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Abstract: We studied the typical domain size and configuration character of randomly perturbed 

nematic liquid crystal system, or in general the system of rod-like objects which interact via a 

Lebwohl–Lasher-type interaction. We described their local direction with a headless unit director 

field. We introduced into the system the impurities of concentration p, which impose the random 

anisotropy field-type disorder to directors. We studied the domain-type pattern of molecules as a 

function of p, anchoring strength W between a neighboring director and impurity, temperature, 

and history of samples. In simulations, we quenched the directors either from the random or from 

homogeneous initial configuration. Our results show that a history of system strongly influences: 

i) the average domain coherence length; and ii) the range of orientational ordering in the system. 

In the random case, the obtained order is always short-range (SRO). On the contrary, in the 

homogeneous case, SRO is obtained only for strong enough anchoring W and large enough 

concentration p. In other cases, the ordering is either quasi long range (QLRO) or long range 

(LRO). We further studied field-induced memory effects for the random initial configuration. With 

increasing external ordering field, either QLRO or LRO is realized. This ordering is preserved even 

if the field is switched off, and its degree saturates for a large enough value of the field. Therefore, 

one can control the degree of global ordering and average domain coherence size by temporarily 

exposing the system to an external ordering field. Such systems could be exploited as soft matter 

based phase-memory devices. 

Key words:  Lebwohl-Lasher model, nematic liquid crystals, disorder, memory effect, 

orientational order. 

Povzetek: V članku obravnavamo tipične konfiguracije naključno motenih nematskih tekočih 

kristalov in velikosti njihovih domen. Gre za sistem paličastih delcev, ki delujejo eden na drugega 

z interakcijo tipa Lebwoh-Lasher. Lokalno smer teh delcev opišemo z vektorskim (direktorskim) 

poljem. V sistem dodamo nečistoče s koncentracijo p, ki povzročajo naključno neurejenost 

direktorskega polja. Obravnavamo domensko strukturirano mrežo molekul kot funkcijo p, jakosti 

sklopitve W med sosednjima direktorjema in nečistočo, temperature in zgodovine vzorca. V 

numeričnih simulacijah smo začetno direktorsko polje dobili z nenadno ohladitvijo, ali pa s 

homogenimi začetnimi pogoji. Rezultati kažejo, da zgodovina sistema bistveno vpliva na: i) 

povprečno koherentno dolžino domene in ii) doseg orientacijskega urejanja sistema. V primeru 

naključne konfiguracije, dobimo vedno red kratkega dosega, v primeru homogenega urejanja pa 

dobimo red kratkega dosega  le v primeru dovolj močne sklopitve W in dovolj velike koncentracije 

p. V ostalih primerih dobimo kvazi-dolgi doseg ali dolgi doseg interakcije. Obravnavali smo tudi 

spominske efekte naključne začetne konfiguracije na podlagi zunanjega polja. S povečevanjem 

zunanjega urejevalnega polja dobimo kvazi-dolgi doseg, ali pa dolgi doseg interakcije. Tako 
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ureditev ohrani sistem tudi potem, ko zunanje polje odstranimo. To pomeni, da lahko kontroliramo 

stopnjo globalne urejenosti in velikost povprečne koherentne dolžine, če sistem začasno 

izpostavimo zunanjemu polju. Taki sistemi bi se lahko uporabili kot spominski sistemi na bazi 

mehkih snovi. 

Ključne besede: Model Lebwohl-Lasher, nematski tekoči kristali, nered, spominski efekt, 

orientacijska urejenost. 

 

1. Introduction 

The phase behavior of fluid systems confined to 

porous hosts and of two-component mixtures is of wide 

interest in condensed matter physics, possibly because it 

stands at the crossroads of several issues of general 

importance, such as the effects of finite size and quenched 

disorder [1-6]. The isotropic to nematic phase 

transformation of thermotropic liquid crystals embedded 

in a number of porous matrices has been experimentally 

characterized using various techniques [7]. Two-

component mixtures, such as nematic liquid crystals 

(NLC) with nano-particles (NP), can in general exhibit 

behaviors that are not encountered in either of isolated 

components, opening gates to new applications. Such 

systems are expected to play an important role in the 

emerging field of nanotechnology and in composites with 

extraordinary material properties. 

Great efforts have been devoted to the study of the 

thermodynamic, optical and dynamic properties of NLC 

merged in low-density silica aerogels [7]. NLC show 

relatively strong responses, even to local low-energy 

excitations, so their structure can be readily controlled by 

the confining surfaces and/or applying external magnetic 

or electric field. We confined our attention to 

thermotropic NLC in which liquid crystal phase is 

induced by lowering the temperature from the ordinary 

liquid (isotropic) phase. In the bulk nematic phase NLC 

molecules tend to be oriented homogeneously along a 

single symmetry breaking direction. At the mesoscopic 

level, the average local orientational ordering is 

commonly described by the nematic director field n


. The 

directions n


  of this unit vector field are physically 

equivalent, reflecting the so called head-to tail invariance 

of NLC phase on the mesoscopic scale.  

For creating domain patterns, it is necessary to quench 

NLC from isotropic to the lower symmetry nematic phase 

[8]. A randomly chosen configuration of the symmetry 

breaking field n


 is established in causally disconnected 

parts. This process is based on local fluctuation mediated 

preferences. Subsequently a domain structure appears 

which is well described by a single domain length d. The 

reason behind this is the continuous symmetry breaking 

and causality. The basic features of domain pattern 

dynamics in a pure bulk are described by the Kibble-

Zurek mechanism [9, 10]. It was originally introduced to 

explain the formation of topological defects in the early 

universe following the big bang [9]. Formation of 

topological defect at the domain wall is energetically 

costly due to high concentration of domain walls and 

defects. To reduce these costs domains grow with time 

what is enabled by mutual annihilation of defects [11, 12]. 

The homogeneous structure in the pure bulk system is 

gradually reached, but if impurities are present, they can 

pin the defects [13, 14]. Accordingly, the domain 

structure can be preserved.  

In this contribution, we use the Lebwohl-Lasher 

lattice model [15-17] for simulations of randomly 

perturbed NLC configurations. We show that in certain 

circumstances impurities can stabilize domain pattern 

giving rise to short range ordering in the nematic LC 

phase.  

1.1. Model 

The three-dimensional (3D) spin model of NLC is 

represented by a rectangular simulation cell which is a 

lattice of M  N  L sites (typically, we choose M = N = 

L = 70, in order to make a compromise between the 

accuracy and calculation times). Each site is enumerated 

by a set of indices (i, j, k), where 1   i  M, 1  j  N and 

1  k  L, and it is occupied by a spin S (i, j, k)  Sijk. The 

spin is a unit vector and may point in arbitrary direction 

(variant of the Heisenberg spin model). The neighboring 

NLC spins tend to align in parallel directions. In addition, 

we supposed that, instead of NLC, some randomly 

positioned sites represent impurities, which tend to 

reorient locally the spin orientation in random directions. 

The probability for the specific site to contain the 

impurity is p (which is shortly called impurity 

concentration) giving on average pMNL impurities in the 

lattice. Accordingly, the spin S represents either the NLC 

nematic director or the preferred direction of the impurity 

(i. e., the direction that the impurity tends to enforce to 

neighboring NLC spins), concerning whether the site 

contains NLC or impurity. The computer random number 

generator sets the static impurity positions and preferred 
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directions in advance. In addition, a homogeneous field 

(electrical, magnetic, etc.) of size B in the arbitrary 

direction can also be applied to the cell that tends to align 

all the spins in its direction. 

The strengths of all three kinds of interactions are 

given by positive parameters J, W and B, which are called 

the spin coupling constant, the impurity anchoring 

strength and the field strength, respectively. The free 

energy functional is modeled by the sum of the terms of 

all spin sites: 

 
ijk

ijkfF , (1) 

Where the energy term fijk consists of the “spin” and the 

“field” parts [18]: 

2 2 2

, . . .

.

1
( ) ( )

2
ijk ijk n n ijk n n ijk B

i j i

f J S S B S e       (2) 

The first part of the free energy functional includes the 

spin interactions between the six nearest neighbors 

(denotation n.n.). For convenience, the factor ½  is added 

in order not to count the interaction between each spin 

pair twice. The coupling constant Jijk,n.n. can have one of 

the three values: 1) 0, if both neighbors are impurities 

(since they are fixed and do not interact); 2) J, if both 

neighbors are NLC spins; and 3) W for mixed types. The 

second part of Eq. (2) means the interaction of the 

external field with the spins. The field B with fixed 

direction eB acts only on the sites with NLC. 

The free energy and the three interaction magnitudes 

(J, W and B) are next renormalized with respect to the 

coupling constant J by setting J =1. The equilibrium spin 

configuration is obtained by minimizing the total free 

energy with respect to all the spins. In order to satisfy the 

normalization of the spin vectors, Sijk
2 = 1, the total free 

energy must be rewritten as: 

 *
*

ijk

ijk

F f  (3) 

where: 

 
ijkijkijkijk fSf  )1(*

2
 , (4) 

The additional multiplication parameters ijk are 

introduced, which also have to be found in order to solve 

the system. The total free energy (3) is minimized by 

setting to zero its derivatives with respect to 3(1  

p)MNL nematic spin components (remember that 

impurity sites are intact). If all ijk factors are first 

expressed (combining both minimization and spin 

normalization equations), we are left with the (1p)MNL 

vector spin equations: 

2

, . . . .

. .

( , ) ( , ) 0ijk ijk n n ijk n n ijk B

n n

R J g S S B g S e   , (5) 

Where the vector g is a function of two vectors, which 

is defined as: 

  21212121 )()(),( vvvvvvvvg


 . (6) 

If the system equilibrium has not been reached yet, the 

left side Rijk of Eq. (5) is not zero and is called residuum. 

It is half the derivative of the free energy with respect to 

individual spin: 

  

ijk

ijk
S

F
R 







2

1 . (7) 

If we are interested only in equilibrium of the system 

without thermal fluctuations (zero temperature), the 

system of equations (5) is solved with over-relaxation 

method where each NLC spin is corrected in proportion 

with the residuum Rijk. However, when thermal 

fluctuations of the spins have to be considered, the final 

equilibrium state of the system is calculated through the 

real-time relaxation process including thermal 

disturbances. The change of spin components in the time 

step t is: 

T
ijk

ijkijk Sold
S

F

kT

tD
oldSnewS













 )()()( . (8) 

Here D is the appropriate degenerated rotation 

diffusion tensor of the system and k is the Boltzmann 

constant. The first term on the right side of (8) 

corresponds to mechanical torque that tends to rotate the 

spin towards equilibrium, while the second term ST 

represents random thermal fluctuation. If we introduce 

dimensionless time step and temperature, t* = Dt, T* 

= kT/J, and use Eq. (8) with dimensionless residuum 

vector, we obtain the corresponding numerical equation: 

    Tijkijkijk SoldR
T

t
oldSnewS





 )(

*

*
2)()( . (9) 

The appropriate dimensionless time interval t* is 

chosen as the input parameter according to literature:   t* 

 0.016. In order to set the thermal fluctuation vector ST, 

it is convenient to consider first their rotation of the spins 

in their own frame (with the local zaxis aligned with the 

spin direction). Only the rotation of the spin about 

perpendicular local x and yaxes is relevant and we 

suppose both rotations to be independent from each other. 

So we can write for the rotational extra energy: 

 )(
2

221
yx

Jc
E  , (10) 

Where x and y are the corresponding rotation 

angles and c1 is the appropriate dimensionless constant 

(input parameter). In accordance with canonical 
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distribution, we can write the infinitesimal probability for 

the range of angles within the phase-space element dx   

dy: 

 
yx

yx
dd

kT

Jc
CdP 













 


2

)(
exp

22
1 ,  (11) 

Where C is the normalization constant and k is the 

Boltzmann constant. Eq. (11) conveniently rewrote in the 

two-dimensional polar coordinate system: 

 dd
T

c
CdP 













 


*2
exp

2
1 , (12) 

Here  is the magnitude of the vector (x, y) and the 

angle  defines its direction with respect to the local x-

axis. To understand this, we may imagine the thermal 

fluctuation as the rotational kinetic free energy with two 

independent components of angular velocity x and y. 

Therefore, in the short time the spin is actually rotated by 

the angle  about the axis that is perpendicular to the 

local zaxis and makes the angle   with the local xaxis. 

While the distribution of  is uniform in the interval (0, 

2), the probability distribution function for  in the 

interval (0, ) is: 

 












 


2

2

2
exp)(


Cp , (13) 

with 2 = T*/c1. The distribution function was simulated 

by our computer random generator. After the thermal 

rotation of the spin in its own frame the coordinates of the 

rotated spin must be transformed again to the laboratory 

system. The thermal rotation of the individual spin is 

finally written with the following vector transformation 

formula: 

    































































cos

sincos

sinsin

01

11

11

2

22

22





zz

y

z

x

z

zy

x

z

y

z

zx

T

SS

S

S

S

S

SS

S

S

S

S

SS

S
   (14) 

In the matrix, there are components of the spin before 

rotation; it corresponds to two rotations of coordinate 

system; first for the spherical azimuthal angle about the 

zaxis, second for the polar angle about the new yaxis. 

This is not the only possibility for the transformation 

matrix, because it is only important that the laboratory z-

axis rotated to match the spin direction (what can be seen 

from the third column of the matrix). The vector to the 

right of the matrix is the rotated spin in its own coordinate 

system. 

The orientational ordering of the spin system can be 

characterized by the traceless symmetric order parameter 

tensor with 33 components: 

 ISSQ
nijkmijkmn

2

1

2

3
,,  ,  (15) 

where Sijk,m is the m-th component of the spin Sijk. The 

brackets <...> denote the average of the quantity through 

the simulation cell. I is the identity matrix. The scalar 

order parameter S is defined as the largest eigenvector of 

the matrix (15). 

The correlation function measures both short- and 

long-range spin orientation ordering. It is defined in a 

manner analogous to the order parameter tensor: 

  
2

1
)(

2

3
)(

2
 mnlijk SSrG


, (16) 

where <...> is the statistical average of the squares of the 

scalar products of only those spin pairs which are 

separated by distance r. We have calculated it 

numerically after relaxation of the spin system. 

In the cases of SRO or QLRO it holds ( ) 0G r   . 

In the case of LRO it follows  2
( ) ~G r g S  . In 

general, one expects an exponential decay towards a 

saturated value of G(r) on increasing r for both LRO and 

SRO. On the other hand, for QLRO  algebraic decay of 

correlations ( )G r r


   is expected [19]. 

In order to obtain structural details from G(r) for a 

finite system the correlation function is fitted using the 

empirical ansatz 

    
(0)

0 0( )
kr

G r a e b


       (17a) 

or                        

 
1

(1) 1
1( )

k r
a e

G r b
r



        (17b)                                                                       

where a0, a1, b0, b1, , k and k1 are adjustable parameters. 

Note that it roughly holds 2
0 1~ ~b b S ,  and 1/ k   

estimates an average linear size of a relatively well 

correlated region, referred to as a domain.  The ansatz 

(0)
( )G r  or (1)

( )G r is suitable for structures exhibiting 

either LRO or SRO. The parameters 2
0 2~ ~b b S  

measure the LC ordering on large scale: S = 0 indicates 

SRO while S > 0 indicates LRO or QLRO.  

On the other hand, the expression (2)
( )G r  is more 

appropriate for studying structures possessing QLRO: 

 (2) 2
2( )

a
G r b

r
        (17c) 

abandare adjustable parameters. One expects 

Gr→ ∞) → 0. However, the decay of correlations with 
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distance is relatively weak, and finite-size effects are 

expected to be important. 

The estimates for the power law coefficient could 

be determined using a finite size scaling analysis [20] of 

SSL using the relationship :    

 S L


     (18) 

for SRO, the observed mean order parameter in a system 

of N particles would be given by S ∼ L-3/2, implying = 

3

2

 in this case. By contrast, in the case of LRO, the order 

parameter tends to a finite non-zero value for large system 

size L , and hence  = 0. QLRO is signalled by 

intermediate values of with  = /2, so long as ≤ 3, 

although if   ≥ 3, the SRO finite-size scaling result is 

recovered. 

2. Results and discussion 

Typical size of the lattice used in our calculations was 

M = N = L = 70.  Before systematic variation of free 

parameters in our model (e. g., impurity concentration 

and anchoring strength), we adjusted the parameter c1 in 

Eq. (10) so that the nematic scalar order parameter S 

drops to zero due to thermal fluctuations (for small 

concentrations of impurities) approximately at the value: 

kT/J  1. After several trials, we got roughly c1 = 55 and 

we kept this value for all consequent simulations. 

Next, we chose two specific values of anchoring 

strength, W = 2 and W = 0.5, and varied systematically 

impurity concentration p and temperature T. For specific 

value of p, we started simulations with some low 

temperature (T = 0.1), set the desired initial spin 

configuration and then gradually increased temperature.  

Moreover, we tested the system behavior upon 

increasing temperature according to four different 

scenarios relating to initial system configuration: 

a) Random initial orientation (complete disorder) of 

nematic spins at the lowest temperature (T = 0.1) 

followed by spin’s relaxation. However, for each 

higher temperature, the numerical procedure takes 

the last (relaxed) spin configuration of the previous 

(a little lower) temperature before relaxation at this 

temperature begins. We shortly denote this scenario 

by R (random). 

b) Random initial orientation for all temperatures, not 

only the lowest one. We shortly denote this scenario 

by RR (random-random). 

c) Homogeneous (in one direction) initial alignment 

(complete order) of nematic spins at the lowest 

temperature (T = 0.1) followed by spins’ relaxation. 

However, for each higher temperature, the 

numerical procedure takes the last (relaxed) spin 

configuration of the previous (a little lower) 

temperature before relaxation at this temperature 

begins. We shortly denote this scenario by H 

(homogeneous). 

d) Homogeneous initial orientation for all 

temperatures, not only the lowest one. We shortly 

denote this scenario by HH (homogeneous-

homogeneous).    

We also note that in any case, the configuration of 

impurities is unchanged during rising the temperature. 

We also took care that for some given value of p, the 

configuration of impurities was the same for the four 

scenarios described above. 

Experimentally scenario H means that in the 

beginning we used very strong homogeneous external 

field only at the lowest temperature, to align all spins. HH 

means that the initial spin configuration is aligned with 

the strong field for every temperature before spin 

relaxation. R means that the system is frozen suddenly 

from isotropic phase to the lowest temperature, and then 

the temperature is slowly increased. RR means the system 

is suddenly frozen from isotropic phase for every 

considered temperature before spin relaxation. 

In simulation, there was no external field (except for 

considering very strong initial field to achieve aligned 

initial configuration, which is then turned off). We 

followed the evolution of the scalar order parameter S and 

  belonging to the correlation function (16) according to 

the form (17a). Since both impurities and thermal 

fluctuations contribute to orientational disorder in the 

nematic phase, both parameters S and  are diminished 

when either impurity concentration or temperature are 

increased. 

For each temperature, we made 5000 sweeps (cycles) 

over the entire lattice. This was in most cases enough to 

obtain qualitatively correct temperature dependences of 

the macroscopic parameters. The large numbers of 

sweeps would require much more computational time. 

For comparison with another research group [21] used 105 

cycles for their analysis of memory effects in nematics 

with quenched disorder although they commented that 

this number was far larger than necessary to retain high 

precision. In order to eliminate small thermal fluctuations 

of the macroscopic parameters for each temperature, we 

averaged them for the last 40 sweeps out of 5000. 

Nevertheless, figures still have evident small statistical 

irregularities in the temperature dependences of 

calculated parameters. In order to check quantitatively 

how well the 5000 sweeps present the thermal 

equilibrium structure, we followed the change of some 

macroscopic variables with increasing number of sweeps. 
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We did this for a few different sets of parameters 

(temperature, impurity strength and concentration, and 

initial condition of spins – random or aligned). Typical 

situation is presented in Figures 13. The parameters for 

all these figures are W = 2, p = 0.2, T = 0.1 and HH 

scenario. 

Figure 1. Dependence of the free energy F (calculated 
per site) on the number of sweeps. 

Figure 2. Dependence of the order parameter S on the 
number of sweeps. 

Figure 3. Dependence of the coherence length  on the 
number of sweeps. 

2.1. Different Histories 

In Figure 4 we plotted typical obtained G(r) profiles, 

with r normalized to nearest-neighbor distance a0. This is 

the simplest thing which can be done now since a0 is 

already used in Figure 4. In the case of short-range order 

G(r) drops to zero for 𝑟/𝑎 0 >> 1. On the other hand, for 

QLRO or LRO the correlation function reaches a finite 

value in the limit 𝑟/𝑎 0 >> 1. 

Figure 4.  G(𝑟) profiles. ○: random history, ×: 
homogeneous history. 𝑁 = 70, 𝑊 = 1, 𝑇 = 0.5, p = 0.1. 
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In Figure 5 we considered the value of S as a function 

of temperature T, we used the scenarios H and HH since 

this parameter for random initial spin configurations (R 

and RR) are zero. The values of this parameter for HH are 

higher than for H scenario as expected.  

The dependence of the correlation length  on 

temperature T, spin concentration and scenario is plotted 

in Figure 6 for comparison. It is evident from Fig. 6 that 

the correlation length   is not significantly different for 

the four scenarios, except for smaller values of impurity 

concentrations p. However, it can be noted that 

correlations length for R is systematically higher than for 

RR, while that for H it is systematically higher than that 

for HH. Rearranging spins (either aligning or 

randomizing) for each temperature separately obviously 

lowers the correlation length a little. We showed only the 

situation for W = 2 since the lines for W = 0.5 are much 

too irregular (large fluctuations) for the picture to be 

representative. It is evident from Fig. 6 already that the 

fluctuations in  are larger for smaller impurity 

concentrations. Averaging over several repetitions of the 

same temperature scan would smooth these curves but 

this requires much more computational time.  

 

 

 

 

 

 

 

Figure 5. The degree of orientational ordering as a 
function of T for different values of p (2.5 % to 20 %); 
(a) W = 2 and (b) W=0.5. Scenarios: H (full forms) and 
HH (empty forms). 

Figure 6. Dependence of correlation length   as a 
function of T  in different P (5 % to 20 %) and, W = 2. 
Scenarios: H (●), HH (○), R (■) and RR (□). 

We made a brief study of temperature hysteresis 

behavior in the presence of impurities p (without external 

field). We took an example with W =1 and different value 

of  p. We started with the aligned spin configuration at the 

starting temperature, and then the temperature was 
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gradually decreased and next increased again. The results 

are shown in figure 7. 

Figure 7. History-dependence of the random system. 

Order parameter temperature-dependence S(T). “Up” 
(empty symbols) corresponds to increasing, “Down” 
(full symbols) corresponds to decreasing W = 1, N = 70. 

We next consider the range of orientational order 

within samples. For this purpose, we started from two 

significantly different histories of systems. We either 

initiated the simulations from LC structures 

homogeneously aligned along a single symmetry-

breaking direction or from randomly aligned structures. 

We henceforth refer to these initial configurations as 

homogeneous and random histories, respectively.  

We first calculated structures originating from the 

random history. For all the studied cases, we obtained 

SRO. The G(r) profiles for p = 0.3 are shown in Figure 8. 

It can be concluded that with increasing temperatures T 

the domain size decreasing and SRO is observed.  

Figure 8. G(r) dependence for random histories. p = 0.3, 𝑊 = 
1, 𝑁 = 70. 

In addition, we have made some finite size analysis of 

the system. We tested the resulting structure ordering for 

random initial configuration and for growing size of the 

system (M = N = L): from 20 to 80. For each N, we made 

8 repetitions of the calculations (for the same system 

parameters), because of randomness of the impurities 

positions and orientations results in the distribution of all 

macroscopic parameters. Therefore, the results 

represented in Figure 9 are the averages of 8 repeated 

calculations. We also chose two representative 

temperatures: kT/J = 0.1, kT/J = 0.5 and two different 

boundary conditions, so called free and periodic. It seems 

for small size N, one suspects that the effects of the finite 

system become relevant. More specifically, the periodic 

boundary should result in larger value of order parameter 

S since the opposite faces of the simulation cube are 

connected. The analysis confirmed an expectation what 

can be seen on Figure 9. The Fitting of logarithmic graphs 

to linear functions showed the following values of the 

exponents in the equation (18) dependences:   = 1.77 for 

kT/J = 0.1 and free boundary,  = 1.85 for kT/J = 0.1 and 

periodic boundary,  = 1.88 for kT/J = 0.5 and free 

boundary,  = 2.13 for kT/J = 0.5 and periodic boundary. 

It seems that our simulations correspond more to SRO 

than to QLRO.  

Figure 9. Dependence of scalar order parameter S on 
the system size M = N = L; other parameters: p = 0.1,W 
= 2, kT/J = 0.1 and 0.5; RR scenario. 
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Figure 10. Dependence of correlation length  on the 
system size M = N = L; other parameters: p = 0.1, W = 
2, kT/J = 0.1 and 0.5; RR scenario. 

Figure 10 presents the dependence of correlation 

length  on system size. For both free boundary and 

periodic boundary condition (N) is slightly increasing 

function of system size, and is larger for periodic 

boundary.  

2.2. Memory Effect  

Finally, we checked the memory effects of the system 

in connection with homogeneous external field, e. g. 

magnetic field. We compared the residual scalar order 

parameter S (after switching the field off) in two different 

procedures: zero-field-cooling (ZFC) and field cooling 

(FC). In both cases, we started with high temperature 

(above nematic-isotropic transition) and gradually 

lowered the temperature to some value deep in the 

nematic phase. We chose W = 1 and p = 0.14 for static 

impurities. The initial and the final temperature was Ti = 

1 and Tf = 0.2, respectively, with the temperature step T 

= 0.05.  

In ZFC procedure the temperature was first gradually 

lowered from Ti to Tf with B = 0 (allowing the system to 

relax at each intermediate temperature). Then at Tf = 0.2 

the field was suddenly raised (in one step) from zero to 

some specific value B and the system was relaxed at B. 

Finally, B was suddenly switched off and the system 

relaxed at zero field. In FC procedure the field was 

suddenly raised (in one-step) from zero to B already at the 

temperature Ti = 1 and the system was relaxed at B. Then 

keeping a field the temperature was lowered from Ti to Tf 

(allowing the system to relax at each intermediate 

temperature). Finally at Tf = 0.2 the field was suddenly 

switched off, and the system relaxed at zero field. For 

both procedures, we started with random initial 

configuration and then followed the R scenario (the 

system remembered intermediate configurations); we 

also stored initial random configuration on file, so that it 

was identical for ZFC and FC case.  

The number of cycles was 104 for the single field step 

from 0 to B or opposite, while we took only 2000 cycles 

for one temperature step T to spare computational time 

(but since there are 16 temperature steps of 0.05 from Ti 

to Tf, this makes 32000 steps between the two 

temperatures). The size of the system was M = N = L = 

70. We varied the field B to see its influence on the 

difference of the order parameter for both procedures. 

The results are presented in Figure 11.  

Figure 11. Dependence of residual S after removing the 
field on the field value for ZFC and FC procedures; p = 
14 %, W = 1, Tf = 0.2, R scenario. ●: ZFC,  ○: FC. 

Briefly, in the study of memory effect, for some 

relatively small value of the field magnitude, after 

switching the field off, the FC procedure results are in 

higher value of residual order parameter than the ZFC 

procedure.  

3. Conclusions 

We studied rod-like objects, namely nematic liquid 

crystals, within a cubic lattice, interacting via a Lebwohl–

Lasher-type interaction. The structure of the system was 
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described in terms of the director field Si, where the unit 

vector S exhibits head-to-tail invariance. Moreover, we 

introduced impurities of concentration p, which impose 

the so-called random anisotropy field. We analyzed the 

domain-type pattern of molecules as a function of p, 

anchoring strength W between a neighboring director and 

impurity, as well as initial configuration or history of the 

system. In random history, we quenched randomly 

distributed nematic spin orientations to a low temperature 

T << T, and then allowed the system to equilibrate. In 

homogenous history, by contrast, we let a set of initially 

aligned nematic spins to relax. 

Our simulations showed that in both cases, for 

homogeneous and random histories, the order parameter 

S is reduced with increasing anchoring strength W and 

impurity concentration p, as well with increasing 

temperature. Similar conclusion holds for the correlation 

length. 

Finite-size scaling methods [20, 22] have been used to 

distinguish phases between LRO, QLRO and SRO. Our 

study regarding to finite-size scaling behavior in the N-I 

transition temperature for random history in different 

temperatures and two different boundary conditions 

reveals that in all cases the orientational order is SRO than 

QLRO. But for low values of p and W we can see QLRO. 

On the other hand, for homogenous history SRO appears 

only for very high value of anchoring strength W and 

impurity concentration p. 

We also analyzed field-induced memory effects for 

saturated configurations in the random initial 

configuration. Our study divulges that even a small 

external homogeneous field sets up LRO In the system.  
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