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Abstract

The Fibonacci cube Γn is the subgraph of the n-dimensional cube Qn induced by the
vertices that contain no two consecutive 1s. Using integer linear programming, exact values
are obtained for γt(Γn), n ≤ 12. Consequently, γt(Γn) ≤ 2Fn−10 + 21Fn−8 holds for
n ≥ 11, where Fn are the Fibonacci numbers. It is proved that if n ≥ 9, then γt(Γn) ≥
d(Fn+2 − 11)/(n− 3)e − 1. Using integer linear programming exact values for the 2-
packing number, connected domination number, paired domination number, and signed
domination number of small Fibonacci cubes and hypercubes are obtained. A conjecture
on the total domination number of hypercubes asserting that γt(Qn) = 2n−2 holds for
n ≥ 6 is also disproved in several ways.
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1 Introduction

Fibonacci cubes were introduced by Hsu [19] because of their appealing properties applica-
ble to interconnection networks. Afterwards they have been extensively studied and found
additional applications, see the survey [23]. The interest for Fibonacci cubes continues, re-
cent research of them includes asymptotic properties [24], connectivity issues [7], the struc-
ture of their disjoint induced hypercubes [14, 30], the (non)-existence of perfect codes [5],
and the q-cube enumerator polynomial [31]. From the algorithmic point of view, Ram-
ras [29] investigated congestion-free routing of linear permutations on Fibonacci cubes,
while Vesel [34] designed a linear time recognition algorithm for this class of graphs.

The domination number of Fibonacci cubes was investigated by now in two papers.
Pike and Zou [28, Theorem 3.2] proved that γ(Γn) ≥ d(Fn+2 − 2)/(n− 2)e for n ≥ 9,
where Fn are the Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.
Exact values of γ(Γn) for n ≤ 8 were also obtained in [28]. In the second related paper [9]
the domination number of Fibonacci cubes was then compared with the domination number
of Lucas cubes.

In this note we turn our attention to domination invariants of Fibonacci cubes and of
hypercubes with a prime interest on the total domination. We proceed as follows. In the
rest of this section we introduce concepts and notation needed. Then, in Section 2, we
determine the exact value of the total domination number of Γn for n ≤ 12, and obtain an
upper bound and a lower bound on γt(Γn). In Section 3 we use integer linear programming
to either extend or obtain values for several domination-type invariants on Fibonacci cubes
and hypercubes. In the final section we consider the total domination of hypercubes with
respect to a recent conjecture from [22]. In particular, using known results from coding
theory we show that the conjecture does not hold. It is also observed that for any c > 0
there exists n0 ∈ N, such that if n ≥ n0, then γt(Qn) ≤ 2n−c.

The n-dimensional (hyper)cube Qn, n ≥ 1, is the graph with V (Qn) = {0, 1}n,
two vertices being adjacent if they differ in a single coordinate. For convenience we also
set Q0 = K1. The vertices of Qn will be briefly written as binary strings b1 . . . bn. A
Fibonacci string of length n is a binary string b1 . . . bn with bi · bi+1 = 0 for 1 ≤ i < n.
Fibonacci strings are thus binary strings that contain no consecutive 1s. The Fibonacci
cube Γn, n ≥ 1, is the subgraph of Qn induced by the Fibonacci strings of length n. It is
well known that |V (Γn)| = Fn+2.

If u is a binary string, then the number of its bits equal to 1 is the weight of u. If u and
v are binary strings, then uv denotes the usual concatenation of the two strings. If u is a
binary string and X a set of binary strings, then uX = {ux : x ∈ X}.

LetG be a graph. ThenD ⊆ V (G) is a dominating set if every vertex from V (G)\D is
adjacent to some vertex from D. The domination number γ(G) is the minimum cardinality
of a dominating set of G. D is a total dominating set if every vertex from V (G) is adjacent
to some vertex from D. The total domination number γt(G) is the minimum cardinality
of a total dominating set of G. Note that the total domination number is not defined for
graphs that contain isolated vertices, hence unless stated otherwise, all graphs in this paper
are isolate-free. For more information on the total domination in graphs see the recent
book [17] and papers [11, 12].
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2 Total domination in Fibonacci cubes
In this section we present exact values of γt(Γn) for n ≤ 12, prove an upper bound on
γt(Γn), and a lower bound on γt(Γn). The exact values were obtained by computer and
are collected in Table 1, where the order of the cubes is also given so that the complexity
of the problem is emphasized. In particular, |V (Γ12)| = 377.

Table 1: Exact total domination numbers of Fibonacci cubes up to dimension 12.

n 1 2 3 4 5 6 7 8 9 10 11 12

|V (Γn)| 2 3 5 8 13 21 34 55 89 144 233 377
γt(Γn) 2 2 2 3 5 7 10 13 20 30 44 65

More precisely, the results from Table 1 were obtained using integer linear program-
ming as follows. Suppose we associate to each vertex v ∈ V (Γn) a binary variable xv.
The problem of determining γt(Γn) can then be expressed as a problem of minimizing the
objective function ∑

v∈V (Γn)

xv,

subject to the condition that for every v ∈ V (Γn) we have∑
u∼v

xu ≥ 1.

The value of the objective function is then γt(Γn).
We have found out that the most efficient solver for the above problem is GurobiTM

Optimizer [15]. For example, it takes less than 9s to compute γt(Γ12) on a standard desktop
machine. On the other hand, we were not able to make the computation for γt(Γ13) in real
time (note that the order of Γ13 is 610), we could only get the estimates

97 ≤ γt(Γ13) ≤ 101 .

Using the above computations, the following result can be derived.

Theorem 2.1. If n ≥ 11, then γt(Γn) ≤ 2Fn−10 + 21Fn−8.

Proof. Consider the so-called fundamental decomposition of Γn into the subgraphs in-
duced by the vertices that start with 0 and 10, respectively (cf. [23]). These subgraphs
are isomorphic to Γn−1 and Γn−2 respectively, hence we infer that γt(Γn) ≤ γt(Γn−1) +
γt(Γn−2). From the above computations we know that γt(Γ11) = 44 and γt(Γ12) = 65.
Define the sequence (an), n ≥ 11, with a11 = 44, a12 = 65, and an = an−1 + an−2 for
n ≥ 13. Then one can check by a simple induction argument that an = 2Fn−10 + 21Fn−8

holds for any n ≥ 11. Since γt(Γn) ≤ an the argument is complete.

Arnautov [3] and independently Payan [27] proved that

γ(G) ≤ |V (G)|
δ + 1

δ+1∑
j=1

1

j
(2.1)
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holds for any graph G of minimum degree δ. Since δ(Γn) = b(n+ 2)/3c, cf. [25, Corol-
lary 3.5], and because γt ≤ 2γ, we get that

γt(Γn) ≤ 2Fn+2⌊
n+5

3

⌋ bn+5
3 c∑
j=1

1

j
. (2.2)

Computing the values of the right-hand side of the bound of Theorem 2.1 and of (2.2) we
find out that Theorem 2.1 is better than the bound of (2.2) for n ≤ 33.

By using the fact γt(Γ13) ≤ 101 that was obtained by our computations, the bound of
Theorem 2.1 can be further improved to give

γt(Γn) ≤ 601Fn−1 − 371Fn, n ≥ 12 .

We continue by establishing a lower bound on γt(Γn).

Theorem 2.2. If n ≥ 9, then

γt(Γn) ≥
⌈
Fn+2 − 11

n− 3

⌉
− 1 .

Proof. The proof mimics the proof of [28, Theorem 3.2] which gives a lower bound on the
domination number of Fibonacci cubes, hence we will not give all the details.

For a graph G and its total dominating set D we introduce the over-total-domination of
D in G as ODG(D) =

∑
v∈D deg(v)− |V (G)|. Consider now Γn, n ≥ 9, and let D be a

total dominating set of Γn. In Γn, the vertex 0n is the unique vertex of degree n, vertices
10n−1 and 0n−11 have degree n− 1, and all other vertices of weight 1 have degree n− 2.
In addition, the vertices 1010n−3, 10n−21, and 0n−3101 are of degree n−2, while all other
vertices of Γn have degree at most n− 3, cf. [25].

Let k be the number of vertices of weight 1 from D \ {10n−1, 0n−11}. In addition, let
` = |D ∩ {1010n−3, 10n−21, 0n−3101}|. Note that k + ` is the number of vertices from
D that have degree n − 2. The proof now proceeds by considering the cases that happen
based on the membership of the vertices 0n, 10n−1, and 0n−11 in D. Here we consider
only the case when {0n, 10n−1, 0n−11} ⊆ D. We have:

ODG(D) ≤ n+ 2(n− 1) + (k + `)(n− 2) + (γt(Γn)− 3− k − `)(n− 3)− Fn+2 .

Since clearly ODG(D) ≥ 0, from the above inequality we derive that γt(Γn)(n − 3) ≥
Fn+2 − k − `− 7. Because k + ` ≤ n+ 1 we get

γt(Γn) ≥ Fn+2 − k − `− 7

n− 3
≥ Fn+2 − (n+ 1)− 7

n− 3

=
Fn+2 − 11− (n− 3)

n− 3
=
Fn+2 − 11

n− 3
− 1 ,

and the stated inequality holds in this case. All the other cases are treated similarly.

We conclude the section with Table 2 in which known values and current best bounds
on γt(Γn) for n ≤ 33 are collected. The values for n ≤ 12 were computed using the
linear program explained above. The bounds for γt(Γ13) were established by Gurobi, and
we conjecture that in fact Γt(Γ13) = 101. Finally, the remaining bound in Table 2 were
obtained by the bounds given in Theorems 2.1 and 2.2. Recall that n = 33 is the last value
for which Theorem 2.1 gives a better bound than the bound (2.2).



J. Azarija et al.: On domination-type invariants of Fibonacci cubes and hypercubes 391

Table 2: Exact values and current best bounds on γt(Γn), n ≤ 33.

n γt(Γn)

1 2
2 2
3 2
4 3
5 5
6 7
7 10
8 13
9 20

10 30
11 44

n γt(Γn)

12 65
13 97-101
14 87-174
15 131-283
16 196-457
17 296-740
18 449-1197
19 682-1937
20 1040-3134
21 1590-5071
22 2438-8205

n γt(Γn)

23 3749-13276
24 5779-21481
25 8926-34757
26 13816-56238
27 21424-90995
28 33280-147233
29 51778-238228
30 80676-385461
31 125876-623689
32 196649-1009150
33 307580-1632839

3 Additional invariants on small Fibonacci cubes and hypercubes

The integer linear programming approach can be used to compute several additional in-
variants of Fibonacci cubes (and other graphs). This has recently been done by Ilić and
Milošević in [20], where they have computed the domination number, the 2-packing num-
ber, and the independent domination number of low dimensional Fibonacci cubes. In par-
ticular, they have used integer linear programming to confirm the conjecture from [9] stat-
ing that γ(Γ9) = 17. In addition, an integer linear programming model for the connected
domination number has been presented in [13]. In this section we add to the list of inte-
ger linear programming models paired domination and signed domination. The concepts
mentioned in this paragraph that have not been introduced yet are defined next.

A set X ⊆ V (G) is a 2-packing if d(x, y) ≥ 3 holds for any x, y ∈ X , x 6= y.
The maximum size of a 2-packing of G is the 2-packing number of G denoted ρ(G). The
independence domination number i(G) of G is the minimum size of a dominating set that
induces no edges [26]. The connected domination number γc(G) of G is the order of
a smallest dominating set that induces a connected graph [10]. The paired domination
number γp(G) is the order of a smallest dominating set S ⊆ V (G) such that the graph
induced by S contains a perfect matching [2]. Finally, we say that f : V (G) → {−1, 1}
is a signed dominating function if

∑
u∈N [v] f(u) ≥ 1 holds for every v ∈ V (G), where

N [v] is the closed neighborhood of v, that is, N [v] = {v} ∪ {u : vu ∈ E(G)}. The
signed domination number γs(G) is the minimum of

∑
v∈V (G) f(v) taken over all signed

dominating functions f of G, see [18].

We now present the problems to determine the paired domination number of a graph
and the signed domination number of a graph as integer linear programs. To model the
paired domination problem for a graph G we introduce a binary variable xe indicating
whether the edge e ∈ E(G) is present in the graph induced by a paired dominating set of
G. Then we can model the problem as follows:
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minimize
∑

e∈E(G)

xe

subject to
∑
u∼v

xuv ≤ 1, v ∈ V (G)∑
u∼v

∑
w∼u

xuw≥ 1, v ∈ V (G) .

Similarly, to model the signed domination number we introduce a binary variable xv as-
sociated with every vertex v ∈ V (G) indicating whether v is assigned weight 1 or −1,
respectively. Then we have the following linear program.

minimize
∑

v∈V (G)

(2xv − 1)

subject to
∑

u∈N [v]

(2xu − 1)≥ 1, v ∈ V (G) .

Our computational results are collected in Tables 3 and 4. In the rows for γ(Γn), ρ(Γn),
and i(Γn), the results from [20] are in normal font, while the new values are in bold. We
have thus extended the results from [20] for one additional dimension. It is interesting to
observe that the gap between the independent domination number and the domination in
dimension 9 is equal to 2, but then in dimensions 10 and 11 the difference goes down to 1.

Table 3: Additional invariants for small Fibonacci cubes and hypercubes.

n 1 2 3 4 5 6 7 8 9 10 11 12

γ(Γn) 1 1 2 3 4 5 8 12 17 25 39 54-61
ρ(Γn) 1 1 2 2 3 5 6 9 14 20 29 42
i(Γn) 1 1 2 3 4 5 8 12 19 26 40 ?-?

Table 4: Additional invariants for small Fibonacci cubes and hypercubes.

n 1 2 3 4 5 6 7 8 9 10

γc(Γn) 1 1 2 3 5 7 10 14 22
γc(Qn) 1 2 4 6 10 16 28
γp(Γn) 2 2 2 4 6 8 10 14 20 30
γp(Qn) 2 2 4 4 8 14 24 32
γs(Γn) 2 3 3 2 5 9 10 17 25 40
γs(Qn) 2 2 4 6 12 16 32

4 On total domination in hypercubes
It has recently been conjectured in [22, Conjecture 4.6] that γt(Qn) = 2n−2 holds for
n ≥ 6. In [4] Arumugam and Kala first observed that γt(Q1) = γt(Q2) = 2 and
γt(Q3) = γt(Q4) = 4, and then followed by proving that γt(Q5) = 8 [4, Theorem 5.1] and
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γt(Q6) = 14 [4, Theorem 5.2]. The last result is then a sporadic counterexample to the
conjecture. Actually, at this moment the exact value of γt(Qn) is known for n ≤ 10:
γt(Q7) = 24, γt(Q8) = 32, γt(Q9) = 64, and γt(Q10) = 124, see [33, Appendix B,
p. 40]. Hence Q7 and Q10 are additional sporadic counterexamples (and so are Q8 and Q9

since γt(Q8) = 32 6= 26 and γt(Q9) = 64 6= 27).
Total dominating sets of Qn can be in coding theory equivalently described as covering

codes of empty spheres (of length n and covering radius 1). The following result was first
proved back in [21], see also [35, Theorem 1(b)]. Let us rephrase the result here in graph-
theoretical terms and give a corresponding argument.

Proposition 4.1. If n = 2k, k ≥ 0, then γt(Qn) = 2n−k.

Proof. From [32] we know that if n = 2k, then γ(Qn) = 2n−k and from [16] that if
n = 2k − 1, then also γ(Qn) = 2n−k. Let n = 2k and consider Qn. Let QLn−1 and QRn−1

be the subgraphs of Qn induced by the sets of vertices X0 = {0b2 . . . bn : bi ∈ {0, 1}} and
X1 = {1b2 . . . bn : bi ∈ {0, 1}}, respectively. Clearly, V (Qn) partitions into X0 and X1,
and in Qn every vertex of X0 has a unique neighbor in X1. Moreover, QLn−1 and QRn−1

are both isomorphic to Qn−1. Let CL be a perfect code of QLn−1 and let CR be its copy in
QRn−1. Then CL ∪ CR is a total dominating set of Qn of order 2n−k. Since on the other
hand γt(Qn) ≥ γ(Qn) = 2n−k, the conclusion follows.

It follows from (2.1) that

γ(G) ≤ |V (G)|
(

1 + ln(δ + 1)

δ + 1

)
(4.1)

holds for any graph G. Hence, again using the fact that γt(G) ≤ 2γ(G), we get for
hypercubes that

γt(Qn) ≤ 2n+1

(
1 + ln (n+ 1)

n+ 1

)
.

Directly from this inequality we infer:

Remark 4.2. For any c > 0 there exists n0 ∈ N, such that if n ≥ n0, then

γt(Qn) ≤ 2n−c .

Two remarks are in place here. First, (4.1) also follows from a more general result on
transversals in hypergraphs due to Alon [1]. Second, the state of the art on the upper bounds
on the domination number in terms of the minimum degree and the order of a given graph
is given in [8].

It follows from the fact that γt(Qn) ≤ 2γ(Qn−1) and from Proposition 4.1 that
γt(Q2k+1) ≤ 2γ(Q2k) = 22k−k+1. As proved in [32], the equality actually holds here,
that is, γt(Q2k+1) = 22k−k+1. More generally, γt(Qn+1) = 2γ(Qn) holds for any n, a
result very recently proved in [6].
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