25 HMX –21.62 –1196.354000 296 –4.04174 4 –16.16694 9.13 8.45 –7.48
26 TNAD –19.87 –1273.722000 322 –3.95566 4 –15.82263 8.52 7.84 –7.99
27 MDN 6.61 –504.729920 121 –4.16953 2 –8.33906 9.05 9.17 1.28

a UB3LYP energies (in Hartree unit) corrected for ZPE,      b Number of NO2 groups, c From refs. 44 and 45. M: MW in grams.
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the compounds considered fluctuates in between ca. –3.64
and –4.16 (in units of Hartree/g). Various statistical pro-
perties of the E/M ratio are shown in Table 2.

Figures 1 and 2 show the various correlative rela-
tions among the quantities E/M, NE/M and (Dobs)

2. As
seen there, (Dobs)

2 series shows a better accord with the
tendencies of NE/M series rather than E/M series. 

Note that for the calculated values of D2 given by
eqs. 25 and 26, one has to use the regression coefficients
in full digits as given and then round off the results to the
nearest one comparable to the observed value. In this way
more accurate results are obtained.

Figure 3 displays the correlative relationship bet-
ween the calculated (by means of eq. 25) and observed D

Table 2. Some statistics of the present data.

a Z: Group of data indicated by the respective column heading.

Dobs Dcal E/M NE/M D2

Skewness –0.119 –1.18682 0.712603 –0.96312 0.179192

Standard deviation 1.093816 1.065725 0.127444 6.123362 16.47262

Reliability at 0.1 level 0.34625 0.337358 0.040343 1.938364 5.214445

Covariance of Dobs   with Za 1.025995 –1.82652 –28.5029

Correlation of Dobs with Za 0.914 –0.90351 –0.29345

Figure 1. Correlation between independent variables considered
and (Dobs)

2 values. The peripheral numbers stand for the compound
numbers in Table 1. 

The general regression eq.24 is a linear multiple re-
gression equation of Y = B0 + B1X1 + B2X2 type having
two independent variables X1 and X2 (NE/M and E/M)
and a dependent variable Y (D2)46,47. The regressed equa-
tion for the data displayed in Table 1 is

D2 = –393.6877 – 0.2454(NE/M) – 114.0793(E/M)      (25)

values. Only in the case of MNA, Dobs does not follow
Dcalc. MNA is a small nitramine type compound
(CH3NHNO2). Statistically displayed characteristics of
calc. and obs. D values are shown in Table 2.

Figure 2. Correlation between the calculated and observed D2 va-
lues. The peripheral numbers stand for the compound numbers in
Table 1. 
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The regression statistics of eq. 25 are given in Table
3. The R2 of (coefficient of multiple determination46,47)
the regression is quite good for a population of such a di-
verse collection of structures. The dependence of D2 on X1
and X2 (NE/M and E/M, respectively) are expressed as
simple and partial regression coefficients (see Table 3).
The contribution of E/M term to D2 is much greater than
NE/M term, which means that D2 is less sensitive to varia-
tions of the number of NO2 groups. The effect of NO2
groups should be implicitly included in the energies (E).
Moreover, the value of rX1X2 term clearly indicates that X1
and X2 possess a low colinearity although they are related
to each other by multiplier N. The underlying reason for it
is that the variation of N (the number of NO2 groups pre-
sent) exhibits an uneven scattering in between numbers 1
and 6.

The calculated F-test value is 56.26 and the tabula-
ted F2,24 (Fk–1,n–k where k : 3 and n : 27 presently. The sub
indices k-1 and n, appearing as subscripts in the notation,
are the number of independent variables and the popula-
tion number (PN) of the regression, respectively) values
are 3.40 and 5.61 for 5% and 1% significance levels, res-

pectively46,47. The calculated F2,24 value (56.26) far ex-
ceeds the tabulated values for 5% and 1% levels, thus the
regressed equation is statistically significant.

Inspection of Table 1 indicates that in all the cases,
with the exception of entries 3 and 8 (MNA and 1,5-DNN,
respectively), the percent error ([Dcalc – Dobs] x 100/Dobs)
in the detonation velocities in absolute value are all less
than 10% from the observed ones. The cause of deviations
for the observed and calculated D values might be various.
First of all, there exist some assumptions and simplifica-
tions in the derivations of the equations (see the theory
part). For instance, at the very beginning of the derivation,
it has been assumed that the explosive considered is oxy-
gen sufficient so that the material balance in between the
produced gases (∑mi) and mass of the shell (M, it is assu-
med to be equal to the molecular weight of the explosive
considered) is maintained. However, of the explosives
shown in Table 1, none is oxygen sufficient except the
oxygen superfluous MDN. Hence, the narrow range for
variations of percent errors in D reveals that it is almost ir-
relevant to the oxygen balance. Secondly, the DFT calcu-
lations, including geometry optimizations, basis set adop-
ted, etc. might be the source of the problem. Probably, if
the optimized geometries for the structures, each standing
for the global minimum (rather than local minimum) are
obtained and some advance basis sets are employed then
much better regression statistics could be obtained. Even
some errors might come from the experimental D values
which have been excerpted from the literature. In addition
to efforts to alleviate these, the groups for the compounds
could be constituted systematically (for instance for only
nitramines or only for monocyclic aromatic nitro com-
pounds) to get much better regressions. Hence, the ap-
proach has a floating character in that sense. Indeed, for
14 nitramines present in Table 1 the regressed equation 

D2 = –372.4122 – 1.3198(NE/M) – 106.8382(E/M)      (26)

yields a much better coefficient of multiple determina-
tion,46,47 R2, value of 0.94. For the regression statistics of
eq. 26, a similar discussion and conclusions can be said as
done for eq. 25. For instance, the calculated F-test value is
91.80 for F2,11 whereas the tabulated values are 3.98 and
7.20 for 5% and 1% reliability, respectively. The regression
statistics of eq. 26 are given in Table 4. Note that in the pool
of nitramines considered for eq.26, the members also dis-

Figure 3. Correlation between the observed and calculated detona-
tion velocities. The peripheral numbers stand for the compound
numbers in Table 1.

Table 3. Some regression statistics of eq.25 (Y = B0 + B1X1 + B2X2 ; X1: NE/M, X2: E/M).

R2 : 0.8242051, Unexplained standard deviation: 7.188641, Unbiased estimation of the variance of regres-
sion coefficients SbX1 and SbX2 are 0.236577 and 11.36444, respectively.

Regression Simple correlation Partial correlation 
coefficients coefficients coefficients      

B0    B1 B2 rYX1 rYX2 rYX1X2 rYX1.X2 rYX2.X1
–393.6877 –0.2453806 –114.0793 –0.29344 –0.90350 –0.22913 –0.20717 –0.89869
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play some structural diversity within the family. For exam-
ple, OCPX and DMEDNA are N-alkyldinitramines but
MDN is a geminal dinitramine, etc. Hence, being more
strict on the structures of the compounds in the family one
can probably get much better regression equations.

Some improvement in the regression statistics could
also be achieved by modifying the regression model as
well. Presently, the factor L of eq. 23 has been assumed to
be linear function of N (the number of NO2 groups) for re-
gression purpose (see eq. 24). However, according to eqs.
22 and 23, L should be a function of the specific volumes
γ0 and γ1 and as well as n. Note that n which is inherently
included in eq. 22, originates from eq. 1 and it stands for
the number of molecules of product gases in the explosion
process. First of all, the specific volumes of the structures
considered cannot be related to the number of nitro groups
only. Secondly, n (the number of gas molecules produced)
has to be different for different explosive molecules. In
spite of all these drawbacks of the model, its success
might be due to the involvement of M (molecular weight)
and the total energy values in the independent variables
X1 and X2 which probably alleviate the crudeness of as-
sumptions involved in the assumed linear dependence of
L on N. Obviously, any amelioration in the mathematical
form of L term should improve the regression statistics.

As mentioned in the introduction part, there exist
many methods for calculation of detonation velocity.

Roothstein and Peterson’s method22 makes use of D =
(F–0.26)/0.55, where F value is obtained from molecular
composition and physical state of the molecule. Therefo-
re, Roothstein and Peterson’s method is not suitable if the
state of the explosive is unknown which occurs in the case
of molecular design of explosives. Aizenshtadt’s treat-
ment48 is inferior both to Kamlet’s and Roothstein and Pe-
terson’s methods, besides which all other methods require
measured, estimated or calculated thermo chemical and
physical data. For instance, Keshavar’s formula49 requires
density and approximate detonation temperature, Tapp
which necessitates approximate heat of detonation per
molecule and heat capacities of the detonation products.
Another method suggested by Keshavar50 is for aromatic
energetic compounds and it is a modification of Kamlet-
Jacobs equation in form and requires calculated thermo
chemical data. Table 5 tabulates D values of some energe-
tic materials obtained by different methods.

The present method has some physical and mathe-
matical bases and it is not purely empirical. Probably, bet-
ter results can be obtained by using much better quantum
chemical methods and basis sets in calculation of total en-
ergy values. Another point to be mentioned is that the in-
volvement of the total energy in the independent variables
(X1 and X2) enables one to get distinguished Dcalc values
for isomeric compounds, because E values inherently con-
tain topological properties of the molecules. Thus, the to-

Table 4. Some regression statistics of eq. 26 (Y = B0 + B1X1 + B2X2; X1: NE/M, X2: E/M).

R2 : 0.9434789, Unexplained standard deviation: 4.488443, Unbiased estimation of the variance of regres-
sion coefficients SbX1 and SbX2 are 0.2561234 and 12.49209, respectively.

Regression Simple correlation Partial correlation 
coefficients coefficients coefficients      

B0    B1 B2 rYX1 rYX2 rYX1X2 rYX1.X2 rYX2.X1
–372.4122 –1.31983 –106.8382 –0.75342 –0.89833 0.47736 –0.84089 –0.93235

K-J: Kamlet-Jacobs, R-P: Rothstein-Petersen, K-P: Keshavarz-.Pouretdal, K: Keshavarz

Table 5. Experimental (Do) and calculated detonation velocities (km/s).

Name Do K–J 51 R–P 22 A48 K–P 49 K50 D from eq.25
EDNA 8.42 8.31 8.64 7.99
TNB 7.42 7.68 7.27 6.91 7.87
1,8–DNN 5.38 5.67 4.86
1,5–DNN 5.52 5.64 4.86
TENN 7.30 7.56 7.46
TNT 7.02 7.02 6.97 7.23 6.98 7.17 7.32
PAM 7.50 7.67 7.73
TNN 6.27 6.70 5.69 6.50
PA 7.57 7.85 7.36 7.58 8.23
DPM 7.29 7.74 7.89
DPE 7.20 7.55 7.62
HNS 7.27 7.59 6.84 6.87 7.74
RDX 8.89 8.95 8.95 8.80 8.39
HMX 9.13 9.05 9.23 8.45
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pological variations between the isomers are conveyed in-
to the regression equation eventually. Hence, the present
approach has some additional advantages over the litera-
ture cited empirical methods which are based on the empi-
rical formula and M (molecular weight) only. Another ad-
vantage of the present approach is over the method of
Kamlet and Jacobs25–29 (see the introduction part). In the
method of Kamlet and Jacobs, to estimate the D value of a
nonexistent explosive material (often the case while de-
signing new explosive materials) various required but
unknown parameters are to be calculated (such as the den-
sity), so that in practice the solution of such a dilemma ne-
cessitates very many time consuming repeated quantum
chemical calculations to be carried out in order to appro-
ximate the required parameters. 

6. Conclusion

In the present study, starting from the principles of
conservation of energy and momentum, a mathematical
expression, relating D2 value of an explosive with its total
energy and molecular weight has been derived (eq. 22).
The regressed equation (eq. 25) enables one to get some
fairly accurate idea about D values of explosives by means
of certain straightforward quantum chemical calculations.
The model used could be improved to get more precise D
values. In that sense, basis set dependence of the Dcalc va-
lues could be investigated for certain collection of com-
pounds as a future study.

List of abbreviations for the explosives considered
Abbreviation Name
CPX 1,3-Dinitroimidazolidine
DMNA 2-Nitro-2-azapropane
1,5-DNN 1,5-dinitronaphthalene
1,8-DNN 1,8-dinitronaphthalene
DIGEN 1-nitro-1-azaethylene
DMEDNA 2,5-Dinitro-2,5-diazahexane
DNDC 1,4-dinitropiperazine
DPE 1,3,5-trinitro-2-[2-(2,4,6-trinitrophenyl)

ethyl]benzene
DPM 1,3,5-trinitro-2-(2,4,6-trinitrobenzyl) 

benzene
EDNA 1,4-Dinitro-1,4-diazabutane
HMX 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane

(octogen)
HNIW 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-he-

xaazaisowurtzitane
HNS 1,3,5-trinitro-2-[(E)-2-(2,4,6-trinitrop-

henyl)vinyl]benzene
MDN 1,1-dinitro-1-azaethane
MNA 1-Nitro-1-azaethane
OCPX 2,4-Dinitro-2,4-diazapentane
PA 2,4,6-trinitrophenol

PAM 2,4,6-trinitroaniline
RDX 1,3,5-Trinitro-1,3,5-triazinane (Hexogen)
TENN 1,4,5,8-tetranitronaphthalene
TETROGEN 1,3-Dinitro-1,3-diazetidine
TEX 4,10-dinitro-2,6,8,12-tetraoxa-4,10-

diazaisowurtzitane
TNAD trans-1,4,5,8-Tetranitrodecahydro-

pyrazino[2,3-b] pyrazine
TNAZ 1,3,3-Trinitroazetidine
TNB 1,3,5-Trinitrobenzene
TNN 1,4,5-trinitronaphthalene
TNT 2,4,6-trinitrotoluene
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Povzetek
Z matemati~nim modelom, osnovanim na principu o ohranitvi energije in gibalne koli~ine smo prou~evali kvadrat hitro-
sti detonacije razli~nih eksplozivov (nitramini, alifatske in aromatske nitro spojine). Pri tem smo upo{tevali celokupno
energijo, dobljeno z DFT (UB3LYP/6-31G(d) metodo ter molsko maso spojin v posameznih eksplozivih. Podana je re-
gresijska ena~ba za nitramine skupaj s statisti~no obravnavo.


