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Abstract

For a k-regular graph Γ and a graph Υ of order k, a generalized truncation of Γ by Υ
is constructed by replacing each vertex of Γ with a copy of Υ. E. Eiben, R. Jajcay and
P. Šparl introduced a method for constructing vertex-transitive generalized truncations. For
convenience, we call a graph obtained by using Eiben et al.’s method a special generalized
truncation. In their paper, Eiben et al. proposed a problem to classify special generalized
truncations of a complete graph Kn by a cycle of length n−1. In this paper, we completely
solve this problem by demonstrating that with the exception of n = 6, every special gener-
alized truncation of a complete graph Kn by a cycle of length n − 1 is a Cayley graph of
AGL(1, n) where n is a prime power. Moreover, the full automorphism groups of all these
graphs and the isomorphisms among them are determined.
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1 Introduction
In [6], the symmetry properties of graphs constructed by using the generalized truncations
was investigated. In particular, a method for constructing vertex-transitive generalized trun-
cations was proposed (see [6, Construction 4.1 and Theorem 5.1]), and this method was
used to construct vertex-transitive generalized truncations of a complete graph Kn by a
cycle of length n− 1 for some small values of n. The vertex-transitive generalized trunca-
tions of a complete graph Kn by a graph Υ in context of [6, Theorem 5.1] can be defined
as follows.

Let Kn be a complete graph of order n with n ≥ 4, and let V (Kn) = {v1, v2, . . . , vn}.
Let G be an arc-transitive group of automorphisms of Kn. Then G acts 2-transitively
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on V (Kn). Let v = v1, and let Ov be a union of orbits of the stabilizer Gv acting on
{{x, y} | x 6= y, x, y ∈ V (Kn)\{v}}. Let Υ be the graph with vertex set {v2, v3, . . . , vn}
and edge set Ov . For each u ∈ V (Kn), let Vu = {(u,w) | w ∈ V (Kn) \ {u}}. The
special generalized truncation of Kn by Υ, denoted by T (Kn, G,Υ), is the graph with the
vertex set

⋃
u∈V (Kn) Vu, and the adjacency relation in which a vertex (u,w) is adjacent

to the vertex (w, u) and to all the vertices (u,w′) for which there exists a g ∈ G with the
property ug = v and {w,w′}g ∈ Ov .

Based on the analysis of special generalized truncations of a complete graph Kn by a
cycle of length n− 1 for some small values of n, the authors of [6] proposed the following
problem.

Problem 1.1 ([6, Problem 5.4]). Classify the special generalized truncations of Kn (n ≥ 4)
by a cycle of length n− 1.

The main purpose of this paper is to give a solution of this problem. Before stating the
main result of this paper, we first set some notation. For a positive integer n, we denote
by Zn the cyclic group of order n, and by D2n the dihedral group of order 2n. Let Z∗n
be the multiplicative group of units mod n (Z∗n consists of all positive integers less than
n and coprime to n). Also we use An and Sn respectively to denote the alternating and
symmetric groups of degree n. For two groups M and N , N oM denotes a semidirect
product of N by M . For a group G, the automorphism group of G and the socle of G will
be represented by Aut(G) and soc(G), respectively. For a graph Γ we denote by V (Γ),
E(Γ), A(Γ) and Aut(Γ) the vertex set, edge set, arc set and full automorphism group of Γ,
respectively. A graph Γ is said to be vertex-transitive (resp. arc-transitive (or symmetric))
if Aut(Γ) acts transitively on V (Γ) (resp.A(Γ)). Cayley graphs form an important class of
vertex-transitive graphs. Given a finite group G and an inverse closed subset S ⊆ G \ {1},
the Cayley graph Cay(G,S) on G with respect to S is the graph with vertex set G and
edge set {{g, sg} | g ∈ G, s ∈ S}. Finally, we use Kn and Cn respectively to denote the
complete graph and cycle with n vertices.

Let p be a prime and e a positive integer. Let GF(pe) be the Galois field of order pe

and let x be a primitive root of GF(pe). Then

AGL(1, pe) = {αxi,z′ : z 7→ zxi + z′,∀z ∈ GF(pe) | i ∈ Zpe−1, z
′ ∈ GF(pe)},

and AGL(1, pe) is a 2-transitive permutation group on GF(pe). Let

H = {α1,z′ : z 7→ z + z′,∀z ∈ GF(pe) | z′ ∈ GF(pe)},
K = {αxi,0 : z 7→ zxi,∀z ∈ GF(pe) | i ∈ Zpe−1}.

Then H is regular on GF(pe) and the point stabilizer AGL(1, pe)0 of the zero element 0
of GF(pe) is K. So AGL(1, pe) = H oK.

Construction 1.2. Let z′ be a non-zero element of GF(pe). For each i ∈ Z∗pe−1 with
i < pe−1

2 , let

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (p = 2).
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Remark 1.3. Let z′, z′′ be two non-zero elements of GF(pe). There exists xj ∈ GF(pe) \
{0} such that z′xj = z′′. So

{α−1,z′ , αxi,0, αx−i,0}αxj,0 = {α−1,z′′ , αxi,0, αx−i,0} (p > 2),

{α1,z′ , αxi,0, αx−i,0}αxj,0 = {α1,z′′ , αxi,0, αx−i,0} (p = 2).

It follows that

Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) ∼=
Cay(AGL(1, pe), {α−1,z′′ , αxi,0, αx−i,0}) (p > 2),

Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) ∼=
Cay(AGL(1, 2e), {α1,z′′ , αxi,0, αx−i,0}) (p = 2).

In view of this fact, up to graph isomorphism, Ki
pe is independent of the choice of z′.

The following is the main result of this paper.

Theorem 1.4. Let K̃n be a special generalized truncation of Kn (n ≥ 4) by Cn−1. Then
K̃n is isomorphic to either T (K6, A5, C5) (see Figure 1), or one of the graphs Ki

pe (i ∈
Z∗pe−1, i <

pe−1
2 ). Conversely, each of the above graphs is indeed a special generalized

truncation of Kn (n ≥ 4) by a cycle of length n− 1, where n = 6 or a prime power.
Furthermore, for any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1

2 , Ki
pe
∼= Ki′

pe if and only
if i′ ≡ ipj or −ipj (mod pe − 1) for some 1 ≤ j ≤ e. Moreover, the following hold:

(i) Aut(T (K6, A5, C5)) ∼= A5;

(ii) Aut(K1
4) ∼= S4;

(iii) Aut(K1
7) ∼= D42 o Z3;

(iv) Aut(K3
11) ∼= PGL2(11);

(v) Aut(K7
23) ∼= PGL2(23);

(vi) if Ki
pe is not isomorphic to one of the graphs: K1

4, K1
7, K3

11 and K7
23, then

Aut(Ki
pe) ∼= AGL(1, pe).

Figure 1: The graph T (K6, A5, C5).
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2 Preliminaries
All groups considered in this paper are finite and all graphs are finite, connected, simple
and undirected. For the group-theoretic and graph-theoretic terminology not defined here
we refer the reader to [3, 12].

Let Γ = Cay(G,S) be a Cayley graph on a group G relative to a subset S of G. It
is easy to prove that Γ is connected if and only if S is a generating subset of G. For
any g ∈ G, R(g) is the permutation of G defined by R(g) : x 7→ xg for x ∈ G. Set
R(G) = {R(g) | g ∈ G}. It is well-known that R(G) is a subgroup of Aut(Γ). For
briefness, we shall identify R(G) with G in the following. In 1981, Godsil [7] proved
that the normalizer of G in Aut(Γ) is G o Aut(G,S), where Aut(G,S) is the group
of automorphisms of G fixing the set S set-wise. Clearly, Aut(G,S) is a subgroup of
the stabilizer Aut(Γ)1 of the identity 1 of G in Aut(Γ). We say that the Cayley graph
Cay(G,S) is normal if G is normal in Aut(Cay(G,S)) (see [13]). If Γ = Cay(G,S) is
a normal Cayley graph on G, then we have Aut(G,S) = Aut(Γ)1, and if, in addition, Γ
is also arc-transitive, then Aut(G,S) is transitive on S. From this we can easily obtain the
following lemma.

Lemma 2.1. There does not exist an arc-transitive normal Cayley graph of odd valency at
least three on a cyclic group.

A Cayley graph Cay(G,S) on a group G relative to a subset S of G is called a CI-
graph of G, if for any Cayley graph Cay(G,T ), whenever Cay(G,S) ∼= Cay(G,T ) we
have T = Sα for some α ∈ Aut(G). The following proposition is a criterion for a Cayley
graph to be a CI-graph.

Proposition 2.2 ([1, Lemma 3.1]). Let Γ be a Cayley graph on a finite group G. Then
Γ is a CI-graph of G if and only if all regular subgroups of Aut(Γ) isomorphic to G are
conjugate.

Let Γ be a connected vertex-transitive graph, and let G ≤ Aut(Γ) be vertex-transitive
on Γ. For a G-invariant partition B of V (Γ), the quotient graph ΓB is defined as the graph
with vertex set B such that, for any two different vertices B,C ∈ B, B is adjacent to C
if and only if there exist u ∈ B and v ∈ C which are adjacent in Γ. Let N be a normal
subgroup of G. Then the set B of orbits of N in V (Γ) is a G-invariant partition of V (Γ).
In this case, the symbol ΓB will be replaced by ΓN .

In view of [11, Theorem 9], we have the following proposition.

Proposition 2.3. Suppose that Γ is a connected trivalent graph with an arc-transitive group
G of automorphisms. If N E G has more than two orbits in V (Γ), then N is semiregular
on V (Γ), and ΓN is a trivalent symmetric graph with G/N as an arc-transitive group of
automorphisms.

3 Proof of Theorem 1.4
3.1 Special generalized truncations of Kn by Cn−1

In this subsection, we shall prove the first part of Theorem 1.4 by determining all special
generalized truncations of Kn (n ≥ 4) by Cn−1. Throughout this subsection, we shall use
the following assumptions and notations.
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Assumption 3.1.

(1) Let Kn be a complete graph of order n with n ≥ 4, and let V (Kn) = {v1, v2, . . . ,
vn}.

(2) Let G ≤ Aut(Kn) be an arc-transitive group of automorphisms.

(3) Let v = v1, and let Ov be a union of orbits of the stabilizer Gv acting on {{x, y} |
x 6= y, x, y ∈ V (Kn) \ {v}}. Let Υ be the graph with vertex set {v2, v3, . . . , vn}
and edge set Ov .

(4) For each u ∈ V (Kn), let Vu = {(u,w) | w ∈ V (Kn) \ {u}}.

(5) Let K̃n = T (Kn, G,Υ) be the graph with the vertex set
⋃
u∈V (Kn) Vu, and the

adjacency relation in which a vertex (u,w) is adjacent to the vertex (w, u) and to
all the vertices (u,w′) for which there exists a g ∈ G with the property ug = v and
{w,w′}g ∈ Ov .

In view of [6, Theorem 5.1], we have the following proposition.

Proposition 3.2. Use the notations in Assumption 3.1. Then Aut(K̃n) has a vertex-
transitive subgroup G̃ such that P = {Vu | u ∈ V (Kn)} is an imprimitivity block system
for G̃. Furthermore, the following hold.

(1) The quotient graph of K̃n relative to P is isomorphic to Kn.

(2) G̃ ∼= G.

(3) G̃ acts faithfully on P .

For the two groups G̃,G in the above proposition, we shall follow [6] to say that G̃ is
the lift of G. The next lemma shows that if Υ ∼= Cn−1 then G̃ is a 2-transitive permutation
group on P and the point stabilizer G̃Vu is either cyclic or dihedral.

Lemma 3.3. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift
of G. Then for each u ∈ V (Kn), the subgraph of K̃n induced by Vu is a cycle of length
n− 1, and the subgroup G̃Vu of G̃ fixing Vu set-wise acts faithfully and transitively on Vu.
In particular, G̃ acts faithfully and 2-transitively on P , and G̃Vu

∼= Zn−1, or Dn−1 (if n is
odd), or D2(n−1).

Proof. By Assumption 3.1 (3) and (5), the subgraph of K̃n induced by Vv is isomorphic to
Υ. By Proposition 3.2, P = {Vu | u ∈ V (Kn)} is an imprimitivity block system for G̃,
and so for each u ∈ V (Kn), the subgraph of K̃n induced by Vu is a cycle of length n− 1.

For any two vertices u,w of Kn, by Assumption 3.1 (5), {(u,w), (w, u)} is the unique
edge of K̃n connecting Vu and Vw. This implies that the subgroup K of G̃Vu fixing Vu
point-wise will fix every block in P . It then follows from Proposition 3.2 (3) that K = 1,
and so G̃Vu

acts faithfully on Vu. Since G̃ is transitive on V (K̃n), G̃Vu
is transitive on Vu.

Since the subgraph of K̃n induced by Vu is a cycle of length n− 1, one has G̃Vu
∼= Zn−1,

or Dn−1 (if n is odd), or D2(n−1).
Again since {(u,w), (w, u)} is the unique edge of K̃n connecting Vu and Vw, it follows

that G̃Vu also acts transitively on P \ {Vu}. This implies that G̃ acts 2-transitively on P .
By Proposition 3.2 (3), G̃ acts faithfully on P .
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The above lemma enables us to determine the structure of G̃ in the case when Υ ∼=
Cn−1.

Lemma 3.4. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift of
G. Then one of the following holds:

(1) n = 6 and soc(G̃) = A5;

(2) n = 4 and G̃ ∼= AGL(1, 22) or AΓL(1, 22);

(3) n = pe 6= 4 and G̃ ∼= AGL(1, pe), where p is a prime and e is a positive integer.

Proof. By Lemma 3.3, G̃ can be viewed as a 2-transitive permutation group onP with point
stabilizer isomorphic to Zn−1, or Dn−1 (if n is odd), or D2(n−1). By [5, Propositon 5.2],
soc(G̃) is either elementary abelian or non-abelian simple, and furthermore, if soc(G̃) is
non-abelian simple, then by checking the list of the simple groups which can occur as
socles of 2-transitive groups in [5, p. 8], we have soc(G̃) = A5. In order to complete the
proof of this lemma, it remains to deal with the case when soc(G̃) is elementary abelian.

In what follows, assume that soc(G̃) ∼= Zep for some prime p and positive integer e.
View soc(G̃) as an e-dimensional vector space over a field of order p, and let 0 denote the
zero vector of soc(G̃). Recall that G̃0

∼= Zpe−1, Dpe−1 (p odd), or D2(pe−1). By checking
Hering’s theorem on classification of 2-transitive affine permutation groups [8] (see also
[10, Appendix 1]), we have G̃ ≤ AΓL(1, pe) with point-stabilizer G̃0 ≤ ΓL(1, pe). As
G̃ = soc(G̃) o G̃0, to determine G̃, we only need to determine all possible subgroups of
ΓL(1, pe) which are isomorphic to Zpe−1, Dpe−1 (p odd), or D2(pe−1), and transitive on
soc(G̃) \ {0}.

Note that ΓL(1, pe) can be constructed in the following way. Let GF(pe) be the Galois
field of order pe, and view soc(G̃) as the additive group of GF(pe). It is well-known that
the multiplicative group GF(pe)∗ of GF(pe) is cyclic, and let x be a generator of GF(pe)∗.
Then GL(1, pe) = 〈x〉. Let y be the Frobenius automorphism of GF(pe) such that y maps
every g ∈ GF(pe) to gp. Then we have

ΓL(1, pe) = 〈x, y | xp
e−1 = ye = 1, y−1xy = xp〉.

In the following, we shall first determine all possible cyclic subgroups of ΓL(1, pe) of
order either pe−1 or p

e−1
2 (p odd) (Claim 1), and then this is used to determine all possible

subgroups of ΓL(1, pe) which are isomorphic to Zpe−1, Dpe−1 (p odd), or D2(pe−1), and
transitive on soc(G̃) \ {0}.

Claim 1. Let T be a cyclic subgroup of ΓL(1, pe) of order p
e−1
r with either r = 1 or r = 2

and p is odd. Then either T = 〈xr〉, or pe = 32, T ∼= Z pe−1
2

and T = 〈xy〉 or 〈x3y〉.

Proof of Claim 1. Let ` = pe−1 or p
e−1
2 (p odd). Since T is a cyclic subgroup of ΓL(1, pe)

of order `, we may let T = 〈xjyk〉 with 0 ≤ j ≤ pe − 2 and 0 ≤ k ≤ e− 1. If k = 0, then
T ≤ 〈x〉 and so T = 〈xr〉 with either r = 1 or r = 2 and p is odd.

Assume now that 0 < k ≤ e − 1. Then yk 6= 1. Since y−1xy = xp, one has
yxpy−1 = x, and hence (yxy−1)p = x. Clearly, pe ≡ 1 (mod pe−1), so yxy−1 = xp

e−1

.
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It follows that ykxjy−k = xjp
k(e−1)

, and so ykxj = xjp
k(e−1)

yk. By this equality, we have
for any positive integer m,

(xjyk)m = xj(1+pk(e−1)+p2k(e−1)+···+p(m−1)k(e−1))ymk = x
j pmk(e−1)−1

pk(e−1)−1 ymk. (3.1)

From Equation (3.1) it follows that (xjyk)e = x
j pek(e−1)−1

pk(e−1)−1 . Since pe − 1 | pke(e−1) − 1,
one has

(xjyk)e(p
k(e−1)−1) = xj(p

ek(e−1)−1) = 1.

This implies that the order of xjyk divides e(pk(e−1) − 1), namely, ` | e(pk(e−1) − 1).
Since ` = pe − 1 or p

e−1
2 (p odd), we have pe − 1 | 2e(pk(e−1) − 1).

Suppose that e ≥ 3. If (p, e) = (2, 6), then ` = pe − 1 = 63. However, it is easy
to check that 63 - 6(25k − 1) for any k ≤ 5, contrary to ` | e(pk(e−1) − 1). Thus,
(p, e) 6= (2, 6). Then by a result of Zsigmondy [14], there exists at least one prime q such
that q divides pe − 1 but does not divide pt − 1 for any positive integer t < e. Clearly,
p 6= q, so p is an element of Z∗q ∼= Zq−1 of order e. In particular, we have q > e. Since
q | pe − 1 and pe − 1 | 2e(pk(e−1) − 1), we have q | pk(e−1) − 1, implying k(e− 1) > e.
Since k ≤ e − 1, we may let k(e − 1) = me + t for some positive integers m and t < e,
and since pme(pt − 1) = (pk(e−1) − 1)− (pme − 1), we have q | pt − 1. However, this is
impossible because it is assumed that q - pt − 1 for any t < e.

Thus, e < 3. Since 0 < k ≤ e−1, one has e = 2 and k = 1, and then p2−1 | 4(p−1).
It follows that p + 1 | 4 and hence p = 3. Then (xjy)2 = x4j has order at most 2

since 〈x〉 ∼= Z8, and then xjy has order dividing 4. This implies that ` = pe−1
2 = 4 and

T = 〈xy〉 or 〈x3y〉. This completes the proof of Claim 1.

By now, we have shown that Claim 1 is true. Recall that G̃0 ≤ ΓL(1, pe), G̃0
∼= Zpe−1,

Dpe−1 (p odd), or D2(pe−1) and G̃0 is transitive on soc(G̃) \ {0}. We shall finish the proof
by considering the following three cases.

Case 1. G̃0
∼= Zpe−1.

In this case, by Claim 1, we must have G̃0 = 〈x〉 = GL(1, pe) and so G̃ ∼= AGL(1, pe).

Case 2. G̃0
∼= Dpe−1 (p odd).

In this case, by Claim 1, either x2 ∈ G̃0, or pe = 9 and G̃0 contains xy or x3y.
For the former, we have G̃0 = 〈x2, f〉, where f is an involution of ΓL(1, pe) such that
fx2f = x−2 and f /∈ 〈x〉. Note that G̃0 is transitive on soc(G̃)\{0}. We may let f = xyk

and 0 < k ≤ e− 1. By Equation (3.1), f2 = (xyk)2 = 1 implies that e is even and k = e
2 ,

and furthermore, xp
e(e−1)

2 +1 = 1. It follows that pe − 1 | p
e(e−1)

2 + 1. However, since
pe

(e−2)
2 (p

e
2 + 1) = (p

e(e−1)
2 + 1) + (pe

(e−2)
2 − 1), we would have pe − 1 | p e

2 + 1, forcing
that p = 2, a contradiction.

For the latter, we have G̃0
∼= D8. However, it is easy to check that in ΓL(1, 9) =

〈x, y | x8 = y2 = 1, y−1xy = x3〉 there does not exist an involution inverting xy or x3y,
a contradiction.

Case 3. G̃0
∼= D2(pe−1).

By Claim 1, we must have G̃0 = 〈x〉 o 〈y e
2 〉 with y

e
2xy

e
2 = x−1. On the other

hand, since y−1xy = xp, we have y
e
2xy

e
2 = xp

e
2 and hence xp

e
2 = x−1. It follows that
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p
e
2 ≡ −1 (mod pe − 1) and hence pe − 1 divides p

e
2 + 1. Consequently, we have pe = 4,

G̃0 = 〈x, y〉 = ΓL(1, 4), and G̃ ∼= AΓL(1, 4) ∼= S4.

Now we are ready to determine all possible special generalized truncations of Kn by
Cn−1.

Lemma 3.5. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift of
G. Then K̃n = T (Kn, G,Υ) is isomorphic to either T (K6, A5, C5) (see Figure 1), or one
of the graphs Ki

pe (i ∈ Z∗pe−1, i <
pe−1

2 ) (see Construction 1.2 for the definition of these
graphs).

Proof. If soc(G̃) ∼= A5, then by [6, Example 5.3], we have G̃ ∼= A5 and up to graph iso-
morphism, there exists a unique graph, and so we may denote this graph by T (K6, A5, C5)
(see Figure 1).

In what follows, we assume that soc(G̃) � A5. Then from Lemma 3.4 we see that G̃
has a subgroup, say T̃ such that T̃ ∼= AGL(1, pe) and T̃ acts regularly on V (K̃n), where
p is a prime and e is a positive integer such that pe ≥ 4. It follows that K̃n is a Cayley
graph on T̃ (∼= AGL(1, pe)) and n = pe. For each u ∈ V (Kn), by Lemma 3.3, the
subgraph of K̃n induced by Vu is a cycle of length n − 1, and the subgroup G̃Vu

of G̃
fixing Vu set-wise acts faithfully and transitively on Vu. Furthermore, G̃ acts faithfully and
2-transitively on P . For convenience, we may identify P with GF(pe), identify Vu with
the zero element 0 of GF(pe) and identify T̃ with AGL(1, pe). We shall use the notations
for T̃ = AGL(1, pe) as well as its elements and subgroups H and K introduced in the
paragraph before Construction 1.2. Then T̃Vu

= K ∼= Zpe−1.
Take (u,w) ∈ Vu, and assume that (u,w1) and (u,w2) are two vertices in Vu adjacent

to (u,w). Since T̃Vu
= K ∼= Zpe−1 is transitive on Vu, there exists a unique αxi,0 ∈ T̃Vu

such that (u,w)αxi,0 = (u,w1) and (u,w)αx−i,0 = (u,w2), and since the subgraph of K̃n

induced by Vu is a cycle of length n− 1, i is coprime to pe − 1 (n = pe). So we may let

K̃n = Cay(AGL(1, pe), {αxi,0, αx−i,0, αxj ,z′}),

where αxj ,z′ is an involution. Since K̃n is connected, if p is odd, then we have αxj ,z′ =
α
x

pe−1
2 ,z′

= α−1,z′ and z′ 6= 0, and if p = 2, then we have αxj ,z′ = α1,z′ and z′ 6= 0, and

correspondingly, we obtain the two graphs Kj
pe (p > 2) and Kj

2e (see Construction 1.2).

From Figure 1 it is easy to see that T (K6, A5, C5) is a special generalized truncation of
K6 by a cycle of length 5. The following lemma shows that each of the Cayley graphs Ki

pe

(i ∈ Z∗pe−1, i <
pe−1

2 ) is also indeed a special generalized truncation of Kpe by a cycle of
length pe − 1.

Lemma 3.6. Each of the graphs Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) (see Construction 1.2) is a

special generalized truncation of Kpe by a cycle of length pe − 1.

Proof. Recall that each Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) is a trivalent Cayley graph on

AGL(1, pe) defined as follows:

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (z′ 6= 0, p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (z′ 6= 0).
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(Keep in mind we use the notations for AGL(1, pe) as well as its elements and subgroups
H and K introduced in the paragraph before Construction 1.2.) Note that AGL(1, pe) =
H oK, where

H = {α1,z′′ : z 7→ z + z′′,∀z ∈ GF (pe) | z′′ ∈ GF (pe)},
K = {αxj ,0 : z 7→ zxj ,∀z ∈ GF (pe) | j ∈ Zpe−1}.

Moreover, K is maximal in AGL(1, pe) since AGL(1, pe) is 2-transitive on GF (pe). As
i ∈ Z∗pe−1, one has K = 〈αxi,0〉 and then the maximality of K implies that 〈α−1,z′ ,

αxi,0〉 = AGL(1, pe) for p > 2 and 〈α1,z′ , αxi,0〉 = AGL(1, 2e). Thus, every Ki
pe

(i ∈ Z∗pe−1, i <
pe−1

2 ) is connected.
It is easy to see that Cay(K, {αxi,0, αx−i,0}) ∼= Cpe−1 is a subgraph of Ki

pe (i ∈
Z∗pe−1, i <

pe−1
2 ). Since AGL(1, pe) acts on V (Ki

pe) by right multiplication, the subgraph
of Ki

pe induced by Kg for any g ∈ AGL(1, pe) is a cycle of length pe− 1. As AGL(1, pe)

acts 2-transitively on B = {Kg | g ∈ AGL(1, pe)}, the quotient graph of Ki
pe relative

to B is a complete graph Kpe . So we have Ki
pe
∼= T (Kpe ,AGL(1, pe),Υi), where Υi is

the subgraph with vertex set B − {K} and edge set {{Kγg,Kγαxi,0g} | g ∈ K} where
γ = α−1,z′ for p > 2 and γ = α1,z′ for p = 2.

3.2 Automorphisms and isomorphisms

In this subsection, we shall determine the automorphism groups and isomorphisms of spe-
cial generalized truncations of Kn byCn−1, and thus prove the second part of Theorem 1.4.
By checking [6, Table 1], we have the following lemma.

Lemma 3.7. Aut(T (K6, A5, C5)) ∼= A5.

In the following two lemmas, we shall determine the automorphisms and isomorphisms
of the graphs Ki

pe (i ∈ Z∗pe−1, i <
pe−1

2 ). We keep using the notations for AGL(1, pe) as
well as its elements and subgroups H and K introduced in the paragraph before Construc-
tion 1.2.

Lemma 3.8. Let Γ be one of the graphs Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) (see Construction 1.2).

Then Theorem 1.4 (ii) – (vi) hold.

Proof. Recall that Γ is a connected trivalent Cayley graph on X = AGL(1, pe). Let
A = Aut(Γ). For convenience of the statement, we view X as a regular subgroup of A.

Suppose first that Γ is arc-transitive. Let N =
⋂
g∈AX

g . If N = 1, then by [9,
Theorem 1.1], we have Aut(Γ) ∼= PGL2(pe) with pe = 11 or 23. If pe = 11, then since
i ∈ Z∗10 and i < 5, we have i = 3 and hence Γ = K3

11. If pe = 23, then i = 3, 5, 7 or 9 as
i ∈ Z∗22 and i < 11, and by MAGMA [4], Aut(Ki

23) ∼= PGL2(23) if and only if i = 7, and
hence Γ = K7

23. If N > 1, then N E A, and in particular, N EX . Since soc(X) ∼= Zep is
the unique minimal normal subgroup of X = AGL(1, pe), one has soc(X) ≤ N . Clearly,
soc(X) is a Sylow p-subgroup of N since N ≤ X . So soc(X) is characteristic in N and
hence normal in A. Consider the quotient graph Σ of Γ relative to soc(X). Clearly, Σ
has pe − 1 vertices. Since pe − 1 > 2, by Proposition 2.3, Σ would be a trivalent arc-
transitive Cayley graph on X/ soc(X) ∼= Zpe−1. Furthermore, by [2, Corollary 1.3], either
Σ ∼= K3,3, or Σ is a trivalent normal arc-transitive Cayley graph on X/ soc(X) ∼= Zpe−1.
However, the latter case cannot happen by Lemma 2.1. For the former, we have pe− 1 = 6
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and so p = 7 and e = 1. In this case, we have i = 1 and Γ = K1
7. By MAGMA [4], we

have Aut(K1
7) ∼= D42 o Z3.

Suppose now that Γ is not arc-transitive. If A > X , then the vertex-stabilizer Aa is a
2-group for any a ∈ V (Γ). Then Aa fixes one and only one neighbor of a. Assume that
the neighbor of a fixed by Aa is b. Then B = {{a, b}g | g ∈ A} is a system of blocks of
imprimitivity of A on V (Γ). It follows that Γ − B is a union of several cycles with equal
lengths, and the set of vertex-sets of these cycles forms an A-invariant partition of V (Γ).
Let C be the cycle of Γ containing the identity 1 of X . Since Γ is a Cayley graph on X , X
acts on V (Γ) = X by right multiplication, and since V (C) is a block of imprimitivity of A
acting on V (Γ), C is actually a subgroup of X . From the definition of Γ = Ki

pe , one may
see that V (C) = K = {αxi,0 : z 7→ zxi,∀z ∈ GF (pe) | i ∈ Zpe−1}, and the vertex set
of every cycle of Γ − B is just a right coset of K. Let B = {Kg | g ∈ X}. Then B is an
A-invariant partition of Γ. Clearly,X acts 2-transitively and faithfully on B, so the quotient
graph of Γ relative B is Kpe . Now it is easy to see that Γ ∼= T (Kpe , A,Υi), where Υi is
the subgraph with vertex set B − K and edge set {{Kγg,Kγαxi,0g} | g ∈ AK} where
γ = α−1,z′ for p > 2 and γ = α1,z′ for p = 2. Clearly, Υi

∼= Cpe−1. From Lemma 3.4 it
follows that either pe = 4 and A = AΓL(1, 4) ∼= S4, or A = X = AGL(1, pe).

Lemma 3.9. For any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1
2 , Ki

pe
∼= Ki′

pe if and only if
there exists 1 ≤ j ≤ e such that i′ ≡ ipj or −ipj (mod pe − 1).

Proof. If pe = 4 or 7, then we must have i = 1, and so we have only one graph for each of
these two cases. If pe = 11 or 23, then by MAGMA [4], for any distinct i, i′ ∈ Z∗pe−1 with
i, i′ < pe−1

2 , one may check that Ki
pe
∼= Ki′

pe if and only if i′ ≡ ipj or−ipj (mod pe−1).
Suppose that Ki

pe is not isomorphic to one of the graphs: K1
4,K

1
7,K

3
11 and K7

23. By
Lemma 3.8, Aut(Ki

pe) ∼= AGL(1, pe) and by Proposition 2.2, Ki
pe is a CI-graph. Recall

that

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (p = 2).

Since Ki
pe is a CI-graph, for any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1

2 , Ki
pe
∼= Ki′

pe if and
only if there exists γ ∈ Aut(AGL(1, pe)) such that {αxi,0, αx−i,0}γ = {αxi′ ,0, αx−i′ ,0}
and either αγ−1,z′ = α−1,z′ for p > 2 or αγ1,z′ = α1,z′ for p = 2.

Note that Aut(AGL(1, pe)) = AΓL(1, pe) = AGL(1, pe) o 〈η〉, where η is in-
duced by the Frobenius automorphism of GF(pe) such that αηa,b = αap,bp for any αa,b ∈
AGL(1, pe). Suppose first that i′ ≡ ipj or −ipj (mod pe − 1) for some 1 ≤ j ≤ e.

Then one may check that α
ηjα

(z′)−pj z′,0
±1,z′ = α±1,z′ and {αxi,0, αx−i,0}

ηjα
(z′)−pj z′,0 =

{αxi′ ,0, αx−i′ ,0}. So Ki
pe
∼= Ki′

pe . Conversely, if Ki
pe
∼= Ki′

pe , then there exists γ ∈
Aut(AGL(1, pe)) such that {αxi,0, αx−i,0}γ = {αxi′ ,0, αx−i′ ,0} and either αγ−1,z′ =

α−1,z′ for p > 2 or αγ1,z′ = α1,z′ for p = 2. Since K = 〈αxi,0〉, γ normalizes K,
and since NAΓL(1,pe)(K) = K o 〈η〉, one has γ = αxk,0η

j , for some k ∈ Z∗pe−1 and
1 ≤ j ≤ e. Then

αγxi,0 = α
α

xk,0
ηj

xi,0 = αη
j

xi,0 = αxipj ,0 ∈ {αxi′ ,0, αx−i′ ,0}.

It follows that i′ ≡ ipj or −ipj (mod pe − 1).
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3.3 Proof of Theorem 1.4

From Lemmas 3.5 and 3.6 we can obtain the proof of the first part of Theorem 1.4, and
from Lemmas 3.8 and 3.9, we obtain the proof of the second part of Theorem 1.4.

ORCID iDs
Xue Wang https://orcid.org/0000-0001-5131-6353
Fu-Gang Yin https://orcid.org/0000-0001-8328-0690
Jin-Xin Zhou https://orcid.org/0000-0002-8353-896X

References
[1] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad.

Sci. Hungar. 29 (1977), 329–336, doi:10.1007/bf01895854.

[2] Y.-G. Baik, Y. Feng, H.-S. Sim and M. Xu, On the normality of Cayley graphs of abelian
groups, Algebra Colloq. 5 (1998), 297–304, doi:10.1023/a:1006016130005.

[3] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University
Press, Cambridge, 2nd edition, 1993.

[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J.
Symbolic Comput. 24 (1997), 235–265, doi:10.1006/jsco.1996.0125.

[5] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13
(1981), 1–22, doi:10.1112/blms/13.1.1.
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