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Hierarchical Clustering with Concave Data Sets 

Matej Francetič, Mateja Nagode, and Bojan Nastav1 

Abstract 

Clustering methods are among the most widely used methods in 
multivariate analysis. Two main groups of clustering methods can be 
distinguished: hierarchical and non-hierarchical. Due to the nature of the 
problem examined, this paper focuses on hierarchical methods such as the 
nearest neighbour, the furthest neighbour, Ward’s method, between-groups 
linkage, within-groups linkage, centroid and median clustering. 

The goal is to assess the performance of different clustering methods 
when using concave sets of data, and also to figure out in which types of 
different data structures can these methods reveal and correctly assign 
group membership. The simulations were run in a two- and three-
dimensional space. Using different standard deviations of points around the 
skeleton further modified each of the two original shapes. In this manner 
various shapes of sets with different inter-cluster distances were generated. 
Generating the data sets provides the essential knowledge of cluster 
membership for comparing the clustering methods’ performances.  

Conclusions are important and interesting since real life data seldom 
follow the simple convex-shaped structure, but need further work, such as 
the bootstrap application, the inclusion of the dendrogram-based analysis or 
other data structures. Therefore this paper can serve as a basis for further 
study of hierarchical clustering performance with concave sets.  

1 Introduction 

Clustering methods represent one of the most widely used multivariate techniques 
in practice. Essentially, there are two main groups of these methods: hierarchical 
and non-hierarchical. Statistics mainly uses the latter; this paper, on the other 
hand, primarily deals only with hierarchical clustering methods. The idea behind 
this decision is that the non-hierarchical methods, the most widely used being the 
k-means method, do not perform well with concave sets of data, since the 
centroids’ usage results in wrong classifications. Although several hierarchical 
clustering methods exist this paper focuses on the methods implemented in the 
statistical software SPSS. These are: the nearest neighbour, the furthest neighbour, 
centroid 
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method, median clustering, linkage between groups and within linkage groups, and 
Ward’s method. Due to high discrepancies in naming the methods, we will follow 
the SPSS wording.  

The primary aim of this paper is to assess the performance of different 
clustering methods when using concave sets of data and also to figure out in which 
types of different data structures these methods can reveal and correctly assign 
group membership. Sets of points differing in shape (skeleton) and inter-point 
distance were used in the analysis: the simulations were run in a two and three-
dimensional space with different standard deviations of points around the skeleton. 
Generating the sets of points gave an advantage, since the knowledge of cluster 
membership is essential in comparing the performances of clustering methods 
(perhaps better “in comparing”). In this manner various shapes of sets with 
different inter-cluster distances were generated. Certain limitations were imposed 
since the used parameters can lead to a vast number of generated sets. Applying 
different hierarchical clustering methods to these generated sets was the basis for 
assessing clustering accuracy and by this the performance of different hierarchical 
clustering methods for concave sets of data. We have not come across any studies 
dealing with hierarchical clustering on concave data; the latter are however, 
mainly dealt with other, “modern” methods, such as the fuzzy or wave clustering 
(see section five).  

The paper consists of two parts. First we introduce the research methodology 
and briefly outline the methods used (section two). In the second part, a report of 
generating data sets is presented in section three and presentation of the results of 
successfulness of different clustering methods performed on the generated data in 
section four. Section five concludes the work and presents suggestions for possible 
further research.  

2 Clustering 

Clustering is believed to be one of the mental activities that human beings have 
been using for centuries. Classifying objects into classes has improved the control 
over objects classified and deepened the understanding of different classes. 
Gathering and accumulation of knowledge would be of no practical use without 
clustering (perhaps better “without clustering”). Besides the spread of knowledge 
base time has also brought an advance in clustering methods. Nowadays, despite 
the mathematical and statistical primacy over the methods, other fields, especially 
medicine and marketing, find clustering as a very useful tool.   

The goal of clustering is to merge objects (units or variables) with regard to 
their characteristics and, by doing so, obtain internal homogeneity and external 
heterogeneity (isolation) of classes (clusters) produced. Characteristics, or better, 
the criteria according to which the objects are clustered, are usually, depending on 
the method used, based on the proximity matrix, which measures the objects’ 
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distances or similarities. Our work was based on hierarchical clustering in SPSS 
(see description of methods below) and distance was the tool used for measuring 
the similarity among objects. To be more precise, we have used Euclidian distance, 
which can be presented by the following equation (or graphically presented in 
Figure 1): 
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Figure 1: Euclidian distance for two points A and B. 

Euclidian distance measures the actual (spatial) distance between two objects 
(Figure 1 gives a presentation of two-dimensional space, but can be applied to p 
variables using Equation (2.1)). Other distances could be used as well, such as 
Mahalonobis distance, which is a statistical distance (taking into account the 
standardization of units) between two points and includes covariances or 
correlations between variables (Sharma, 1996: 44). Applying this distance to our 
concave data sets would blur the picture: data would be “stretched” along some 
line in space and due to interlaced data its use would not lead to better results. The 
data used were generated (see chapter three) with no additional standardization 
and the Euclidian distance was applied. Choosing the tool to measure the distance 
is the first step. The second step is defined by the method and refers to the way 
this tool (distance) is applied among objects.  

2.1 Hierarchical clustering 

Hierarchical clustering is an iterative procedure for clustering objects. The starting 
point of hierarchical cluster analysis is a data matrix containing proximities 
between separate objects. At each hierarchical step, the two objects that are most 
similar, given certain criteria, depending on the method applied, are joined. A 
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joined pair is again called an object or a cluster. This means that at any 
hierarchical step (1) two single items may be clustered to form one new cluster, (2) 
a single item may be added to an existing cluster of items, or (3) two clusters may 
be combined into a single larger cluster. This process continues until all items are 
joined into only one cluster (Abswoude et al, 2004:337) 

2.1.1 Nearest neighbour2 

The nearest neighbour method measures distance between clusters as the distance 
between two points in the clusters nearest to each other. It tends to cause clusters 
to merge, even when they are naturally distinct, as long as proximity between their 
outliers is short (Wolfson et al, 2004: 610). The effect of the algorithm that it 
tends to merge clusters is sometimes undesirable because it prevents the detection 
of clusters that are not well separated. On the other hand, the criteria might be 
useful to detect outliers in the data set (Mucha and Sofyan, 2003). This method 
turns out to be unsuitable when the clusters are not clearly separated but it is very 
useful when detecting chaining structured data (chaining effect).  

2.1.2 Furthest neighbour3 

This method proceeds like the nearest neighbour method except that at the crucial 
step of revising the distance matrix, the maximum instead of the minimum 
distance is used to look for the new item (Mucha and Sofyan, 2003). That means 
that this method measures the distance between clusters through the distance 
between the two points in the clusters furthest from one another. Furthest 
neighbour results in separate clusters, even if the clusters fit together naturally, by 
maintaining clusters where outliers are far apart (Wolfson et al, 2004: 610). This 
method tends to produce very tight clusters of similar cases. 

2.1.3 Centroid method 

The centroid is defined as the centre of a cloud of points (Joining Clusters: 
Clustering Algorithms). Centroid linkage techniques attempt to determine the 
‘centre’ of the cluster. One issue is that the centre will move as clusters are 
merged. As a result, the distance between merged clusters may actually decrease 
between steps, making the analysis of results problematic. This is not the issue 
with single and complete linkage methods (Wolfson et al, 2004: 610). A problem 
with the centroid method is that some switching and reversal may take place, for 
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example as the agglomeration proceeds some cases may need to be switched from 
their original clusters (Joining Clusters: Clustering Algorithms). 

2.1.4 Median method 

This method is similar to the previous one. If the sizes of two groups are very 
different, then the centroid of the new group will be very close to that of the larger 
group and may remain within that group. This is the disadvantage of the centroid 
method. For that reason, Gover (1967) suggests an alternative strategy, called the 
median method, because this method could be made suitable for both similarity 
and distance measures (Mucha and Sofyan, 2003). This method takes into 
consideration the size of a cluster, rather than a simple mean (Schnittker, 2000: 3). 

2.1.5 Linkage between groups4 

The distance between two clusters is calculated as the average distance between all 
pairs of objects in the two different clusters. This method is also very efficient 
when the objects form naturally distinct ‘clumps’, however, it performs equally 
well with elongated, ‘chain’ type clusters (Cluster Analysis).  

2.1.6 Linkage within groups5 

This method is identical to the previous one, except that in the computations the 
size of the respective clusters (i.e. the number of objects contained in them) is 
used as a weight. Thus, this method should be used when the cluster sizes are 
suspected to be greatly uneven (Cluster Analysis).  

2.1.7 Ward's method 

The main difference between this method and the linkage methods is in the 
unification procedure. This method does not join groups with the smallest 
distance, but it rather joins groups that do not increase a given measure of 
heterogeneity by too much. The aim of Ward’s method is to unify the groups such 
that variation inside these groups does not increase too drastically. This results in 
clusters that are as homogenous as possible (Mucha and Sofyan, 2003).  Ward’s 
method is based on the sum-of-squares approach and tends to create clusters of 
similar size. The only method to rely on analysis of variance, its underlying basis 
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is closer to regression analysis than the other methods. It tends to produce clearly 
defined clusters (Wolfson et al, 2004: 610).   

3 Data generation 

The analysis is based on concave sets of points. For the purposes of this paper the 
data are generated in two and three-dimensional space, however, it is easy to 
extend this process to a more dimensional space. This process consists of three 
steps.  

The first step is the construction of the skeleton. The skeleton is an arbitrary 
curve in a more dimensional space. The curve is represented as the finite set of 
ordered points. The points that lie on the curve between these selected points can 
be approximated with linear or cubic interpolation.  

 
 

 
(a) 

 
(b) 

Figure 2: Linear (a) and cubic (b) interpolation. 

 

The use of linear interpolation in this paper is due to simplification of the 
calculations that are needed for further analysis. A better approximation of the 
target curve can also be achieved with a larger set of ordered points. 

 

 
(a) 

 
(b) 

Figure 3: Chosen points before (a) and after (b) shifting. 
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The second step is choosing the sample points. In order to do this we have 
normalized the length of the curve so that an arbitrary point on the curve is given 
by S(t), where 0<t<1. Sample points are then chosen as Ti ’=S(ti), where {ti; 
i=1,…,k} are independent uniformly distributed random numbers on interval [0,1]. 

The third step is moving (shifting) the chosen points by error vectors. We have 
decided that error vectors will have multivariate normal distribution with 
expectation 0 and covariance matrix σ2I. After generating independent identically 
distributed random vectors Ei (i=1,…,k; one for each point) the final points are 
obtained as Ti=Ti ’+E i. 

Before applying hierarchical clustering methods to two sets of point generated 
in the way described above, some definitions of certain parameters have to be 
introduced. The most basic definition is the definition of distance between two 
skeletons. This distance is called minimal distance (mr): 
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where S1(s) and S2(t) stand for parameterization of two chosen skeletons, d(S1(s)-
S2(t)) is Euclidian distance between two points.  

The variation of points around the skeleton is another parameter that has to be 
clearly defined. It would be appropriate to define variation of points as the 
expected distance of these points from the skeleton. Taking into account the fact 
that the skeleton is section-linear (like a broken line), deriving the expected 
distance will be limited to the straight line. Let us imagine the following situation: 
the point on the straight line (with directed vector p) is shifted by an arbitrary n-
dimensional normal vector X with expectation 0 and covariance matrix σ2I. We 
would like to obtain the expected distance of this point from the straight line. For 
simplicity, assume that the straight line is vertical and that the shift x1 (first 
component of a random vector) is collinear with the directed vector of the straight 
line. To be sure: there is an orthogonal matrix A (ATA=I ), which is used to 
multiply X to get X'=AX, such that x1'=Ax1 is collinear with directed vector of the 
straight line, p; X' is distributed normally with expectation 0 and covariance 
matrix σ2I. In this case, Euclidian distance between the shifted point and the 
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that h is distributed in χ2 with n-1 degrees of freedom, thus E(h)=n-1 and 
V(h)=2(n-1) (x2, x3,...,xn are independent and identically distributed ~ N(0, σ2)). 

Let us approximate h  using the development of Taylor series around E(h): 
 
 

( )
( )

( )( )
( )

( )( )2

34

1

2

1
hEh

hE
hEh

hE
hEh −+−−≅

 

 

(3.2) 

 

 



180 Matej Francetič, Mateja Nagode, and Bojan Nastav 
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The dispersion of points around the skeleton, r , is defined  
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where σS is standard deviation used in generating the points and n is the dimension 
of space, where skeleton S is situated.  

Lastly, some number is needed to represent the degree of separation of data 
separation. Regarding this number, each case could be assigned the troublesome 
(or not) classification of objects into clusters. Furthermore, this number will serve 
as a degree of admissibility with each of the clustering methods used, when, if at 
all, some of the methods will have higher tolerance or will be able to separate data 
and correctly assign objects to classes. This number will be called the degree of 
separation of data, marked by SLP. 
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where S1 and S2 are skeletons of groups of points, mr is their minimal distance, rS1 
and rS2 are respective dispersion of points. 

The paper tests hierarchical clustering methods on ten examples of concave 
data sets. Each of the examples has two groups of points and examples are 
different with regard to skeleton and used standard deviations of points around the 
skeleton. We have limited our work to two different pairs of skeletons. One pair is 
defined in two, the other in three-dimensional space (see Figure 4). Furthermore, 
to briefly test the stability of the methods applied, some of the examples have been 
re-run using subsampling (of 50%).  
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(a) 

 
(b) 

Figure 4: Pairs of two (a) and three-dimensional (b) skeletons. 

For further analysis, the minimal distance between the skeletons in the above 
examples has to be known. In case a), this is equal to 1. It is interesting that in this 
case the minimal distance is achieved in almost all of the points on the skeleton. In 

case b) the minimal distance equals 31  (approximately 0.58) and is achieved 

only four times (from 0.58 to 1). From this structure of the skeletons one might 
expect that clustering would, in the first case, be harder along the whole skeleton, 
whereas in the second case this harder clustering would occur only at the place 
where rings reach their minimal distance between the skeletons.  

In generating the data in each case the same standard deviation around the 
skeletons has been used. This was defined in a way to suit previously determined 
degree of separation of the data (SLP), which were chosen from the 1 – 2.5 
interval. The standard deviations used with each pair of the skeletons are given in 
the following table.  

With degree of separation of the data 2.5, the structures are well separated 
(there is practically no probability, that any of the points from one group would be 
closer to other skeleton); with SLP 1, the interlacing of the data is extreme. The 
following figure (Figure 5) shows the data with SLP 2 and 1.2. 

4 Results 

The estimation and successfulness of the methods included is possible on the basis 
of the percentage of correctly assigned group membership that is known in 
advance. This, however, is almost never the case in real life. Therefore, in real 
data the performance of the method is seldom accurately assessed. This paper 
deals with generated data, which means that the real situation is known and 
measuring performances of different methods is therefore a rather easy task. Using 
the percentage of correctly assigned units (to the correct cluster) is the key 
indicator used in the analysis. Further on, when performing the methods with 
statistical package SPSS classification into two groups was chosen. This produced 
the results with percentages from 50% (all cases were correctly classified just in 
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one group and the other group remained 'empty') to 100% (all cases were correctly 
classified in both groups) of correctly assigned group membership. Tables 
separated for two- and three-dimensional space present the results. The marginal 
examples (SLP=2.5 and SLP=1) together with the central (SLP=1.5) have been 
additionally subsampled and used on the methods more times (50) in order to 
obtain the notion of the methods’ stability. Thus, the method in this context 
appears to be stable if the average percentage of correctly assigned group 
membership of all subsamples does not vary much among different degrees of 
separation of the data.  

 

Table 1: Used standard deviations. 

SLP value 2.5 2 1.5 1.2 1 
a) 0.11 0.17 0.22 0.28 0.33 
b) 0.07 0.08 0.11 0.13 0.16 

 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5: Pictures of the data: a) 2D, SLP=2; b) 2D, SLP=1.2; c) 3D, SLP=2; d) 3D, 
SLP=1.2. 

The results of two-dimensional data gave the following conclusions. When the 
points are clearly separated, the only method that classifies all the cases correctly 
is the nearest neighbour. This method is the only method that is suitable for these 
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types of data. Even when the groups are not (internally) cohesive but are isolated 
from each other the nearest neighbour method can produce correct results. Other 
methods do not fulfil the criterion of correctly assigned group membership with 
such a high percentage. Nevertheless, the percentages are not so low and this is the 
consequence of great degree of separation of data. 

 

Table 2: Results of clustering with two-dimensional data. 

 SLP=2,5 SLP=2 SLP=1,5 
Correctly 
classified 
units (%) 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
METHOD 
 

         

Between 76,4 69,4 72,9 81,1 76,8 78,95 71,8 72,1 71,95 
Within 69,9 80,5 75,2 65,2 56,6 60,9 61,9 50,5 56,2 
Nearest 100 100 100 100 0,1 50,05 100 0,1 50,05 
Furthest 73,3 76,9 75,1 73,5 44,9 59,2 62,9 70,1 66,5 
Centroid 76,3 66,5 71,4 54,2 78,1 66,15 54,9 56,9 55,9 
Median 31,6 100 65,8 51,6 52,2 51,9 91,0 66,7 78,85 
Ward’s 72,5 48 60,25 77,6 68,2 72,9 73,2 78,6 75,9 
K-means 61,5 57,8 59,65 59 57 58 62,3 62,6 62,45 
          

 SLP=1,2 SLP=1 
Correctly 
classified 
units (%) 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
METHOD 
 

      

Between 74,2 73,6 73,9 50,7 50,6 50,65 
Within 49,7 61,9 55,8 77,9 69,6 73,75 
Nearest 100 0,1 50,05 100 0,1 50,05 
Furthest 41,2 92,7 66,95 66,5 86,4 76,45 
Centroid 100 0,1 50,05 100 0,1 50,05 
Median 90,7 19,9 55,3 100 0,1 50,05 
Ward’s 67,9 74,1 71 68,4 77,6 73 
K-means 59,9 59,9 59,9 66,5 63,6 65,05 
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Table 3: Results of clustering with three-dimensional data. 

 SLP=2,5 SLP=2 SLP=1,5 
Correctly 
classified 
units (%) 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
METHOD  

 

         

Between 100 59,3 79,65 100 74,2 87,1 100 66,9 83,45 
Within 100 53,3 76,65 55,8 100 77,9 99,9 60,5 80,2 
Nearest 100 100 100 100 0,1 50,05 100 0,1 50,05 
Furthest 100 75 87,5 100 63,6 81,8 55,2 94,1 74,65 
Centroid 100 52,1 76,05 100 51,6 75,8 100 0,1 50,05 
Median 100 31,3 65,65 100 44,5 72,25 100 2,4 51,2 
Ward’s 100 51,9 75,95 100 53,1 76,55 100 42,8 71,4 

K-means 75 74,1 74,55 71 77,7 74,35 74,7 75,5 75,1 
          

 SLP=1,2 SLP=1 
Correctly 
classified 
units (%) 

 
1 

 
2 

 
Total 

 
1 

 
2 

 
Total 

 
METHOD  

 

      

Between 100 49,3 74,65 42,5 99,4 70,95 
Within 100 50,6 75,3 56,5 89,2 72,85 
Nearest 100 0,1 50,05 100 0,1 50,05 
Furthest 45,7 83,7 64,7 77,4 98,2 87,8 
Centroid 100 0,1 50,05 100 23,2 61,6 
Median 100 65,4 82,7 100 0,1 50,05 
Ward’s 100 49,7 74,85 100 42,2 71,1 

K-means 72,9 75,6 74,25 73,4 75,5 74,45 
       

 
Note: With SLP3 and SLP4, 75% and 60% samples, respectively, were used, due to technical 
problems with the software.  
 

Results obtained by using methods with next degree of separation are different 
from results obtained with the highest degree of separation. In this step the nearest 
neighbour method is completely unsuccessful. The average method performs with 
a quite high percentage of correctly assigned units. For all further degrees of 
separation of the data the results are quite similar, except when observing the data 
with SLP=1. In that case there is no internal cohesion and no isolation between 
groups. With the smallest degree of separation of the data in a two-dimensional 
space the best performance is assigned to the furthest neighbour method, average 
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method (between groups) and Ward's method. Ward's method seems to be the most 
stable method among the observed hierarchical methods. In almost all cases 
(except when the groups are clearly separated, but not cohesive) the successfulness 
of correctly assigned group membership is around 70%. This is not surprising 
since it is known that this method performs well and presents a compromise 
between chaining and compact data. However, the clusters formed are not “in line” 
with the skeletons generated, but rather compact clusters. 
 

40506070
8090100

Between Within Nearest Furthest Centroid Median Ward’s K-meansslp0 slp1 slp2 slp3 slp4  
(a) 2-dimensional space 

40506070
8090100

Between Within Nearest Furthest Centroid Median Ward’s K-meansslp0 slp1 slp2 slp3 slp4
 

(b) 3-dimensional space 

Figure 6: Results of all the methods used. 

Similar conclusions can be drawn when observing data and methods in a three-
dimensional space. Again, certainly the best method with the highest degree of 
data separation is nearest neighbour and we can conclude that it is the only method 
suitable for that kind of data. However, this is only the case when the data are 
clearly separated. When the degree of separation decreases, the method is no 
longer successful. The opposite holds for the lowest degree of data separation, 
where its performance turns out to be completely unsuccessful. In this case the 
average method (between and within groups) performs better. Ward's method gives 
similar results and consequently similar conclusions as in a two-dimensional 
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space.  In a three-dimensional space the furthest neighbour method gives the 
highest percentage (87.8%) of correctly assigned group membership with the 
lowest degree of data separation. With very similar percentage it performs also in 
the case of the highest degree of data separation. In both extreme cases the furthest 
neighbour performs with similar successfulness. This is to some extent surprising, 
since this method is believed to be the most successful with compact clusters and 
not with skeletons like this. At the same time, the results reveal that the clusters 
this method (and others) tend to produce are compact and do not follow the 
skeletons generated.  

5 Conclusions 

This paper is based on generated data and software (SPSS) usage. The latter was 
used to run and test all of the seven hierarchical clustering methods implemented 
in this software on previously generated data. These were obtained by dispersing 
points around two basic shapes of skeleton, both in two and three-dimensional 
space. In the paper, only one data set was used and in some examples further 
subsampling of these data was constructed in order to obtain some idea about the 
methods’ stability.  The skeletons used represent rather hard-to-separate shapes 
and we have intentionally used such skeletons – if the method can work and be 
successful with such structures, it can be successful elsewhere as well. 
Unfortunately, very seldom can we come across less “tricky” data in real life 
problems. Despite this, using the generated data has given us the power to see 
which methods perform well and which do not and, relying on this, some 
conclusions can be drawn. 

Results in the form of tables (previous section) and figures (appendix) speak 
for themselves. Nevertheless, Figure 6 sums up the results of clustering.  

When implementing some of the variability obtained from the subsampling and 
rerunning the methods several (50) times, the methods appear to be more stable 
within the given degrees of separation of the data.  Based on these results, it is 
hard to recommend instructions on how to deal with such data, since no method 
used performs particularly well with the generated data. Some, i.e. the centroid, 
and the median methods appear to be more variable within the given SLP, whereas 
the nearest neighbour method completely fails when the data are more interlaced 
(but it is stable given the other levels of SLP). Other methods are thus more 
appropriate regarding stability. Bearing in mind the fact that real life does not 
follow simple, homogeneous and isolated groups, only brief outlines can be put 
forward at this point. 
 

1. Check the data skeleton. This task seems rather simple for two or three-
dimensional data, but is otherwise virtually impossible. With several 
variables one can first use a data-reduction technique, such as the principal 
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component analysis, and then, using fewer variables, the task of 
determining the proper skeleton to the data turns out to be much easier. An 
example of too-many-variables problems can be found in Gordon (1999: 
24, 25). If the skeleton(s) can be determined, take the following step. 

2. Compare these skeletons with the skeletons used in this assignment and 
determine the most similar skeletons, and choose the most appropriate 
method, given the skeleton and dispersion of points.  

 
Our findings can be further backed up by the following: 

 
3. Performance of clustering methods decreases with increased dispersion of 

the data, which is expected. In case when the criteria, such as the degree of 
separation of the data (SLP) used in this paper, are high enough (dispersion 
is low), the method to be used is the nearest neighbour. However, when the 
data are not so well isolated additional attention needs to be given to 
choosing the right method.  

4. Using three variables (a three-dimensional space), as opposed to a two-
dimensional space gives much better results (by several percentage points), 
meaning that three variables can better determine the proper data structure. 
However, one should keep in mind the previously mentioned too-many-
variables problems (Point 1), which we can come across in reality. Using 
(at least) three variables is thus advised.  

 
Separate from this paper’s main focus, i.e. the hierarchical clustering methods, 

new methods are being developed and used. They apply to different fields and are 
usually custom made for each type of analysis. Intuitively speaking, they would 
follow point one of the above mentioned points and (algebraically) determine the 
skeleton; furthermore, by applying the Euclidian distance, objects would be 
classified. Phrases such as “fuzzy clustering” are used, describing the situation 
where some objects are with certainty classified to one group, while the others 
could be in one or the other group. Similarly, overlapping groups where objects are 
in one and the other groups need special attention. Wave clustering, introduced by 
Sheikholeslami, Chatterjec and Zhang (1998) is a method, which presumably 
works well with concave data sets. Our task was not to focus on such methods, but 
we cannot avoid mentioning them at this point. Additional reading can be found in 
Gordon (1999: 111-130) and a series of scientific articles using clustering methods 
in practise, mainly medical studies.  

Further improvements to this paper could be made by generating several 
random data sets with given parameters (skeleton, degree of separation of data) 
and running the methods on these data. The described process would allow to test 
the methods more broadly for their variability among different degrees of 
separation of data. We believe that observing the obtained dendrograms is a good 
tool to be used with clustering since to a certain degree, they can reveal the real 
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structure of the data. However, their usage is again limited – figures in the 
appendix show that only with the highest degrees of separation of the data, SLP=1 
in Figure 7, they can be used to determine the proper clustering. However, 
dendrograms were not under close inspection in this analysis and therefore, along 
with other data structure, this represents a point to be studied further in details.  
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Appendix 

 
Figure 7: Dendrogram for SLP=2. Two groups can be clearly distinguished. 

 
Figure 8: Dendrogram for SLP=1.5. Number of groups is not clearly seen. 

 
 
 
 
 
 



190 Matej Francetič, Mateja Nagode, and Bojan Nastav 

ORIGINAL SKELETON BETWEEN 

Y

3210-1-2-3

X
3

2

1

0

-1

-2

 Y

3210-1-2-3

X

3

2

1

0

-1

-2

  
NEAREST FURTHEST 

Y

3210-1-2-3

X

3

2

1

0

-1

-2

 Y

3210-1-2-3

X

3

2

1

0

-1

-2

 
MEDIAN WARD 

Y

3210-1-2-3

X

3

2

1

0

-1

-2

 Y

3210-1-2-3

X

3

2

1

0

-1

-2

 
WITHIN CENTROID 

Y

3210-1-2-3

X

3

2

1

0

-1

-2

 
Y

3210-1-2-3

X

3

2

1

0

-1

-2

 

Figure 9: Graphical representation of results for 2D with SLP=2.5. 
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Figure 10: Graphical representation of results for 2D with SLP=1. 
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Figure 11: Graphical representation of results for 3D with SLP=2.5. 
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Figure 12: Graphical representation of results for 3D with SLP=1. 


