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Hierarchical Clustering with Concave Data Sets

Matej Franceti, Mateja Nagode, and Bojan Nastav

Abstract

Clustering methods are among the most widely usesthads in
multivariate analysis. Two main groups of clustgrimethods can be
distinguished: hierarchical and non-hierarchicaleDto the nature of the
problem examined, this paper focuses on hierarthiethods such as the
nearest neighbour, the furthest neighbour, Wardéthmd, between-groups
linkage, within-groups linkage, centroid and meddmnstering.

The goal is to assess the performance of diffesdnstering methods
when using concave sets of data, and also to figurtein which types of
different data structures can these methods rewaa correctly assign
group membership. The simulations were run in a -tvamd three-
dimensional space. Using different standard deeigtiof points around the
skeleton further modified each of the two origirsdlapes. In this manner
various shapes of sets with different inter-clusdestances were generated.
Generating the data sets provides the essentiawledge of cluster
membership for comparing the clustering methodsfgrenances.

Conclusions are important and interesting sincd tda data seldom
follow the simple convex-shaped structure, but néether work, such as
the bootstrap application, the inclusion of the di@mgram-based analysis or
other data structures. Therefore this paper camesas a basis for further
study of hierarchical clustering performance witincave sets.

1 Introduction

Clustering methods represent one of the most widebd multivariate techniques
in practice. Essentially, there are two main groopshese methods: hierarchical
and non-hierarchical. Statistics mainly uses theéetatthis paper, on the other
hand, primarily deals only with hierarchical clustgyimethods. The idea behind
this decision is that the non-hierarchical methatdg, most widely used being the
k-means method, do not perform well with concavés sef data, since the
centroids’ usage results in wrong classificatioAsthough several hierarchical
clustering methods exist this paper focuses onnie¢hods implemented in the
statistical software SPSS. These are: the neasghinour, the furthest neighbour,
centroid
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method, median clustering, linkage between grouyswaithin linkage groups, and
Ward’s method. Due to high discrepancies in nantlhregmethods, we will follow
the SPSS wording.

The primary aim of this paper is to assess the perdoce of different
clustering methods when using concave sets of alalaalso to figure out in which
types of different data structures these methodsrearal and correctly assign
group membership. Sets of points differing in shgpkeleton) and inter-point
distance were used in the analysis: the simulatiwese run in a two and three-
dimensional space with different standard deviagiohpoints around the skeleton.
Generating the sets of points gave an advantagee she knowledge of cluster
membership is essential in comparing the perforraanaf clustering methods
(perhaps better “in comparing”). In this manner igas shapes of sets with
different inter-cluster distances were generateerta&n limitations were imposed
since the used parameters can lead to a vast nuaibggnerated sets. Applying
different hierarchical clustering methods to thgemerated sets was the basis for
assessing clustering accuracy and by this the pediocm of different hierarchical
clustering methods for concave sets of data. We= bt come across any studies
dealing with hierarchical clustering on concave ajathe latter are however,
mainly dealt with other, “modern” methods, such las fuzzy or wave clustering
(see section five).

The paper consists of two parts. First we introdtlee research methodology
and briefly outline the methods used (section two)the second part, a report of
generating data sets is presented in section thmdepresentation of the results of
successfulness of different clustering methodsqgraréd on the generated data in
section four. Section five concludes the work anglspnts suggestions for possible
further research.

2 Clustering

Clustering is believed to be one of the mental\atiéis that human beings have
been using for centuries. Classifying objects intasses has improved the control
over objects classified and deepened the understgndf different classes.
Gathering and accumulation of knowledge would benofpractical use without
clustering (perhaps better “without clustering”)edddes the spread of knowledge
base time has also brought an advance in clustenethods. Nowadays, despite
the mathematical and statistical primacy over thehmes, other fields, especially
medicine and marketing, find clustering as a vemfulstool.

The goal of clustering is to merge objects (unitsvariables) with regard to
their characteristics and, by doing so, obtain imarhomogeneity and external
heterogeneity (isolation) of classes (clusters) poedl. Characteristics, or better,
the criteria according to which the objects arestdued, are usually, depending on
the method used, based on the proximity matrix, Wwhiceasures the objects’
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distances or similarities. Our work was based oerdrichical clustering in SPSS
(see description of methods below) and distance tvastool used for measuring
the similarity among objects. To be more precise haee used Euclidian distance,
which can be presented by the following equation goaphically presented in
Figure 1):
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Figure 1: Euclidian distance for two points A and B.

Euclidian distance measures the actual (spatiajadce between two objects
(Figure 1 gives a presentation of two-dimensiorzdc®, but can be applied po
variables using Equation (2.1)). Other distancesld&dde used as well, such as
Mahalonobis distance, which is a statistical distar(taking into account the
standardization of units) between two points analudes covariances or
correlations between variables (Sharma, 1996: Agplying this distance to our
concave data sets would blur the picture: data ddid “stretched” along some
line in space and due to interlaced data its useldvoot lead to better results. The
data used were generated (see chapter three) withdditional standardization
and the Euclidian distance was applied. Choosirgttiol to measure the distance
is the first step. The second step is defined bymie¢hod and refers to the way
this tool (distance) is applied among objects.

2.1 Hierarchical clustering

Hierarchical clustering is an iterative proceduoe ¢lustering objects. The starting
point of hierarchical cluster analysis is a data nwatontaining proximities

between separate objects. At each hierarchical, shkeptwo objects that are most
similar, given certain criteria, depending on thethod applied, are joined. A
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joined pair is again called an object or a clust€éhis means that at any
hierarchical step (1) two single items may be cliedeo form one new cluster, (2)
a single item may be added to an existing clustateshs, or (3) two clusters may
be combined into a single larger cluster. This pssccontinues until all items are
joined into only one cluster (Abswoude et al, 2043

2.1.1 Nearest neighbour

The nearest neighbour method measures distanceebetalusters as the distance
between two points in the clusters nearest to edbbr. It tends to cause clusters
to merge, even when they are naturally distinct,oag las proximity between their
outliers is short (Wolfson et al, 2004: 610). Thiéeet of the algorithm that it
tends to merge clusters is sometimes undesiraldause it prevents the detection
of clusters that are not well separated. On thesotiand, the criteria might be
useful to detect outliers in the data set (Muchd &wofyan, 2003). This method
turns out to be unsuitable when the clusters ateclearly separated but it is very
useful when detecting chaining structured dataifdhg effect).

2.1.2 Furthest neighbout

This method proceeds like the nearest neighbouhatkeexcept that at the crucial
step of revising the distance matrix, the maximumnstéad of the minimum
distance is used to look for the new item (Muchd &ofyan, 2003). That means
that this method measures the distance betweerntectushrough the distance
between the two points in the clusters furthestmfrone another. Furthest
neighbour results in separate clusters, even ifcthsters fit together naturally, by
maintaining clusters where outliers are far ap#vblfson et al, 2004: 610). This
method tends to produce very tight clusters of amdases.

2.1.3 Centroid method

The centroid is defined as the centre of a cloudpoints (Joining Clusters:

Clustering Algorithms). Centroid linkage techniquattempt to determine the
‘centre’ of the cluster. One issue is that the penwill move as clusters are
merged. As a result, the distance between mergesterls may actually decrease
between steps, making the analysis of results pnostie. This is not the issue
with single and complete linkage methods (Wolfsorale 2004: 610). A problem

with the centroid method is that some switching aedersal may take place, for

2 Also called Single Linkage Method or Minimum Distae Method.
3 Also called Complete Linkage or Maximum Distancetkiod.
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example as the agglomeration proceeds some casgsaeed to be switched from
their original clusters (Joining Clusters: ClusteriAlgorithms).

2.1.4 Median method

This method is similar to the previous one. If thiges of two groups are very
different, then the centroid of the new group viad very close to that of the larger
group and may remain within that group. This is theadvantage of the centroid
method. For that reason, Gover (1967) suggestdtamative strategy, called the
median method, because this method could be maidabk for both similarity

and distance measures (Mucha and Sofyan, 2003). Wethod takes into

consideration the size of a cluster, rather thamgple mean (Schnittker, 2000: 3).

2.1.5 Linkage between group's

The distance between two clusters is calculateth@asverage distance between all
pairs of objects in the two different clusters. §hmethod is also very efficient
when the objects form naturally distinct ‘clumpsovever, it performs equally
well with elongated, ‘chain’ type clusters (Clustemalysis).

2.1.6 Linkage within groups

This method is identical to the previous one, exdéat in the computations the
size of the respective clusters (i.e. the numbeplgkcts contained in them) is
used as a weight. Thus, this method should be wdezh the cluster sizes are
suspected to be greatly uneven (Cluster Analysis).

2.1.7 Ward's method

The main difference between this method and th&alye methods is in the
unification procedure. This method does not joiroups with the smallest
distance, but it rather joins groups that do notré@ase a given measure of
heterogeneity by too much. The aim of Ward’s methotbiunify the groups such
that variation inside these groups does not ina@das drastically. This results in
clusters that are as homogenous as possible (ManbaSofyan, 2003). Ward’s
method is based on the sum-of-squares approachearts to create clusters of
similar size. The only method to rely on analysis afiance, its underlying basis

4 Unweighted Pair-Groups Method Average (UPGMA).
> Weighted Pair-Groups Method Average (WPGMA).
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is closer to regression analysis than the other ad=thit tends to produce clearly
defined clusters (Wolfson et al, 2004: 610).

3 Data generation

The analysis is based on concave sets of pointsthifeopurposes of this paper the
data are generated in two and three-dimensionatesphowever, it is easy to
extend this process to a more dimensional spaces pitocess consists of three
steps.

The first step is the construction of the skeletbhe skeleton is an arbitrary
curve in a more dimensional space. The curve isessmted as the finite set of
ordered points. The points that lie on the curveneen these selected points can
be approximated with linear or cubic interpolation.

(a) (b)
Figure 2: Linear (a) and cubic (b) interpolation.

The use of linear interpolation in this paper isediw simplification of the
calculations that are needed for further analysisbeAter approximation of the
target curve can also be achieved with a largepfetdered points.

5
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S

(a) (b)
Figure 3: Chosen points before (a) and after (b) shifting.
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The second step is choosing the sample points.rdieroto do this we have
normalized the length of the curve so that an aabytpoint on the curve is given
by S(t), where 0O<t<l. Sample points are then choaenl’'=S(t), where {i;
i=1,...,k} are independent uniformly distributed ramdmumbers on interval [0,1].

The third step is moving (shifting) the chosen psiby error vectors. We have
decided that error vectors will have multivariatermal distribution with
expectation 0 and covariance matsiX. After generating independent identically
distributed random vectors; Ei=1,...,k; one for each point) the final points are
obtained as iFT;'+E;.

Before applying hierarchical clustering methodswo tsets of point generated
in the way described above, some definitions of aarfparameters have to be
introduced. The most basic definition is the ddfon of distance between two
skeletons. This distance is called minimal distafme):

mr(S,, S,) = mind(S,(s) - S, (t)) (3.1)

where Si(s) and Sy(t) stand for parameterization of two chosen skeletd(S,(s)-
Sy(t)) is Euclidian distance between two points.

The variation of points around the skeleton is arotparameter that has to be
clearly defined. It would be appropriate to defimariation of points as the
expected distance of these points from the skelef@king into account the fact
that the skeleton is section-linear (like a brokeme), deriving the expected
distance will be limited to the straight line. Les imagine the following situation:
the point on the straight line (with directed vecp) is shifted by an arbitrary n-
dimensional normal vectoX with expectation 0 and covariance mats¥d. We
would like to obtain the expected distance of ghasnt from the straight line. For
simplicity, assume that the straight line is veati@and that the shifk; (first
component of a random vector) is collinear with theected vector of the straight
line. To be sure: there is an orthogonal matfix(A'A=I), which is used to
multiply X to getX'=AX, such thatx;'=Ax; is collinear with directed vector of the
straight line, p; X' is distributed normally with expectation 0 and comace
matrix ¢°l. In this case, Euclidian distance between thetstiifpoint and the

straight line equals\/x§+x§+...+ x% . Let h:(x§ +X2 4. xﬁ)/az. This means
that h is distributed iny® with n-1 degrees of freedom, thuB(h)=n-1 and

V(h)=2(n-1) (X2, %s,...,% are independent and identically distributedN¢0, ¢%)).

Let us approximata/ﬁ using the development of Taylor series arotgh):

h-£E(n)+— - (h-E(n))? (3.2)

Jh OJE(h) - . o

L
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Using this E(\/xz2 + X2+, 4+ x,f): o. E(\/ﬁ) is approximated with:

7.1 3.3
oE(\/ﬁ)DJ(\/n_l an—-J (3.3)

The dispersion of points around the skeletgns defined

1 2n-1
=0 Jn-1+—=— |=g, "2 (3.4)
S S( 2\/n—1J S2\/n—1

whereos is standard deviation used in generating the gaamtdn is the dimension
of space, where skelet@iis situated.

Lastly, some number is needed to represent theedegf separation of data
separation. Regarding this number, each case doelldssigned the troublesome
(or not) classification of objects into clustersirthermore, this number will serve
as a degree of admissibility with each of the @usty methods used, when, if at
all, some of the methods will have higher tolerancevill be able to separate data
and correctly assign objects to classes. This numbkk be called the degree of
separation of data, marked By.P.

— mr(sl'SZ) 3.5
suo(sl,sz)——rg o (3-5)

whereS; and$; are skeletons of groups of pointar is their minimal distance,s;
andrgs; are respective dispersion of points.

The paper tests hierarchical clustering methodgemnexamples of concave
data sets. Each of the examples has two groupsodaftg and examples are
different with regard to skeleton and used standkaviations of points around the
skeleton. We have limited our work to two differgrdtirs of skeletons. One pair is
defined in two, the other in three-dimensional spésee Figure 4). Furthermore,
to briefly test the stability of the methods appglisome of the examples have been
re-run using subsampling (of 50%).
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05
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(a) (b)
Figure 4: Pairs of two (a) and three-dimensional (b) skelsto

For further analysis, the minimal distance betwé®en skeletons in the above
examples has to be known. In case a), this is eual It is interesting that in this
case the minimal distance is achieved in almosbfalhe points on the skeleton. In

case b) the minimal distance equa!s@ (approximately 0.58) and is achieved
only four times (from 0.58 to 1). From this structuof the skeletons one might
expect that clustering would, in the first case,haeder along the whole skeleton,
whereas in the second case this harder clusterimgidvoccur only at the place
where rings reach their minimal distance betweenstkeletons.

In generating the data in each case the same sthrdviation around the
skeletons has been used. This was defined in atwayit previously determined
degree of separation of the data (SLP), which weresen from the 1 — 2.5
interval. The standard deviations used with eadh pfathe skeletons are given in
the following table.

With degree of separation of the data 2.5, thecsumes are well separated
(there is practically no probability, that any dktpoints from one group would be
closer to other skeleton); with SLP 1, the intem@cof the data is extreme. The
following figure (Figure 5) shows the data with SPRnd 1.2.

4 Results

The estimation and successfulness of the metharladad is possible on the basis
of the percentage of correctly assigned group mesfie that is known in
advance. This, however, is almost never the caseeah life. Therefore, in real
data the performance of the method is seldom atelyraassessed. This paper
deals with generated data, which means that thé seaation is known and
measuring performances of different methods isafuee a rather easy task. Using
the percentage of correctly assigned units (to tberect cluster) is the key
indicator used in the analysis. Further on, whenfggening the methods with
statistical package SPSS classification into twougis was chosen. This produced
the results with percentages from 50% (all caseseweerrectly classified just in
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one group and the other group remained 'emptyl)0@o (all cases were correctly
classified in both groups) of correctly assignedougr membership. Tables
separated for two- and three-dimensional spaceeptethe results. The marginal
examples (SLP=2.5 and SLP=1) together with the reér(SLP=1.5) have been
additionally subsampled and used on the methodseniones (50) in order to
obtain the notion of the methods’ stability. Thube method in this context
appears to be stable if the average percentage oofeatly assigned group
membership of all subsamples does not vary muchngntifferent degrees of

separation of the data.

Table 1: Used standard deviations.

SLP value 2.5 2 15 12 1
a) 0.11 0.17 0.22 0.28 0.33
b) 0.07 0.08 0.11 0.13 0.16

Figure 5: Pictures of the data: a) 2D, SLP=2; b) 2D, SLPs&)23D, SLP=2; d) 3D,
SLP=1.2.

The results of two-dimensional data gave the follmyconclusions. When the
points are clearly separated, the only method thedsifies all the cases correctly

is the nearest neighbour. This method is the ondyhmd that is suitable for these
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types of data. Even when the groups are not (ialencohesive but are isolated
from each other the nearest neighbour method cadyse correct results. Other
methods do not fulfil the criterion of correctlysagned group membership with
such a high percentage. Nevertheless, the percesita@ not so low and this is the
consequence of great degree of separation of data.

Table 2: Results of clustering with two-dimensional data.

SLP=2,5 SLP=2 SLP=1,5
Correctly
classified 1 2 Total 1 2 Total 1 2 Total
units (%)
METHOD
Between 76,4 69,4 72,9/ 81,1 76,8 78,95 71,8 72,1 71,95
Within 69,9 80,5 75,2/ 65,2 56,6 60,9/ 61,9 50,5 56,2
Nearest 100 100 100, 100 0,1 50,05 100 0,1 50,05
Furthest 73,3 76,9 75,1 73,5 44,9 59,2/ 62,9 70,1 66,5
Centroid 76,3 66,5 71,4 54,2 78,1 66,15 54,9 56,9 55,9
Median 31,6 100 65,8 51,6 52,2 51,9/ 91,0 66,7 78,85
Ward'’s 72,5 48 60,25 77,6 68,2 72,9 73,2 78,6 75,9
K-means 61,5 57,8 59,65 59 57 58| 62,3 62,6 62,45
SLP=1,2 SLP=1

Correctly

classified 1 2 Total 1 2 Total

units (%)

METHOD

Between 74,2 73,6 73,9| 50,7 50,6 50,65

Within 49,7 61,9 55,8 77,9 69,6 73,75

Nearest 100 0,1 50,05/ 100 0,1 50,05

Furthest 41,2 92,7 66,95 66,5 86,4 76,45

Centroid 100 0,1 50,05/ 100 0,1 50,05

Median 90,7 19,9 55,3) 100 0,1 50,05

Ward’s 67,9 74,1 71| 68,4 77,6 73

K-means 59,9 59,9 59,9 66,5 63,6 65,05
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Table 3: Results of clustering with three-dimensional data.

SLP=2,5 SLP=2 SLP=1,5
Correctly
classified 1 2 Total 1 2 Total 1 2 Total
units (%)
METHOD

Between | 100 59,3 79,65| 100 74,2 87,1 | 100 66,9 83,45
Within 100 53,3 76,65(/55,8 100 77,9 | 99,9 60,5 80,2
Nearest | 100 100 100 | 100 0,1 50,05 100 0,1 50,05
Furthest | 100 75 87,5 | 100 63,6 81,8 | 55,2 94,1 74,65
Centroid | 100 52,1 76,05| 100 51,6 75,8 | 100 0,1 50,05
Median 100 31,3 65,65 100 44,5 72,25| 100 2,4 51,2
Ward’s 100 51,9 75,95| 100 53,1 76,55| 100 42,8 71,4
K-means | 75 74,1 74,55\ 71 77,7 74,35| 74,7 75,5 75,1

SLP=1,2 SLP=1
Correctly
classified 1 2 Total | 1 2 Total
units (%)
METHOD

Between | 100 49,3 74,65| 42,5 99,4 70,95
Within 100 50,6 75,3 56,5 89,2 72,85
Nearest | 100 0,1 50,05| 100 0,1 50,05
Furthest | 45,7 83,7 64,7 | 77,4 98,2 87,8
Centroid | 100 0,1 50,05/ 100 23,2 61,6
Median 100 65,4 82,7 | 100 0,1 50,05
Ward’s 100 49,7 74,85/ 100 42,2 71,1
K-means | 72,9 75,6 74,25| 73,4 75,5 74,45

Note: With SLP3 and SLP4, 75% and 60% samples, regutively, were used, due to technical
problems with the software.

Results obtained by using methods with next degfeseparation are different
from results obtained with the highest degree @lasation. In this step the nearest
neighbour method is completely unsuccessful. Theraye method performs with
a quite high percentage of correctly assigned urfr all further degrees of
separation of the data the results are quite simn@acept when observing the data
with SLP=1. In that case there is no internal catvesand no isolation between
groups. With the smallest degree of separationhef data in a two-dimensional
space the best performance is assigned to theeflirteighbour method, average
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method (between groups) and Ward's method. Wardthod seems to be the most
stable method among the observed hierarchical ndsthén almost all cases
(except when the groups are clearly separatednbutohesive) the successfulness
of correctly assigned group membership is arounéb.7This is not surprising
since it is known that this method performs welldapresents a compromise
between chaining and compact data. However, thetets formed are not “in line”
with the skeletons generated, but rather comparstets.

100

Between Within Nearest Furthest Centroid Median Ward’s K-means
——:sip0 —li—sipl —h—sIp2 —>=sip3 —H—=sip4 Y,

(a) 2-dimensional space

100

90

80

70

60

50

40

Between Within Nearest Furthest Centroid Median Ward's K-means

——slp0 ——slpl ——slp2 —>¢—slp3 —H—slp4 )

(b) 3-dimensional space

Figure 6: Results of all the methods used.

Similar conclusions can be drawn when observing @atd methods in a three-
dimensional space. Again, certainly the best methatth the highest degree of
data separation is nearest neighbour and we caclwba that it is the only method
suitable for that kind of data. However, this islyothe case when the data are
clearly separated. When the degree of separatiamedses, the method is no
longer successful. The opposite holds for the lawedesgree of data separation,
where its performance turns out to be completelguesessful. In this case the
average method (between and within groups) perfdretter. Ward's method gives
similar results and consequently similar conclusicas in a two-dimensional
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space. In a three-dimensional space the furthegghbour method gives the
highest percentage (87.8%) of correctly assignedugrmembership with the
lowest degree of data separation. With very simgarcentage it performs also in
the case of the highest degree of data separdhdinth extreme cases the furthest
neighbour performs with similar successfulness.sTikito some extent surprising,
since this method is believed to be the most swsfaesvith compact clusters and
not with skeletons like this. At the same time, tiesults reveal that the clusters
this method (and others) tend to produce are compad do not follow the
skeletons generated.

5 Conclusions

This paper is based on generated data and soft{&#8S) usage. The latter was
used to run and test all of the seven hierarchibadtering methods implemented
in this software on previously generated data. €hwsre obtained by dispersing
points around two basic shapes of skeleton, botlwio and three-dimensional
space. In the paper, only one data set was usedimsdme examples further
subsampling of these data was constructed in ciebtain some idea about the
methods’ stability. The skeletons used represattier hard-to-separate shapes
and we have intentionally used such skeletons thef method can work and be
successful with such structures, it can be sucoessisewhere as well.
Unfortunately, very seldom can we come across légeky” data in real life
problems. Despite this, using the generated datagmgen us the power to see
which methods perform well and which do not andlying on this, some
conclusions can be drawn.

Results in the form of tables (previous sectionll digures (appendix) speak
for themselves. Nevertheless, Figure 6 sums updbelts of clustering.

When implementing some of the variability obtairfeain the subsampling and
rerunning the methods several (50) times, the nuthappear to be more stable
within the given degrees of separation of the daBased on these results, it is
hard to recommend instructions on how to deal vgitich data, since no method
used performs particularly well with the generattata. Some, i.e. the centroid,
and the median methods appear to be more variaibthérmthe given SLP, whereas
the nearest neighbour method completely fails wtitendata are more interlaced
(but it is stable given the other levels of SLP)th& methods are thus more
appropriate regarding stability. Bearing in mince tfact that real life does not
follow simple, homogeneous and isolated groupsy dmlef outlines can be put
forward at this point.

1. Check the data skeletohis task seems rather simple for two or three-
dimensional data, but is otherwise virtually impb$s. With several
variables one can first use a data-reduction tepmisuch as the principal
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component analysis, and then, using fewer variablgse task of
determining the proper skeleton to the data tumisto be much easier. An
example of too-many-variables problems can be foim&ordon (1999:
24, 25). If the skeleton(s) can be determined, takefollowing step.

2. Compare these skeletomath the skeletons used in this assignment and
determine the most similar skeletons, and choose mlost appropriate
method, given the skeleton and dispersion of points

Our findings can be further backed up by the follogv

3. Performance of clustering methods decreases widteased dispersion of
the data, which is expected. In case when theraitsuch as the degree of
separation of the data (SLP) used in this paperhah enough (dispersion
Is low), the method to be used is the nearest meEigh However, when the
data are not so well isolated additional attentimeds to be given to
choosing the right method.

4. Using three variables (a three-dimensional spaas opposed to a two-
dimensional space gives much better results (bgrsg¢\percentage points),
meaning that three variables can better deternhieeptoper data structure.
However, one should keep in mind the previously tieered too-many-
variables problems (Point 1), which we can comes&rin reality. Using
(at least) three variables is thus advised.

Separate from this paper’s main focus, i.e. thednehical clustering methods,
new methods are being developed and used. They applifferent fields and are
usually custom made for each type of analysis. ilively speaking, they would
follow point one of the above mentioned points dalfjebraically) determine the
skeleton; furthermore, by applying the Euclidianstdnce, objects would be
classified. Phrases such as “fuzzy clustering” ased, describing the situation
where some objects are with certainty classifiedob@ group, while the others
could be in one or the other group. Similarly, dapping groups where objects are
in one and the other groups need special attentane clustering, introduced by
Sheikholeslami, Chatterjec and Zhang (1998) is ahow which presumably
works well with concave data sets. Our task wastadbcus on such methods, but
we cannot avoid mentioning them at this point. Asidhal reading can be found in
Gordon (1999: 111-130) and a series of scientifteckes using clustering methods
in practise, mainly medical studies.

Further improvements to this paper could be madegbgerating several
random data sets with given parameters (skeletegres® of separation of data)
and running the methods on these data. The descphecess would allow to test
the methods more broadly for their variability amgonlifferent degrees of
separation of datalNe believe that observing the obtained dendrogrenssgood
tool to be used with clustering since to a certdégree, they can reveal the real
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structure of the data. However, their usage is radanited — figures in the
appendix show that only with the highest degreesegfaration of the data, SLP=1
in Figure 7, they can be used to determine the @roglustering. However,
dendrograms were not under close inspection in dhislysis and therefore, along
with other data structure, this represents a purte studied further in details.
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Appendix
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Figure 7: Dendrogram for SLP=2. Two groups can be clearbtidguished.

Cluster Dendrogram

NEE
M‘T‘W

Figure 8: Dendrogram for SLP=1.5. Number of groups is nefacly seen.
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Figure 9: Graphical representation of results for 2D withPS{2.5.
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Figure 10: Graphical representation of results for 2D withPSi1.
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Figure 11: Graphical representation of results for 3D withPSi2.5.
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Figure 12: Graphical representation of results for 3D withPSil.



