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Abstract

It is proved that a complete graphKn can have an orientation whose minimum directed
genus is d 1

12 (n − 3)(n − 4)e if and only if n ≡ 3, 7 (mod 12). This answers a question
of Bonnington et al. by using a method different from current graphs. It is also proved that
a complete symmetric tripartite graph Kn,n,n has an orientation whose minimum directed
genus is 1

2 (n− 1)(n− 2).
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1 Introduction
Throughout this paper, all graphs are assumed to be finite, connected and simple. In a
directed graph D, the number of in-arcs at a vertex v is called the in-degree of v which
is denoted by d−(v); the number of out-arcs at v is called the out-degree of v, denoted
by d+(v). The degree of v, denoted by d(v), is the sum of d−(v) and d+(v). A digraph
D is Eulerian if it is connected and every vertex has equal in-degree and out-degree. The
underlying graphG of a digraphD is a graph obtained fromD by suppressing all directions
of the arcs in D. The orientable surface of genus h, denoted by Sh, is the sphere with h
handles added. A graph is said to be 2-cell embedded in a surface S, if it is embedded
in a surface S such that each component, called a region, of S \ D is homeomorphic to
an open disk. A 2-cell directed embedding (or 2-cell embedding) of a digraph D on an
orientable surface S means that it is a 2-cell embedding of its underlying graph of D in S
such that each region is bounded by a directed cycle. In this paper, all embeddings of graphs
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and digraphs are assumed to be 2-cell embedded on oriented surfaces. Let the genus of a
surface S be denoted by γ(S). The directed genus (or simply say genus) of an embeddable
digraph D, denoted by γ(D), is the smallest of the numbers γ(S) for orientable surfaces S
in which D can be directed embedded. Let |X| be the cardinality of a set X .

The study of embeddings of a graph began with Euler. By now, there are many re-
sults about the genus ([14, 22, 23, 25, 26, 28, 27, 29]), the maximum genus ([24, 30]),
and the genus distribution of a graph ([12, 13, 19, 20]). However, a study of the embed-
dings of a digraph was started in 2002 by Bonnington et al. in [2]. Bonnington, Hartsfield
and Širáň ([3]) gave some obstructions for directed embeddings of digraphs and proved
Kuratowski-type theorem for embeddings of digraphs in the plane. This area has remained
almost uninvestigated. As we know, genera of only a few kinds of digraphs are known.
Hales and Hartsfield calculated the directed genus of the de Bruijn graph in [15]. Hao et
al. ([16, 17, 18]) obtained the embedding distributions of some digraphs and maximum
embedding properties of digraphs. Chen, Gross and Hu ([4]) derived a splitting theorem
for digraph embedding distributions that is analogous to the splitting theorems of [11] and
[5] for graph embedding distributions.

Let γ(G) denote the genus of a graph G. There are many results on computing genera
of undirected graphs. For example, in [25], the genera of the complete graph Kn and the
complete tripartite graph Kmn,n,n were given as follows: γ(Kn) = d 1

12 (n − 3)(n − 4)e
and γ(Kmn,n,n) =

1
2 (mn− 2)(n− 1). In [28], γ(Kn,n,n−2) =

1
2 (n− 2)2 for even n ≥ 2

and γ(K2n,2n,n) = 1
2 (3n − 2)(n − 1) for n ≥ 1 were derived. In [26], γ(Kn,n,n) =

1
2 (n− 2)(n− 1) was obtained.

Up to now, the genera of only a few kinds of digraphs are known. For examples,
the directed genus of the de Bruijn graph was derived in [15]. In [2], Bonnington et al.
determined the genera of the cartesian product Cn × Cn of two directed cycles, the spoke
digraph on n = 2k+1 vertices and the directed antiprismDAk, which are (n2−3n+2)/2,
k − 1 and 0, respectively. Let ~Kn and ~Kn,n,n be directed graphs gotten from the complete
graph Kn and the complete tripartite Kn,n,n, respectively, by giving an orientation to each
edge. In this paper, we aim to answer the following problem by using a method different
from current graphs.

Problem 1.1 ([2]). Which kinds of ~Kn have γ(~G) = d 1
12 (n−3)(n−4)e, the genus ofKn.

A natural question analogue to Problem 1.1 is the following.

Problem 1.2. Which kinds of ~Kn,n,n with n vertices in each parts have directed genus
1
2 (n− 1)(n− 2), the genus of Kn,n,n.

In this paper, we solve the Problems 1.1 and 1.2. Problem 1.2 is solved by giving
the equivalent conditions for the minimum directed genus embedding of a directed graph
~Kn,n,n and a pair of biembeddable Latin squares with order n in an orientable surface.
Furthermore, we prove that there is a one to one correspondence between the set of directed
embeddings of a digraph D and the set of face-2-colorable embeddings of the underlying
graph of D both on orientable surfaces. The result that there exists an orientation on edges
of Kn such that the obtained tournament ~Kn has the directed genus d 1

12 (n − 3)(n − 4)e,
when n ≡ 3, 7 (mod 12) is gotten which answer the Problem 1.1.
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2 Alternating rotations, face-2-colorable embeddings, and Latin
squares

An alternating rotation at a vertex v of D is a cyclic permutation of the arcs incident at v,
such that in-arcs alternate with out-arcs. A list of alternating rotations, one for each vertex,
is called an alternating embedding scheme (also called alternating rotation system) for the
digraph D. There exists a one to one correspondence between the set of all embeddings
(resp. directed embeddings) of a graph G (resp. a digraph D) on orientable surfaces and
the set of the embedding schemes (resp. alternating embedding schemes) ofG (resp.D). A
color class is a set of faces with the same color. A face-2-colorable embedding of a graph
G is an embedding which admits a 2-coloring of regions such that no two distinct regions of
the same color shares a common edge. Two colors always mean black and white. Regions
in an embedding of a graph are also called faces, while regions in a directed embedding of a
digraph are partitioned into faces which use the arcs in the forward direction and antifaces
which use arcs traversed against the given orientation.

An embedding is triangular if all regions are bounded by 3-cycles. Two face-2-colorable
embeddings of Kn are said to be isomorphic if there exists a permutation on the n vertices
(of the complete graph) such that it maps edges and faces of one embedding to edges and
faces of the other one, respectively, see [2]. Equivalently, two face-2-colorable embeddings
of Kn are isomorphic if and only if there exists a permutation on the n vertices such that
it either preserves the color of the triangles or reverses the color. Let D1 and D2 be two
digraphs. If D1 is derived from D2 by reversing all arcs of D2, then we say these two
digraphs have the opposite orientation.

A transversal design TD(3, n) is an ordered triple (V,G,B), where V is a 3n-element
set (the points), G is a partition of V into three disjoint sets (the groups) each of which
has cardinality n, and B is a set of three-element subsets of V (the triples), such that every
unordered pair of elements from V is either contained in precisely one triple or one group,
but not both.

Example 2.1. An example of a TD(3, n) of n = 3. Let

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B = {(4, 7, 3), (4, 8, 1), (4, 9, 2), (5, 7, 1), (5, 8, 2), (5, 9, 3), (6, 7, 2), (6, 8, 3), (6, 9, 1)}.

Then (V,G,B) is a transversal design TD(3, 3).

A Latin square LS(n) of order n is an n × n array filled with n different entries, each
occurring exactly once in each row and exactly once in each column.

Example 2.2. A Latin square LS(n) of order n for n = 3. Let

M =

3 1 2
1 2 3
2 3 1

 .
Then M is a Latin square LS(3).

There are relations among the face-2-colorable triangular embeddings of Kn,n,n on
an orientable surface, the transversal design TD(3, n) and the Latin squares as follows.
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For a given face 2-colourable triangular embeddings of Kn,n,n on an orientable surface,
it is proved in [10] that there exists a transversal design which is determined under one of
the clockwise and counter-clockwise in each colour class. On the other hand, for a given
transversal design TD(3, n) = (V,G,B), there is a Latin square determined by TD(3, n)
by assigning the three groups in G as labels for the row, columns and entries of the Latin
square.

Two color classesA and B of a face-2-colorable triangular embedding of Kn,n,n on an
orientable surface give two Latin squares, corresponding to A and B respectively, which is
considered as a biembedding of these two Latin squares with order n. Two Latin squares A
and B are biembeddable, denoted by A ./ B, on an orientable surface S if there is a face-
2-colorable (black and white) triangular embedding of Kn,n,n in the orientable surface S
such that the white face set is A and the black face set is B. For more details, the readers
are referred to [6, 7, 8, 9] and [21].

Example 2.3. Let V1, V2 and V3 be a partition of V (K3,3,3), where V1 = {4, 5, 6}, V2 =
{7, 8, 9} and V3 = {1, 2, 3}. For a given embedding ρ of K3,3,3 on an orientable surface,
let ρv be the rotation at a vertex v. Let

ρ1 = (7, 5, 9, 6, 8, 4); ρ2 = (7, 6, 9, 4, 8, 5); ρ3 = (7, 4, 9, 5, 8, 6);
ρ4 = (7, 3, 9, 2, 8, 1); ρ5 = (7, 1, 9, 3, 8, 2); ρ6 = (8, 3, 7, 2, 9, 1);
ρ7 = (1, 5, 2, 6, 3, 4); ρ8 = (2, 5, 3, 6, 1, 4); ρ9 = (2, 4, 3, 5, 1, 6).

Then ρ = {ρi : i ∈ {1, . . . , 9}} is a face 2-colourable triangular embedding of K3,3,3 on
an orientable surface. In fact, a set of faces with the white color is

A1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)};

while a set of faces with the black color is

A2 = {(9, 5, 1), (8, 6, 1), (7, 4, 1), (9, 6, 2), (8, 4, 2), (7, 5, 2), (9, 4, 3), (8, 5, 3), (7, 6, 3)}.

There exists a transversal design TD(3, 3), say (V,G,B1), which is determined under
the clockwise in white colour class A1. That is,

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)}.

There exists another transversal design TD(3, 3), say (V,G,B2), which is determined
under the counter-clockwise in black colour class A2. That is,

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B2 = {(5, 9, 1), (6, 8, 1), (4, 7, 1), (6, 9, 2), (4, 8, 2), (5, 7, 2), (4, 9, 3), (5, 8, 3), (6, 7, 3)}.

Example 2.4. Let (V,G,B1) be a transversal design given in Example 2.3. Assume that
{4, 5, 6} labels for the row, {7, 8, 9} labels for columns and {1, 2, 3} labels for entries of
the Latin square. Thus

B1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)}
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determines the matrix A1 as 
7 8 9

4 3 1 2
5 1 2 3
6 2 3 1

. (2.1)

Thus there is a Latin square A1 determined by (V,G,B1), where

A1 =

3 1 2
1 2 3
2 3 1

 .
Similarly, for a transversal designs (V,G,B2) given in Example 2.3, there is a Latin

square A2 determined by (V,G,B2), where

A2 =

1 2 3
2 3 1
3 1 2

 .
In fact, using V1 = {4, 5, 6} as labels for the row, V2 = {7, 8, 9} as labels for the columns,
and V3 = {1, 2, 3} as labels for entries of the Latin square, thus

B2 = {(5, 9, 1), (6, 8, 1), (4, 7, 1), (6, 9, 2), (4, 8, 2), (5, 7, 2), (4, 9, 3), (5, 8, 3), (6, 7, 3)}

determines the matrix A2 as 
7 8 9

4 1 2 3
5 2 3 1
6 3 1 2

. (2.2)

As a result, a face-2-colorable triangular embedding ρ of K3,3,3 on an orientable sur-
face gives two Latin squares A1 and A2, corresponding to two color classes A1 and A2

respectively. And A1 ./ A2 is a biembedding of these two Latin squares with order 3.

Because an embedding of an embeddable digraph is an embedding of the underlying
graph, the following version of Euler’s polyhedral formula holds.

Lemma 2.5. Let D = (V,A) be an embedding digraph, then for any alternating embed-
ding scheme ρ of D, we have

|V | − |A|+ |R| = 2− 2g,

where |R| is the number of regions in the embeding scheme ρ and g is the genus of the
embedding surface.

Lemma 2.6 ([7]). There is a unique regular triangular embedding of a complete tripartite
graph Kn,n,n on an orientable surface for n ≥ 2.

Lemma 2.7 ([6]). For a triangular embedding of Kn,n,n, it is orientable if and only if it is
face-2-colorable embedding.

The readers are referred to [1] for any undefined notations.
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3 The directed genus of ~Kn,n,n

For an embedding σ of a given digraph ~Kn,n,n, the alternating embedding scheme is de-
noted by ρσ , the alternating rotation at a vertex v ∈ V (D) is denoted by ρσ(v) (or sim-
ply ρv).

Recall thatKn,n,n is a complete tripartite graph. A complete tripartite digraph, denoted
by ~Kn,n,n, obtained from Kn,n,n by giving an orientation for each edge in Kn,n,n. In the
following, we find an orientation ~Kn,n,n of Kn,n,n such that ~Kn,n,n has the directed genus
1
2 (n− 1)(n− 2), the same as the genus of Kn,n,n.

Theorem 3.1. The following two conditions on an orientation ~Kn,n,n of the complete
tripartite graph Kn,n,n are equivalent :

(1) ~Kn,n,n has a directed embedding on the orientable surface of genus 1
2 (n−1)(n−2),

for which we call the sets of faces and antifaces A and B, respectively.

(2) The sets A and B of white faces and black faces for a face-2-colorable triangular
embedding of Kn,n,n correspond to a pair of biembeddable Latin squares A and B
of order n.

Proof. We first show that (1) implies (2).
Assume ~Kn,n,n has a directed embedding on an orientable surface of genus 1

2 (n −
1)(n−2) such that the sets of faces and antifacesA andB, respectively. Let φ : ~Kn,n,n → S

be this directed embedding of ~Kn,n,n and ρφ be the alternating embedding scheme of φ.
Note that ~Kn,n,n has 3n vertices, 3n2 arcs and the embedding genus 1

2 (n− 1)(n− 2). By
Euler’s formula of Lemma 2.5, the number of regions in ρφ is 2n2. This implies that each
region is bounded by a directed 3-cycle because there are no i-cycles for i = 1, 2.

Let the embedding scheme ρ of Kn,n,n be the same as ρφ without considering the
directions of arcs, thenA∪B is the facial set of the embedding ρ ofKn,n,n. We color faces
in A with white and antifaces in B with black. By the definition of a directed embedding,
each arc appears once in exactly one facial boundary and exactly one antifacial boundary.
That is, no two distinct faces inA (resp. B) are incident to the same edge. So ρ ofKn,n,n is
a face-2-colorable triangle embedding with two color classesA andB with |A| = |B| = n2.
Note that two color classes A and B of a face-2-colorable triangular embedding of Kn,n,n

on an orientable surface give two Latin squares, say A and B, corresponding to A and B
respectively, which is a biembedding of these two Latin squares A and B. The result (2) is
obtained.

Secondly, we show that (2) implies (1).
Suppose (2) holds. Note that there exists a face-2-colorable triangular embedding, say

φ, of Kn,n,n on an orientable surface with two facial color classes A and B which cor-
responds a pair of biembeddable Latin squares A and B of order n, respectively. As-
sume the embedding scheme of the embedding φ is ρφ and the rotation at vertex v in
Kn,n,n is denoted by ρφ(v). Let V (Kn,n,n) = V1 ∪ V2 ∪ V3, where {V1, V2, V3} is
a partition of V (Kn,n,n). Suppose V1 = {a1, a2, . . . , an}, V2 = {b1, b2, . . . , bn} and
V3 = {c1, c2, . . . , cn}.

Note that A and B determine transversal designs (V,G,A) and (V,G,B) respectively,
where V = V (Kn,n,n), G = {V1, V2, V3} and the faces in each color class form the triples
in A and B of the transversal designs.
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For every edge uv ∈ E(Kn,n,n), without loss of generality, let u = ai ∈ V1, v =
bj ∈ V2. By the definition of a transversal design, there is only one triple in A containing
ai, bj , say {ai, bj , cx} for some cx ∈ V3. Thus, vertices bj and cx are neighbors of ai.
Without loss of generality, let cx be the closest successor of bj in the rotation ρφ(ai) along
the counter-clockwise and the color of the region corresponding to the triple {ai, bj , cx} be
white. On the other hand, there is exactly one triple in B containing ai, bj , say {ai, bj , cy}
with cy ∈ V3, so bj is the closest successor of cy in the rotation ρφ(ai) along the counter-
clockwise and the color of the region corresponding to the triple {ai, bj , cy} is black which
is illustrated in the left one of Figure 1.

Figure 1: The rotations at vertices ai and w respectively.

Give the orientation of the edge uv = aibj from u = ai to v = bj , i.e., the color of the
left region of the arc # �uv is white and the color of the right region is black. By the random
choice of uv, all edges in Kn,n,n are oriented and the obtained digraph is ~Kn,n,n.

In the following, we only need to show that this orientation makes the in-arcs and out-
arcs alternating at ρφ(v) for any v ∈ V (Kn,n,n). By the contrary, suppose there exists a
vertex, say w ∈ V , such that in-arcs and out-arcs at w are not alternative. Without loss
of generality, suppose two arcs, say #     �u1w,

#     �u2w, are two neighbor in-arcs of w in ρφ(w)
and ρφ(w) = (. . . , u1, u2, . . .) along counter-clockwise. Let the left face and right face of
#     �u1w going from u1 to w be F1 and F2 respectively and the left face and right face of #     �u2w
going along the direction from u2 to w be F3 and F4 respectively. Then F2 = F3. By the
principle of the orientation, F2 is colored black because of the direction of arc #     �u1w and F3

is colored white because of the direction of arc #     �u2w, which is shown in the right graph of
Figure 1. It contradicts with face-2-colorable because F2 = F3. As a result, this orientation
makes in-arcs and out-arcs alternating at every vertex w ∈ V along the rotation ρφ(w).

As a result, ~Kn,n,n, obtained from Kn,n,n by this orientation, has an alternating em-
bedding scheme determined by φ such that the sets of faces and antifaces of this directed
embedding of ~Kn,n,n are A and B, respectively.

Since each region of this directed embedding of ~Kn,n,n is a 3-cycle, the number of
regions is 2n2. By |V | = 3n, the cardinality of arcs in ~Kn,n,n being 3n2 and Lemma 2.5,
it follows 3n− 3n2 + 2n2 = 2− 2g, where g is the genus of this directed embedding. So
g = 1

2 (n − 1)(n − 2). Since neither loop nor 2-cycle is in ~Kn,n,n, the minimum directed
genus of ~Kn,n,n is 1

2 (n−1)(n−2). Thus ~Kn,n,n has a directed embedding in the orientable
surface of genus 1

2 (n− 1)(n− 2), for which we call the sets of faces and antifaces A and
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B, respectively.

Theorem 3.2. LetKn,n,n be the complete tripartite graph. Then there exists an orientation
of Kn,n,n such that the obtained digraph ~Kn,n,n has the directed genus 1

2 (n− 1)(n− 2),
the same as the genus of Kn,n,n.

Proof. Let ~Kn,n,n be the digraph obtained from Kn,n,n by giving the orientation to each
edge in Kn,n,n and g be the directed genus of ~Kn,n,n.

(1) If n = 1, then Kn,n,n = K1,1,1 is a triangle. Let ~K1,1,1 be the digraph obtained by
giving an orientation of K1,1,1 such that it is a directed 3-cycle. Hence g = 0.

(2) If n ≥ 2, by Lemma 2.6, there is a unique regular triangular embedding of a complete
tripartite graph Kn,n,n on an orientable surface. By Lemma 2.7, this regular trian-
gular embedding of a complete tripartite graph Kn,n,n must be a face-2-colorable
embedding and two set of color faces are denoted by A and B respectively. By The-
orem 3.1 , there is an orientation for Kn,n,n such that the resulting digraph ~Kn,n,n

has a directed embedding in the orientable surface of genus 1
2 (n− 1)(n− 2), the set

of faces is A and the set of antifaces is B. Thus the result holds.

4 The number of different orientations of Kn

Theorem 3.1 for a directed triangular embedding of the directed complete tripartite graph
can be generalized to Lemma 4.1 for directed embedding of a general digraph.

Lemma 4.1. The following two conditions on an orientation ~G of a graphG are equivalent.

(1) ~G has a directed embedding on an orientable surface of genus g.

(2) G has a face-2-colorable embedding on an orientable surface of genus g.

Proof. We first show that (1) implies (2).
Let G = (V,E) be a graph with n vertices, ~G = (V,A) be a digraph obtained from G

by giving an orientation to each edge. So |V | = n and |E| = |A|. By (1), ~G has a directed
embedding on an orientable surface of genus g. Let ρ be the alternating embedding scheme
and F1 and F2 be the set of faces and antifaces in ~G, respectively. Note that a directed
embedding of ~G is an embedding of G and F1 ∪F2 is the set of faces of this embedding of
G. We color regions in F1 with white and rigions in F2 with black. From the definition of
directed embedding, each arc in ~G is incident to exactly one face and exactly one antiface
in the directed embedding ρ of ~G, so there is no two distinct regions of the same color
sharing a common edge in this embedding of G. It implies that this embedding of G is the
face-2-colorable embedding on an orientable surface with genus g. So condition (2) holds.

Secondly, we show that (2) implies (1).
Suppose that (2) holds. Let ρ be the embedding scheme of a face-2-colorable embed-

ding of a graph G = (V,E) on an orientable surface S of genus g. And all regions of the
embedding ρ can be colored by white and black. Let F1 and F2 be the set of white and
black regions, respectively. For each edge e ∈ E(G), there are exactly two regions sharing
the edge e, denoted by F 1

e and F 2
e . By the definition of the face-2-colorable embedding,

F 1
e and F 2

e have different colors. Without loss of generality, suppose that F 1
e ∈ F1 and

F 2
e ∈ F2. We give the orientation of e such that the left is white region F 1

e and the right is
black region F 2

e (this is known as orientational principle). Since each edge can be oriented,
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one can obtain a digraph, denoted by ~G, from the graph G by this orientational principle.
Let the alternating embedding scheme of ~G be the same as ρ. By the orientational principle
and face-2-colorability, the in-arcs and out-arcs alternate at each vertex in ρ of ~G. Thus
this embedding scheme is an alternating embedding scheme of ~G as a directed embedding
in the same surface S with genus g, so condition (1) holds.

Theorem 4.2. There is a one to one correspondence between the set of directed embeddings
of a digraph D on orientable surfaces and the set of face-2-colorable embeddings of the
underlying graph of D on orientable surfaces.

Proof. Let D be a digraph and the underlying graph of D be obtained from D by ignoring
the direction of arcs. Theorem 4.2 is obtained directly from Lemma 4.1.

The following Theorem 4.3 give an answer to the problem in [2].

Theorem 4.3. If n ≡ 3, 7 (mod 12), then there exists an orientation on edges of Kn such
that the obtained tournament ~Kn has directed genus d 1

12 (n− 3)(n− 4)e.

Proof. From Ringel and Youngs’ results in [25] and [31], if n ≡ 3, 7 (mod 12), there ex-
ists a face-2-colorable triangular embedding ofKn on an orientable surface. By Lemma 4.1,
there exists an orientation on edges of Kn such that the obtained digraph ~Kn has a directed
triangular embedding on an orientable surface. By Euler’s formula, digraph ~Kn has di-
rected genus d 1

12 (n− 3)(n− 4)e.

5 Concluding remarks
In this paper, we show that there is a one to one correspondence between the set of directed
embeddings of a digraph D and the set of face-2-colorable embeddings of the underlying
graph of D on orientable surfaces. Furthermore, we show that there exist orientations on
Kn,n,n andKn such that the obtained graph ~Kn,n,n has the directed genus 1

2 (n−1)(n−2)

for n ≥ 1 and ~Kn has directed genus d 1
12 (n − 3)(n − 4)e for n ≡ 3, 7 (mod 12) which

answers the problem about tournaments given in [2] by using a method different from
current graphs which were discussed by the same author et al.
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[3] C. P. Bonnington, N. Hartsfield and J. Širáň, Obstructions to directed embeddings of Eulerian
digraphs in the plane, European J. Combin. 25 (2004), 877–891, doi:10.1016/j.ejc.2003.06.006.

[4] Y. Chen, J. L. Gross and X. Hu, Enumeration of digraph embeddings, European J. Combin. 36
(2014), 660–678, doi:10.1016/j.ejc.2013.10.003.

[5] Y. Chen, T. Mansour and Q. Zou, Embedding distributions of generalized fan graphs, Canad.
Math. Bull. 56 (2013), 265–271, doi:10.4153/cmb-2011-176-6.

[6] M. J. Grannell, T. S. Griggs and M. Knor, Biembeddings of Latin squares and Hamiltonian
decompositions, Glasgow Math. J. 46 (2004), 443–457, doi:10.1017/s0017089504001922.



384 Ars Math. Contemp. 14 (2018) 375–385

[7] M. J. Grannell, T. S. Griggs, M. Knor and J. Širáň, Triangulations of orientable surfaces by
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